Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context

Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electr...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Heart and circulatory physiology Vol. 305; no. 7; pp. H1031 - H1040
Main Authors Ajijola, Olujimi A, Yagishita, Daigo, Patel, Krishan J, Vaseghi, Marmar, Zhou, Wei, Yamakawa, Kentaro, So, Eileen, Lux, Robert L, Mahajan, Aman, Shivkumar, Kalyanam
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms(2), P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced.
AbstractList Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine ( n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms 2 , P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation ( P = 0.0001), whereas left stellate ganglion stimulation showed the reverse ( P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced.
Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms(2), P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced.
Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine ( n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms 2 , P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation ( P = 0.0001), whereas left stellate ganglion stimulation showed the reverse ( P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced.
Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms^sup 2^, P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. [PUBLICATION ABSTRACT]
Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 plus or minus 8 vs. 436 plus or minus 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 plus or minus 123 vs. 362 plus or minus 32 ms super( 2), P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 plus or minus 14 vs. 365 plus or minus 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced.
Author Shivkumar, Kalyanam
Vaseghi, Marmar
Mahajan, Aman
Yamakawa, Kentaro
Ajijola, Olujimi A
So, Eileen
Lux, Robert L
Yagishita, Daigo
Zhou, Wei
Patel, Krishan J
Author_xml – sequence: 1
  givenname: Olujimi A
  surname: Ajijola
  fullname: Ajijola, Olujimi A
  organization: University of California-Los Angeles (UCLACardiac Arrhythmia Center, UCLA, Los Angeles, California
– sequence: 2
  givenname: Daigo
  surname: Yagishita
  fullname: Yagishita, Daigo
– sequence: 3
  givenname: Krishan J
  surname: Patel
  fullname: Patel, Krishan J
– sequence: 4
  givenname: Marmar
  surname: Vaseghi
  fullname: Vaseghi, Marmar
– sequence: 5
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
– sequence: 6
  givenname: Kentaro
  surname: Yamakawa
  fullname: Yamakawa, Kentaro
– sequence: 7
  givenname: Eileen
  surname: So
  fullname: So, Eileen
– sequence: 8
  givenname: Robert L
  surname: Lux
  fullname: Lux, Robert L
– sequence: 9
  givenname: Aman
  surname: Mahajan
  fullname: Mahajan, Aman
– sequence: 10
  givenname: Kalyanam
  surname: Shivkumar
  fullname: Shivkumar, Kalyanam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23893167$$D View this record in MEDLINE/PubMed
BookMark eNqNUs9rFDEUDlKx2-pfIMiAFy-zJnmbZOJBkGJtoeBFzyGbSXazzCRrkindm3-6mW5brCdP78H3I--9fGfoJMRgEXpL8JIQRj_q3X5rdSpLjFewWlJM4AVaVIS2hIE8QQsMHFpOgJ2is5x3GGMmOLxCpxQ6CYSLBfp9GY0emvFQS-p9bX1wOpniY6htPxmbm80Q1xVJdoy9HXzYNNE1R75p8mHc67K1xZsqCDbd6ln8qQl2Ss9VPjS6yZU9v2NiKPauvEYvnR6yffNQz9HPy68_Lq7am-_fri--3LSGAS2txk44kMSBNc4Yw3tDNF8bLnpOqBQY257JDjrSuR5LQh2pmFvX2zDHOIVz9Pnou5_Wo-2NDaVOp_bJjzodVNRePUeC36pNvFUgZCcYqQYfHgxS_DXZXNTos7HDoIONU1ZkJSnHAqT4D-oKoOMCZtf3_1B3cUqhXmJm4Xm1-7fhyDIp5pyse5qbYDWHQT2GQd2HQc1hqKp3f6_8pHn8ffgDBPO3Ow
CODEN AJPPDI
CitedBy_id crossref_primary_10_1161_CIRCIMAGING_117_006819
crossref_primary_10_3390_cells10102629
crossref_primary_10_1016_j_ccep_2017_08_002
crossref_primary_10_1016_j_stemcr_2014_04_017
crossref_primary_10_1016_j_jacep_2016_01_005
crossref_primary_10_1038_s41598_018_19304_2
crossref_primary_10_1111_jce_14624
crossref_primary_10_1016_j_hrthm_2015_01_045
crossref_primary_10_1016_j_hrthm_2017_06_025
crossref_primary_10_1093_europace_euac126
crossref_primary_10_1161_CIRCEP_114_002195
crossref_primary_10_1038_s41467_019_09770_1
crossref_primary_10_1152_ajpheart_00257_2019
crossref_primary_10_1016_j_autneu_2017_07_008
crossref_primary_10_1016_j_autneu_2014_09_017
crossref_primary_10_1172_jci_insight_86715
crossref_primary_10_1111_jce_14136
crossref_primary_10_7554_eLife_78520
crossref_primary_10_1371_journal_pone_0111246
crossref_primary_10_1038_s41598_020_75903_y
crossref_primary_10_1016_j_hrthm_2023_02_024
crossref_primary_10_1016_j_ijcard_2015_10_120
crossref_primary_10_1172_jci_insight_153913
crossref_primary_10_1007_s11906_020_01111_8
crossref_primary_10_1161_CIRCRESAHA_114_303772
crossref_primary_10_3389_fnsyn_2022_960458
crossref_primary_10_1016_j_autneu_2022_103019
crossref_primary_10_1155_2021_5168574
crossref_primary_10_1016_j_jacep_2021_05_016
crossref_primary_10_1016_j_hrthm_2015_08_022
crossref_primary_10_1136_rapm_2023_104399
crossref_primary_10_1161_HYPERTENSIONAHA_122_20782
crossref_primary_10_1113_JP271165
crossref_primary_10_12677_IJPN_2017_64012
crossref_primary_10_1113_JP271840
crossref_primary_10_1016_j_tcm_2015_05_001
crossref_primary_10_1152_ajpheart_00575_2016
crossref_primary_10_1161_CIRCEP_115_001359
crossref_primary_10_1152_ajpheart_00558_2015
crossref_primary_10_1113_JP283710
crossref_primary_10_1161_CIRCRESAHA_116_304679
crossref_primary_10_1152_ajpheart_00129_2017
crossref_primary_10_1172_jci_insight_94715
crossref_primary_10_1016_j_pbiomolbio_2015_12_015
crossref_primary_10_1152_ajpheart_00337_2018
crossref_primary_10_1016_j_jacep_2023_04_021
crossref_primary_10_1007_s11936_018_0633_z
crossref_primary_10_1016_j_jacc_2018_12_064
crossref_primary_10_1016_j_nanoen_2024_109864
crossref_primary_10_1080_07853890_2023_2283195
crossref_primary_10_1152_ajpheart_00593_2017
crossref_primary_10_1111_1755_5922_12193
crossref_primary_10_1113_JP284739
crossref_primary_10_1016_j_neulet_2019_134319
crossref_primary_10_1161_JAHA_123_032405
crossref_primary_10_1536_ihj_19_065
crossref_primary_10_1152_ajpheart_00358_2023
crossref_primary_10_1152_ajpheart_00635_2019
crossref_primary_10_1016_j_autneu_2016_08_016
crossref_primary_10_1152_ajpheart_00393_2015
crossref_primary_10_1007_s11302_016_9518_3
crossref_primary_10_1097_ALN_0000000000003662
crossref_primary_10_1152_japplphysiol_00514_2019
crossref_primary_10_1093_cvr_cvae009
crossref_primary_10_1016_j_jacep_2017_06_006
crossref_primary_10_1016_j_hrthm_2021_07_067
crossref_primary_10_1155_2015_698368
crossref_primary_10_1161_CIRCRESAHA_116_308446
crossref_primary_10_14814_phy2_12328
crossref_primary_10_1038_s41598_018_28562_z
crossref_primary_10_1253_circj_CJ_23_0058
Cites_doi 10.1016/j.autneu.2008.08.004
10.1111/j.1540-8167.1992.tb01090.x
10.1016/S0735-1097(99)00205-3
10.1161/01.RES.18.4.416
10.1016/j.hrthm.2010.02.014
10.1161/01.CIR.77.2.445
10.1161/CIRCEP.112.972836
10.1016/j.jelectrocard.2011.07.030
10.1016/j.hrthm.2007.09.007
10.1161/01.CIR.72.6.1372
10.1016/j.jacc.2011.11.030
10.1016/j.hrthm.2010.07.032
10.1161/01.CIR.101.9.1060
10.1161/CIRCULATIONAHA.109.929703
10.1016/j.hrthm.2012.03.052
10.1161/01.RES.0000072999.51484.92
10.1161/01.RES.68.5.1204
10.1113/expphysiol.2007.041178
10.1161/01.CIR.101.16.1960
10.1161/CIRCEP.111.967976
10.1016/j.jacc.2011.11.031
10.3949/ccjm.74.Suppl_1.S48
10.1016/j.autneu.2007.01.014
10.1152/ajpheart.01106.2011
10.1016/j.jacc.2011.09.043
10.1152/ajpheart.00754.2012
10.1111/j.1540-8167.2009.01442.x
10.1016/j.hrthm.2011.02.029
10.1161/01.RES.0000133678.22968.e3
10.1016/0046-8177(91)90035-N
ContentType Journal Article
Copyright Copyright American Physiological Society Oct 1, 2013
Copyright © 2013 the American Physiological Society 2013 American Physiological Society
Copyright_xml – notice: Copyright American Physiological Society Oct 1, 2013
– notice: Copyright © 2013 the American Physiological Society 2013 American Physiological Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
7TK
5PM
DOI 10.1152/ajpheart.00434.2013
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
MEDLINE
CrossRef
Technology Research Database
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1539
EndPage H1040
ExternalDocumentID 3092927071
10_1152_ajpheart_00434_2013
23893167
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: 2-P41-RR-0112553-12
– fundername: NHLBI NIH HHS
  grantid: K08 HL125730
– fundername: NHLBI NIH HHS
  grantid: R01-HL-084261
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
6J9
AAFWJ
ABJNI
ACBEA
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
BTFSW
CGR
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
NPM
OK1
P2P
PQQKQ
RAP
RHF
RHI
RPL
RPRKH
TR2
UKR
W8F
WH7
WOQ
XSW
YSK
~02
AAYXX
CITATION
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
7TK
5PM
ID FETCH-LOGICAL-c532t-a0f7f391f3ecfccc6dc1a6bc67d6129700ed5983818fd0912f1c67fb0045f5623
ISSN 0363-6135
IngestDate Tue Sep 17 21:14:19 EDT 2024
Tue Aug 27 04:53:45 EDT 2024
Fri Oct 25 11:20:14 EDT 2024
Thu Oct 10 22:15:50 EDT 2024
Thu Sep 12 16:20:48 EDT 2024
Sat Sep 28 07:54:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords autonomic nervous system
cardiac innervation
neural remodeling
sympathetic nerves
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c532t-a0f7f391f3ecfccc6dc1a6bc67d6129700ed5983818fd0912f1c67fb0045f5623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798751
PMID 23893167
PQID 1440129751
PQPubID 48261
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3798751
proquest_miscellaneous_1492607397
proquest_miscellaneous_1443386731
proquest_journals_1440129751
crossref_primary_10_1152_ajpheart_00434_2013
pubmed_primary_23893167
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
– name: Bethesda, MD
PublicationTitle American journal of physiology. Heart and circulatory physiology
PublicationTitleAlternate Am J Physiol Heart Circ Physiol
PublicationYear 2013
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References 22923270 - Circ Arrhythm Electrophysiol. 2012 Oct;5(5):1010-116
1705914 - Hum Pathol. 1991 Feb;22(2):138-46
4064279 - Circulation. 1985 Dec;72(6):1372-9
2018987 - Circ Res. 1991 May;68(5):1204-15
22345568 - Am J Physiol Heart Circ Physiol. 2012 May 1;302(9):H1838-46
17981929 - Exp Physiol. 2008 Feb;93(2):165-76
17455544 - Cleve Clin J Med. 2007 Feb;74 Suppl 1:S48-51
4952701 - Circ Res. 1966 Apr;18(4):416-28
20479150 - Circulation. 2010 Jun 1;121(21):2255-62
18055272 - Heart Rhythm. 2008 Jan;5(1):131-9
18818126 - Auton Neurosci. 2008 Dec 15;144(1-2):22-9
10779463 - Circulation. 2000 Apr 25;101(16):1960-9
20156593 - Heart Rhythm. 2010 Jul;7(7):994-6
12714561 - Circ Res. 2003 May 30;92(10):1145-52
10440149 - J Am Coll Cardiol. 1999 Aug;34(2):381-8
22333344 - Circ Arrhythm Electrophysiol. 2012 Apr;5(2):264-72
22465457 - Heart Rhythm. 2012 Aug;9(8):1303-9
20682358 - Heart Rhythm. 2010 Dec;7(12):1817-24
17350347 - Auton Neurosci. 2007 Jul 31;134(1-2):18-25
15166093 - Circ Res. 2004 Jul 9;95(1):76-83
21354335 - Heart Rhythm. 2011 Jul;8(7):1060-7
23241324 - Am J Physiol Heart Circ Physiol. 2013 Feb 15;304(4):H579-88
10704175 - Circulation. 2000 Mar 7;101(9):1060-6
19298565 - J Cardiovasc Electrophysiol. 2009 Jul;20(7):759-63
22192676 - J Am Coll Cardiol. 2012 Jan 3;59(1):91-2
22381432 - J Am Coll Cardiol. 2012 Mar 6;59(10):954-61
22381433 - J Am Coll Cardiol. 2012 Mar 6;59(10):962-4
3338134 - Circulation. 1988 Feb;77(2):445-56
21917265 - J Electrocardiol. 2011 Nov-Dec;44(6):694-9
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
References_xml – ident: B21
  doi: 10.1016/j.autneu.2008.08.004
– ident: B22
  doi: 10.1111/j.1540-8167.1992.tb01090.x
– ident: B14
  doi: 10.1016/S0735-1097(99)00205-3
– ident: B27
  doi: 10.1161/01.RES.18.4.416
– ident: B5
  doi: 10.1016/j.hrthm.2010.02.014
– ident: B10
  doi: 10.1161/01.CIR.77.2.445
– ident: B4
  doi: 10.1161/CIRCEP.112.972836
– ident: B20
  doi: 10.1016/j.jelectrocard.2011.07.030
– ident: B30
  doi: 10.1016/j.hrthm.2007.09.007
– ident: B16
  doi: 10.1161/01.CIR.72.6.1372
– ident: B9
  doi: 10.1016/j.jacc.2011.11.030
– ident: B17
  doi: 10.1016/j.hrthm.2010.07.032
– ident: B28
  doi: 10.1161/01.CIR.101.9.1060
– ident: B8
  doi: 10.1161/CIRCULATIONAHA.109.929703
– ident: B25
  doi: 10.1016/j.hrthm.2012.03.052
– ident: B15
  doi: 10.1161/01.RES.0000072999.51484.92
– ident: B19
  doi: 10.1161/01.RES.68.5.1204
– ident: B7
  doi: 10.1113/expphysiol.2007.041178
– ident: B12
  doi: 10.1161/01.CIR.101.16.1960
– ident: B23
  doi: 10.1161/CIRCEP.111.967976
– ident: B2
  doi: 10.1016/j.jacc.2011.11.031
– ident: B6
  doi: 10.3949/ccjm.74.Suppl_1.S48
– ident: B13
  doi: 10.1016/j.autneu.2007.01.014
– ident: B24
  doi: 10.1152/ajpheart.01106.2011
– ident: B1
  doi: 10.1016/j.jacc.2011.09.043
– ident: B3
  doi: 10.1152/ajpheart.00754.2012
– ident: B11
  doi: 10.1111/j.1540-8167.2009.01442.x
– ident: B18
  doi: 10.1016/j.hrthm.2011.02.029
– ident: B29
  doi: 10.1161/01.RES.0000133678.22968.e3
– ident: B26
  doi: 10.1016/0046-8177(91)90035-N
SSID ssj0005763
Score 2.4199696
Snippet Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage H1031
SubjectTerms Animals
Anterior Wall Myocardial Infarction - complications
Anterior Wall Myocardial Infarction - pathology
Anterior Wall Myocardial Infarction - physiopathology
Arrhythmia
Arrhythmias, Cardiac - etiology
Arrhythmias, Cardiac - pathology
Arrhythmias, Cardiac - physiopathology
Cardiovascular disease
Cardiovascular Neurohormonal Regulation
Disease Models, Animal
Electric Stimulation
Electrophysiologic Techniques, Cardiac
Heart - innervation
Heart attacks
Hogs
Myocardium - pathology
Propagation
Stellate Ganglion - physiopathology
Swine
Time Factors
Title Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context
URI https://www.ncbi.nlm.nih.gov/pubmed/23893167
https://www.proquest.com/docview/1440129751
https://search.proquest.com/docview/1443386731
https://search.proquest.com/docview/1492607397
https://pubmed.ncbi.nlm.nih.gov/PMC3798751
Volume 305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Zb9Mw2BpDQkgIwcbRMZCREC8hJffBWzWYKlA5pA3tLUocZ0u1pFWaIpUnfjrfZzuJyyYEe0mbxE7cfre_i5BXnp3mXuhlZpBhSg6IZDPmVmZmIJrsPEiDOMN859nnYHrqfTzzz3Zu3dOiltZtNmY_r80ruQlU4RrAFbNk_wOy_UPhAnwH-MIRIAzHf4LxMQoio9rARyMSQOChgLgqfjFfY7SVqvjRcNHzRsU4y_HMWG0qbEmMiYyGaML1ow_2wEKX2_PK2kiNFUZgi5oiNcaM6Lpt7_zRqlGIjROxcz_GjKdGxrOzssHwV-HfH0b0uDcv52BwI_C_XK7nZVUak3HPndJz3DWTOu_7tDxfDE6wVkYcIN-6wKysftJ3ENWyezHmJlVpo-912EPUXKulF6Bw6JYmEFnFt2qcE53ToKdIdzlXnB2sbmDvsc76XcvXcDzUGPkU219oWgGcy7JSV0WOjyVs0_kSO5C3Y3St4l6dzLDVkHBZCSx0UEO0ZQuS7fLfX2dHbhiD_QjG_G0H-CYy7E_fhuL3YBq6nesdf50qogULeHvN67HMtXrXts51xZD6Mx5YU7BOHpD7yjKiE4nmD8kOr_fI_qQGNKk29DXtobHZI3dmKiRkn_wSREAHIqADEVBFBFQSAR2QmS4KqoiAakRANSJ4RyUJ6LPKmqZUkQBVJPCInB5_ODmamqqtiMl812nN1CrCwo3twuWsYIwFObPTIGNBmIO6H4eWxXM_jlCVLXJQp53ChnsFyje_QHPhMdmtFzV_SmjkctDmAo9ZfuYVFo-jPIrywCuAyeXA5UbkTffHJ0tZPSYRVrfvJB3IEgGyBEE2IocdcBJFqqsEoy9wWb49Ii_72yAE0LOX1nyxFmNcNwpC969jYidAv3w4Ik8kvPs1dYgyIuEWJvQDsAj99p26vBDF6BXKHtx45jNydyD1Q7LbNmv-HBT9Nnsh0P838BMI-w
link.rule.ids 230,315,783,787,888,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focal+myocardial+infarction+induces+global+remodeling+of+cardiac+sympathetic+innervation%3A+neural+remodeling+in+a+spatial+context&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Ajijola%2C+Olujimi+A.&rft.au=Yagishita%2C+Daigo&rft.au=Patel%2C+Krishan+J.&rft.au=Vaseghi%2C+Marmar&rft.date=2013-10-01&rft.pub=American+Physiological+Society&rft.issn=0363-6135&rft.eissn=1522-1539&rft.volume=305&rft.issue=7&rft.spage=H1031&rft.epage=H1040&rft_id=info:doi/10.1152%2Fajpheart.00434.2013&rft_id=info%3Apmid%2F23893167&rft.externalDBID=PMC3798751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon