miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice

MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro . However, in vi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; p. 43191
Main Authors Hu, Cheng-Hu, Sui, Bing-Dong, Du, Fang-Ying, Shuai, Yi, Zheng, Chen-Xi, Zhao, Pan, Yu, Xiao-Rui, Jin, Yan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.02.2017
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/srep43191

Cover

Loading…
Abstract MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro . However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21 −/− ) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21 −/− mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo . Besides, miR-21 −/− mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21 −/− mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis.
AbstractList MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro . However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21 −/− ) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21 −/− mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo . Besides, miR-21 −/− mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21 −/− mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis.
MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21-/-) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21-/- mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21-/- mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21-/- mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis.MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21-/-) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21-/- mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21-/- mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21-/- mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis.
MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21 ) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21 mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21 mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21 mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis.
MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21−/−) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21−/− mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21−/− mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21−/− mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis.
MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21-/- ) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21-/- mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21-/- mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21-/- mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis.
ArticleNumber 43191
Author Zheng, Chen-Xi
Hu, Cheng-Hu
Du, Fang-Ying
Jin, Yan
Zhao, Pan
Sui, Bing-Dong
Shuai, Yi
Yu, Xiao-Rui
Author_xml – sequence: 1
  givenname: Cheng-Hu
  surname: Hu
  fullname: Hu, Cheng-Hu
  organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center
– sequence: 2
  givenname: Bing-Dong
  surname: Sui
  fullname: Sui, Bing-Dong
  organization: State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University
– sequence: 3
  givenname: Fang-Ying
  surname: Du
  fullname: Du, Fang-Ying
  organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center
– sequence: 4
  givenname: Yi
  surname: Shuai
  fullname: Shuai, Yi
  organization: State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University
– sequence: 5
  givenname: Chen-Xi
  surname: Zheng
  fullname: Zheng, Chen-Xi
  organization: State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University
– sequence: 6
  givenname: Pan
  surname: Zhao
  fullname: Zhao, Pan
  organization: Xi’an Institute of Tissue Engineering and Regenerative Medicine
– sequence: 7
  givenname: Xiao-Rui
  surname: Yu
  fullname: Yu, Xiao-Rui
  email: xiaoruiy@mail.xjtu.edu.cn
  organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center
– sequence: 8
  givenname: Yan
  surname: Jin
  fullname: Jin, Yan
  email: yanjin@fmmu.edu.cn
  organization: State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi’an Institute of Tissue Engineering and Regenerative Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28240263$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rFTEQxYNUbL32wS8gC75oYW3-bpIXQYq2Qosg-hyy2Umbsptck91Cv7253LZcW2leEshvzpyZ8xrtxRQBobcEfyKYqeOSYc0Z0eQFOqCYi5YySvd23vvosJRrXI-gmhP9Cu1TRTmmHTtAF1P42VLSDOCDCxDdbRPiVejDXJpUZkhutGVu_BLdHFJsbByadYYbiBXoq5NmTKXUmmYKDt6gl96OBQ7v7hX6_e3rr5Oz9vzH6feTL-etE4zObccl9Rp75axSoHsgUrjOYc5JJzQMZOht7wh0WkJnvVdaKSu4VNp3YCVhK_R5q7te-gkGV91kO5p1DpPNtybZYP79ieHKXKYbU9tLXgdfoQ93Ajn9WaDMZgrFwTjaCGkphihJhVSd2PR6_wi9TkuOdTxDpeCMSSHEcxTRmEjKmdpQ73Z9Pxi-z6MCx1vA5brWDN64MNvN5usYYTQEm03o5iH0WvHxUcW96P_Yoy1bKhMvIe-YfAL_Bd56ukY
CitedBy_id crossref_primary_10_3390_biomedicines9040443
crossref_primary_10_1111_cpr_12697
crossref_primary_10_1080_13697137_2018_1507020
crossref_primary_10_1177_1753425919842932
crossref_primary_10_1007_s12015_023_10510_8
crossref_primary_10_1007_s40610_019_0116_3
crossref_primary_10_1186_s40510_022_00450_3
crossref_primary_10_3389_fcell_2021_651161
crossref_primary_10_1155_2020_4813140
crossref_primary_10_1042_BSR20180448
crossref_primary_10_1016_j_isci_2020_100847
crossref_primary_10_1186_s12860_019_0187_2
crossref_primary_10_1002_smtd_202100763
crossref_primary_10_5483_BMBRep_2019_52_9_076
crossref_primary_10_1016_j_tcb_2019_11_006
crossref_primary_10_3389_fendo_2024_1481649
crossref_primary_10_1093_ckj_sfac219
crossref_primary_10_1016_j_injury_2024_111963
crossref_primary_10_1038_s41420_018_0101_2
crossref_primary_10_1002_jbm4_10115
crossref_primary_10_1016_j_stemcr_2020_06_007
crossref_primary_10_2147_OTT_S232876
crossref_primary_10_3389_fcell_2024_1355312
crossref_primary_10_1016_j_archoralbio_2019_05_005
crossref_primary_10_1016_j_bone_2020_115760
crossref_primary_10_3390_ijms232415501
crossref_primary_10_1007_s00018_019_03162_w
crossref_primary_10_3390_biomedicines8120601
crossref_primary_10_2147_IJN_S303412
crossref_primary_10_1007_s11914_024_00880_4
crossref_primary_10_1007_s00223_022_00959_z
crossref_primary_10_1111_acel_13244
crossref_primary_10_1080_15548627_2018_1483807
crossref_primary_10_1007_s00018_022_04298_y
crossref_primary_10_1007_s11626_020_00479_w
crossref_primary_10_1016_j_bone_2020_115757
crossref_primary_10_18632_aging_205553
crossref_primary_10_1007_s00439_019_02046_0
crossref_primary_10_3390_ncrna4040037
crossref_primary_10_1016_j_bone_2019_02_013
crossref_primary_10_3390_ijms21144886
crossref_primary_10_2337_db21_0573
crossref_primary_10_3389_fendo_2022_1038371
crossref_primary_10_3390_osteology2010002
crossref_primary_10_1002_jev2_12516
crossref_primary_10_1007_s00774_023_01433_y
crossref_primary_10_3389_fimmu_2019_00375
crossref_primary_10_1002_jor_23822
crossref_primary_10_1186_s40659_024_00497_y
crossref_primary_10_3389_fphar_2021_722804
crossref_primary_10_14336_AD_2024_0280
crossref_primary_10_3389_fcell_2024_1354606
crossref_primary_10_1111_bph_14836
crossref_primary_10_1002_jbm4_10213
crossref_primary_10_3389_fendo_2024_1450328
crossref_primary_10_1002_JPER_19_0567
crossref_primary_10_1007_s11418_018_1237_3
crossref_primary_10_3390_ijms241713144
crossref_primary_10_1111_febs_15066
crossref_primary_10_1210_endocr_bqab135
crossref_primary_10_1016_j_biomaterials_2017_10_046
crossref_primary_10_1016_j_cell_2018_03_006
crossref_primary_10_1038_s41598_018_23098_8
crossref_primary_10_1007_s12015_023_10521_5
crossref_primary_10_1111_odi_13239
crossref_primary_10_3892_ijo_2020_4992
crossref_primary_10_1038_s41423_025_01271_0
crossref_primary_10_1007_s10616_021_00507_x
crossref_primary_10_3390_ph14101041
crossref_primary_10_1007_s10856_017_5942_3
crossref_primary_10_1016_j_actbio_2021_05_024
crossref_primary_10_1007_s00198_020_05805_2
crossref_primary_10_1089_scd_2021_0041
crossref_primary_10_1002_jbmr_3662
crossref_primary_10_1016_j_bbrc_2019_11_043
crossref_primary_10_1038_s41368_022_00193_1
crossref_primary_10_3892_mmr_2020_10938
crossref_primary_10_1007_s00223_019_00571_8
crossref_primary_10_3389_fsurg_2021_786564
crossref_primary_10_3390_cells11091380
Cites_doi 10.1007/s10522-015-9609-5
10.1002/stem.235
10.1093/hmg/dds129
10.1177/0022034514552675
10.1016/S0092-8674(00)81569-X
10.1182/blood-2010-10-311415
10.1038/srep30186
10.1016/j.bone.2015.04.035
10.5966/sctm.2013-0081
10.1002/jcb.24479
10.1093/nar/gks308
10.1073/pnas.1007698107
10.1002/jbmr.141
10.1002/jbmr.1805
10.1016/j.cell.2015.05.029
10.1038/nature07511
10.1007/s00198-013-2413-7
10.1016/j.biomaterials.2015.02.007
10.1038/nature13375
10.5966/sctm.2015-0347
10.1155/2015/412327
10.1371/journal.pone.0057652
10.1007/s11010-015-2404-4
10.1038/nrendo.2011.234
10.1002/jbmr.2175
10.1002/jcp.22716
10.1002/tera.1420220306
10.18632/oncotarget.4398
10.1038/sj.onc.1210856
10.1007/s11914-011-0078-8
10.1002/jcb.24471
10.1007/s11914-013-0143-6
10.1002/jbmr.2352
10.1002/jbmr.1798
10.1172/JCI77716
10.1038/cddis.2013.130
10.1038/nm.3026
10.4161/rna.8.5.16154
10.1083/jcb.201201057
10.1016/S0092-8674(00)80209-3
10.1002/jor.22830
10.1038/cr.2011.5
10.33549/physiolres.932901
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Nature Publishing Group Feb 2017
The Author(s) 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2017, The Author(s) 2017 The Author(s)
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group Feb 2017
– notice: The Author(s) 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2017, The Author(s) 2017 The Author(s)
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/srep43191
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
MEDLINE
Publicly Available Content Database
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC5327426
28240263
10_1038_srep43191
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c532t-6472f90f8ca88e9be175c6c0441659ed1dbabc1e697e6aff8988a54789f6ea713
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Thu Aug 21 17:54:09 EDT 2025
Fri Jul 11 05:51:30 EDT 2025
Wed Aug 13 05:10:21 EDT 2025
Wed Aug 13 04:50:15 EDT 2025
Thu Apr 03 06:57:11 EDT 2025
Tue Jul 01 04:02:49 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Fri Feb 21 02:40:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-6472f90f8ca88e9be175c6c0441659ed1dbabc1e697e6aff8988a54789f6ea713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.proquest.com/docview/2754337555?pq-origsite=%requestingapplication%
PMID 28240263
PQID 1901724385
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5327426
proquest_miscellaneous_1872578651
proquest_journals_2754337555
proquest_journals_1901724385
pubmed_primary_28240263
crossref_citationtrail_10_1038_srep43191
crossref_primary_10_1038_srep43191
springer_journals_10_1038_srep43191
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-27
PublicationDateYYYYMMDD 2017-02-27
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-27
  day: 27
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Kim (CR28) 2012; 227
Seeliger (CR27) 2014; 29
Kanis (CR41) 2013; 24
van Wijnen (CR1) 2013; 11
Bouxsein (CR35) 2010; 25
Bae (CR24) 2012; 21
Asangani (CR6) 2008; 27
Thum (CR22) 2008; 456
Simonet (CR9) 1997; 89
Teti (CR19) 2011; 9
Ribas (CR16) 2012; 40
Li (CR13) 2015; 125
Wei (CR20) 2015; 161
Lacey (CR8) 1998; 93
Sui, Hu, Jin (CR34) 2016; 17
Liao (CR42) 2013; 4
Yang (CR3) 2013; 28
Kim, Hwang, Bae, Jung (CR29) 2009; 27
Hassan (CR32) 2010; 107
Sugatani, Hruska (CR7) 2013; 114
Wei (CR15) 2012; 197
Liang (CR43) 2011; 21
Krzeszinski (CR14) 2014; 512
Li (CR21) 2015; 33
Liu (CR38) 2014; 93
Sui (CR36) 2016; 6
Dempster (CR40) 2013; 28
Park, Wada, Ushida, Akimoto (CR31) 2015; 64
McLeod (CR39) 1980; 22
Shen (CR23) 2013; 8
Sugatani, Vacher, Hruska (CR5) 2011; 117
Mei (CR4) 2013; 114
Liu (CR12) 2015; 52
Berendsen, Olsen (CR18) 2015; 80
Sun (CR25) 2015; 2015
Trohatou (CR30) 2014; 3
Sui (CR37) 2016; 5
Kumarswamy, Volkmann, Thum (CR17) 2011; 8
Zuo (CR33) 2015; 30
Lian (CR2) 2012; 8
Wang (CR11) 2013; 19
Zhao (CR26) 2015; 405
Pitari (CR10) 2015; 6
B Sui (BFsrep43191_CR36) 2016; 6
JY Krzeszinski (BFsrep43191_CR14) 2014; 512
MQ Hassan (BFsrep43191_CR32) 2010; 107
J Wei (BFsrep43191_CR15) 2012; 197
T Thum (BFsrep43191_CR22) 2008; 456
B Zuo (BFsrep43191_CR33) 2015; 30
O Trohatou (BFsrep43191_CR30) 2014; 3
J Park (BFsrep43191_CR31) 2015; 64
T Sugatani (BFsrep43191_CR5) 2011; 117
Y Sun (BFsrep43191_CR25) 2015; 2015
J Ribas (BFsrep43191_CR16) 2012; 40
YJ Kim (BFsrep43191_CR29) 2009; 27
T Sugatani (BFsrep43191_CR7) 2013; 114
L Shen (BFsrep43191_CR23) 2013; 8
L Liao (BFsrep43191_CR42) 2013; 4
YJ Kim (BFsrep43191_CR28) 2012; 227
ML Bouxsein (BFsrep43191_CR35) 2010; 25
N Yang (BFsrep43191_CR3) 2013; 28
J Liu (BFsrep43191_CR12) 2015; 52
CJ Li (BFsrep43191_CR13) 2015; 125
MR Pitari (BFsrep43191_CR10) 2015; 6
S Li (BFsrep43191_CR21) 2015; 33
AJ van Wijnen (BFsrep43191_CR1) 2013; 11
W Zhao (BFsrep43191_CR26) 2015; 405
X Wang (BFsrep43191_CR11) 2013; 19
Y Bae (BFsrep43191_CR24) 2012; 21
MJ McLeod (BFsrep43191_CR39) 1980; 22
JA Kanis (BFsrep43191_CR41) 2013; 24
DL Lacey (BFsrep43191_CR8) 1998; 93
WS Simonet (BFsrep43191_CR9) 1997; 89
D Liang (BFsrep43191_CR43) 2011; 21
IA Asangani (BFsrep43191_CR6) 2008; 27
JB Lian (BFsrep43191_CR2) 2012; 8
B Sui (BFsrep43191_CR37) 2016; 5
B Sui (BFsrep43191_CR34) 2016; 17
J Wei (BFsrep43191_CR20) 2015; 161
Y Mei (BFsrep43191_CR4) 2013; 114
DW Dempster (BFsrep43191_CR40) 2013; 28
A Teti (BFsrep43191_CR19) 2011; 9
AD Berendsen (BFsrep43191_CR18) 2015; 80
Y Liu (BFsrep43191_CR38) 2014; 93
R Kumarswamy (BFsrep43191_CR17) 2011; 8
C Seeliger (BFsrep43191_CR27) 2014; 29
19816956 - Stem Cells. 2009 Dec;27(12):3093-102
24307698 - Stem Cells Transl Med. 2014 Jan;3(1):54-68
6165088 - Teratology. 1980 Dec;22(3):299-301
9568710 - Cell. 1998 Apr 17;93(2):165-76
23223004 - Nat Med. 2013 Jan;19(1):93-100
23884436 - Osteoporos Int. 2013 Nov;24(11):2763-4
26453494 - Bone. 2015 Nov;80:14-8
25804101 - Physiol Res. 2015;64(5):711-9
26392399 - Biogerontology. 2016 Apr;17 (2):267-79
20533309 - J Bone Miner Res. 2010 Jul;25(7):1468-86
25043055 - Nature. 2014 Aug 28;512(7515):431-5
17968323 - Oncogene. 2008 Apr 3;27(15):2128-36
23074166 - J Bone Miner Res. 2013 Mar;28(3):559-73
9108485 - Cell. 1997 Apr 18;89(2):309-19
25879024 - Biomed Res Int. 2015;2015:412327
26091038 - Cell. 2015 Jun 18;161(7):1576-91
23469214 - PLoS One. 2013;8(3):e57652
23605904 - Curr Osteoporos Rep. 2013 Jun;11(2):72-82
25751060 - J Clin Invest. 2015 Apr;125(4):1509-22
25731708 - J Orthop Res. 2015 Jul;33(7):1008-14
19043405 - Nature. 2008 Dec 18;456(7224):980-4
20980664 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19879-84
24431276 - J Bone Miner Res. 2014 Aug;29(8):1718-28
21948208 - Curr Osteoporos Rep. 2011 Dec;9(4):264-73
23598412 - Cell Death Dis. 2013 Apr 18;4:e600
25195535 - J Bone Miner Res. 2015 Feb;30(2):330-45
22564414 - J Cell Biol. 2012 May 14;197(4):509-21
27365487 - Stem Cells Transl Med. 2016 Sep;5(9):1238-46
21712654 - RNA Biol. 2011 Sep-Oct;8(5):706-13
21273303 - Blood. 2011 Mar 31;117(13):3648-57
25818421 - Biomaterials. 2015 Jun;52:148-60
23238785 - J Cell Biochem. 2013 Jun;114(6):1217-22
22290358 - Nat Rev Endocrinol. 2012 Jan 31;8(4):212-27
22498974 - Hum Mol Genet. 2012 Jul 1;21(13):2991-3000
26160841 - Oncotarget. 2015 Sep 29;6(29):27343-58
25893734 - Mol Cell Biochem. 2015 Jul;405(1-2):125-33
27443833 - Sci Rep. 2016 Jul 22;6:30186
23197339 - J Bone Miner Res. 2013 Jan;28(1):2-17
25252877 - J Dent Res. 2014 Nov;93(11):1124-32
21221132 - Cell Res. 2011 May;21(5):793-806
23239100 - J Cell Biochem. 2013 Jun;114(6):1374-84
22505577 - Nucleic Acids Res. 2012 Aug;40(14):6821-33
21381024 - J Cell Physiol. 2012 Jan;227(1):183-93
References_xml – volume: 17
  start-page: 267
  year: 2016
  end-page: 279
  ident: CR34
  article-title: Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells
  publication-title: Biogerontology
  doi: 10.1007/s10522-015-9609-5
– volume: 27
  start-page: 3093
  year: 2009
  end-page: 3102
  ident: CR29
  article-title: MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue
  publication-title: Stem. Cells.
  doi: 10.1002/stem.235
– volume: 21
  start-page: 2991
  year: 2012
  end-page: 3000
  ident: CR24
  article-title: miRNA-34c regulates Notch signaling during bone development
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds129
– volume: 93
  start-page: 1124
  year: 2014
  end-page: 1132
  ident: CR38
  article-title: Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis
  publication-title: J. Dent. Res.
  doi: 10.1177/0022034514552675
– volume: 93
  start-page: 165
  year: 1998
  end-page: 176
  ident: CR8
  article-title: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81569-X
– volume: 117
  start-page: 3648
  year: 2011
  end-page: 3657
  ident: CR5
  article-title: A microRNA expression signature of osteoclastogenesis
  publication-title: Blood
  doi: 10.1182/blood-2010-10-311415
– volume: 6
  start-page: 30186
  year: 2016
  ident: CR36
  article-title: Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis
  publication-title: Sci. Rep
  doi: 10.1038/srep30186
– volume: 80
  start-page: 14
  year: 2015
  end-page: 18
  ident: CR18
  article-title: Bone development
  publication-title: Bone
  doi: 10.1016/j.bone.2015.04.035
– volume: 3
  start-page: 54
  year: 2014
  end-page: 68
  ident: CR30
  article-title: Sox2 suppression by miR-21 governs human mesenchymal stem cell properties
  publication-title: Stem. Cells. Transl. Med
  doi: 10.5966/sctm.2013-0081
– volume: 114
  start-page: 1374
  year: 2013
  end-page: 1384
  ident: CR4
  article-title: miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.24479
– volume: 40
  start-page: 6821
  year: 2012
  end-page: 6833
  ident: CR16
  article-title: A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts
  publication-title: Nucleic. Acids. Res.
  doi: 10.1093/nar/gks308
– volume: 107
  start-page: 19879
  year: 2010
  end-page: 19884
  ident: CR32
  article-title: A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1007698107
– volume: 25
  start-page: 1468
  year: 2010
  end-page: 1486
  ident: CR35
  article-title: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography
  publication-title: J. Bone. Miner. Res.
  doi: 10.1002/jbmr.141
– volume: 28
  start-page: 2
  year: 2013
  end-page: 17
  ident: CR40
  article-title: Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee
  publication-title: J. Bone. Miner. Res.
  doi: 10.1002/jbmr.1805
– volume: 161
  start-page: 1576
  year: 2015
  end-page: 1591
  ident: CR20
  article-title: Glucose uptake and runx2 synergize to orchestrate osteoblast differentiation and bone formation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.029
– volume: 456
  start-page: 980
  year: 2008
  end-page: 984
  ident: CR22
  article-title: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
  publication-title: Nature
  doi: 10.1038/nature07511
– volume: 24
  start-page: 2763
  year: 2013
  end-page: 2764
  ident: CR41
  article-title: Standardising the descriptive epidemiology of osteoporosis: recommendations from the Epidemiology and Quality of Life Working Group of IOF
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-013-2413-7
– volume: 52
  start-page: 148
  year: 2015
  end-page: 160
  ident: CR12
  article-title: A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of microRNAs in osteoclasts
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.02.007
– volume: 512
  start-page: 431
  year: 2014
  end-page: 435
  ident: CR14
  article-title: miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2
  publication-title: Nature
  doi: 10.1038/nature13375
– volume: 5
  start-page: 1238
  year: 2016
  end-page: 1246
  ident: CR37
  article-title: Allogeneic mesenchymal stem cell therapy promotes osteoblastogenesis and prevents glucocorticoid-induced osteoporosis
  publication-title: Stem. Cells. Transl. Med
  doi: 10.5966/sctm.2015-0347
– volume: 2015
  start-page: 412327
  year: 2015
  ident: CR25
  article-title: mir-21 overexpressing mesenchymal stem cells accelerate fracture healing in a rat closed femur fracture model
  publication-title: Biomed. Res. Int
  doi: 10.1155/2015/412327
– volume: 8
  start-page: e57652
  year: 2013
  ident: CR23
  article-title: Feedback regulations of miR-21 and MAPKs via Pdcd4 and Spry1 are involved in arsenite-induced cell malignant transformation
  publication-title: PLoS. One.
  doi: 10.1371/journal.pone.0057652
– volume: 405
  start-page: 125
  year: 2015
  end-page: 133
  ident: CR26
  article-title: MiR-21 overexpression improves osteoporosis by targeting RECK
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-015-2404-4
– volume: 8
  start-page: 212
  year: 2012
  end-page: 227
  ident: CR2
  article-title: MicroRNA control of bone formation and homeostasis
  publication-title: Nat. Rev. Endocrinol
  doi: 10.1038/nrendo.2011.234
– volume: 29
  start-page: 1718
  year: 2014
  end-page: 1728
  ident: CR27
  article-title: Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures
  publication-title: J. Bone. Miner. Res.
  doi: 10.1002/jbmr.2175
– volume: 227
  start-page: 183
  year: 2012
  end-page: 193
  ident: CR28
  article-title: MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.22716
– volume: 22
  start-page: 299
  year: 1980
  end-page: 301
  ident: CR39
  article-title: Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S
  publication-title: Teratology
  doi: 10.1002/tera.1420220306
– volume: 6
  start-page: 27343
  year: 2015
  end-page: 27358
  ident: CR10
  article-title: Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4398
– volume: 27
  start-page: 2128
  year: 2008
  end-page: 2136
  ident: CR6
  article-title: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210856
– volume: 9
  start-page: 264
  year: 2011
  end-page: 273
  ident: CR19
  article-title: Bone development: overview of bone cells and signaling
  publication-title: Curr. Osteoporos. Rep
  doi: 10.1007/s11914-011-0078-8
– volume: 114
  start-page: 1217
  year: 2013
  end-page: 1222
  ident: CR7
  article-title: Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.24471
– volume: 11
  start-page: 72
  year: 2013
  end-page: 82
  ident: CR1
  article-title: MicroRNA functions in osteogenesis and dysfunctions in osteoporosis
  publication-title: Curr. Osteoporos. Rep
  doi: 10.1007/s11914-013-0143-6
– volume: 30
  start-page: 330
  year: 2015
  end-page: 345
  ident: CR33
  article-title: microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2
  publication-title: J. Bone. Miner. Res.
  doi: 10.1002/jbmr.2352
– volume: 28
  start-page: 559
  year: 2013
  end-page: 573
  ident: CR3
  article-title: Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis
  publication-title: J. Bone. Miner. Res.
  doi: 10.1002/jbmr.1798
– volume: 125
  start-page: 1509
  year: 2015
  end-page: 1522
  ident: CR13
  article-title: MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI77716
– volume: 4
  start-page: e600
  year: 2013
  ident: CR42
  article-title: Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow
  publication-title: Cell. Death. Dis
  doi: 10.1038/cddis.2013.130
– volume: 19
  start-page: 93
  year: 2013
  end-page: 100
  ident: CR11
  article-title: miR-214 targets ATF4 to inhibit bone formation
  publication-title: Nat Med
  doi: 10.1038/nm.3026
– volume: 8
  start-page: 706
  year: 2011
  end-page: 713
  ident: CR17
  article-title: Regulation and function of miRNA-21 in health and disease
  publication-title: RNA. Biol.
  doi: 10.4161/rna.8.5.16154
– volume: 197
  start-page: 509
  year: 2012
  end-page: 521
  ident: CR15
  article-title: miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2
  publication-title: J. Cell. Biol.
  doi: 10.1083/jcb.201201057
– volume: 89
  start-page: 309
  year: 1997
  end-page: 319
  ident: CR9
  article-title: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80209-3
– volume: 33
  start-page: 1008
  year: 2015
  end-page: 1014
  ident: CR21
  article-title: Connexin 43 and ERK regulate tension-induced signal transduction in human periodontal ligament fibroblasts
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22830
– volume: 21
  start-page: 793
  year: 2011
  end-page: 806
  ident: CR43
  article-title: A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKepsilon
  publication-title: Cell. Res.
  doi: 10.1038/cr.2011.5
– volume: 64
  start-page: 711
  year: 2015
  end-page: 719
  ident: CR31
  article-title: The microRNA-23a has limited roles in bone formation and homeostasis
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.932901
– volume: 33
  start-page: 1008
  year: 2015
  ident: BFsrep43191_CR21
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22830
– volume: 4
  start-page: e600
  year: 2013
  ident: BFsrep43191_CR42
  publication-title: Cell. Death. Dis
  doi: 10.1038/cddis.2013.130
– volume: 27
  start-page: 3093
  year: 2009
  ident: BFsrep43191_CR29
  publication-title: Stem. Cells.
  doi: 10.1002/stem.235
– volume: 19
  start-page: 93
  year: 2013
  ident: BFsrep43191_CR11
  publication-title: Nat Med
  doi: 10.1038/nm.3026
– volume: 6
  start-page: 30186
  year: 2016
  ident: BFsrep43191_CR36
  publication-title: Sci. Rep
  doi: 10.1038/srep30186
– volume: 93
  start-page: 1124
  year: 2014
  ident: BFsrep43191_CR38
  publication-title: J. Dent. Res.
  doi: 10.1177/0022034514552675
– volume: 27
  start-page: 2128
  year: 2008
  ident: BFsrep43191_CR6
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210856
– volume: 8
  start-page: e57652
  year: 2013
  ident: BFsrep43191_CR23
  publication-title: PLoS. One.
  doi: 10.1371/journal.pone.0057652
– volume: 2015
  start-page: 412327
  year: 2015
  ident: BFsrep43191_CR25
  publication-title: Biomed. Res. Int
– volume: 405
  start-page: 125
  year: 2015
  ident: BFsrep43191_CR26
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-015-2404-4
– volume: 89
  start-page: 309
  year: 1997
  ident: BFsrep43191_CR9
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80209-3
– volume: 29
  start-page: 1718
  year: 2014
  ident: BFsrep43191_CR27
  publication-title: J. Bone. Miner. Res.
  doi: 10.1002/jbmr.2175
– volume: 107
  start-page: 19879
  year: 2010
  ident: BFsrep43191_CR32
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1007698107
– volume: 114
  start-page: 1374
  year: 2013
  ident: BFsrep43191_CR4
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.24479
– volume: 28
  start-page: 559
  year: 2013
  ident: BFsrep43191_CR3
  publication-title: J. Bone. Miner. Res.
  doi: 10.1002/jbmr.1798
– volume: 24
  start-page: 2763
  year: 2013
  ident: BFsrep43191_CR41
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-013-2413-7
– volume: 5
  start-page: 1238
  year: 2016
  ident: BFsrep43191_CR37
  publication-title: Stem. Cells. Transl. Med
  doi: 10.5966/sctm.2015-0347
– volume: 21
  start-page: 2991
  year: 2012
  ident: BFsrep43191_CR24
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds129
– volume: 161
  start-page: 1576
  year: 2015
  ident: BFsrep43191_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.029
– volume: 125
  start-page: 1509
  year: 2015
  ident: BFsrep43191_CR13
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI77716
– volume: 6
  start-page: 27343
  year: 2015
  ident: BFsrep43191_CR10
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4398
– volume: 22
  start-page: 299
  year: 1980
  ident: BFsrep43191_CR39
  publication-title: Teratology
  doi: 10.1002/tera.1420220306
– volume: 3
  start-page: 54
  year: 2014
  ident: BFsrep43191_CR30
  publication-title: Stem. Cells. Transl. Med
  doi: 10.5966/sctm.2013-0081
– volume: 52
  start-page: 148
  year: 2015
  ident: BFsrep43191_CR12
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.02.007
– volume: 28
  start-page: 2
  year: 2013
  ident: BFsrep43191_CR40
  publication-title: J. Bone. Miner. Res.
  doi: 10.1002/jbmr.1805
– volume: 9
  start-page: 264
  year: 2011
  ident: BFsrep43191_CR19
  publication-title: Curr. Osteoporos. Rep
  doi: 10.1007/s11914-011-0078-8
– volume: 17
  start-page: 267
  year: 2016
  ident: BFsrep43191_CR34
  publication-title: Biogerontology
  doi: 10.1007/s10522-015-9609-5
– volume: 114
  start-page: 1217
  year: 2013
  ident: BFsrep43191_CR7
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.24471
– volume: 25
  start-page: 1468
  year: 2010
  ident: BFsrep43191_CR35
  publication-title: J. Bone. Miner. Res.
  doi: 10.1002/jbmr.141
– volume: 8
  start-page: 706
  year: 2011
  ident: BFsrep43191_CR17
  publication-title: RNA. Biol.
  doi: 10.4161/rna.8.5.16154
– volume: 8
  start-page: 212
  year: 2012
  ident: BFsrep43191_CR2
  publication-title: Nat. Rev. Endocrinol
  doi: 10.1038/nrendo.2011.234
– volume: 64
  start-page: 711
  year: 2015
  ident: BFsrep43191_CR31
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.932901
– volume: 80
  start-page: 14
  year: 2015
  ident: BFsrep43191_CR18
  publication-title: Bone
  doi: 10.1016/j.bone.2015.04.035
– volume: 197
  start-page: 509
  year: 2012
  ident: BFsrep43191_CR15
  publication-title: J. Cell. Biol.
  doi: 10.1083/jcb.201201057
– volume: 40
  start-page: 6821
  year: 2012
  ident: BFsrep43191_CR16
  publication-title: Nucleic. Acids. Res.
  doi: 10.1093/nar/gks308
– volume: 456
  start-page: 980
  year: 2008
  ident: BFsrep43191_CR22
  publication-title: Nature
  doi: 10.1038/nature07511
– volume: 30
  start-page: 330
  year: 2015
  ident: BFsrep43191_CR33
  publication-title: J. Bone. Miner. Res.
  doi: 10.1002/jbmr.2352
– volume: 21
  start-page: 793
  year: 2011
  ident: BFsrep43191_CR43
  publication-title: Cell. Res.
  doi: 10.1038/cr.2011.5
– volume: 11
  start-page: 72
  year: 2013
  ident: BFsrep43191_CR1
  publication-title: Curr. Osteoporos. Rep
  doi: 10.1007/s11914-013-0143-6
– volume: 93
  start-page: 165
  year: 1998
  ident: BFsrep43191_CR8
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81569-X
– volume: 512
  start-page: 431
  year: 2014
  ident: BFsrep43191_CR14
  publication-title: Nature
  doi: 10.1038/nature13375
– volume: 117
  start-page: 3648
  year: 2011
  ident: BFsrep43191_CR5
  publication-title: Blood
  doi: 10.1182/blood-2010-10-311415
– volume: 227
  start-page: 183
  year: 2012
  ident: BFsrep43191_CR28
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.22716
– reference: 23238785 - J Cell Biochem. 2013 Jun;114(6):1217-22
– reference: 25804101 - Physiol Res. 2015;64(5):711-9
– reference: 25731708 - J Orthop Res. 2015 Jul;33(7):1008-14
– reference: 17968323 - Oncogene. 2008 Apr 3;27(15):2128-36
– reference: 21712654 - RNA Biol. 2011 Sep-Oct;8(5):706-13
– reference: 6165088 - Teratology. 1980 Dec;22(3):299-301
– reference: 23197339 - J Bone Miner Res. 2013 Jan;28(1):2-17
– reference: 25252877 - J Dent Res. 2014 Nov;93(11):1124-32
– reference: 19816956 - Stem Cells. 2009 Dec;27(12):3093-102
– reference: 22505577 - Nucleic Acids Res. 2012 Aug;40(14):6821-33
– reference: 26453494 - Bone. 2015 Nov;80:14-8
– reference: 23469214 - PLoS One. 2013;8(3):e57652
– reference: 26392399 - Biogerontology. 2016 Apr;17 (2):267-79
– reference: 22290358 - Nat Rev Endocrinol. 2012 Jan 31;8(4):212-27
– reference: 9108485 - Cell. 1997 Apr 18;89(2):309-19
– reference: 24307698 - Stem Cells Transl Med. 2014 Jan;3(1):54-68
– reference: 26091038 - Cell. 2015 Jun 18;161(7):1576-91
– reference: 21221132 - Cell Res. 2011 May;21(5):793-806
– reference: 23239100 - J Cell Biochem. 2013 Jun;114(6):1374-84
– reference: 25818421 - Biomaterials. 2015 Jun;52:148-60
– reference: 27443833 - Sci Rep. 2016 Jul 22;6:30186
– reference: 20980664 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19879-84
– reference: 24431276 - J Bone Miner Res. 2014 Aug;29(8):1718-28
– reference: 23223004 - Nat Med. 2013 Jan;19(1):93-100
– reference: 26160841 - Oncotarget. 2015 Sep 29;6(29):27343-58
– reference: 25893734 - Mol Cell Biochem. 2015 Jul;405(1-2):125-33
– reference: 25879024 - Biomed Res Int. 2015;2015:412327
– reference: 25195535 - J Bone Miner Res. 2015 Feb;30(2):330-45
– reference: 25751060 - J Clin Invest. 2015 Apr;125(4):1509-22
– reference: 19043405 - Nature. 2008 Dec 18;456(7224):980-4
– reference: 23598412 - Cell Death Dis. 2013 Apr 18;4:e600
– reference: 9568710 - Cell. 1998 Apr 17;93(2):165-76
– reference: 22564414 - J Cell Biol. 2012 May 14;197(4):509-21
– reference: 27365487 - Stem Cells Transl Med. 2016 Sep;5(9):1238-46
– reference: 21948208 - Curr Osteoporos Rep. 2011 Dec;9(4):264-73
– reference: 21381024 - J Cell Physiol. 2012 Jan;227(1):183-93
– reference: 25043055 - Nature. 2014 Aug 28;512(7515):431-5
– reference: 20533309 - J Bone Miner Res. 2010 Jul;25(7):1468-86
– reference: 22498974 - Hum Mol Genet. 2012 Jul 1;21(13):2991-3000
– reference: 21273303 - Blood. 2011 Mar 31;117(13):3648-57
– reference: 23884436 - Osteoporos Int. 2013 Nov;24(11):2763-4
– reference: 23605904 - Curr Osteoporos Rep. 2013 Jun;11(2):72-82
– reference: 23074166 - J Bone Miner Res. 2013 Mar;28(3):559-73
SSID ssj0000529419
Score 2.5031343
Snippet MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while...
MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 43191
SubjectTerms 13/1
13/100
13/89
38
38/77
631/136/818
631/337/384/331
64/60
692/308/2056
692/53/2421
692/699/2743/316/801
82/80
96/21
96/63
Animals
Apoptosis
Apoptosis Regulatory Proteins - metabolism
Bone loss
Bone mass
Bone remodeling
Bone Resorption
Bone turnover
Cancellous bone
Cell death
Gene Knockout Techniques
Humanities and Social Sciences
Inactivation
Metabolism
Mice
Mice, Knockout
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
multidisciplinary
Osteoblastogenesis
Osteoclastogenesis
Osteoclasts
Osteoclasts - physiology
Osteogenesis
Osteoporosis
Osteoprotegerin
Phenotypes
Post-transcription
RNA-Binding Proteins - metabolism
Rodents
Science
TRANCE protein
Transcription
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBYhJdBLSdu03TyK-jj04ja23ocQQmkIge2hZCE3o5FlYth4N1kHkn-fmfWDbLL0LMkaz2g83yDPN4x9T2UJhfYiEQAhkQp9DkpZoscHU8SgM6eoUHj8V59N5PmlutxgfY_NToGLtakd9ZOa3E5_3t88HKPDH7Ul4_YXxpI5xkGqYX-FAcmQf447lN9SfGdOpq7nFXq6YjUavYCYL_-UfHZduoxCp9vsTQcf-Ulr77dsI9bv2FbbUPLhPRtfV_-SLOVFJGIIqqrkVX1VQdUsOFVzzAKC5YZTMCODcF8XfN6SOC04zOrIpygmruHUpX6HTU7_XPw-S7qGCUlQImsSooIv3WFpg7c2OoiIDYIOhwh5tHKxSAvwENKonYnal6V11noi9HKljh7T1Q9ss8a9PjEOGhOxNKYCnJMSCgAjwXgL0ggDMh2xH73i8tCxiVNTi2m-vNUWNh90PGJfh6nzlkJj3aT9Xvt5fwhyAismk8KqtcOZUVIIoxQOfxmG0T3ozsPXcXaHj7CGPkpa4Q4fW1sOQmC2idmzFiNmVqw8TCDq7dWRurpaUnCjug1imxH71p-HJ1I_f7fd_wu_x15nhBWoTt7ss83m9i4eINJp4PPyHD8CN98Abw
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADB5VoEq9oD5oWQrVFDhwiUoy7yNasUJIcKiKxC0aTyYiEmRXbDjw77HzKsty4DxOxvGMx3Y8_szYUSpLKLQXiQAIiVSoc1DKEjU-mCIGnTlFhcKXV_r8Wl7cqJseLHrZX6vsIC3bY3q4HfYH7cUCbR3VqW8SYjtt5qmejr9TKGElUzdgBwn7_4lVi7PmRq7fhnyVEm0tzewz2-pdRH7aMfWFfYj1V_axaxr59I1d3ld_kyzlRSTwB6qc5FV9W0HVLDlVbMwDOsQNJ4NFQue-LviiA2pacpjXkd8hm_gMp0702-x6dvZvep70TRGSoETWJAT3XrqT0gZvbXQQ0f4HHU7QrdHKxSItwENIo3Ymal-W1lnrCbTLlTp6DEm_s40a59phHDQGW2lMBTgnJRQARoLxFqQRBmQ6YceD4PLQI4ZT44q7vM1cC5uPMp6wg5F00cFkvEW0N0g_7zVlmZNDYjIprHpzODNKCmGUwuHf4zCqAOU1fB3nj_gKa-jg0Qpn-NGt5cgERpQYIWsxYWZllUcCgtdeHamr2xZmG8Vt0H-ZsMNhP7zg-vW37b6L6if7lJFbQCXxZo9tNA-PcR-dmgZ-tdv5GRXJ-Uk
  priority: 102
  providerName: Springer Nature
Title miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice
URI https://link.springer.com/article/10.1038/srep43191
https://www.ncbi.nlm.nih.gov/pubmed/28240263
https://www.proquest.com/docview/1901724385
https://www.proquest.com/docview/2754337555
https://www.proquest.com/docview/1872578651
https://pubmed.ncbi.nlm.nih.gov/PMC5327426
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGX0vTpNl3Ux6EXk8h6n8J2SQgLG0rawN6MJMvEkHq3XefQf98Zv9JNQi42WLIljx7zjUb6hpAvTJS-UI6n3PuQCgljzpeihBEfdBGDyqzEg8KLM3V6IeZLuewX3Db9tsphTmwn6mIVcI38INNScK6llEfr3ylGjULvah9C4zHZReoy3NKll3pcY0EvlmB2IBTi5gDUzhpUpmXbaugOtry7RfKWn7RVPyfPybMeN9Jp19B75FGsX5AnXSTJvy_J4ld1nmaMFhEZIfA4Ja3qy8pXzYbiMY5VAJTcUNRi2BLU1QVdd-xNG-pXdaRXUE14h2J4-lfk4uT45-w07SMlpEHyrEmRA760h6UJzphofQRQEFQ4BKyjpI0FK7zzgUVldVSuLI01xiGTly1VdGCnviY7NZT1llCvwAJjkXFvrRC-8F4Lr53xQnPtBUvI10FweehpxDGaxVXeurO5yUcZJ-TTmHXdcWfcl2l_kH7eD59NjihFZ4IbeW_yTV9IyMcxGcYFOjtcHVfX8AmjcTZSEkp407XlWAkwM8FsVjwhequVxwzIub2dUleXLfc2iFsDqEnI56E__Ffr2__27uHKvydPMwQJeEBe75Od5s91_AAQp_GTth9PyO50Ov8xh_u347Pv5_B0pmaTdtkArgth_gFHhgQ2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBcxL4hK1id8HhHi02tLuClWt1FsaO44aqc0u7Faof4rfyMzmAdtW3Hq2YzvjGc-Mx_MNwNtElK5QOY-5cz4WEmXOlaJEife6CF6lVlKi8Gishgfi26E8XIHfXS4MPavszsTFQV1MPN2Rr6daCs61lPLj9EdMVaMoutqV0GjYYiec_0KXbfZh-yvu77s03drc_zKM26oCsZc8nceEl17ajdL43JhgXUAF6pXfQLtASRuKpHC580lQVgeVl6WxxuSEemVLFXL06XDcG7AqOLoyA1j9vDn-vtff6lDcTCS2gzDiZh0V3RSVtE2WFd8la_byo8wLkdmFwtu6C3daS5V9aljrHqyE-j7cbGpXnj-A0Wm1F6cJKwJhUFACJ6vq48pV8xmjxJGJR7t8zkhv0t6zvC7YtMGLmjE3qQM7wWXiN-wUz6qHcHAtVHwEgxrnegLMKfT5kpBwZ60QrnBOC6dz44Tm2okkgvcd4TLfApdT_YyTbBFA5ybraRzB677rtEHruKrTWkf9rBXYWUZ2kU4FN_LK5r_cF8GrvhklkcIreR0mZziE0XT-KYkzPG72sl8EOrboqCsegV7a5b4DoXwvt9TV8QLtG8mt0YyK4E3HD_-s-uK_Pf3_4l_CreH-aDfb3R7vPIPbKZkolJ6v12Aw_3kWnqOBNXcvWq5mcHTdgvQHp6U9Jw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAAfOSuETbxO8DQoiyaimtEKLS3kLsOGqkNruwqVD_Gr-Ombxg24pbz3ZsZzzjmfF4vgF4lYjSFSrnMXfOx0KizLlSlCjxXhfBq9RKShTe21fbB-LTTM7W4PeQC0PPKoczsT2oi7mnO_JJqqXgXEspJ2X_LOLL1vTd4kdMFaQo0jqU0-hYZDec_kL3bfl2Zwv3-nWaTj9--7Ad9xUGYi952sSEnV7azdL43JhgXUBl6pXfRBtBSRuKpHC580lQVgeVl6WxxuSEgGVLFXL073DcK3BVc5mQjOmZHu93KIImEjuAGXEzQZW3QHVtk1UVeM6uPf8880yMtlV901tws7dZ2fuOyW7DWqjvwLWuiuXpXdg7rr7GacKKQGgUlMrJqvqwclWzZJRCMvdooTeMNChxAcvrgi065Kglc_M6sCNcJn7DjvHUugcHl0LD-7Be41wPgTmF3l8SEu6sFcIVzmnhdG6c0Fw7kUTwZiBc5nsIc6qkcZS1oXRuspHGEbwYuy463I6LOm0M1M960V1mZCHpVHAjL2z-y4cRPB-bUSYp0JLXYX6CQxhNJ6GSOMODbi_HRaCLiy674hHolV0eOxDe92pLXR22uN9Ibo0GVQQvB374Z9Vn_-3R_xf_DK6j-GSfd_Z3H8ONlGwVytPXG7De_DwJT9DSatzTlqUZfL9sGfoDvD4_9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-21+deficiency+inhibits+osteoclast+function+and+prevents+bone+loss+in+mice&rft.jtitle=Scientific+reports&rft.au=Hu%2C+Cheng-Hu&rft.au=Sui%2C+Bing-Dong&rft.au=Du%2C+Fang-Ying&rft.au=Shuai%2C+Yi&rft.date=2017-02-27&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=43191&rft_id=info:doi/10.1038%2Fsrep43191&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon