Beneficial effects of dark chocolate on exercise capacity in sedentary subjects: underlying mechanisms. A double blind, randomized, placebo controlled trial
In heart failure patients the consumption of (−)-epicatechin ((−)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary sub...
Saved in:
Published in | Food & function Vol. 7; no. 9; pp. 3686 - 3693 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
14.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In heart failure patients the consumption of (−)-epicatechin ((−)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO
2
max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (
n
= 9), VO
2
max increased (17% increase,
p
= 0.056) as well as maximum work (watts) achieved (
p
= 0.026) with no changes with placebo (
n
= 8). The DC group evidenced increases in HDL levels (
p
= 0.005) and decreased triglycerides (
p
= 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO
2
max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations.
We wished to examine the effects of dark chocolate on sedentary individuals' exercise capacity and underlying mechanisms. |
---|---|
AbstractList | In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n = 9), VO2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved (p = 0.026) with no changes with placebo (n = 8). The DC group evidenced increases in HDL levels (p = 0.005) and decreased triglycerides (p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations. In heart failure patients the consumption of (−)-epicatechin ((−)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO 2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group ( n = 9), VO 2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved ( p = 0.026) with no changes with placebo ( n = 8). The DC group evidenced increases in HDL levels ( p = 0.005) and decreased triglycerides ( p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO 2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations. In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects ( similar to 50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n = 9), VO2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved (p = 0.026) with no changes with placebo (n = 8). The DC group evidenced increases in HDL levels (p = 0.005) and decreased triglycerides (p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1 alpha and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations. In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n = 9), VO2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved (p = 0.026) with no changes with placebo (n = 8). The DC group evidenced increases in HDL levels (p = 0.005) and decreased triglycerides (p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations.In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n = 9), VO2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved (p = 0.026) with no changes with placebo (n = 8). The DC group evidenced increases in HDL levels (p = 0.005) and decreased triglycerides (p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations. In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO 2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n=9), VO 2 max increased (17% increase, p=0.056) as well as maximum work (watts) achieved (p=0.026) with no changes with placebo (n=8). The DC group evidenced increases in HDL levels (p=0.005) and decreased triglycerides (p=0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO 2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations. In heart failure patients the consumption of (−)-epicatechin ((−)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO 2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group ( n = 9), VO 2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved ( p = 0.026) with no changes with placebo ( n = 8). The DC group evidenced increases in HDL levels ( p = 0.005) and decreased triglycerides ( p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO 2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations. We wished to examine the effects of dark chocolate on sedentary individuals' exercise capacity and underlying mechanisms. In heart failure patients the consumption of (−)-epicatechin ((−)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO₂ max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n = 9), VO₂ max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved (p = 0.026) with no changes with placebo (n = 8). The DC group evidenced increases in HDL levels (p = 0.005) and decreased triglycerides (p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO₂ max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations. |
Author | Patel, Minal Román-Pintos, Luis Miguel Villarreal, Francisco Ramirez-Sanchez, Israel Higginbotham, Erin Perkins, Guy Taub, Pam R Phillips, Paul Ceballos, Guillermo Moreno-Ulloa, Aldo |
AuthorAffiliation | San Diego VA San Diego Healthcare System Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Departamento de Medicina Interna Departamento de Innovación Biomédica Escuela Superior de Medicina del Instituto Politécnico Nacional University of California School of Medicine Hospital Civil de Guadalajara "Dr. Juan I. Menchaca" |
AuthorAffiliation_xml | – sequence: 0 name: University of California – sequence: 0 name: Departamento de Innovación Biomédica – sequence: 0 name: Escuela Superior de Medicina del Instituto Politécnico Nacional – sequence: 0 name: Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) – sequence: 0 name: VA San Diego Healthcare System – sequence: 0 name: Departamento de Medicina Interna – sequence: 0 name: School of Medicine – sequence: 0 name: San Diego – sequence: 0 name: Hospital Civil de Guadalajara "Dr. Juan I. Menchaca" – name: b VA San Diego Healthcare System, Sección de Posgrado, México City, México – name: d Departamento de Medicina Interna, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca” – name: c Escuela Superior de Medicina del Instituto Politécnico Nacional, Sección de Posgrado, México City, México – name: e Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, México – name: a University of California, San Diego, School of Medicine, Sección de Posgrado, México City, México |
Author_xml | – sequence: 1 givenname: Pam R surname: Taub fullname: Taub, Pam R – sequence: 2 givenname: Israel surname: Ramirez-Sanchez fullname: Ramirez-Sanchez, Israel – sequence: 3 givenname: Minal surname: Patel fullname: Patel, Minal – sequence: 4 givenname: Erin surname: Higginbotham fullname: Higginbotham, Erin – sequence: 5 givenname: Aldo surname: Moreno-Ulloa fullname: Moreno-Ulloa, Aldo – sequence: 6 givenname: Luis Miguel surname: Román-Pintos fullname: Román-Pintos, Luis Miguel – sequence: 7 givenname: Paul surname: Phillips fullname: Phillips, Paul – sequence: 8 givenname: Guy surname: Perkins fullname: Perkins, Guy – sequence: 9 givenname: Guillermo surname: Ceballos fullname: Ceballos, Guillermo – sequence: 10 givenname: Francisco surname: Villarreal fullname: Villarreal, Francisco |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27491778$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhgdpsbX2xnsll0Xcmo_Jx3gh1MWtQqE3Ct4NmcxJNzWTbJOZ4vpb_LFm3Xb9QNDc5MB5zst5Oe-jai_EAFX1hOBTglnz0ggbMRaE2AfVIcU1nQmOP-3d13UjDqrjnK9xeaxpVKMeVgdU1g2RUh1W395AAOuM0x6BtWDGjKJFvU6fkVlGE70eAcWA4Ask4zIgo1fauHGNXEAZegijTmuUp-56M_wKTaGH5NcuXKEBzFIHl4d8is5QH6fOA-q8C_0LlHTo4-C-QqlXXhvoIjIxjCl6Dz0aU9nocbVvtc9wfPcfVR8Xbz_M380uLs_fz88uZoYzOs6koRS4AqG57mgtiNXFNpOEM86lIAzjppZdo5i1XW0KJmrV1VJyA1xAx46q11vd1dQN0JviKWnfrpIbirc2atf-3glu2V7F25Zjypmqi8DJnUCKNxPksR1cNuC9DhCn3NKCUaYkpf9EiaJSNZhx-T8o5k2NiSjos18d7Fa_P3QBnm8Bk2LOCewOIbjdBKmdi8XljyAtCoz_gMvB9eg259HO_33k6XYkZbOT_plN9h1YjdYS |
CitedBy_id | crossref_primary_10_1016_j_freeradbiomed_2018_11_010 crossref_primary_10_1016_j_jnutbio_2021_108768 crossref_primary_10_1089_jmf_2021_0054 crossref_primary_10_3390_nu9070746 crossref_primary_10_1016_j_cct_2023_107078 crossref_primary_10_3390_ijms20102451 crossref_primary_10_1016_j_mito_2017_10_003 crossref_primary_10_1186_s12970_017_0186_7 crossref_primary_10_3390_ijms22136913 crossref_primary_10_2174_0929867329666211217100020 crossref_primary_10_1016_j_jnutbio_2022_109150 crossref_primary_10_1016_j_smallrumres_2021_106599 crossref_primary_10_1152_japplphysiol_00055_2018 crossref_primary_10_3164_jcbn_23_12 crossref_primary_10_3390_applbiosci3010001 crossref_primary_10_1371_journal_pone_0277453 crossref_primary_10_1016_j_fbio_2020_100710 crossref_primary_10_3390_nu11071471 crossref_primary_10_3390_ijms23094652 crossref_primary_10_1002_mus_27108 crossref_primary_10_1111_ijfs_17312 crossref_primary_10_1039_D0FO00246A crossref_primary_10_1007_s40279_018_0998_x crossref_primary_10_1016_j_ejphar_2018_01_014 crossref_primary_10_1039_C8FO00483H crossref_primary_10_3390_antiox11081522 crossref_primary_10_1186_s13102_021_00319_8 crossref_primary_10_3390_antiox10111675 crossref_primary_10_1016_j_jff_2019_03_022 crossref_primary_10_1016_j_ymgme_2020_10_002 crossref_primary_10_1007_s40279_017_0849_1 crossref_primary_10_14814_phy2_70256 crossref_primary_10_3390_antiox10101528 crossref_primary_10_3390_antiox10040542 crossref_primary_10_1017_S0954422420000049 crossref_primary_10_1007_s00702_021_02427_8 crossref_primary_10_3390_nu13103466 crossref_primary_10_1016_j_mad_2021_111441 crossref_primary_10_1139_apnm_2019_0069 crossref_primary_10_1038_s41598_021_01093_w crossref_primary_10_1093_nutrit_nuaa094 |
Cites_doi | 10.1113/jphysiol.2011.209924 10.1016/j.phrs.2015.08.014 10.1161/HYPERTENSIONAHA.112.193060 10.1097/00005768-200001000-00023 10.1177/0269881109106923 10.1097/HJH.0000000000000412 10.1016/j.ijcard.2013.06.089 10.1123/ijsnem.19.6.624 10.1016/j.jacc.2005.06.055 10.1152/japplphysiol.00445.2013 10.1113/jphysiol.2013.267419 10.1042/CS20130023 10.1001/jama.290.8.1030 10.1111/j.1752-8062.2011.00357.x 10.1046/j.1365-201X.2002.01008.x 10.1039/C4FO00596A 10.2337/db06-1119 10.1161/HYPERTENSIONAHA.109.147892 10.1161/01.HYP.0000174990.46027.70 10.1097/MOL.0b013e328328d0a4 10.1016/j.atherosclerosis.2004.06.014 10.1113/jphysiol.2013.258061 10.3945/jn.110.131490 10.1016/j.cell.2008.06.051 10.1152/jappl.1991.71.5.2004 10.1016/j.drudis.2014.03.009 10.1152/jappl.1985.59.2.320 10.2337/diabetes.52.8.1888 10.1113/jphysiol.2002.034850 10.1016/j.bmcl.2014.04.038 10.1155/2012/646354 10.1016/S0167-4781(02)00343-3 10.1073/pnas.0510168103 10.1093/gerona/glt107 10.1249/MSS.0b013e31822495a7 10.1161/CIRCULATIONAHA.108.827022 10.1113/jphysiol.2013.270256 10.1136/bmj.d4488 10.1038/sj.ijo.0802905 10.2741/3102 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 7S9 L.6 5PM |
DOI | 10.1039/c6fo00611f |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef AIDS and Cancer Research Abstracts MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 2042-650X |
EndPage | 3693 |
ExternalDocumentID | PMC5025384 27491778 10_1039_C6FO00611F c6fo00611f |
Genre | Randomized Controlled Trial Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK098717 – fundername: NIDDK NIH HHS grantid: R24 DK092154 |
GroupedDBID | --- -JG 0-7 0R~ 4.4 53G 705 7~J AAEMU AAHBH AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AUNWK AZFZN BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3I O-G O9- P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SKF SKH SKJ SKM SKR SKZ SLC SLF AAYXX ABIQK ACRPL ADNMO AFRZK AGQPQ AHGXI AKMSF ALSGL ANLMG ASPBG AVWKF CAG CITATION COF FEDTE HVGLF J3G J3H L-8 CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c532t-7c22e58e6a5ab2461fa4963715355761300947b983ffb4c6a5648b4775ce56eb3 |
ISSN | 2042-6496 2042-650X |
IngestDate | Thu Aug 21 14:12:04 EDT 2025 Fri Jul 11 09:57:25 EDT 2025 Fri Jul 11 06:22:42 EDT 2025 Thu Jul 10 17:36:47 EDT 2025 Wed Feb 19 02:41:43 EST 2025 Thu Apr 24 22:59:19 EDT 2025 Tue Jul 01 03:02:01 EDT 2025 Tue Dec 17 21:00:09 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c532t-7c22e58e6a5ab2461fa4963715355761300947b983ffb4c6a5648b4775ce56eb3 |
Notes | 10.1039/c6fo00611f Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | http://doi.org/10.1039/c6fo00611f |
PMID | 27491778 |
PQID | 1820594016 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1039_C6FO00611F proquest_miscellaneous_1827890357 pubmed_primary_27491778 proquest_miscellaneous_2253238722 proquest_miscellaneous_1820594016 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5025384 crossref_primary_10_1039_C6FO00611F rsc_primary_c6fo00611f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160914 |
PublicationDateYYYYMMDD | 2016-09-14 |
PublicationDate_xml | – month: 9 year: 2016 text: 20160914 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Food & function |
PublicationTitleAlternate | Food Funct |
PublicationYear | 2016 |
References | Heiss (C6FO00611F-(cit4)/*[position()=1]) 2003; 290 Moreno-Ulloa (C6FO00611F-(cit20)/*[position()=1]) 2015; 100 Olesen (C6FO00611F-(cit41)/*[position()=1]) 2014; 592 Scarpulla (C6FO00611F-(cit30)/*[position()=1]) 2002; 1576 Hoppeler (C6FO00611F-(cit37)/*[position()=1]) 1985; 59 Hollman (C6FO00611F-(cit10)/*[position()=1]) 2011; 141 Kressler (C6FO00611F-(cit25)/*[position()=1]) 2011; 43 Nogueira (C6FO00611F-(cit15)/*[position()=1]) 2011; 589 Canto (C6FO00611F-(cit17)/*[position()=1]) 2009; 20 Skinner (C6FO00611F-(cit23)/*[position()=1]) 2000; 32 Svensson (C6FO00611F-(cit42)/*[position()=1]) 2002; 176 Kohrt (C6FO00611F-(cit24)/*[position()=1]) 1991; 71 Barnett (C6FO00611F-(cit19)/*[position()=1]) 2015; 6 Grassi (C6FO00611F-(cit8)/*[position()=1]) 2015; 33 Gliemann (C6FO00611F-(cit27)/*[position()=1]) 2013; 591 Puigserver (C6FO00611F-(cit36)/*[position()=1]) 2005; 29 Jessen (C6FO00611F-(cit33)/*[position()=1]) 2014; 19 Grassi (C6FO00611F-(cit9)/*[position()=1]) 2005; 46 Ramirez-Sanchez (C6FO00611F-(cit21)/*[position()=1]) 2010; 55 Ramirez-Sanchez (C6FO00611F-(cit14)/*[position()=1]) 2013; 168 Dean (C6FO00611F-(cit26)/*[position()=1]) 2009; 19 Taub (C6FO00611F-(cit18)/*[position()=1]) 2012; 5 Taub (C6FO00611F-(cit13)/*[position()=1]) 2013; 125 Taub (C6FO00611F-(cit12)/*[position()=1]) 2011; 5 Short (C6FO00611F-(cit39)/*[position()=1]) 2003; 52 Schroeter (C6FO00611F-(cit11)/*[position()=1]) 2006; 103 Phillips (C6FO00611F-(cit22)/*[position()=1]) 2004; 177 Sriwijitkamol (C6FO00611F-(cit35)/*[position()=1]) 2007; 56 Corti (C6FO00611F-(cit3)/*[position()=1]) 2009; 119 Jacobs (C6FO00611F-(cit38)/*[position()=1]) 2013; 115 Jorgensen (C6FO00611F-(cit34)/*[position()=1]) 2008; 13 Narkar (C6FO00611F-(cit16)/*[position()=1]) 2008; 134 Buitrago-Lopez (C6FO00611F-(cit1)/*[position()=1]) 2011; 343 Konopka (C6FO00611F-(cit32)/*[position()=1]) 2014; 69 Desideri (C6FO00611F-(cit7)/*[position()=1]) 2012; 60 Paulsen (C6FO00611F-(cit28)/*[position()=1]) 2014; 592 Pilegaard (C6FO00611F-(cit31)/*[position()=1]) 2003; 546 Cui (C6FO00611F-(cit40)/*[position()=1]) 2012; 2012 Heiss (C6FO00611F-(cit5)/*[position()=1]) 2005; 46 Moreno-Ulloa (C6FO00611F-(cit29)/*[position()=1]) 2014; 24 Buijsse (C6FO00611F-(cit2)/*[position()=1]) 2006; 166 Scholey (C6FO00611F-(cit6)/*[position()=1]) 2010; 24 Loffredo (C6FO00611F-(cit43)/*[position()=1]) 2014 12193218 - Acta Physiol Scand. 2002 Sep;176(1):43-56 23878368 - J Physiol. 2013 Oct 15;591(20):5047-59 21875885 - BMJ. 2011 Aug 26;343:d4488 19942640 - J Psychopharmacol. 2010 Oct;24(10):1505-14 26303816 - Pharmacol Res. 2015 Oct;100:309-20 24637044 - Drug Discov Today. 2014 Jul;19(7):999-1002 12031478 - Biochim Biophys Acta. 2002 Jun 7;1576(1-2):1-14 25380152 - J Hypertens. 2015 Feb;33(2):294-303 1761503 - J Appl Physiol (1985). 1991 Nov;71(5):2004-11 20404222 - Hypertension. 2010 Jun;55(6):1398-405 20175431 - Int J Sport Nutr Exerc Metab. 2009 Dec;19(6):624-44 23788574 - J Appl Physiol (1985). 2013 Sep;115(6):785-93 22376256 - Clin Transl Sci. 2012 Feb;5(1):43-7 18508608 - Front Biosci. 2008 May 01;13:5589-604 19276888 - Curr Opin Lipidol. 2009 Apr;20(2):98-105 21788351 - J Physiol. 2011 Sep 15;589(Pt 18):4615-31 12563009 - J Physiol. 2003 Feb 1;546(Pt 3):851-8 12882902 - Diabetes. 2003 Aug;52(8):1888-96 16198843 - J Am Coll Cardiol. 2005 Oct 4;46(7):1276-83 24514907 - J Physiol. 2014 Apr 15;592(8):1873-86 23642227 - Clin Sci (Lond). 2013 Oct;125(8):383-9 23870648 - Int J Cardiol. 2013 Oct 9;168(4):3982-90 15488882 - Atherosclerosis. 2004 Nov;177(1):183-8 22892813 - Hypertension. 2012 Sep;60(3):794-801 24492839 - J Physiol. 2014 Apr 15;592(8):1887-901 10647543 - Med Sci Sports Exerc. 2000 Jan;32(1):157-61 23873965 - J Gerontol A Biol Sci Med Sci. 2014 Apr;69(4):371-8 4030584 - J Appl Physiol (1985). 1985 Aug;59(2):320-7 16027246 - Hypertension. 2005 Aug;46(2):398-405 19289648 - Circulation. 2009 Mar 17;119(10):1433-41 16505260 - Arch Intern Med. 2006 Feb 27;166(4):411-7 24794111 - Bioorg Med Chem Lett. 2014 Jun 15;24(12 ):2749-52 18674809 - Cell. 2008 Aug 8;134(3):405-15 15711583 - Int J Obes (Lond). 2005 Mar;29 Suppl 1:S5-9 21451125 - J Nutr. 2011 May;141(5):989S-1009S 16418281 - Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):1024-9 25598082 - Food Funct. 2015 Mar;6(3):824-33 24990275 - J Am Heart Assoc. 2014 Jul 02;3(4):null 21606866 - Med Sci Sports Exerc. 2011 Dec;43(12):2396-404 21977319 - J Signal Transduct. 2012;2012:646354 12941674 - JAMA. 2003 Aug 27;290(8):1030-1 17327455 - Diabetes. 2007 Mar;56(3):836-48 |
References_xml | – volume: 589 start-page: 4615 year: 2011 ident: C6FO00611F-(cit15)/*[position()=1] publication-title: J. Physiol. doi: 10.1113/jphysiol.2011.209924 – volume: 100 start-page: 309 year: 2015 ident: C6FO00611F-(cit20)/*[position()=1] publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2015.08.014 – volume: 60 start-page: 794 year: 2012 ident: C6FO00611F-(cit7)/*[position()=1] publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.112.193060 – volume: 32 start-page: 157 year: 2000 ident: C6FO00611F-(cit23)/*[position()=1] publication-title: Med. Sci. Sports Exercise doi: 10.1097/00005768-200001000-00023 – volume: 24 start-page: 1505 year: 2010 ident: C6FO00611F-(cit6)/*[position()=1] publication-title: J. Psychopharmacol. doi: 10.1177/0269881109106923 – volume: 33 start-page: 294 year: 2015 ident: C6FO00611F-(cit8)/*[position()=1] publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000000412 – volume: 168 start-page: 3982 year: 2013 ident: C6FO00611F-(cit14)/*[position()=1] publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2013.06.089 – volume: 19 start-page: 624 year: 2009 ident: C6FO00611F-(cit26)/*[position()=1] publication-title: Int. J. Sport Nutr. Exercise Metab. doi: 10.1123/ijsnem.19.6.624 – volume: 46 start-page: 1276 year: 2005 ident: C6FO00611F-(cit5)/*[position()=1] publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2005.06.055 – volume: 115 start-page: 785 year: 2013 ident: C6FO00611F-(cit38)/*[position()=1] publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00445.2013 – volume: 592 start-page: 1887 year: 2014 ident: C6FO00611F-(cit28)/*[position()=1] publication-title: J. Physiol. doi: 10.1113/jphysiol.2013.267419 – volume: 166 start-page: 411 year: 2006 ident: C6FO00611F-(cit2)/*[position()=1] publication-title: Arch. Intern. Med. – volume: 125 start-page: 383 year: 2013 ident: C6FO00611F-(cit13)/*[position()=1] publication-title: Clin. Sci. doi: 10.1042/CS20130023 – volume: 290 start-page: 1030 year: 2003 ident: C6FO00611F-(cit4)/*[position()=1] publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.290.8.1030 – volume: 5 start-page: 43 year: 2011 ident: C6FO00611F-(cit12)/*[position()=1] publication-title: Clin. Transl. Sci. doi: 10.1111/j.1752-8062.2011.00357.x – volume: 5 start-page: 43 year: 2012 ident: C6FO00611F-(cit18)/*[position()=1] publication-title: Clin. Transl. Sci. doi: 10.1111/j.1752-8062.2011.00357.x – volume: 176 start-page: 43 year: 2002 ident: C6FO00611F-(cit42)/*[position()=1] publication-title: Acta Physiol. Scand. doi: 10.1046/j.1365-201X.2002.01008.x – volume: 6 start-page: 824 year: 2015 ident: C6FO00611F-(cit19)/*[position()=1] publication-title: Food Funct. doi: 10.1039/C4FO00596A – volume: 56 start-page: 836 year: 2007 ident: C6FO00611F-(cit35)/*[position()=1] publication-title: Diabetes doi: 10.2337/db06-1119 – volume: 55 start-page: 1398 year: 2010 ident: C6FO00611F-(cit21)/*[position()=1] publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.109.147892 – volume: 46 start-page: 398 year: 2005 ident: C6FO00611F-(cit9)/*[position()=1] publication-title: Hypertension doi: 10.1161/01.HYP.0000174990.46027.70 – volume: 20 start-page: 98 year: 2009 ident: C6FO00611F-(cit17)/*[position()=1] publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0b013e328328d0a4 – volume: 177 start-page: 183 year: 2004 ident: C6FO00611F-(cit22)/*[position()=1] publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2004.06.014 – volume: 591 start-page: 5047 year: 2013 ident: C6FO00611F-(cit27)/*[position()=1] publication-title: J. Physiol. doi: 10.1113/jphysiol.2013.258061 – volume: 141 start-page: 989S year: 2011 ident: C6FO00611F-(cit10)/*[position()=1] publication-title: J. Nutr. doi: 10.3945/jn.110.131490 – volume: 134 start-page: 405 year: 2008 ident: C6FO00611F-(cit16)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2008.06.051 – volume: 71 start-page: 2004 year: 1991 ident: C6FO00611F-(cit24)/*[position()=1] publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1991.71.5.2004 – volume: 19 start-page: 999 year: 2014 ident: C6FO00611F-(cit33)/*[position()=1] publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2014.03.009 – volume: 59 start-page: 320 year: 1985 ident: C6FO00611F-(cit37)/*[position()=1] publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1985.59.2.320 – volume: 52 start-page: 1888 year: 2003 ident: C6FO00611F-(cit39)/*[position()=1] publication-title: Diabetes doi: 10.2337/diabetes.52.8.1888 – volume: 546 start-page: 851 year: 2003 ident: C6FO00611F-(cit31)/*[position()=1] publication-title: J. Physiol. doi: 10.1113/jphysiol.2002.034850 – volume: 24 start-page: 2749 year: 2014 ident: C6FO00611F-(cit29)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2014.04.038 – volume: 2012 start-page: 646354 year: 2012 ident: C6FO00611F-(cit40)/*[position()=1] publication-title: J. Signal Transduction doi: 10.1155/2012/646354 – volume: 1576 start-page: 1 year: 2002 ident: C6FO00611F-(cit30)/*[position()=1] publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4781(02)00343-3 – volume: 103 start-page: 1024 year: 2006 ident: C6FO00611F-(cit11)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0510168103 – volume: 69 start-page: 371 year: 2014 ident: C6FO00611F-(cit32)/*[position()=1] publication-title: J. Gerontol., Ser. A doi: 10.1093/gerona/glt107 – volume: 43 start-page: 2396 year: 2011 ident: C6FO00611F-(cit25)/*[position()=1] publication-title: Med. Sci. Sports Exercise doi: 10.1249/MSS.0b013e31822495a7 – volume: 119 start-page: 1433 year: 2009 ident: C6FO00611F-(cit3)/*[position()=1] publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.827022 – volume: 592 start-page: 1873 year: 2014 ident: C6FO00611F-(cit41)/*[position()=1] publication-title: J. Physiol. doi: 10.1113/jphysiol.2013.270256 – start-page: 3 year: 2014 ident: C6FO00611F-(cit43)/*[position()=1] publication-title: J. Am. Heart Assoc. – volume: 343 start-page: d4488 year: 2011 ident: C6FO00611F-(cit1)/*[position()=1] publication-title: Br. Med. J. doi: 10.1136/bmj.d4488 – volume: 29 start-page: S5 issue: Suppl 1) year: 2005 ident: C6FO00611F-(cit36)/*[position()=1] publication-title: Int. J. Obes. doi: 10.1038/sj.ijo.0802905 – volume: 13 start-page: 5589 year: 2008 ident: C6FO00611F-(cit34)/*[position()=1] publication-title: Front. Biosci. doi: 10.2741/3102 – reference: 24514907 - J Physiol. 2014 Apr 15;592(8):1873-86 – reference: 21977319 - J Signal Transduct. 2012;2012:646354 – reference: 12031478 - Biochim Biophys Acta. 2002 Jun 7;1576(1-2):1-14 – reference: 23788574 - J Appl Physiol (1985). 2013 Sep;115(6):785-93 – reference: 19942640 - J Psychopharmacol. 2010 Oct;24(10):1505-14 – reference: 24637044 - Drug Discov Today. 2014 Jul;19(7):999-1002 – reference: 19289648 - Circulation. 2009 Mar 17;119(10):1433-41 – reference: 23642227 - Clin Sci (Lond). 2013 Oct;125(8):383-9 – reference: 25380152 - J Hypertens. 2015 Feb;33(2):294-303 – reference: 24492839 - J Physiol. 2014 Apr 15;592(8):1887-901 – reference: 26303816 - Pharmacol Res. 2015 Oct;100:309-20 – reference: 20175431 - Int J Sport Nutr Exerc Metab. 2009 Dec;19(6):624-44 – reference: 21875885 - BMJ. 2011 Aug 26;343:d4488 – reference: 22376256 - Clin Transl Sci. 2012 Feb;5(1):43-7 – reference: 17327455 - Diabetes. 2007 Mar;56(3):836-48 – reference: 15488882 - Atherosclerosis. 2004 Nov;177(1):183-8 – reference: 23878368 - J Physiol. 2013 Oct 15;591(20):5047-59 – reference: 12563009 - J Physiol. 2003 Feb 1;546(Pt 3):851-8 – reference: 15711583 - Int J Obes (Lond). 2005 Mar;29 Suppl 1:S5-9 – reference: 12193218 - Acta Physiol Scand. 2002 Sep;176(1):43-56 – reference: 4030584 - J Appl Physiol (1985). 1985 Aug;59(2):320-7 – reference: 18674809 - Cell. 2008 Aug 8;134(3):405-15 – reference: 18508608 - Front Biosci. 2008 May 01;13:5589-604 – reference: 16027246 - Hypertension. 2005 Aug;46(2):398-405 – reference: 21788351 - J Physiol. 2011 Sep 15;589(Pt 18):4615-31 – reference: 12941674 - JAMA. 2003 Aug 27;290(8):1030-1 – reference: 20404222 - Hypertension. 2010 Jun;55(6):1398-405 – reference: 16505260 - Arch Intern Med. 2006 Feb 27;166(4):411-7 – reference: 1761503 - J Appl Physiol (1985). 1991 Nov;71(5):2004-11 – reference: 19276888 - Curr Opin Lipidol. 2009 Apr;20(2):98-105 – reference: 22892813 - Hypertension. 2012 Sep;60(3):794-801 – reference: 25598082 - Food Funct. 2015 Mar;6(3):824-33 – reference: 23870648 - Int J Cardiol. 2013 Oct 9;168(4):3982-90 – reference: 16418281 - Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):1024-9 – reference: 21606866 - Med Sci Sports Exerc. 2011 Dec;43(12):2396-404 – reference: 24794111 - Bioorg Med Chem Lett. 2014 Jun 15;24(12 ):2749-52 – reference: 23873965 - J Gerontol A Biol Sci Med Sci. 2014 Apr;69(4):371-8 – reference: 12882902 - Diabetes. 2003 Aug;52(8):1888-96 – reference: 16198843 - J Am Coll Cardiol. 2005 Oct 4;46(7):1276-83 – reference: 21451125 - J Nutr. 2011 May;141(5):989S-1009S – reference: 10647543 - Med Sci Sports Exerc. 2000 Jan;32(1):157-61 – reference: 24990275 - J Am Heart Assoc. 2014 Jul 02;3(4):null |
SSID | ssj0000399898 |
Score | 2.3115687 |
Snippet | In heart failure patients the consumption of (−)-epicatechin ((−)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease... In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3686 |
SubjectTerms | Adult Aged biomarkers biopsy blood sampling Cacao - metabolism chocolate Chocolate - analysis citrate (si)-synthase clinical trials Double-Blind Method enzyme activity Exercise exercise test Female glutathione heart failure high density lipoprotein Humans Male Middle Aged mitochondria Muscle, Skeletal - metabolism oxidative stress patients placebos protein content Sedentary Lifestyle skeletal muscle triacylglycerols Triglycerides - metabolism |
Title | Beneficial effects of dark chocolate on exercise capacity in sedentary subjects: underlying mechanisms. A double blind, randomized, placebo controlled trial |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27491778 https://www.proquest.com/docview/1820594016 https://www.proquest.com/docview/1827890357 https://www.proquest.com/docview/2253238722 https://pubmed.ncbi.nlm.nih.gov/PMC5025384 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l7YUL4q9g_rQIhIRSp4l37bW5pYVQQC0SpKK3aNdeqxaJjRL7kmfhiXgqZmyv7ZCCChcrWU-s2PN5Znb3mxlCXkg_ckZy6MMkh0ubSyewfRVwm2vH0Y7kKnIwwfn0zDs55x8u3Ite72eHtVTkahCur8wr-R-twhjoFbNk_0GzzUVhAD6DfuEIGobjtXR8BIaqrgDR4WVEcvmtD1YNVCyRBJA2fZX6IbjGEOPuJO2vNOboImluVShcjSnJcZhTtpyXuU8LjVnByWqxGoD5iLICk6wUhKUlKMDHRdkiWVeLpSW1S2WG-T6HMLbsB9KNfSdYQBmRhr60u_8_lYWqotlF__Og3XlagDle218Al5fVOvf71dJQ_Mtdr7yiGJwm5kk1a-gKAFhBHQx92l3aGHnIw6hSSisL6GDukMeDulZ2Z8wdXnRNuOggNeiYY-aZOtv116ob45bbGDKsunrsTT5hSDeatM7REAJ-85kNk7Hcw2fBrP3tDtlzYMoCNndv_PHo3ddmxQ_EsFkndjs092Xq5bLgsL3AZoS0Ne3ZZu_uLE2zmjIomt4iN-vZDB1X0LxNejq9Q6w3ic7pS1qXnJ3TM9Px4S750UKW1pClWUwRsrSBLM1SaiBLDWRpktIGstRA9jVtAUs7gKVjWgGWloA9oC1cD2gNVtqClZZgvUfOJ2-nxyd23SDEDl3m5LYIwaC4vvakKxUWRowlPFQmwIu7MI_GndqACxX4LI4VD0HM477iQrihdj2t2D7ZTbNUPyA0dOFENJRMYZl_P5TCC33FfOlrGcfR0CKvjFJmYV09H5u4zGfbCLDI80b2e1Uz5kqpZ0a3MzDpuE8nU50Vqxn2VHADDi_EX2UwhZ254s8y4KoZROTCcSxyv8JM838cwYOREL5FxAaaGgEsO795Jk0uy_LzLkyTmM8tsg-4a-RDL87KG4sfXuv2H5Eb7Sv_mOzmy0I_gfg-V0_rF-cXZn8AOA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beneficial+effects+of+dark+chocolate+on+exercise+capacity+in+sedentary+subjects%3A+underlying+mechanisms.+A+double+blind%2C+randomized%2C+placebo+controlled+trial&rft.jtitle=Food+%26+function&rft.au=Taub%2C+Pam+R.&rft.au=Ramirez-Sanchez%2C+Israel&rft.au=Patel%2C+Minal&rft.au=Higginbotham%2C+Erin&rft.date=2016-09-14&rft.issn=2042-6496&rft.eissn=2042-650X&rft.volume=7&rft.issue=9&rft.spage=3686&rft.epage=3693&rft_id=info:doi/10.1039%2FC6FO00611F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6FO00611F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon |