Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context
Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electr...
Saved in:
Published in | American journal of physiology. Heart and circulatory physiology Vol. 305; no. 7; pp. H1031 - H1040 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms(2), P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. |
---|---|
AbstractList | Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI;
n
= 9) and control swine (
n
= 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms,
P
< 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms
2
,
P
= 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms,
P
= 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (
P
= 0.0001), whereas left stellate ganglion stimulation showed the reverse (
P
= 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms(2), P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine ( n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms 2 , P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation ( P = 0.0001), whereas left stellate ganglion stimulation showed the reverse ( P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms^sup 2^, P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. [PUBLICATION ABSTRACT] Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 plus or minus 8 vs. 436 plus or minus 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 plus or minus 123 vs. 362 plus or minus 32 ms super( 2), P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 plus or minus 14 vs. 365 plus or minus 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. |
Author | Shivkumar, Kalyanam Vaseghi, Marmar Mahajan, Aman Yamakawa, Kentaro Ajijola, Olujimi A So, Eileen Lux, Robert L Yagishita, Daigo Zhou, Wei Patel, Krishan J |
Author_xml | – sequence: 1 givenname: Olujimi A surname: Ajijola fullname: Ajijola, Olujimi A organization: University of California-Los Angeles (UCLACardiac Arrhythmia Center, UCLA, Los Angeles, California – sequence: 2 givenname: Daigo surname: Yagishita fullname: Yagishita, Daigo – sequence: 3 givenname: Krishan J surname: Patel fullname: Patel, Krishan J – sequence: 4 givenname: Marmar surname: Vaseghi fullname: Vaseghi, Marmar – sequence: 5 givenname: Wei surname: Zhou fullname: Zhou, Wei – sequence: 6 givenname: Kentaro surname: Yamakawa fullname: Yamakawa, Kentaro – sequence: 7 givenname: Eileen surname: So fullname: So, Eileen – sequence: 8 givenname: Robert L surname: Lux fullname: Lux, Robert L – sequence: 9 givenname: Aman surname: Mahajan fullname: Mahajan, Aman – sequence: 10 givenname: Kalyanam surname: Shivkumar fullname: Shivkumar, Kalyanam |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23893167$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUs9rFDEUDlKx2-pfIMiAFy-zJnmbZOJBkGJtoeBFzyGbSXazzCRrkindm3-6mW5brCdP78H3I--9fGfoJMRgEXpL8JIQRj_q3X5rdSpLjFewWlJM4AVaVIS2hIE8QQsMHFpOgJ2is5x3GGMmOLxCpxQ6CYSLBfp9GY0emvFQS-p9bX1wOpniY6htPxmbm80Q1xVJdoy9HXzYNNE1R75p8mHc67K1xZsqCDbd6ln8qQl2Ss9VPjS6yZU9v2NiKPauvEYvnR6yffNQz9HPy68_Lq7am-_fri--3LSGAS2txk44kMSBNc4Yw3tDNF8bLnpOqBQY257JDjrSuR5LQh2pmFvX2zDHOIVz9Pnou5_Wo-2NDaVOp_bJjzodVNRePUeC36pNvFUgZCcYqQYfHgxS_DXZXNTos7HDoIONU1ZkJSnHAqT4D-oKoOMCZtf3_1B3cUqhXmJm4Xm1-7fhyDIp5pyse5qbYDWHQT2GQd2HQc1hqKp3f6_8pHn8ffgDBPO3Ow |
CODEN | AJPPDI |
CitedBy_id | crossref_primary_10_1161_CIRCIMAGING_117_006819 crossref_primary_10_3390_cells10102629 crossref_primary_10_1016_j_ccep_2017_08_002 crossref_primary_10_1016_j_stemcr_2014_04_017 crossref_primary_10_1016_j_jacep_2016_01_005 crossref_primary_10_1038_s41598_018_19304_2 crossref_primary_10_1111_jce_14624 crossref_primary_10_1016_j_hrthm_2015_01_045 crossref_primary_10_1016_j_hrthm_2017_06_025 crossref_primary_10_1093_europace_euac126 crossref_primary_10_1161_CIRCEP_114_002195 crossref_primary_10_1038_s41467_019_09770_1 crossref_primary_10_1152_ajpheart_00257_2019 crossref_primary_10_1016_j_autneu_2017_07_008 crossref_primary_10_1016_j_autneu_2014_09_017 crossref_primary_10_1172_jci_insight_86715 crossref_primary_10_1111_jce_14136 crossref_primary_10_7554_eLife_78520 crossref_primary_10_1371_journal_pone_0111246 crossref_primary_10_1038_s41598_020_75903_y crossref_primary_10_1016_j_hrthm_2023_02_024 crossref_primary_10_1016_j_ijcard_2015_10_120 crossref_primary_10_1172_jci_insight_153913 crossref_primary_10_1007_s11906_020_01111_8 crossref_primary_10_1161_CIRCRESAHA_114_303772 crossref_primary_10_3389_fnsyn_2022_960458 crossref_primary_10_1016_j_autneu_2022_103019 crossref_primary_10_1155_2021_5168574 crossref_primary_10_1016_j_jacep_2021_05_016 crossref_primary_10_1016_j_hrthm_2015_08_022 crossref_primary_10_1136_rapm_2023_104399 crossref_primary_10_1161_HYPERTENSIONAHA_122_20782 crossref_primary_10_1113_JP271165 crossref_primary_10_12677_IJPN_2017_64012 crossref_primary_10_1113_JP271840 crossref_primary_10_1016_j_tcm_2015_05_001 crossref_primary_10_1152_ajpheart_00575_2016 crossref_primary_10_1161_CIRCEP_115_001359 crossref_primary_10_1152_ajpheart_00558_2015 crossref_primary_10_1113_JP283710 crossref_primary_10_1161_CIRCRESAHA_116_304679 crossref_primary_10_1152_ajpheart_00129_2017 crossref_primary_10_1172_jci_insight_94715 crossref_primary_10_1016_j_pbiomolbio_2015_12_015 crossref_primary_10_1152_ajpheart_00337_2018 crossref_primary_10_1016_j_jacep_2023_04_021 crossref_primary_10_1007_s11936_018_0633_z crossref_primary_10_1016_j_jacc_2018_12_064 crossref_primary_10_1016_j_nanoen_2024_109864 crossref_primary_10_1080_07853890_2023_2283195 crossref_primary_10_1152_ajpheart_00593_2017 crossref_primary_10_1111_1755_5922_12193 crossref_primary_10_1113_JP284739 crossref_primary_10_1016_j_neulet_2019_134319 crossref_primary_10_1161_JAHA_123_032405 crossref_primary_10_1536_ihj_19_065 crossref_primary_10_1152_ajpheart_00358_2023 crossref_primary_10_1152_ajpheart_00635_2019 crossref_primary_10_1016_j_autneu_2016_08_016 crossref_primary_10_1152_ajpheart_00393_2015 crossref_primary_10_1007_s11302_016_9518_3 crossref_primary_10_1097_ALN_0000000000003662 crossref_primary_10_1152_japplphysiol_00514_2019 crossref_primary_10_1093_cvr_cvae009 crossref_primary_10_1016_j_jacep_2017_06_006 crossref_primary_10_1016_j_hrthm_2021_07_067 crossref_primary_10_1155_2015_698368 crossref_primary_10_1161_CIRCRESAHA_116_308446 crossref_primary_10_14814_phy2_12328 crossref_primary_10_1038_s41598_018_28562_z crossref_primary_10_1253_circj_CJ_23_0058 |
Cites_doi | 10.1016/j.autneu.2008.08.004 10.1111/j.1540-8167.1992.tb01090.x 10.1016/S0735-1097(99)00205-3 10.1161/01.RES.18.4.416 10.1016/j.hrthm.2010.02.014 10.1161/01.CIR.77.2.445 10.1161/CIRCEP.112.972836 10.1016/j.jelectrocard.2011.07.030 10.1016/j.hrthm.2007.09.007 10.1161/01.CIR.72.6.1372 10.1016/j.jacc.2011.11.030 10.1016/j.hrthm.2010.07.032 10.1161/01.CIR.101.9.1060 10.1161/CIRCULATIONAHA.109.929703 10.1016/j.hrthm.2012.03.052 10.1161/01.RES.0000072999.51484.92 10.1161/01.RES.68.5.1204 10.1113/expphysiol.2007.041178 10.1161/01.CIR.101.16.1960 10.1161/CIRCEP.111.967976 10.1016/j.jacc.2011.11.031 10.3949/ccjm.74.Suppl_1.S48 10.1016/j.autneu.2007.01.014 10.1152/ajpheart.01106.2011 10.1016/j.jacc.2011.09.043 10.1152/ajpheart.00754.2012 10.1111/j.1540-8167.2009.01442.x 10.1016/j.hrthm.2011.02.029 10.1161/01.RES.0000133678.22968.e3 10.1016/0046-8177(91)90035-N |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Oct 1, 2013 Copyright © 2013 the American Physiological Society 2013 American Physiological Society |
Copyright_xml | – notice: Copyright American Physiological Society Oct 1, 2013 – notice: Copyright © 2013 the American Physiological Society 2013 American Physiological Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TS 7U7 8FD C1K FR3 P64 7X8 7TK 5PM |
DOI | 10.1152/ajpheart.00434.2013 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE CrossRef Technology Research Database Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1539 |
EndPage | H1040 |
ExternalDocumentID | 3092927071 10_1152_ajpheart_00434_2013 23893167 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: 2-P41-RR-0112553-12 – fundername: NHLBI NIH HHS grantid: K08 HL125730 – fundername: NHLBI NIH HHS grantid: R01-HL-084261 |
GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 AAFWJ ABJNI ACBEA ACIWK ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP BTFSW CGR CUY CVF DIK E3Z EBS ECM EIF EJD EMOBN F5P GX1 H13 ITBOX KQ8 NPM OK1 P2P PQQKQ RAP RHF RHI RPL RPRKH TR2 UKR W8F WH7 WOQ XSW YSK ~02 AAYXX CITATION 7QP 7QR 7TS 7U7 8FD C1K FR3 P64 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c532t-a0f7f391f3ecfccc6dc1a6bc67d6129700ed5983818fd0912f1c67fb0045f5623 |
ISSN | 0363-6135 |
IngestDate | Tue Sep 17 21:14:19 EDT 2024 Tue Aug 27 04:53:45 EDT 2024 Fri Oct 25 11:20:14 EDT 2024 Thu Oct 10 22:15:50 EDT 2024 Thu Sep 12 16:20:48 EDT 2024 Sat Sep 28 07:54:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | autonomic nervous system cardiac innervation neural remodeling sympathetic nerves |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c532t-a0f7f391f3ecfccc6dc1a6bc67d6129700ed5983818fd0912f1c67fb0045f5623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798751 |
PMID | 23893167 |
PQID | 1440129751 |
PQPubID | 48261 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3798751 proquest_miscellaneous_1492607397 proquest_miscellaneous_1443386731 proquest_journals_1440129751 crossref_primary_10_1152_ajpheart_00434_2013 pubmed_primary_23893167 |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda – name: Bethesda, MD |
PublicationTitle | American journal of physiology. Heart and circulatory physiology |
PublicationTitleAlternate | Am J Physiol Heart Circ Physiol |
PublicationYear | 2013 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | 22923270 - Circ Arrhythm Electrophysiol. 2012 Oct;5(5):1010-116 1705914 - Hum Pathol. 1991 Feb;22(2):138-46 4064279 - Circulation. 1985 Dec;72(6):1372-9 2018987 - Circ Res. 1991 May;68(5):1204-15 22345568 - Am J Physiol Heart Circ Physiol. 2012 May 1;302(9):H1838-46 17981929 - Exp Physiol. 2008 Feb;93(2):165-76 17455544 - Cleve Clin J Med. 2007 Feb;74 Suppl 1:S48-51 4952701 - Circ Res. 1966 Apr;18(4):416-28 20479150 - Circulation. 2010 Jun 1;121(21):2255-62 18055272 - Heart Rhythm. 2008 Jan;5(1):131-9 18818126 - Auton Neurosci. 2008 Dec 15;144(1-2):22-9 10779463 - Circulation. 2000 Apr 25;101(16):1960-9 20156593 - Heart Rhythm. 2010 Jul;7(7):994-6 12714561 - Circ Res. 2003 May 30;92(10):1145-52 10440149 - J Am Coll Cardiol. 1999 Aug;34(2):381-8 22333344 - Circ Arrhythm Electrophysiol. 2012 Apr;5(2):264-72 22465457 - Heart Rhythm. 2012 Aug;9(8):1303-9 20682358 - Heart Rhythm. 2010 Dec;7(12):1817-24 17350347 - Auton Neurosci. 2007 Jul 31;134(1-2):18-25 15166093 - Circ Res. 2004 Jul 9;95(1):76-83 21354335 - Heart Rhythm. 2011 Jul;8(7):1060-7 23241324 - Am J Physiol Heart Circ Physiol. 2013 Feb 15;304(4):H579-88 10704175 - Circulation. 2000 Mar 7;101(9):1060-6 19298565 - J Cardiovasc Electrophysiol. 2009 Jul;20(7):759-63 22192676 - J Am Coll Cardiol. 2012 Jan 3;59(1):91-2 22381432 - J Am Coll Cardiol. 2012 Mar 6;59(10):954-61 22381433 - J Am Coll Cardiol. 2012 Mar 6;59(10):962-4 3338134 - Circulation. 1988 Feb;77(2):445-56 21917265 - J Electrocardiol. 2011 Nov-Dec;44(6):694-9 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 |
References_xml | – ident: B21 doi: 10.1016/j.autneu.2008.08.004 – ident: B22 doi: 10.1111/j.1540-8167.1992.tb01090.x – ident: B14 doi: 10.1016/S0735-1097(99)00205-3 – ident: B27 doi: 10.1161/01.RES.18.4.416 – ident: B5 doi: 10.1016/j.hrthm.2010.02.014 – ident: B10 doi: 10.1161/01.CIR.77.2.445 – ident: B4 doi: 10.1161/CIRCEP.112.972836 – ident: B20 doi: 10.1016/j.jelectrocard.2011.07.030 – ident: B30 doi: 10.1016/j.hrthm.2007.09.007 – ident: B16 doi: 10.1161/01.CIR.72.6.1372 – ident: B9 doi: 10.1016/j.jacc.2011.11.030 – ident: B17 doi: 10.1016/j.hrthm.2010.07.032 – ident: B28 doi: 10.1161/01.CIR.101.9.1060 – ident: B8 doi: 10.1161/CIRCULATIONAHA.109.929703 – ident: B25 doi: 10.1016/j.hrthm.2012.03.052 – ident: B15 doi: 10.1161/01.RES.0000072999.51484.92 – ident: B19 doi: 10.1161/01.RES.68.5.1204 – ident: B7 doi: 10.1113/expphysiol.2007.041178 – ident: B12 doi: 10.1161/01.CIR.101.16.1960 – ident: B23 doi: 10.1161/CIRCEP.111.967976 – ident: B2 doi: 10.1016/j.jacc.2011.11.031 – ident: B6 doi: 10.3949/ccjm.74.Suppl_1.S48 – ident: B13 doi: 10.1016/j.autneu.2007.01.014 – ident: B24 doi: 10.1152/ajpheart.01106.2011 – ident: B1 doi: 10.1016/j.jacc.2011.09.043 – ident: B3 doi: 10.1152/ajpheart.00754.2012 – ident: B11 doi: 10.1111/j.1540-8167.2009.01442.x – ident: B18 doi: 10.1016/j.hrthm.2011.02.029 – ident: B29 doi: 10.1161/01.RES.0000133678.22968.e3 – ident: B26 doi: 10.1016/0046-8177(91)90035-N |
SSID | ssj0005763 |
Score | 2.4199696 |
Snippet | Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | H1031 |
SubjectTerms | Animals Anterior Wall Myocardial Infarction - complications Anterior Wall Myocardial Infarction - pathology Anterior Wall Myocardial Infarction - physiopathology Arrhythmia Arrhythmias, Cardiac - etiology Arrhythmias, Cardiac - pathology Arrhythmias, Cardiac - physiopathology Cardiovascular disease Cardiovascular Neurohormonal Regulation Disease Models, Animal Electric Stimulation Electrophysiologic Techniques, Cardiac Heart - innervation Heart attacks Hogs Myocardium - pathology Propagation Stellate Ganglion - physiopathology Swine Time Factors |
Title | Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23893167 https://www.proquest.com/docview/1440129751 https://search.proquest.com/docview/1443386731 https://search.proquest.com/docview/1492607397 https://pubmed.ncbi.nlm.nih.gov/PMC3798751 |
Volume | 305 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Zb9Mw2BpDQkgIwcbRMZCREC8hJffBWzWYKlA5pA3tLUocZ0u1pFWaIpUnfjrfZzuJyyYEe0mbxE7cfre_i5BXnp3mXuhlZpBhSg6IZDPmVmZmIJrsPEiDOMN859nnYHrqfTzzz3Zu3dOiltZtNmY_r80ruQlU4RrAFbNk_wOy_UPhAnwH-MIRIAzHf4LxMQoio9rARyMSQOChgLgqfjFfY7SVqvjRcNHzRsU4y_HMWG0qbEmMiYyGaML1ow_2wEKX2_PK2kiNFUZgi5oiNcaM6Lpt7_zRqlGIjROxcz_GjKdGxrOzssHwV-HfH0b0uDcv52BwI_C_XK7nZVUak3HPndJz3DWTOu_7tDxfDE6wVkYcIN-6wKysftJ3ENWyezHmJlVpo-912EPUXKulF6Bw6JYmEFnFt2qcE53ToKdIdzlXnB2sbmDvsc76XcvXcDzUGPkU219oWgGcy7JSV0WOjyVs0_kSO5C3Y3St4l6dzLDVkHBZCSx0UEO0ZQuS7fLfX2dHbhiD_QjG_G0H-CYy7E_fhuL3YBq6nesdf50qogULeHvN67HMtXrXts51xZD6Mx5YU7BOHpD7yjKiE4nmD8kOr_fI_qQGNKk29DXtobHZI3dmKiRkn_wSREAHIqADEVBFBFQSAR2QmS4KqoiAakRANSJ4RyUJ6LPKmqZUkQBVJPCInB5_ODmamqqtiMl812nN1CrCwo3twuWsYIwFObPTIGNBmIO6H4eWxXM_jlCVLXJQp53ChnsFyje_QHPhMdmtFzV_SmjkctDmAo9ZfuYVFo-jPIrywCuAyeXA5UbkTffHJ0tZPSYRVrfvJB3IEgGyBEE2IocdcBJFqqsEoy9wWb49Ii_72yAE0LOX1nyxFmNcNwpC969jYidAv3w4Ik8kvPs1dYgyIuEWJvQDsAj99p26vBDF6BXKHtx45jNydyD1Q7LbNmv-HBT9Nnsh0P838BMI-w |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focal+myocardial+infarction+induces+global+remodeling+of+cardiac+sympathetic+innervation%3A+neural+remodeling+in+a+spatial+context&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Ajijola%2C+Olujimi+A.&rft.au=Yagishita%2C+Daigo&rft.au=Patel%2C+Krishan+J.&rft.au=Vaseghi%2C+Marmar&rft.date=2013-10-01&rft.pub=American+Physiological+Society&rft.issn=0363-6135&rft.eissn=1522-1539&rft.volume=305&rft.issue=7&rft.spage=H1031&rft.epage=H1040&rft_id=info:doi/10.1152%2Fajpheart.00434.2013&rft_id=info%3Apmid%2F23893167&rft.externalDBID=PMC3798751 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon |