Beneficial effects of dark chocolate on exercise capacity in sedentary subjects: underlying mechanisms. A double blind, randomized, placebo controlled trial

In heart failure patients the consumption of (−)-epicatechin ((−)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary sub...

Full description

Saved in:
Bibliographic Details
Published inFood & function Vol. 7; no. 9; pp. 3686 - 3693
Main Authors Taub, Pam R, Ramirez-Sanchez, Israel, Patel, Minal, Higginbotham, Erin, Moreno-Ulloa, Aldo, Román-Pintos, Luis Miguel, Phillips, Paul, Perkins, Guy, Ceballos, Guillermo, Villarreal, Francisco
Format Journal Article
LanguageEnglish
Published England 14.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In heart failure patients the consumption of (−)-epicatechin ((−)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO 2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group ( n = 9), VO 2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved ( p = 0.026) with no changes with placebo ( n = 8). The DC group evidenced increases in HDL levels ( p = 0.005) and decreased triglycerides ( p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO 2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations. We wished to examine the effects of dark chocolate on sedentary individuals' exercise capacity and underlying mechanisms.
AbstractList In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n = 9), VO2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved (p = 0.026) with no changes with placebo (n = 8). The DC group evidenced increases in HDL levels (p = 0.005) and decreased triglycerides (p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations.
In heart failure patients the consumption of (−)-epicatechin ((−)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO 2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group ( n = 9), VO 2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved ( p = 0.026) with no changes with placebo ( n = 8). The DC group evidenced increases in HDL levels ( p = 0.005) and decreased triglycerides ( p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO 2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations.
In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects ( similar to 50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n = 9), VO2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved (p = 0.026) with no changes with placebo (n = 8). The DC group evidenced increases in HDL levels (p = 0.005) and decreased triglycerides (p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1 alpha and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations.
In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n = 9), VO2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved (p = 0.026) with no changes with placebo (n = 8). The DC group evidenced increases in HDL levels (p = 0.005) and decreased triglycerides (p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations.In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n = 9), VO2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved (p = 0.026) with no changes with placebo (n = 8). The DC group evidenced increases in HDL levels (p = 0.005) and decreased triglycerides (p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations.
In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO 2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n=9), VO 2 max increased (17% increase, p=0.056) as well as maximum work (watts) achieved (p=0.026) with no changes with placebo (n=8). The DC group evidenced increases in HDL levels (p=0.005) and decreased triglycerides (p=0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO 2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations.
In heart failure patients the consumption of (−)-epicatechin ((−)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO 2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group ( n = 9), VO 2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved ( p = 0.026) with no changes with placebo ( n = 8). The DC group evidenced increases in HDL levels ( p = 0.005) and decreased triglycerides ( p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO 2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations. We wished to examine the effects of dark chocolate on sedentary individuals' exercise capacity and underlying mechanisms.
In heart failure patients the consumption of (−)-epicatechin ((−)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO₂ max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n = 9), VO₂ max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved (p = 0.026) with no changes with placebo (n = 8). The DC group evidenced increases in HDL levels (p = 0.005) and decreased triglycerides (p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO₂ max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations.
Author Patel, Minal
Román-Pintos, Luis Miguel
Villarreal, Francisco
Ramirez-Sanchez, Israel
Higginbotham, Erin
Perkins, Guy
Taub, Pam R
Phillips, Paul
Ceballos, Guillermo
Moreno-Ulloa, Aldo
AuthorAffiliation San Diego
VA San Diego Healthcare System
Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE)
Departamento de Medicina Interna
Departamento de Innovación Biomédica
Escuela Superior de Medicina del Instituto Politécnico Nacional
University of California
School of Medicine
Hospital Civil de Guadalajara "Dr. Juan I. Menchaca"
AuthorAffiliation_xml – sequence: 0
  name: University of California
– sequence: 0
  name: Departamento de Innovación Biomédica
– sequence: 0
  name: Escuela Superior de Medicina del Instituto Politécnico Nacional
– sequence: 0
  name: Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE)
– sequence: 0
  name: VA San Diego Healthcare System
– sequence: 0
  name: Departamento de Medicina Interna
– sequence: 0
  name: School of Medicine
– sequence: 0
  name: San Diego
– sequence: 0
  name: Hospital Civil de Guadalajara "Dr. Juan I. Menchaca"
– name: b VA San Diego Healthcare System, Sección de Posgrado, México City, México
– name: d Departamento de Medicina Interna, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”
– name: c Escuela Superior de Medicina del Instituto Politécnico Nacional, Sección de Posgrado, México City, México
– name: e Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, México
– name: a University of California, San Diego, School of Medicine, Sección de Posgrado, México City, México
Author_xml – sequence: 1
  givenname: Pam R
  surname: Taub
  fullname: Taub, Pam R
– sequence: 2
  givenname: Israel
  surname: Ramirez-Sanchez
  fullname: Ramirez-Sanchez, Israel
– sequence: 3
  givenname: Minal
  surname: Patel
  fullname: Patel, Minal
– sequence: 4
  givenname: Erin
  surname: Higginbotham
  fullname: Higginbotham, Erin
– sequence: 5
  givenname: Aldo
  surname: Moreno-Ulloa
  fullname: Moreno-Ulloa, Aldo
– sequence: 6
  givenname: Luis Miguel
  surname: Román-Pintos
  fullname: Román-Pintos, Luis Miguel
– sequence: 7
  givenname: Paul
  surname: Phillips
  fullname: Phillips, Paul
– sequence: 8
  givenname: Guy
  surname: Perkins
  fullname: Perkins, Guy
– sequence: 9
  givenname: Guillermo
  surname: Ceballos
  fullname: Ceballos, Guillermo
– sequence: 10
  givenname: Francisco
  surname: Villarreal
  fullname: Villarreal, Francisco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27491778$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhgdpsbX2xnsll0Xcmo_Jx3gh1MWtQqE3Ct4NmcxJNzWTbJOZ4vpb_LFm3Xb9QNDc5MB5zst5Oe-jai_EAFX1hOBTglnz0ggbMRaE2AfVIcU1nQmOP-3d13UjDqrjnK9xeaxpVKMeVgdU1g2RUh1W395AAOuM0x6BtWDGjKJFvU6fkVlGE70eAcWA4Ask4zIgo1fauHGNXEAZegijTmuUp-56M_wKTaGH5NcuXKEBzFIHl4d8is5QH6fOA-q8C_0LlHTo4-C-QqlXXhvoIjIxjCl6Dz0aU9nocbVvtc9wfPcfVR8Xbz_M380uLs_fz88uZoYzOs6koRS4AqG57mgtiNXFNpOEM86lIAzjppZdo5i1XW0KJmrV1VJyA1xAx46q11vd1dQN0JviKWnfrpIbirc2atf-3glu2V7F25Zjypmqi8DJnUCKNxPksR1cNuC9DhCn3NKCUaYkpf9EiaJSNZhx-T8o5k2NiSjos18d7Fa_P3QBnm8Bk2LOCewOIbjdBKmdi8XljyAtCoz_gMvB9eg259HO_33k6XYkZbOT_plN9h1YjdYS
CitedBy_id crossref_primary_10_1016_j_freeradbiomed_2018_11_010
crossref_primary_10_1016_j_jnutbio_2021_108768
crossref_primary_10_1089_jmf_2021_0054
crossref_primary_10_3390_nu9070746
crossref_primary_10_1016_j_cct_2023_107078
crossref_primary_10_3390_ijms20102451
crossref_primary_10_1016_j_mito_2017_10_003
crossref_primary_10_1186_s12970_017_0186_7
crossref_primary_10_3390_ijms22136913
crossref_primary_10_2174_0929867329666211217100020
crossref_primary_10_1016_j_jnutbio_2022_109150
crossref_primary_10_1016_j_smallrumres_2021_106599
crossref_primary_10_1152_japplphysiol_00055_2018
crossref_primary_10_3164_jcbn_23_12
crossref_primary_10_3390_applbiosci3010001
crossref_primary_10_1371_journal_pone_0277453
crossref_primary_10_1016_j_fbio_2020_100710
crossref_primary_10_3390_nu11071471
crossref_primary_10_3390_ijms23094652
crossref_primary_10_1002_mus_27108
crossref_primary_10_1111_ijfs_17312
crossref_primary_10_1039_D0FO00246A
crossref_primary_10_1007_s40279_018_0998_x
crossref_primary_10_1016_j_ejphar_2018_01_014
crossref_primary_10_1039_C8FO00483H
crossref_primary_10_3390_antiox11081522
crossref_primary_10_1186_s13102_021_00319_8
crossref_primary_10_3390_antiox10111675
crossref_primary_10_1016_j_jff_2019_03_022
crossref_primary_10_1016_j_ymgme_2020_10_002
crossref_primary_10_1007_s40279_017_0849_1
crossref_primary_10_14814_phy2_70256
crossref_primary_10_3390_antiox10101528
crossref_primary_10_3390_antiox10040542
crossref_primary_10_1017_S0954422420000049
crossref_primary_10_1007_s00702_021_02427_8
crossref_primary_10_3390_nu13103466
crossref_primary_10_1016_j_mad_2021_111441
crossref_primary_10_1139_apnm_2019_0069
crossref_primary_10_1038_s41598_021_01093_w
crossref_primary_10_1093_nutrit_nuaa094
Cites_doi 10.1113/jphysiol.2011.209924
10.1016/j.phrs.2015.08.014
10.1161/HYPERTENSIONAHA.112.193060
10.1097/00005768-200001000-00023
10.1177/0269881109106923
10.1097/HJH.0000000000000412
10.1016/j.ijcard.2013.06.089
10.1123/ijsnem.19.6.624
10.1016/j.jacc.2005.06.055
10.1152/japplphysiol.00445.2013
10.1113/jphysiol.2013.267419
10.1042/CS20130023
10.1001/jama.290.8.1030
10.1111/j.1752-8062.2011.00357.x
10.1046/j.1365-201X.2002.01008.x
10.1039/C4FO00596A
10.2337/db06-1119
10.1161/HYPERTENSIONAHA.109.147892
10.1161/01.HYP.0000174990.46027.70
10.1097/MOL.0b013e328328d0a4
10.1016/j.atherosclerosis.2004.06.014
10.1113/jphysiol.2013.258061
10.3945/jn.110.131490
10.1016/j.cell.2008.06.051
10.1152/jappl.1991.71.5.2004
10.1016/j.drudis.2014.03.009
10.1152/jappl.1985.59.2.320
10.2337/diabetes.52.8.1888
10.1113/jphysiol.2002.034850
10.1016/j.bmcl.2014.04.038
10.1155/2012/646354
10.1016/S0167-4781(02)00343-3
10.1073/pnas.0510168103
10.1093/gerona/glt107
10.1249/MSS.0b013e31822495a7
10.1161/CIRCULATIONAHA.108.827022
10.1113/jphysiol.2013.270256
10.1136/bmj.d4488
10.1038/sj.ijo.0802905
10.2741/3102
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
H94
7S9
L.6
5PM
DOI 10.1039/c6fo00611f
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
CrossRef
AIDS and Cancer Research Abstracts
MEDLINE - Academic


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 2042-650X
EndPage 3693
ExternalDocumentID PMC5025384
27491778
10_1039_C6FO00611F
c6fo00611f
Genre Randomized Controlled Trial
Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK098717
– fundername: NIDDK NIH HHS
  grantid: R24 DK092154
GroupedDBID ---
-JG
0-7
0R~
4.4
53G
705
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AUNWK
AZFZN
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
AAYXX
ABIQK
ACRPL
ADNMO
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ANLMG
ASPBG
AVWKF
CAG
CITATION
COF
FEDTE
HVGLF
J3G
J3H
L-8
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
H94
7S9
L.6
5PM
ID FETCH-LOGICAL-c532t-7c22e58e6a5ab2461fa4963715355761300947b983ffb4c6a5648b4775ce56eb3
ISSN 2042-6496
2042-650X
IngestDate Thu Aug 21 14:12:04 EDT 2025
Fri Jul 11 09:57:25 EDT 2025
Fri Jul 11 06:22:42 EDT 2025
Thu Jul 10 17:36:47 EDT 2025
Wed Feb 19 02:41:43 EST 2025
Thu Apr 24 22:59:19 EDT 2025
Tue Jul 01 03:02:01 EDT 2025
Tue Dec 17 21:00:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c532t-7c22e58e6a5ab2461fa4963715355761300947b983ffb4c6a5648b4775ce56eb3
Notes 10.1039/c6fo00611f
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink http://doi.org/10.1039/c6fo00611f
PMID 27491778
PQID 1820594016
PQPubID 23479
PageCount 8
ParticipantIDs crossref_citationtrail_10_1039_C6FO00611F
proquest_miscellaneous_1827890357
pubmed_primary_27491778
proquest_miscellaneous_2253238722
proquest_miscellaneous_1820594016
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5025384
crossref_primary_10_1039_C6FO00611F
rsc_primary_c6fo00611f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160914
PublicationDateYYYYMMDD 2016-09-14
PublicationDate_xml – month: 9
  year: 2016
  text: 20160914
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food & function
PublicationTitleAlternate Food Funct
PublicationYear 2016
References Heiss (C6FO00611F-(cit4)/*[position()=1]) 2003; 290
Moreno-Ulloa (C6FO00611F-(cit20)/*[position()=1]) 2015; 100
Olesen (C6FO00611F-(cit41)/*[position()=1]) 2014; 592
Scarpulla (C6FO00611F-(cit30)/*[position()=1]) 2002; 1576
Hoppeler (C6FO00611F-(cit37)/*[position()=1]) 1985; 59
Hollman (C6FO00611F-(cit10)/*[position()=1]) 2011; 141
Kressler (C6FO00611F-(cit25)/*[position()=1]) 2011; 43
Nogueira (C6FO00611F-(cit15)/*[position()=1]) 2011; 589
Canto (C6FO00611F-(cit17)/*[position()=1]) 2009; 20
Skinner (C6FO00611F-(cit23)/*[position()=1]) 2000; 32
Svensson (C6FO00611F-(cit42)/*[position()=1]) 2002; 176
Kohrt (C6FO00611F-(cit24)/*[position()=1]) 1991; 71
Barnett (C6FO00611F-(cit19)/*[position()=1]) 2015; 6
Grassi (C6FO00611F-(cit8)/*[position()=1]) 2015; 33
Gliemann (C6FO00611F-(cit27)/*[position()=1]) 2013; 591
Puigserver (C6FO00611F-(cit36)/*[position()=1]) 2005; 29
Jessen (C6FO00611F-(cit33)/*[position()=1]) 2014; 19
Grassi (C6FO00611F-(cit9)/*[position()=1]) 2005; 46
Ramirez-Sanchez (C6FO00611F-(cit21)/*[position()=1]) 2010; 55
Ramirez-Sanchez (C6FO00611F-(cit14)/*[position()=1]) 2013; 168
Dean (C6FO00611F-(cit26)/*[position()=1]) 2009; 19
Taub (C6FO00611F-(cit18)/*[position()=1]) 2012; 5
Taub (C6FO00611F-(cit13)/*[position()=1]) 2013; 125
Taub (C6FO00611F-(cit12)/*[position()=1]) 2011; 5
Short (C6FO00611F-(cit39)/*[position()=1]) 2003; 52
Schroeter (C6FO00611F-(cit11)/*[position()=1]) 2006; 103
Phillips (C6FO00611F-(cit22)/*[position()=1]) 2004; 177
Sriwijitkamol (C6FO00611F-(cit35)/*[position()=1]) 2007; 56
Corti (C6FO00611F-(cit3)/*[position()=1]) 2009; 119
Jacobs (C6FO00611F-(cit38)/*[position()=1]) 2013; 115
Jorgensen (C6FO00611F-(cit34)/*[position()=1]) 2008; 13
Narkar (C6FO00611F-(cit16)/*[position()=1]) 2008; 134
Buitrago-Lopez (C6FO00611F-(cit1)/*[position()=1]) 2011; 343
Konopka (C6FO00611F-(cit32)/*[position()=1]) 2014; 69
Desideri (C6FO00611F-(cit7)/*[position()=1]) 2012; 60
Paulsen (C6FO00611F-(cit28)/*[position()=1]) 2014; 592
Pilegaard (C6FO00611F-(cit31)/*[position()=1]) 2003; 546
Cui (C6FO00611F-(cit40)/*[position()=1]) 2012; 2012
Heiss (C6FO00611F-(cit5)/*[position()=1]) 2005; 46
Moreno-Ulloa (C6FO00611F-(cit29)/*[position()=1]) 2014; 24
Buijsse (C6FO00611F-(cit2)/*[position()=1]) 2006; 166
Scholey (C6FO00611F-(cit6)/*[position()=1]) 2010; 24
Loffredo (C6FO00611F-(cit43)/*[position()=1]) 2014
12193218 - Acta Physiol Scand. 2002 Sep;176(1):43-56
23878368 - J Physiol. 2013 Oct 15;591(20):5047-59
21875885 - BMJ. 2011 Aug 26;343:d4488
19942640 - J Psychopharmacol. 2010 Oct;24(10):1505-14
26303816 - Pharmacol Res. 2015 Oct;100:309-20
24637044 - Drug Discov Today. 2014 Jul;19(7):999-1002
12031478 - Biochim Biophys Acta. 2002 Jun 7;1576(1-2):1-14
25380152 - J Hypertens. 2015 Feb;33(2):294-303
1761503 - J Appl Physiol (1985). 1991 Nov;71(5):2004-11
20404222 - Hypertension. 2010 Jun;55(6):1398-405
20175431 - Int J Sport Nutr Exerc Metab. 2009 Dec;19(6):624-44
23788574 - J Appl Physiol (1985). 2013 Sep;115(6):785-93
22376256 - Clin Transl Sci. 2012 Feb;5(1):43-7
18508608 - Front Biosci. 2008 May 01;13:5589-604
19276888 - Curr Opin Lipidol. 2009 Apr;20(2):98-105
21788351 - J Physiol. 2011 Sep 15;589(Pt 18):4615-31
12563009 - J Physiol. 2003 Feb 1;546(Pt 3):851-8
12882902 - Diabetes. 2003 Aug;52(8):1888-96
16198843 - J Am Coll Cardiol. 2005 Oct 4;46(7):1276-83
24514907 - J Physiol. 2014 Apr 15;592(8):1873-86
23642227 - Clin Sci (Lond). 2013 Oct;125(8):383-9
23870648 - Int J Cardiol. 2013 Oct 9;168(4):3982-90
15488882 - Atherosclerosis. 2004 Nov;177(1):183-8
22892813 - Hypertension. 2012 Sep;60(3):794-801
24492839 - J Physiol. 2014 Apr 15;592(8):1887-901
10647543 - Med Sci Sports Exerc. 2000 Jan;32(1):157-61
23873965 - J Gerontol A Biol Sci Med Sci. 2014 Apr;69(4):371-8
4030584 - J Appl Physiol (1985). 1985 Aug;59(2):320-7
16027246 - Hypertension. 2005 Aug;46(2):398-405
19289648 - Circulation. 2009 Mar 17;119(10):1433-41
16505260 - Arch Intern Med. 2006 Feb 27;166(4):411-7
24794111 - Bioorg Med Chem Lett. 2014 Jun 15;24(12 ):2749-52
18674809 - Cell. 2008 Aug 8;134(3):405-15
15711583 - Int J Obes (Lond). 2005 Mar;29 Suppl 1:S5-9
21451125 - J Nutr. 2011 May;141(5):989S-1009S
16418281 - Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):1024-9
25598082 - Food Funct. 2015 Mar;6(3):824-33
24990275 - J Am Heart Assoc. 2014 Jul 02;3(4):null
21606866 - Med Sci Sports Exerc. 2011 Dec;43(12):2396-404
21977319 - J Signal Transduct. 2012;2012:646354
12941674 - JAMA. 2003 Aug 27;290(8):1030-1
17327455 - Diabetes. 2007 Mar;56(3):836-48
References_xml – volume: 589
  start-page: 4615
  year: 2011
  ident: C6FO00611F-(cit15)/*[position()=1]
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2011.209924
– volume: 100
  start-page: 309
  year: 2015
  ident: C6FO00611F-(cit20)/*[position()=1]
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2015.08.014
– volume: 60
  start-page: 794
  year: 2012
  ident: C6FO00611F-(cit7)/*[position()=1]
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.112.193060
– volume: 32
  start-page: 157
  year: 2000
  ident: C6FO00611F-(cit23)/*[position()=1]
  publication-title: Med. Sci. Sports Exercise
  doi: 10.1097/00005768-200001000-00023
– volume: 24
  start-page: 1505
  year: 2010
  ident: C6FO00611F-(cit6)/*[position()=1]
  publication-title: J. Psychopharmacol.
  doi: 10.1177/0269881109106923
– volume: 33
  start-page: 294
  year: 2015
  ident: C6FO00611F-(cit8)/*[position()=1]
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000000412
– volume: 168
  start-page: 3982
  year: 2013
  ident: C6FO00611F-(cit14)/*[position()=1]
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2013.06.089
– volume: 19
  start-page: 624
  year: 2009
  ident: C6FO00611F-(cit26)/*[position()=1]
  publication-title: Int. J. Sport Nutr. Exercise Metab.
  doi: 10.1123/ijsnem.19.6.624
– volume: 46
  start-page: 1276
  year: 2005
  ident: C6FO00611F-(cit5)/*[position()=1]
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2005.06.055
– volume: 115
  start-page: 785
  year: 2013
  ident: C6FO00611F-(cit38)/*[position()=1]
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00445.2013
– volume: 592
  start-page: 1887
  year: 2014
  ident: C6FO00611F-(cit28)/*[position()=1]
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2013.267419
– volume: 166
  start-page: 411
  year: 2006
  ident: C6FO00611F-(cit2)/*[position()=1]
  publication-title: Arch. Intern. Med.
– volume: 125
  start-page: 383
  year: 2013
  ident: C6FO00611F-(cit13)/*[position()=1]
  publication-title: Clin. Sci.
  doi: 10.1042/CS20130023
– volume: 290
  start-page: 1030
  year: 2003
  ident: C6FO00611F-(cit4)/*[position()=1]
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.290.8.1030
– volume: 5
  start-page: 43
  year: 2011
  ident: C6FO00611F-(cit12)/*[position()=1]
  publication-title: Clin. Transl. Sci.
  doi: 10.1111/j.1752-8062.2011.00357.x
– volume: 5
  start-page: 43
  year: 2012
  ident: C6FO00611F-(cit18)/*[position()=1]
  publication-title: Clin. Transl. Sci.
  doi: 10.1111/j.1752-8062.2011.00357.x
– volume: 176
  start-page: 43
  year: 2002
  ident: C6FO00611F-(cit42)/*[position()=1]
  publication-title: Acta Physiol. Scand.
  doi: 10.1046/j.1365-201X.2002.01008.x
– volume: 6
  start-page: 824
  year: 2015
  ident: C6FO00611F-(cit19)/*[position()=1]
  publication-title: Food Funct.
  doi: 10.1039/C4FO00596A
– volume: 56
  start-page: 836
  year: 2007
  ident: C6FO00611F-(cit35)/*[position()=1]
  publication-title: Diabetes
  doi: 10.2337/db06-1119
– volume: 55
  start-page: 1398
  year: 2010
  ident: C6FO00611F-(cit21)/*[position()=1]
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.109.147892
– volume: 46
  start-page: 398
  year: 2005
  ident: C6FO00611F-(cit9)/*[position()=1]
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000174990.46027.70
– volume: 20
  start-page: 98
  year: 2009
  ident: C6FO00611F-(cit17)/*[position()=1]
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0b013e328328d0a4
– volume: 177
  start-page: 183
  year: 2004
  ident: C6FO00611F-(cit22)/*[position()=1]
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2004.06.014
– volume: 591
  start-page: 5047
  year: 2013
  ident: C6FO00611F-(cit27)/*[position()=1]
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2013.258061
– volume: 141
  start-page: 989S
  year: 2011
  ident: C6FO00611F-(cit10)/*[position()=1]
  publication-title: J. Nutr.
  doi: 10.3945/jn.110.131490
– volume: 134
  start-page: 405
  year: 2008
  ident: C6FO00611F-(cit16)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.051
– volume: 71
  start-page: 2004
  year: 1991
  ident: C6FO00611F-(cit24)/*[position()=1]
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1991.71.5.2004
– volume: 19
  start-page: 999
  year: 2014
  ident: C6FO00611F-(cit33)/*[position()=1]
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2014.03.009
– volume: 59
  start-page: 320
  year: 1985
  ident: C6FO00611F-(cit37)/*[position()=1]
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1985.59.2.320
– volume: 52
  start-page: 1888
  year: 2003
  ident: C6FO00611F-(cit39)/*[position()=1]
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.8.1888
– volume: 546
  start-page: 851
  year: 2003
  ident: C6FO00611F-(cit31)/*[position()=1]
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2002.034850
– volume: 24
  start-page: 2749
  year: 2014
  ident: C6FO00611F-(cit29)/*[position()=1]
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2014.04.038
– volume: 2012
  start-page: 646354
  year: 2012
  ident: C6FO00611F-(cit40)/*[position()=1]
  publication-title: J. Signal Transduction
  doi: 10.1155/2012/646354
– volume: 1576
  start-page: 1
  year: 2002
  ident: C6FO00611F-(cit30)/*[position()=1]
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4781(02)00343-3
– volume: 103
  start-page: 1024
  year: 2006
  ident: C6FO00611F-(cit11)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0510168103
– volume: 69
  start-page: 371
  year: 2014
  ident: C6FO00611F-(cit32)/*[position()=1]
  publication-title: J. Gerontol., Ser. A
  doi: 10.1093/gerona/glt107
– volume: 43
  start-page: 2396
  year: 2011
  ident: C6FO00611F-(cit25)/*[position()=1]
  publication-title: Med. Sci. Sports Exercise
  doi: 10.1249/MSS.0b013e31822495a7
– volume: 119
  start-page: 1433
  year: 2009
  ident: C6FO00611F-(cit3)/*[position()=1]
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.827022
– volume: 592
  start-page: 1873
  year: 2014
  ident: C6FO00611F-(cit41)/*[position()=1]
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2013.270256
– start-page: 3
  year: 2014
  ident: C6FO00611F-(cit43)/*[position()=1]
  publication-title: J. Am. Heart Assoc.
– volume: 343
  start-page: d4488
  year: 2011
  ident: C6FO00611F-(cit1)/*[position()=1]
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.d4488
– volume: 29
  start-page: S5
  issue: Suppl 1)
  year: 2005
  ident: C6FO00611F-(cit36)/*[position()=1]
  publication-title: Int. J. Obes.
  doi: 10.1038/sj.ijo.0802905
– volume: 13
  start-page: 5589
  year: 2008
  ident: C6FO00611F-(cit34)/*[position()=1]
  publication-title: Front. Biosci.
  doi: 10.2741/3102
– reference: 24514907 - J Physiol. 2014 Apr 15;592(8):1873-86
– reference: 21977319 - J Signal Transduct. 2012;2012:646354
– reference: 12031478 - Biochim Biophys Acta. 2002 Jun 7;1576(1-2):1-14
– reference: 23788574 - J Appl Physiol (1985). 2013 Sep;115(6):785-93
– reference: 19942640 - J Psychopharmacol. 2010 Oct;24(10):1505-14
– reference: 24637044 - Drug Discov Today. 2014 Jul;19(7):999-1002
– reference: 19289648 - Circulation. 2009 Mar 17;119(10):1433-41
– reference: 23642227 - Clin Sci (Lond). 2013 Oct;125(8):383-9
– reference: 25380152 - J Hypertens. 2015 Feb;33(2):294-303
– reference: 24492839 - J Physiol. 2014 Apr 15;592(8):1887-901
– reference: 26303816 - Pharmacol Res. 2015 Oct;100:309-20
– reference: 20175431 - Int J Sport Nutr Exerc Metab. 2009 Dec;19(6):624-44
– reference: 21875885 - BMJ. 2011 Aug 26;343:d4488
– reference: 22376256 - Clin Transl Sci. 2012 Feb;5(1):43-7
– reference: 17327455 - Diabetes. 2007 Mar;56(3):836-48
– reference: 15488882 - Atherosclerosis. 2004 Nov;177(1):183-8
– reference: 23878368 - J Physiol. 2013 Oct 15;591(20):5047-59
– reference: 12563009 - J Physiol. 2003 Feb 1;546(Pt 3):851-8
– reference: 15711583 - Int J Obes (Lond). 2005 Mar;29 Suppl 1:S5-9
– reference: 12193218 - Acta Physiol Scand. 2002 Sep;176(1):43-56
– reference: 4030584 - J Appl Physiol (1985). 1985 Aug;59(2):320-7
– reference: 18674809 - Cell. 2008 Aug 8;134(3):405-15
– reference: 18508608 - Front Biosci. 2008 May 01;13:5589-604
– reference: 16027246 - Hypertension. 2005 Aug;46(2):398-405
– reference: 21788351 - J Physiol. 2011 Sep 15;589(Pt 18):4615-31
– reference: 12941674 - JAMA. 2003 Aug 27;290(8):1030-1
– reference: 20404222 - Hypertension. 2010 Jun;55(6):1398-405
– reference: 16505260 - Arch Intern Med. 2006 Feb 27;166(4):411-7
– reference: 1761503 - J Appl Physiol (1985). 1991 Nov;71(5):2004-11
– reference: 19276888 - Curr Opin Lipidol. 2009 Apr;20(2):98-105
– reference: 22892813 - Hypertension. 2012 Sep;60(3):794-801
– reference: 25598082 - Food Funct. 2015 Mar;6(3):824-33
– reference: 23870648 - Int J Cardiol. 2013 Oct 9;168(4):3982-90
– reference: 16418281 - Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):1024-9
– reference: 21606866 - Med Sci Sports Exerc. 2011 Dec;43(12):2396-404
– reference: 24794111 - Bioorg Med Chem Lett. 2014 Jun 15;24(12 ):2749-52
– reference: 23873965 - J Gerontol A Biol Sci Med Sci. 2014 Apr;69(4):371-8
– reference: 12882902 - Diabetes. 2003 Aug;52(8):1888-96
– reference: 16198843 - J Am Coll Cardiol. 2005 Oct 4;46(7):1276-83
– reference: 21451125 - J Nutr. 2011 May;141(5):989S-1009S
– reference: 10647543 - Med Sci Sports Exerc. 2000 Jan;32(1):157-61
– reference: 24990275 - J Am Heart Assoc. 2014 Jul 02;3(4):null
SSID ssj0000399898
Score 2.3115687
Snippet In heart failure patients the consumption of (−)-epicatechin ((−)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease...
In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3686
SubjectTerms Adult
Aged
biomarkers
biopsy
blood sampling
Cacao - metabolism
chocolate
Chocolate - analysis
citrate (si)-synthase
clinical trials
Double-Blind Method
enzyme activity
Exercise
exercise test
Female
glutathione
heart failure
high density lipoprotein
Humans
Male
Middle Aged
mitochondria
Muscle, Skeletal - metabolism
oxidative stress
patients
placebos
protein content
Sedentary Lifestyle
skeletal muscle
triacylglycerols
Triglycerides - metabolism
Title Beneficial effects of dark chocolate on exercise capacity in sedentary subjects: underlying mechanisms. A double blind, randomized, placebo controlled trial
URI https://www.ncbi.nlm.nih.gov/pubmed/27491778
https://www.proquest.com/docview/1820594016
https://www.proquest.com/docview/1827890357
https://www.proquest.com/docview/2253238722
https://pubmed.ncbi.nlm.nih.gov/PMC5025384
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l7YUL4q9g_rQIhIRSp4l37bW5pYVQQC0SpKK3aNdeqxaJjRL7kmfhiXgqZmyv7ZCCChcrWU-s2PN5Znb3mxlCXkg_ckZy6MMkh0ubSyewfRVwm2vH0Y7kKnIwwfn0zDs55x8u3Ite72eHtVTkahCur8wr-R-twhjoFbNk_0GzzUVhAD6DfuEIGobjtXR8BIaqrgDR4WVEcvmtD1YNVCyRBJA2fZX6IbjGEOPuJO2vNOboImluVShcjSnJcZhTtpyXuU8LjVnByWqxGoD5iLICk6wUhKUlKMDHRdkiWVeLpSW1S2WG-T6HMLbsB9KNfSdYQBmRhr60u_8_lYWqotlF__Og3XlagDle218Al5fVOvf71dJQ_Mtdr7yiGJwm5kk1a-gKAFhBHQx92l3aGHnIw6hSSisL6GDukMeDulZ2Z8wdXnRNuOggNeiYY-aZOtv116ob45bbGDKsunrsTT5hSDeatM7REAJ-85kNk7Hcw2fBrP3tDtlzYMoCNndv_PHo3ddmxQ_EsFkndjs092Xq5bLgsL3AZoS0Ne3ZZu_uLE2zmjIomt4iN-vZDB1X0LxNejq9Q6w3ic7pS1qXnJ3TM9Px4S750UKW1pClWUwRsrSBLM1SaiBLDWRpktIGstRA9jVtAUs7gKVjWgGWloA9oC1cD2gNVtqClZZgvUfOJ2-nxyd23SDEDl3m5LYIwaC4vvakKxUWRowlPFQmwIu7MI_GndqACxX4LI4VD0HM477iQrihdj2t2D7ZTbNUPyA0dOFENJRMYZl_P5TCC33FfOlrGcfR0CKvjFJmYV09H5u4zGfbCLDI80b2e1Uz5kqpZ0a3MzDpuE8nU50Vqxn2VHADDi_EX2UwhZ254s8y4KoZROTCcSxyv8JM838cwYOREL5FxAaaGgEsO795Jk0uy_LzLkyTmM8tsg-4a-RDL87KG4sfXuv2H5Eb7Sv_mOzmy0I_gfg-V0_rF-cXZn8AOA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beneficial+effects+of+dark+chocolate+on+exercise+capacity+in+sedentary+subjects%3A+underlying+mechanisms.+A+double+blind%2C+randomized%2C+placebo+controlled+trial&rft.jtitle=Food+%26+function&rft.au=Taub%2C+Pam+R.&rft.au=Ramirez-Sanchez%2C+Israel&rft.au=Patel%2C+Minal&rft.au=Higginbotham%2C+Erin&rft.date=2016-09-14&rft.issn=2042-6496&rft.eissn=2042-650X&rft.volume=7&rft.issue=9&rft.spage=3686&rft.epage=3693&rft_id=info:doi/10.1039%2FC6FO00611F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6FO00611F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon