Effect of Chronic Ethanol Consumption on Exogenous Glucose Metabolism in Rats Using [1-13C], [2-13C], and [3-13C]glucose Breath Tests

The C3 carbon of glucose molecules becomes the C1 carbon of pyruvate molecules during glycolysis, and the C1 and C2 carbons of glucose molecules are metabolized in the tricarboxylic acid (TCA) cycle. Utilizing this position-dependent metabolism of C atoms in glucose molecules, [1-13C], [2-13C], and...

Full description

Saved in:
Bibliographic Details
Published inBiological & pharmaceutical bulletin Vol. 47; no. 4; pp. 856 - 860
Main Authors Sasaki, Yosuke, Kawagoe, Naoyuki, Urita, Yoshihisa, Komatsu, Fumiya, Kashima, Naoyasu, Shigeta, Tomoyuki
Format Journal Article
LanguageEnglish
Published Japan The Pharmaceutical Society of Japan 17.04.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0918-6158
1347-5215
DOI10.1248/bpb.b23-00403

Cover

Abstract The C3 carbon of glucose molecules becomes the C1 carbon of pyruvate molecules during glycolysis, and the C1 and C2 carbons of glucose molecules are metabolized in the tricarboxylic acid (TCA) cycle. Utilizing this position-dependent metabolism of C atoms in glucose molecules, [1-13C], [2-13C], and [3-13C]glucose breath tests are used to evaluate glucose metabolism. However, the effects of chronic ethanol consumption remain incompletely understood. Therefore, we evaluated glucose metabolism in ethanol-fed rats using [1-13C], [2-13C], and [3-13C]glucose breath tests. Ethanol-fed (ERs) and control rats (CRs) (n = 8 each) were used in this study, and ERs were prepared by replacing drinking water with a 16% ethanol solution. We administered 100 mg/kg of [1-13C], [2-13C], or [3-13C]glucose to rats and collected expired air (at 10-min intervals for 180 min). We compared the 13CO2 levels (Δ13CO2, ‰) of breath measured by IR isotope ratio spectrometry and area under the curve (AUC) values of the 13CO2 levels-time curve between ERs and CRs. 13CO2 levels and AUCs after administration of [1-13C]glucose and [2-13C]glucose were lower in ERs than in CRs. Conversely, the AUC for the [3-13C]glucose breath test showed no significant differences between ERs and CRs, although 13CO2 levels during the 110–120 min interval were significantly high in ERs. These findings indicate that chronic ethanol consumption diminishes glucose oxidation without concomitantly reducing glycolysis. Our study demonstrates the utility of 13C-labeled glucose breath tests as noninvasive and repeatable methods for evaluating glucose metabolism in various subjects, including those with alcoholism or diabetes.
AbstractList The C3 carbon of glucose molecules becomes the C1 carbon of pyruvate molecules during glycolysis, and the C1 and C2 carbons of glucose molecules are metabolized in the tricarboxylic acid (TCA) cycle. Utilizing this position-dependent metabolism of C atoms in glucose molecules, [1-13C], [2-13C], and [3-13C]glucose breath tests are used to evaluate glucose metabolism. However, the effects of chronic ethanol consumption remain incompletely understood. Therefore, we evaluated glucose metabolism in ethanol-fed rats using [1-13C], [2-13C], and [3-13C]glucose breath tests. Ethanol-fed (ERs) and control rats (CRs) (n = 8 each) were used in this study, and ERs were prepared by replacing drinking water with a 16% ethanol solution. We administered 100 mg/kg of [1-13C], [2-13C], or [3-13C]glucose to rats and collected expired air (at 10-min intervals for 180 min). We compared the 13CO2 levels (Δ13CO2, ‰) of breath measured by IR isotope ratio spectrometry and area under the curve (AUC) values of the 13CO2 levels-time curve between ERs and CRs. 13CO2 levels and AUCs after administration of [1-13C]glucose and [2-13C]glucose were lower in ERs than in CRs. Conversely, the AUC for the [3-13C]glucose breath test showed no significant differences between ERs and CRs, although 13CO2 levels during the 110–120 min interval were significantly high in ERs. These findings indicate that chronic ethanol consumption diminishes glucose oxidation without concomitantly reducing glycolysis. Our study demonstrates the utility of 13C-labeled glucose breath tests as noninvasive and repeatable methods for evaluating glucose metabolism in various subjects, including those with alcoholism or diabetes.
The C3 carbon of glucose molecules becomes the C1 carbon of pyruvate molecules during glycolysis, and the C1 and C2 carbons of glucose molecules are metabolized in the tricarboxylic acid (TCA) cycle. Utilizing this position-dependent metabolism of C atoms in glucose molecules, [1- C], [2- C], and [3- C]glucose breath tests are used to evaluate glucose metabolism. However, the effects of chronic ethanol consumption remain incompletely understood. Therefore, we evaluated glucose metabolism in ethanol-fed rats using [1- C], [2- C], and [3- C]glucose breath tests. Ethanol-fed (ERs) and control rats (CRs) (n = 8 each) were used in this study, and ERs were prepared by replacing drinking water with a 16% ethanol solution. We administered 100 mg/kg of [1- C], [2- C], or [3- C]glucose to rats and collected expired air (at 10-min intervals for 180 min). We compared the CO levels (Δ CO , ‰) of breath measured by IR isotope ratio spectrometry and area under the curve (AUC) values of the CO levels-time curve between ERs and CRs. CO levels and AUCs after administration of [1- C]glucose and [2- C]glucose were lower in ERs than in CRs. Conversely, the AUC for the [3- C]glucose breath test showed no significant differences between ERs and CRs, although CO levels during the 110-120 min interval were significantly high in ERs. These findings indicate that chronic ethanol consumption diminishes glucose oxidation without concomitantly reducing glycolysis. Our study demonstrates the utility of C-labeled glucose breath tests as noninvasive and repeatable methods for evaluating glucose metabolism in various subjects, including those with alcoholism or diabetes.
ArticleNumber b23-00403
Author Urita, Yoshihisa
Shigeta, Tomoyuki
Sasaki, Yosuke
Kashima, Naoyasu
Kawagoe, Naoyuki
Komatsu, Fumiya
Author_xml – sequence: 1
  fullname: Sasaki, Yosuke
  organization: Department of General Medicine and Emergency Care, Toho University School of Medicine
– sequence: 1
  fullname: Kawagoe, Naoyuki
  organization: Department of General Medicine and Emergency Care, Toho University School of Medicine
– sequence: 1
  fullname: Urita, Yoshihisa
  organization: Department of General Medicine and Emergency Care, Toho University School of Medicine
– sequence: 1
  fullname: Komatsu, Fumiya
  organization: Department of General Medicine and Emergency Care, Toho University School of Medicine
– sequence: 1
  fullname: Kashima, Naoyasu
  organization: Department of General Medicine and Emergency Care, Toho University School of Medicine
– sequence: 1
  fullname: Shigeta, Tomoyuki
  organization: Department of General Medicine and Emergency Care, Toho University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38538325$$D View this record in MEDLINE/PubMed
BookMark eNo9kUuLFDEQx4OsuLOrR68S8GqvqVTSj6M24yqsCLJ7GiSk08lMDz3JmKRh_QB-b3seDhT1oH5VBfW_IVc-eEvIW2B3wEX9sdt3dx3HgjHB8AVZAIqqkBzkFVmwBuqiBFlfk5uUtoyxinF8Ra6xllgjlwvyd-mcNZkGR9tNDH4wdJk32oeRtsGnabfPQ_B0tuVzWFsfpkTvx8mEZOl3m3UXxiHt6ODpT50TfUqDX9MVFIDtrw90xc-J9j1d4bFYn6c_R6vzhj7alNNr8tLpMdk353hLnr4sH9uvxcOP-2_tp4fCSOS5aKCXuqokWK6broS-QQcONRpwvSh7psuGN7UQNbfQaeHmGpirTM85lgh4S96f9u5j-D3Nl9U2TNHPJxUyKcqmAnGg3p2pqdvZXu3jsNPxj_r_tRkoToCJIaVo3QUBpg6qqFkVNauijqrMfHvitynrtb3QOubBjPZIi0qJg7tMXbpmo6OyHv8B8tyUYA
Cites_doi 10.1371/journal.pone.0160177
10.1136/bmj.319.7224.1523
10.3748/wjg.v29.i21.3269
10.1093/jn/nxz277
10.1097/01.alc.0000174768.78427.f6
10.1016/0006-2952(86)90736-7
10.1152/japplphysiol.00095.2003
10.1007/s00592-018-1276-y
10.1254/jphs.FP0050153
10.1152/ajpendo.1998.275.5.E897
10.1620/tjem.218.331
10.1038/s41392-020-00311-7
ContentType Journal Article
Copyright 2024 The Pharmaceutical Society of Japan
Copyright Japan Science and Technology Agency 2024
Copyright_xml – notice: 2024 The Pharmaceutical Society of Japan
– notice: Copyright Japan Science and Technology Agency 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
DOI 10.1248/bpb.b23-00403
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1347-5215
EndPage 860
ExternalDocumentID 38538325
10_1248_bpb_b23_00403
article_bpb_47_4_47_b23_00403_article_char_en
Genre Journal Article
GroupedDBID ---
23N
2WC
5GY
6J9
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
HH5
JMI
JSF
JSH
KQ8
MOJWN
OK1
P2P
RJT
RZJ
TR2
XSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
ID FETCH-LOGICAL-c532t-91d5a7751e2a9b61d93f1f3a3c1fd46d0a692984482e1ba4fa6910f7cd2236313
ISSN 0918-6158
IngestDate Mon Jun 30 09:51:30 EDT 2025
Wed Feb 19 02:11:11 EST 2025
Tue Jul 01 02:44:06 EDT 2025
Wed Sep 03 06:31:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 13C
ethanol-fed rat
breath test
glucose metabolism
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c532t-91d5a7751e2a9b61d93f1f3a3c1fd46d0a692984482e1ba4fa6910f7cd2236313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/bpb/47/4/47_b23-00403/_article/-char/en
PMID 38538325
PQID 3054697141
PQPubID 1966364
PageCount 5
ParticipantIDs proquest_journals_3054697141
pubmed_primary_38538325
crossref_primary_10_1248_bpb_b23_00403
jstage_primary_article_bpb_47_4_47_b23_00403_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Apr-17
PublicationDateYYYYMMDD 2024-04-17
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-Apr-17
  day: 17
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Biological & pharmaceutical bulletin
PublicationTitleAlternate Biol Pharm Bull
PublicationYear 2024
Publisher The Pharmaceutical Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: The Pharmaceutical Society of Japan
– name: Japan Science and Technology Agency
References 2) Siler SQ, Neese RA, Christiansen MP, Hellerstein MK. The inhibition of gluconeogenesis following alcohol in humans. Am. J. Physiol., 275, E897–E907 (1998).
7) Ruzzin J, Péronnet F, Tremblay J, Massicotte D, Lavoie C. Breath [13CO2] recovery from an oral glucose load during exercise: comparison between [U-13C] and [1,2-13C]glucose. J. Appl. Physiol., 95, 477–482 (2003).
12) Wilson JS, Korsten MA, Colley PW, Pirola RC. Decrease in lipogenesis and glucose oxidation of rat adipose tissue after chronic ethanol feeding. Biochem. Pharmacol., 35, 2025–2028 (1986).
13) Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ. Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ, 319, 1523–1528 (1999).
14) Sasaki Y, Kawagoe N, Imai T, Urita Y. Effects of ethanol and sex on propionate metabolism evaluated via a faster 13C-propionate breath test in rats. World J. Gastroenterol., 29, 3269–3279 (2023).
3) Butts M, Singh S, Haynes J, Arthur S, Sundaram U. Moderate alcohol consumption uniquely regulates sodium-dependent glucose co-transport in rat intestinal epithelial cells in vitro and in vivo. J. Nutr., 150, 747–755 (2020).
6) Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther., 5, 227 (2020).
8) Kawagoe N, Kano O, Kijima S, Tanaka H, Takayanagi M, Urita Y. Investigation of metabolism of exogenous glucose at the early stage and onset of diabetes mellitus in Otsuka Long-Evans Tokushima fatty rats using [1, 2, 3-13C]glucose breath tests. PLOS ONE, 11, e0160177 (2016).
10) Imai T, Omoto M. Effects of long-term ethanol intake on the bone mass on femoral bone of mice: a microdensitometrical study. Nihon Arukoru Yakubutsu Igakkai Zasshi, 35, 321–329 (2000).
9) Takemoto I, Kawagoe N, Kijima S, Sasaki Y, Watanabe T, Urita Y. 13C-glucose breath tests: a noninvasive method for detecting early clinical manifestations of exogenous glucose metabolism in type 2 diabetic patients. Acta Diabetol., 56, 449–456 (2019).
4) Kawamoto R, Kohara K, Tabara Y, Miki T, Ohtsuka N, Kusunoki T, Abe M. Alcohol consumption is associated with decreased insulin resistance independent of body mass index in Japanese community-dwelling men. Tohoku J. Exp. Med., 218, 331–337 (2009).
5) Badawy AAB. A review of the effects of alcohol on carbohydrate metabolism. Alcohol Alcohol., 12, 120–136 (1977).
1) Wan Q, Liu Y, Guan Q, Gao L, Lee KO, Zhao J. Ethanol feeding impairs insulin-stimulated glucose uptake in isolated rat skeletal muscle: role of Gs alpha and cAMP. Alcohol Clin. Exp. Res., 29, 1450–1456 (2005).
11) Uchida M, Endo N, Shimizu K. Simple and noninvasive breath test using 13C-acetic acid to evaluate gastric emptying in conscious rats and its validation by metoclopramide. J. Pharmacol. Sci., 98, 388–395 (2005).
11
12
13
14
1
2
3
4
5
6
7
8
9
10
References_xml – reference: 7) Ruzzin J, Péronnet F, Tremblay J, Massicotte D, Lavoie C. Breath [13CO2] recovery from an oral glucose load during exercise: comparison between [U-13C] and [1,2-13C]glucose. J. Appl. Physiol., 95, 477–482 (2003).
– reference: 12) Wilson JS, Korsten MA, Colley PW, Pirola RC. Decrease in lipogenesis and glucose oxidation of rat adipose tissue after chronic ethanol feeding. Biochem. Pharmacol., 35, 2025–2028 (1986).
– reference: 13) Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ. Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ, 319, 1523–1528 (1999).
– reference: 5) Badawy AAB. A review of the effects of alcohol on carbohydrate metabolism. Alcohol Alcohol., 12, 120–136 (1977).
– reference: 8) Kawagoe N, Kano O, Kijima S, Tanaka H, Takayanagi M, Urita Y. Investigation of metabolism of exogenous glucose at the early stage and onset of diabetes mellitus in Otsuka Long-Evans Tokushima fatty rats using [1, 2, 3-13C]glucose breath tests. PLOS ONE, 11, e0160177 (2016).
– reference: 1) Wan Q, Liu Y, Guan Q, Gao L, Lee KO, Zhao J. Ethanol feeding impairs insulin-stimulated glucose uptake in isolated rat skeletal muscle: role of Gs alpha and cAMP. Alcohol Clin. Exp. Res., 29, 1450–1456 (2005).
– reference: 6) Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther., 5, 227 (2020).
– reference: 2) Siler SQ, Neese RA, Christiansen MP, Hellerstein MK. The inhibition of gluconeogenesis following alcohol in humans. Am. J. Physiol., 275, E897–E907 (1998).
– reference: 11) Uchida M, Endo N, Shimizu K. Simple and noninvasive breath test using 13C-acetic acid to evaluate gastric emptying in conscious rats and its validation by metoclopramide. J. Pharmacol. Sci., 98, 388–395 (2005).
– reference: 4) Kawamoto R, Kohara K, Tabara Y, Miki T, Ohtsuka N, Kusunoki T, Abe M. Alcohol consumption is associated with decreased insulin resistance independent of body mass index in Japanese community-dwelling men. Tohoku J. Exp. Med., 218, 331–337 (2009).
– reference: 3) Butts M, Singh S, Haynes J, Arthur S, Sundaram U. Moderate alcohol consumption uniquely regulates sodium-dependent glucose co-transport in rat intestinal epithelial cells in vitro and in vivo. J. Nutr., 150, 747–755 (2020).
– reference: 10) Imai T, Omoto M. Effects of long-term ethanol intake on the bone mass on femoral bone of mice: a microdensitometrical study. Nihon Arukoru Yakubutsu Igakkai Zasshi, 35, 321–329 (2000).
– reference: 9) Takemoto I, Kawagoe N, Kijima S, Sasaki Y, Watanabe T, Urita Y. 13C-glucose breath tests: a noninvasive method for detecting early clinical manifestations of exogenous glucose metabolism in type 2 diabetic patients. Acta Diabetol., 56, 449–456 (2019).
– reference: 14) Sasaki Y, Kawagoe N, Imai T, Urita Y. Effects of ethanol and sex on propionate metabolism evaluated via a faster 13C-propionate breath test in rats. World J. Gastroenterol., 29, 3269–3279 (2023).
– ident: 8
  doi: 10.1371/journal.pone.0160177
– ident: 13
  doi: 10.1136/bmj.319.7224.1523
– ident: 14
  doi: 10.3748/wjg.v29.i21.3269
– ident: 5
– ident: 3
  doi: 10.1093/jn/nxz277
– ident: 10
– ident: 1
  doi: 10.1097/01.alc.0000174768.78427.f6
– ident: 12
  doi: 10.1016/0006-2952(86)90736-7
– ident: 7
  doi: 10.1152/japplphysiol.00095.2003
– ident: 9
  doi: 10.1007/s00592-018-1276-y
– ident: 11
  doi: 10.1254/jphs.FP0050153
– ident: 2
  doi: 10.1152/ajpendo.1998.275.5.E897
– ident: 4
  doi: 10.1620/tjem.218.331
– ident: 6
  doi: 10.1038/s41392-020-00311-7
SSID ssj0007023
Score 2.4097207
Snippet The C3 carbon of glucose molecules becomes the C1 carbon of pyruvate molecules during glycolysis, and the C1 and C2 carbons of glucose molecules are...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 856
SubjectTerms 13C
Animals
breath test
Breath tests
Breath Tests - methods
Carbon
Carbon Dioxide - analysis
Carbon Dioxide - metabolism
Carbon Isotopes - analysis
Diabetes mellitus
Drinking behavior
Drinking water
Ethanol
ethanol-fed rat
Glucose
Glucose - metabolism
Glycolysis
Humans
Metabolism
Pyruvic Acid
Rats
Tricarboxylic acid cycle
Title Effect of Chronic Ethanol Consumption on Exogenous Glucose Metabolism in Rats Using [1-13C], [2-13C], and [3-13C]glucose Breath Tests
URI https://www.jstage.jst.go.jp/article/bpb/47/4/47_b23-00403/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/38538325
https://www.proquest.com/docview/3054697141
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Biological and Pharmaceutical Bulletin, 2024/04/17, Vol.47(4), pp.856-860
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6VggQXBClLoKA50F4Sp7FnvElc2pISobYg5EhBUWWN7ZkktLEr4gjCnX_GD-PNEjuRCgKkyIqXGSX-Pr9l_BaEXnmCiCD1HIsLkVqU8tAKu4GAB88JfdBHWerI3OGzc68_oO-G7nBr6-da1NKiTDrp9xvzSv4HVTgGuMos2X9AtpoUDsB3wBe2gDBs_wpjU3pYRVToVjY9uRJeXKk-nACUNgfzVu9bYYqxvjUh6me8BPivZIuMad76yMp5S0cP7LlHtmWT4z33jbz9sOus7cpldjhEzKFVwPuRND0nrQhUzHzjNfG0kq2SYteTjQX0ZL30txT6srHTjGmhXyyZ7smi1n_YnOn-2p-K-eKS1yO-srEOZpQjFpfTasRkOubaMo6KWX3KLHA4Ki5G53Nq5QNGQy3p5N-sXzq0DlWC6vqqph2AN6yrwXe4lumE-uBv66zRldDXZT4NuemNusShMj8iuU46iUMsKe1IrTRXgQLn7-OTwelpHPWG0S102_F9FSzQ79dOmN9VTQarn2YqvcL0BxuTb1hGdz6DczDmv_d7lP0TPUD3jeOCDzULH6ItnjfQzmHOymK2xPtYhRKr29VAd49XbQQbaP-DBn3ZxlGd6zdvqyFV2fTlDvqh2YwLgQ2bsWEzXmMzhk_FZmzYjGs242mOJZuxYjMeKS5ftPHIMV8AWjxS_L0w7MWavVix9xEanPSi475lmoRYqUucEpR15jLfd23usDDx7CwkwhaEkdQWGfWyLvPAAwgoDRxuJ4wK2Le7wk8zMIw9YpPHaDsvcv4UYSoylnpBlgpGKeMk9MJuygVjfjcLksRrov0VQPG1rgUTSx8akIwByRiQjBWSTfRaw1ddZkSEuoz6MZWb6vLqrEy0BLnWRLsr0GMjbeYx6GXqhb5N7SZ6oolQzU7A5gbN7D7788Dn6F79fO2i7fLLgr8Ak7pMXirG_gJSMMvo
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Chronic+Ethanol+Consumption+on+Exogenous+Glucose+Metabolism+in+Rats+Using+%5B1-13C%5D%2C+%5B2-13C%5D%2C+and+%5B3-13C%5Dglucose+Breath+Tests&rft.jtitle=Biological+%26+pharmaceutical+bulletin&rft.au=Kashima%2C+Naoyasu&rft.au=Sasaki%2C+Yosuke&rft.au=Kawagoe%2C+Naoyuki&rft.au=Shigeta%2C+Tomoyuki&rft.date=2024-04-17&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0918-6158&rft.eissn=1347-5215&rft.volume=47&rft.issue=4&rft_id=info:doi/10.1248%2Fbpb.b23-00403&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon