miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice
MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro . However, in vi...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; p. 43191 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.02.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/srep43191 |
Cover
Loading…
Abstract | MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported
in vitro
that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation
in vitro
. However,
in vivo
data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21
−/−
) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21
−/−
mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis
in vivo
. Besides, miR-21
−/−
mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21
−/−
mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first
in vivo
evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis. |
---|---|
AbstractList | MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported
in vitro
that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation
in vitro
. However,
in vivo
data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21
−/−
) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21
−/−
mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis
in vivo
. Besides, miR-21
−/−
mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21
−/−
mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first
in vivo
evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis. MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21-/-) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21-/- mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21-/- mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21-/- mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis.MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21-/-) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21-/- mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21-/- mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21-/- mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis. MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21 ) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21 mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21 mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21 mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis. MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21−/−) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21−/− mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21−/− mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21−/− mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis. MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21-/- ) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21-/- mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21-/- mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21-/- mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis. |
ArticleNumber | 43191 |
Author | Zheng, Chen-Xi Hu, Cheng-Hu Du, Fang-Ying Jin, Yan Zhao, Pan Sui, Bing-Dong Shuai, Yi Yu, Xiao-Rui |
Author_xml | – sequence: 1 givenname: Cheng-Hu surname: Hu fullname: Hu, Cheng-Hu organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center – sequence: 2 givenname: Bing-Dong surname: Sui fullname: Sui, Bing-Dong organization: State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University – sequence: 3 givenname: Fang-Ying surname: Du fullname: Du, Fang-Ying organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center – sequence: 4 givenname: Yi surname: Shuai fullname: Shuai, Yi organization: State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University – sequence: 5 givenname: Chen-Xi surname: Zheng fullname: Zheng, Chen-Xi organization: State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University – sequence: 6 givenname: Pan surname: Zhao fullname: Zhao, Pan organization: Xi’an Institute of Tissue Engineering and Regenerative Medicine – sequence: 7 givenname: Xiao-Rui surname: Yu fullname: Yu, Xiao-Rui email: xiaoruiy@mail.xjtu.edu.cn organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center – sequence: 8 givenname: Yan surname: Jin fullname: Jin, Yan email: yanjin@fmmu.edu.cn organization: State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi’an Institute of Tissue Engineering and Regenerative Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28240263$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9rFTEQxYNUbL32wS8gC75oYW3-bpIXQYq2Qosg-hyy2Umbsptck91Cv7253LZcW2leEshvzpyZ8xrtxRQBobcEfyKYqeOSYc0Z0eQFOqCYi5YySvd23vvosJRrXI-gmhP9Cu1TRTmmHTtAF1P42VLSDOCDCxDdbRPiVejDXJpUZkhutGVu_BLdHFJsbByadYYbiBXoq5NmTKXUmmYKDt6gl96OBQ7v7hX6_e3rr5Oz9vzH6feTL-etE4zObccl9Rp75axSoHsgUrjOYc5JJzQMZOht7wh0WkJnvVdaKSu4VNp3YCVhK_R5q7te-gkGV91kO5p1DpPNtybZYP79ieHKXKYbU9tLXgdfoQ93Ajn9WaDMZgrFwTjaCGkphihJhVSd2PR6_wi9TkuOdTxDpeCMSSHEcxTRmEjKmdpQ73Z9Pxi-z6MCx1vA5brWDN64MNvN5usYYTQEm03o5iH0WvHxUcW96P_Yoy1bKhMvIe-YfAL_Bd56ukY |
CitedBy_id | crossref_primary_10_3390_biomedicines9040443 crossref_primary_10_1111_cpr_12697 crossref_primary_10_1080_13697137_2018_1507020 crossref_primary_10_1177_1753425919842932 crossref_primary_10_1007_s12015_023_10510_8 crossref_primary_10_1007_s40610_019_0116_3 crossref_primary_10_1186_s40510_022_00450_3 crossref_primary_10_3389_fcell_2021_651161 crossref_primary_10_1155_2020_4813140 crossref_primary_10_1042_BSR20180448 crossref_primary_10_1016_j_isci_2020_100847 crossref_primary_10_1186_s12860_019_0187_2 crossref_primary_10_1002_smtd_202100763 crossref_primary_10_5483_BMBRep_2019_52_9_076 crossref_primary_10_1016_j_tcb_2019_11_006 crossref_primary_10_3389_fendo_2024_1481649 crossref_primary_10_1093_ckj_sfac219 crossref_primary_10_1016_j_injury_2024_111963 crossref_primary_10_1038_s41420_018_0101_2 crossref_primary_10_1002_jbm4_10115 crossref_primary_10_1016_j_stemcr_2020_06_007 crossref_primary_10_2147_OTT_S232876 crossref_primary_10_3389_fcell_2024_1355312 crossref_primary_10_1016_j_archoralbio_2019_05_005 crossref_primary_10_1016_j_bone_2020_115760 crossref_primary_10_3390_ijms232415501 crossref_primary_10_1007_s00018_019_03162_w crossref_primary_10_3390_biomedicines8120601 crossref_primary_10_2147_IJN_S303412 crossref_primary_10_1007_s11914_024_00880_4 crossref_primary_10_1007_s00223_022_00959_z crossref_primary_10_1111_acel_13244 crossref_primary_10_1080_15548627_2018_1483807 crossref_primary_10_1007_s00018_022_04298_y crossref_primary_10_1007_s11626_020_00479_w crossref_primary_10_1016_j_bone_2020_115757 crossref_primary_10_18632_aging_205553 crossref_primary_10_1007_s00439_019_02046_0 crossref_primary_10_3390_ncrna4040037 crossref_primary_10_1016_j_bone_2019_02_013 crossref_primary_10_3390_ijms21144886 crossref_primary_10_2337_db21_0573 crossref_primary_10_3389_fendo_2022_1038371 crossref_primary_10_3390_osteology2010002 crossref_primary_10_1002_jev2_12516 crossref_primary_10_1007_s00774_023_01433_y crossref_primary_10_3389_fimmu_2019_00375 crossref_primary_10_1002_jor_23822 crossref_primary_10_1186_s40659_024_00497_y crossref_primary_10_3389_fphar_2021_722804 crossref_primary_10_14336_AD_2024_0280 crossref_primary_10_3389_fcell_2024_1354606 crossref_primary_10_1111_bph_14836 crossref_primary_10_1002_jbm4_10213 crossref_primary_10_3389_fendo_2024_1450328 crossref_primary_10_1002_JPER_19_0567 crossref_primary_10_1007_s11418_018_1237_3 crossref_primary_10_3390_ijms241713144 crossref_primary_10_1111_febs_15066 crossref_primary_10_1210_endocr_bqab135 crossref_primary_10_1016_j_biomaterials_2017_10_046 crossref_primary_10_1016_j_cell_2018_03_006 crossref_primary_10_1038_s41598_018_23098_8 crossref_primary_10_1007_s12015_023_10521_5 crossref_primary_10_1111_odi_13239 crossref_primary_10_3892_ijo_2020_4992 crossref_primary_10_1038_s41423_025_01271_0 crossref_primary_10_1007_s10616_021_00507_x crossref_primary_10_3390_ph14101041 crossref_primary_10_1007_s10856_017_5942_3 crossref_primary_10_1016_j_actbio_2021_05_024 crossref_primary_10_1007_s00198_020_05805_2 crossref_primary_10_1089_scd_2021_0041 crossref_primary_10_1002_jbmr_3662 crossref_primary_10_1016_j_bbrc_2019_11_043 crossref_primary_10_1038_s41368_022_00193_1 crossref_primary_10_3892_mmr_2020_10938 crossref_primary_10_1007_s00223_019_00571_8 crossref_primary_10_3389_fsurg_2021_786564 crossref_primary_10_3390_cells11091380 |
Cites_doi | 10.1007/s10522-015-9609-5 10.1002/stem.235 10.1093/hmg/dds129 10.1177/0022034514552675 10.1016/S0092-8674(00)81569-X 10.1182/blood-2010-10-311415 10.1038/srep30186 10.1016/j.bone.2015.04.035 10.5966/sctm.2013-0081 10.1002/jcb.24479 10.1093/nar/gks308 10.1073/pnas.1007698107 10.1002/jbmr.141 10.1002/jbmr.1805 10.1016/j.cell.2015.05.029 10.1038/nature07511 10.1007/s00198-013-2413-7 10.1016/j.biomaterials.2015.02.007 10.1038/nature13375 10.5966/sctm.2015-0347 10.1155/2015/412327 10.1371/journal.pone.0057652 10.1007/s11010-015-2404-4 10.1038/nrendo.2011.234 10.1002/jbmr.2175 10.1002/jcp.22716 10.1002/tera.1420220306 10.18632/oncotarget.4398 10.1038/sj.onc.1210856 10.1007/s11914-011-0078-8 10.1002/jcb.24471 10.1007/s11914-013-0143-6 10.1002/jbmr.2352 10.1002/jbmr.1798 10.1172/JCI77716 10.1038/cddis.2013.130 10.1038/nm.3026 10.4161/rna.8.5.16154 10.1083/jcb.201201057 10.1016/S0092-8674(00)80209-3 10.1002/jor.22830 10.1038/cr.2011.5 10.33549/physiolres.932901 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Feb 2017 The Author(s) 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2017, The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Feb 2017 – notice: The Author(s) 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2017, The Author(s) 2017 The Author(s) |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/srep43191 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC5327426 28240263 10_1038_srep43191 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c532t-6472f90f8ca88e9be175c6c0441659ed1dbabc1e697e6aff8988a54789f6ea713 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 17:54:09 EDT 2025 Fri Jul 11 05:51:30 EDT 2025 Wed Aug 13 05:10:21 EDT 2025 Wed Aug 13 04:50:15 EDT 2025 Thu Apr 03 06:57:11 EDT 2025 Tue Jul 01 04:02:49 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Fri Feb 21 02:40:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c532t-6472f90f8ca88e9be175c6c0441659ed1dbabc1e697e6aff8988a54789f6ea713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.proquest.com/docview/2754337555?pq-origsite=%requestingapplication% |
PMID | 28240263 |
PQID | 1901724385 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5327426 proquest_miscellaneous_1872578651 proquest_journals_2754337555 proquest_journals_1901724385 pubmed_primary_28240263 crossref_citationtrail_10_1038_srep43191 crossref_primary_10_1038_srep43191 springer_journals_10_1038_srep43191 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-27 |
PublicationDateYYYYMMDD | 2017-02-27 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Kim (CR28) 2012; 227 Seeliger (CR27) 2014; 29 Kanis (CR41) 2013; 24 van Wijnen (CR1) 2013; 11 Bouxsein (CR35) 2010; 25 Bae (CR24) 2012; 21 Asangani (CR6) 2008; 27 Thum (CR22) 2008; 456 Simonet (CR9) 1997; 89 Teti (CR19) 2011; 9 Ribas (CR16) 2012; 40 Li (CR13) 2015; 125 Wei (CR20) 2015; 161 Lacey (CR8) 1998; 93 Sui, Hu, Jin (CR34) 2016; 17 Liao (CR42) 2013; 4 Yang (CR3) 2013; 28 Kim, Hwang, Bae, Jung (CR29) 2009; 27 Hassan (CR32) 2010; 107 Sugatani, Hruska (CR7) 2013; 114 Wei (CR15) 2012; 197 Liang (CR43) 2011; 21 Krzeszinski (CR14) 2014; 512 Li (CR21) 2015; 33 Liu (CR38) 2014; 93 Sui (CR36) 2016; 6 Dempster (CR40) 2013; 28 Park, Wada, Ushida, Akimoto (CR31) 2015; 64 McLeod (CR39) 1980; 22 Shen (CR23) 2013; 8 Sugatani, Vacher, Hruska (CR5) 2011; 117 Mei (CR4) 2013; 114 Liu (CR12) 2015; 52 Berendsen, Olsen (CR18) 2015; 80 Sun (CR25) 2015; 2015 Trohatou (CR30) 2014; 3 Sui (CR37) 2016; 5 Kumarswamy, Volkmann, Thum (CR17) 2011; 8 Zuo (CR33) 2015; 30 Lian (CR2) 2012; 8 Wang (CR11) 2013; 19 Zhao (CR26) 2015; 405 Pitari (CR10) 2015; 6 B Sui (BFsrep43191_CR36) 2016; 6 JY Krzeszinski (BFsrep43191_CR14) 2014; 512 MQ Hassan (BFsrep43191_CR32) 2010; 107 J Wei (BFsrep43191_CR15) 2012; 197 T Thum (BFsrep43191_CR22) 2008; 456 B Zuo (BFsrep43191_CR33) 2015; 30 O Trohatou (BFsrep43191_CR30) 2014; 3 J Park (BFsrep43191_CR31) 2015; 64 T Sugatani (BFsrep43191_CR5) 2011; 117 Y Sun (BFsrep43191_CR25) 2015; 2015 J Ribas (BFsrep43191_CR16) 2012; 40 YJ Kim (BFsrep43191_CR29) 2009; 27 T Sugatani (BFsrep43191_CR7) 2013; 114 L Shen (BFsrep43191_CR23) 2013; 8 L Liao (BFsrep43191_CR42) 2013; 4 YJ Kim (BFsrep43191_CR28) 2012; 227 ML Bouxsein (BFsrep43191_CR35) 2010; 25 N Yang (BFsrep43191_CR3) 2013; 28 J Liu (BFsrep43191_CR12) 2015; 52 CJ Li (BFsrep43191_CR13) 2015; 125 MR Pitari (BFsrep43191_CR10) 2015; 6 S Li (BFsrep43191_CR21) 2015; 33 AJ van Wijnen (BFsrep43191_CR1) 2013; 11 W Zhao (BFsrep43191_CR26) 2015; 405 X Wang (BFsrep43191_CR11) 2013; 19 Y Bae (BFsrep43191_CR24) 2012; 21 MJ McLeod (BFsrep43191_CR39) 1980; 22 JA Kanis (BFsrep43191_CR41) 2013; 24 DL Lacey (BFsrep43191_CR8) 1998; 93 WS Simonet (BFsrep43191_CR9) 1997; 89 D Liang (BFsrep43191_CR43) 2011; 21 IA Asangani (BFsrep43191_CR6) 2008; 27 JB Lian (BFsrep43191_CR2) 2012; 8 B Sui (BFsrep43191_CR37) 2016; 5 B Sui (BFsrep43191_CR34) 2016; 17 J Wei (BFsrep43191_CR20) 2015; 161 Y Mei (BFsrep43191_CR4) 2013; 114 DW Dempster (BFsrep43191_CR40) 2013; 28 A Teti (BFsrep43191_CR19) 2011; 9 AD Berendsen (BFsrep43191_CR18) 2015; 80 Y Liu (BFsrep43191_CR38) 2014; 93 R Kumarswamy (BFsrep43191_CR17) 2011; 8 C Seeliger (BFsrep43191_CR27) 2014; 29 19816956 - Stem Cells. 2009 Dec;27(12):3093-102 24307698 - Stem Cells Transl Med. 2014 Jan;3(1):54-68 6165088 - Teratology. 1980 Dec;22(3):299-301 9568710 - Cell. 1998 Apr 17;93(2):165-76 23223004 - Nat Med. 2013 Jan;19(1):93-100 23884436 - Osteoporos Int. 2013 Nov;24(11):2763-4 26453494 - Bone. 2015 Nov;80:14-8 25804101 - Physiol Res. 2015;64(5):711-9 26392399 - Biogerontology. 2016 Apr;17 (2):267-79 20533309 - J Bone Miner Res. 2010 Jul;25(7):1468-86 25043055 - Nature. 2014 Aug 28;512(7515):431-5 17968323 - Oncogene. 2008 Apr 3;27(15):2128-36 23074166 - J Bone Miner Res. 2013 Mar;28(3):559-73 9108485 - Cell. 1997 Apr 18;89(2):309-19 25879024 - Biomed Res Int. 2015;2015:412327 26091038 - Cell. 2015 Jun 18;161(7):1576-91 23469214 - PLoS One. 2013;8(3):e57652 23605904 - Curr Osteoporos Rep. 2013 Jun;11(2):72-82 25751060 - J Clin Invest. 2015 Apr;125(4):1509-22 25731708 - J Orthop Res. 2015 Jul;33(7):1008-14 19043405 - Nature. 2008 Dec 18;456(7224):980-4 20980664 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19879-84 24431276 - J Bone Miner Res. 2014 Aug;29(8):1718-28 21948208 - Curr Osteoporos Rep. 2011 Dec;9(4):264-73 23598412 - Cell Death Dis. 2013 Apr 18;4:e600 25195535 - J Bone Miner Res. 2015 Feb;30(2):330-45 22564414 - J Cell Biol. 2012 May 14;197(4):509-21 27365487 - Stem Cells Transl Med. 2016 Sep;5(9):1238-46 21712654 - RNA Biol. 2011 Sep-Oct;8(5):706-13 21273303 - Blood. 2011 Mar 31;117(13):3648-57 25818421 - Biomaterials. 2015 Jun;52:148-60 23238785 - J Cell Biochem. 2013 Jun;114(6):1217-22 22290358 - Nat Rev Endocrinol. 2012 Jan 31;8(4):212-27 22498974 - Hum Mol Genet. 2012 Jul 1;21(13):2991-3000 26160841 - Oncotarget. 2015 Sep 29;6(29):27343-58 25893734 - Mol Cell Biochem. 2015 Jul;405(1-2):125-33 27443833 - Sci Rep. 2016 Jul 22;6:30186 23197339 - J Bone Miner Res. 2013 Jan;28(1):2-17 25252877 - J Dent Res. 2014 Nov;93(11):1124-32 21221132 - Cell Res. 2011 May;21(5):793-806 23239100 - J Cell Biochem. 2013 Jun;114(6):1374-84 22505577 - Nucleic Acids Res. 2012 Aug;40(14):6821-33 21381024 - J Cell Physiol. 2012 Jan;227(1):183-93 |
References_xml | – volume: 17 start-page: 267 year: 2016 end-page: 279 ident: CR34 article-title: Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells publication-title: Biogerontology doi: 10.1007/s10522-015-9609-5 – volume: 27 start-page: 3093 year: 2009 end-page: 3102 ident: CR29 article-title: MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue publication-title: Stem. Cells. doi: 10.1002/stem.235 – volume: 21 start-page: 2991 year: 2012 end-page: 3000 ident: CR24 article-title: miRNA-34c regulates Notch signaling during bone development publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds129 – volume: 93 start-page: 1124 year: 2014 end-page: 1132 ident: CR38 article-title: Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis publication-title: J. Dent. Res. doi: 10.1177/0022034514552675 – volume: 93 start-page: 165 year: 1998 end-page: 176 ident: CR8 article-title: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation publication-title: Cell doi: 10.1016/S0092-8674(00)81569-X – volume: 117 start-page: 3648 year: 2011 end-page: 3657 ident: CR5 article-title: A microRNA expression signature of osteoclastogenesis publication-title: Blood doi: 10.1182/blood-2010-10-311415 – volume: 6 start-page: 30186 year: 2016 ident: CR36 article-title: Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis publication-title: Sci. Rep doi: 10.1038/srep30186 – volume: 80 start-page: 14 year: 2015 end-page: 18 ident: CR18 article-title: Bone development publication-title: Bone doi: 10.1016/j.bone.2015.04.035 – volume: 3 start-page: 54 year: 2014 end-page: 68 ident: CR30 article-title: Sox2 suppression by miR-21 governs human mesenchymal stem cell properties publication-title: Stem. Cells. Transl. Med doi: 10.5966/sctm.2013-0081 – volume: 114 start-page: 1374 year: 2013 end-page: 1384 ident: CR4 article-title: miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation publication-title: J. Cell. Biochem. doi: 10.1002/jcb.24479 – volume: 40 start-page: 6821 year: 2012 end-page: 6833 ident: CR16 article-title: A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts publication-title: Nucleic. Acids. Res. doi: 10.1093/nar/gks308 – volume: 107 start-page: 19879 year: 2010 end-page: 19884 ident: CR32 article-title: A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1007698107 – volume: 25 start-page: 1468 year: 2010 end-page: 1486 ident: CR35 article-title: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography publication-title: J. Bone. Miner. Res. doi: 10.1002/jbmr.141 – volume: 28 start-page: 2 year: 2013 end-page: 17 ident: CR40 article-title: Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee publication-title: J. Bone. Miner. Res. doi: 10.1002/jbmr.1805 – volume: 161 start-page: 1576 year: 2015 end-page: 1591 ident: CR20 article-title: Glucose uptake and runx2 synergize to orchestrate osteoblast differentiation and bone formation publication-title: Cell doi: 10.1016/j.cell.2015.05.029 – volume: 456 start-page: 980 year: 2008 end-page: 984 ident: CR22 article-title: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts publication-title: Nature doi: 10.1038/nature07511 – volume: 24 start-page: 2763 year: 2013 end-page: 2764 ident: CR41 article-title: Standardising the descriptive epidemiology of osteoporosis: recommendations from the Epidemiology and Quality of Life Working Group of IOF publication-title: Osteoporos. Int. doi: 10.1007/s00198-013-2413-7 – volume: 52 start-page: 148 year: 2015 end-page: 160 ident: CR12 article-title: A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of microRNAs in osteoclasts publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.02.007 – volume: 512 start-page: 431 year: 2014 end-page: 435 ident: CR14 article-title: miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2 publication-title: Nature doi: 10.1038/nature13375 – volume: 5 start-page: 1238 year: 2016 end-page: 1246 ident: CR37 article-title: Allogeneic mesenchymal stem cell therapy promotes osteoblastogenesis and prevents glucocorticoid-induced osteoporosis publication-title: Stem. Cells. Transl. Med doi: 10.5966/sctm.2015-0347 – volume: 2015 start-page: 412327 year: 2015 ident: CR25 article-title: mir-21 overexpressing mesenchymal stem cells accelerate fracture healing in a rat closed femur fracture model publication-title: Biomed. Res. Int doi: 10.1155/2015/412327 – volume: 8 start-page: e57652 year: 2013 ident: CR23 article-title: Feedback regulations of miR-21 and MAPKs via Pdcd4 and Spry1 are involved in arsenite-induced cell malignant transformation publication-title: PLoS. One. doi: 10.1371/journal.pone.0057652 – volume: 405 start-page: 125 year: 2015 end-page: 133 ident: CR26 article-title: MiR-21 overexpression improves osteoporosis by targeting RECK publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-015-2404-4 – volume: 8 start-page: 212 year: 2012 end-page: 227 ident: CR2 article-title: MicroRNA control of bone formation and homeostasis publication-title: Nat. Rev. Endocrinol doi: 10.1038/nrendo.2011.234 – volume: 29 start-page: 1718 year: 2014 end-page: 1728 ident: CR27 article-title: Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures publication-title: J. Bone. Miner. Res. doi: 10.1002/jbmr.2175 – volume: 227 start-page: 183 year: 2012 end-page: 193 ident: CR28 article-title: MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues publication-title: J. Cell. Physiol. doi: 10.1002/jcp.22716 – volume: 22 start-page: 299 year: 1980 end-page: 301 ident: CR39 article-title: Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S publication-title: Teratology doi: 10.1002/tera.1420220306 – volume: 6 start-page: 27343 year: 2015 end-page: 27358 ident: CR10 article-title: Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts publication-title: Oncotarget doi: 10.18632/oncotarget.4398 – volume: 27 start-page: 2128 year: 2008 end-page: 2136 ident: CR6 article-title: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer publication-title: Oncogene doi: 10.1038/sj.onc.1210856 – volume: 9 start-page: 264 year: 2011 end-page: 273 ident: CR19 article-title: Bone development: overview of bone cells and signaling publication-title: Curr. Osteoporos. Rep doi: 10.1007/s11914-011-0078-8 – volume: 114 start-page: 1217 year: 2013 end-page: 1222 ident: CR7 article-title: Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis publication-title: J. Cell. Biochem. doi: 10.1002/jcb.24471 – volume: 11 start-page: 72 year: 2013 end-page: 82 ident: CR1 article-title: MicroRNA functions in osteogenesis and dysfunctions in osteoporosis publication-title: Curr. Osteoporos. Rep doi: 10.1007/s11914-013-0143-6 – volume: 30 start-page: 330 year: 2015 end-page: 345 ident: CR33 article-title: microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2 publication-title: J. Bone. Miner. Res. doi: 10.1002/jbmr.2352 – volume: 28 start-page: 559 year: 2013 end-page: 573 ident: CR3 article-title: Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis publication-title: J. Bone. Miner. Res. doi: 10.1002/jbmr.1798 – volume: 125 start-page: 1509 year: 2015 end-page: 1522 ident: CR13 article-title: MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation publication-title: J. Clin. Invest. doi: 10.1172/JCI77716 – volume: 4 start-page: e600 year: 2013 ident: CR42 article-title: Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow publication-title: Cell. Death. Dis doi: 10.1038/cddis.2013.130 – volume: 19 start-page: 93 year: 2013 end-page: 100 ident: CR11 article-title: miR-214 targets ATF4 to inhibit bone formation publication-title: Nat Med doi: 10.1038/nm.3026 – volume: 8 start-page: 706 year: 2011 end-page: 713 ident: CR17 article-title: Regulation and function of miRNA-21 in health and disease publication-title: RNA. Biol. doi: 10.4161/rna.8.5.16154 – volume: 197 start-page: 509 year: 2012 end-page: 521 ident: CR15 article-title: miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2 publication-title: J. Cell. Biol. doi: 10.1083/jcb.201201057 – volume: 89 start-page: 309 year: 1997 end-page: 319 ident: CR9 article-title: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density publication-title: Cell doi: 10.1016/S0092-8674(00)80209-3 – volume: 33 start-page: 1008 year: 2015 end-page: 1014 ident: CR21 article-title: Connexin 43 and ERK regulate tension-induced signal transduction in human periodontal ligament fibroblasts publication-title: J. Orthop. Res. doi: 10.1002/jor.22830 – volume: 21 start-page: 793 year: 2011 end-page: 806 ident: CR43 article-title: A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKepsilon publication-title: Cell. Res. doi: 10.1038/cr.2011.5 – volume: 64 start-page: 711 year: 2015 end-page: 719 ident: CR31 article-title: The microRNA-23a has limited roles in bone formation and homeostasis publication-title: Physiol. Res. doi: 10.33549/physiolres.932901 – volume: 33 start-page: 1008 year: 2015 ident: BFsrep43191_CR21 publication-title: J. Orthop. Res. doi: 10.1002/jor.22830 – volume: 4 start-page: e600 year: 2013 ident: BFsrep43191_CR42 publication-title: Cell. Death. Dis doi: 10.1038/cddis.2013.130 – volume: 27 start-page: 3093 year: 2009 ident: BFsrep43191_CR29 publication-title: Stem. Cells. doi: 10.1002/stem.235 – volume: 19 start-page: 93 year: 2013 ident: BFsrep43191_CR11 publication-title: Nat Med doi: 10.1038/nm.3026 – volume: 6 start-page: 30186 year: 2016 ident: BFsrep43191_CR36 publication-title: Sci. Rep doi: 10.1038/srep30186 – volume: 93 start-page: 1124 year: 2014 ident: BFsrep43191_CR38 publication-title: J. Dent. Res. doi: 10.1177/0022034514552675 – volume: 27 start-page: 2128 year: 2008 ident: BFsrep43191_CR6 publication-title: Oncogene doi: 10.1038/sj.onc.1210856 – volume: 8 start-page: e57652 year: 2013 ident: BFsrep43191_CR23 publication-title: PLoS. One. doi: 10.1371/journal.pone.0057652 – volume: 2015 start-page: 412327 year: 2015 ident: BFsrep43191_CR25 publication-title: Biomed. Res. Int – volume: 405 start-page: 125 year: 2015 ident: BFsrep43191_CR26 publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-015-2404-4 – volume: 89 start-page: 309 year: 1997 ident: BFsrep43191_CR9 publication-title: Cell doi: 10.1016/S0092-8674(00)80209-3 – volume: 29 start-page: 1718 year: 2014 ident: BFsrep43191_CR27 publication-title: J. Bone. Miner. Res. doi: 10.1002/jbmr.2175 – volume: 107 start-page: 19879 year: 2010 ident: BFsrep43191_CR32 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1007698107 – volume: 114 start-page: 1374 year: 2013 ident: BFsrep43191_CR4 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.24479 – volume: 28 start-page: 559 year: 2013 ident: BFsrep43191_CR3 publication-title: J. Bone. Miner. Res. doi: 10.1002/jbmr.1798 – volume: 24 start-page: 2763 year: 2013 ident: BFsrep43191_CR41 publication-title: Osteoporos. Int. doi: 10.1007/s00198-013-2413-7 – volume: 5 start-page: 1238 year: 2016 ident: BFsrep43191_CR37 publication-title: Stem. Cells. Transl. Med doi: 10.5966/sctm.2015-0347 – volume: 21 start-page: 2991 year: 2012 ident: BFsrep43191_CR24 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds129 – volume: 161 start-page: 1576 year: 2015 ident: BFsrep43191_CR20 publication-title: Cell doi: 10.1016/j.cell.2015.05.029 – volume: 125 start-page: 1509 year: 2015 ident: BFsrep43191_CR13 publication-title: J. Clin. Invest. doi: 10.1172/JCI77716 – volume: 6 start-page: 27343 year: 2015 ident: BFsrep43191_CR10 publication-title: Oncotarget doi: 10.18632/oncotarget.4398 – volume: 22 start-page: 299 year: 1980 ident: BFsrep43191_CR39 publication-title: Teratology doi: 10.1002/tera.1420220306 – volume: 3 start-page: 54 year: 2014 ident: BFsrep43191_CR30 publication-title: Stem. Cells. Transl. Med doi: 10.5966/sctm.2013-0081 – volume: 52 start-page: 148 year: 2015 ident: BFsrep43191_CR12 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.02.007 – volume: 28 start-page: 2 year: 2013 ident: BFsrep43191_CR40 publication-title: J. Bone. Miner. Res. doi: 10.1002/jbmr.1805 – volume: 9 start-page: 264 year: 2011 ident: BFsrep43191_CR19 publication-title: Curr. Osteoporos. Rep doi: 10.1007/s11914-011-0078-8 – volume: 17 start-page: 267 year: 2016 ident: BFsrep43191_CR34 publication-title: Biogerontology doi: 10.1007/s10522-015-9609-5 – volume: 114 start-page: 1217 year: 2013 ident: BFsrep43191_CR7 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.24471 – volume: 25 start-page: 1468 year: 2010 ident: BFsrep43191_CR35 publication-title: J. Bone. Miner. Res. doi: 10.1002/jbmr.141 – volume: 8 start-page: 706 year: 2011 ident: BFsrep43191_CR17 publication-title: RNA. Biol. doi: 10.4161/rna.8.5.16154 – volume: 8 start-page: 212 year: 2012 ident: BFsrep43191_CR2 publication-title: Nat. Rev. Endocrinol doi: 10.1038/nrendo.2011.234 – volume: 64 start-page: 711 year: 2015 ident: BFsrep43191_CR31 publication-title: Physiol. Res. doi: 10.33549/physiolres.932901 – volume: 80 start-page: 14 year: 2015 ident: BFsrep43191_CR18 publication-title: Bone doi: 10.1016/j.bone.2015.04.035 – volume: 197 start-page: 509 year: 2012 ident: BFsrep43191_CR15 publication-title: J. Cell. Biol. doi: 10.1083/jcb.201201057 – volume: 40 start-page: 6821 year: 2012 ident: BFsrep43191_CR16 publication-title: Nucleic. Acids. Res. doi: 10.1093/nar/gks308 – volume: 456 start-page: 980 year: 2008 ident: BFsrep43191_CR22 publication-title: Nature doi: 10.1038/nature07511 – volume: 30 start-page: 330 year: 2015 ident: BFsrep43191_CR33 publication-title: J. Bone. Miner. Res. doi: 10.1002/jbmr.2352 – volume: 21 start-page: 793 year: 2011 ident: BFsrep43191_CR43 publication-title: Cell. Res. doi: 10.1038/cr.2011.5 – volume: 11 start-page: 72 year: 2013 ident: BFsrep43191_CR1 publication-title: Curr. Osteoporos. Rep doi: 10.1007/s11914-013-0143-6 – volume: 93 start-page: 165 year: 1998 ident: BFsrep43191_CR8 publication-title: Cell doi: 10.1016/S0092-8674(00)81569-X – volume: 512 start-page: 431 year: 2014 ident: BFsrep43191_CR14 publication-title: Nature doi: 10.1038/nature13375 – volume: 117 start-page: 3648 year: 2011 ident: BFsrep43191_CR5 publication-title: Blood doi: 10.1182/blood-2010-10-311415 – volume: 227 start-page: 183 year: 2012 ident: BFsrep43191_CR28 publication-title: J. Cell. Physiol. doi: 10.1002/jcp.22716 – reference: 23238785 - J Cell Biochem. 2013 Jun;114(6):1217-22 – reference: 25804101 - Physiol Res. 2015;64(5):711-9 – reference: 25731708 - J Orthop Res. 2015 Jul;33(7):1008-14 – reference: 17968323 - Oncogene. 2008 Apr 3;27(15):2128-36 – reference: 21712654 - RNA Biol. 2011 Sep-Oct;8(5):706-13 – reference: 6165088 - Teratology. 1980 Dec;22(3):299-301 – reference: 23197339 - J Bone Miner Res. 2013 Jan;28(1):2-17 – reference: 25252877 - J Dent Res. 2014 Nov;93(11):1124-32 – reference: 19816956 - Stem Cells. 2009 Dec;27(12):3093-102 – reference: 22505577 - Nucleic Acids Res. 2012 Aug;40(14):6821-33 – reference: 26453494 - Bone. 2015 Nov;80:14-8 – reference: 23469214 - PLoS One. 2013;8(3):e57652 – reference: 26392399 - Biogerontology. 2016 Apr;17 (2):267-79 – reference: 22290358 - Nat Rev Endocrinol. 2012 Jan 31;8(4):212-27 – reference: 9108485 - Cell. 1997 Apr 18;89(2):309-19 – reference: 24307698 - Stem Cells Transl Med. 2014 Jan;3(1):54-68 – reference: 26091038 - Cell. 2015 Jun 18;161(7):1576-91 – reference: 21221132 - Cell Res. 2011 May;21(5):793-806 – reference: 23239100 - J Cell Biochem. 2013 Jun;114(6):1374-84 – reference: 25818421 - Biomaterials. 2015 Jun;52:148-60 – reference: 27443833 - Sci Rep. 2016 Jul 22;6:30186 – reference: 20980664 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19879-84 – reference: 24431276 - J Bone Miner Res. 2014 Aug;29(8):1718-28 – reference: 23223004 - Nat Med. 2013 Jan;19(1):93-100 – reference: 26160841 - Oncotarget. 2015 Sep 29;6(29):27343-58 – reference: 25893734 - Mol Cell Biochem. 2015 Jul;405(1-2):125-33 – reference: 25879024 - Biomed Res Int. 2015;2015:412327 – reference: 25195535 - J Bone Miner Res. 2015 Feb;30(2):330-45 – reference: 25751060 - J Clin Invest. 2015 Apr;125(4):1509-22 – reference: 19043405 - Nature. 2008 Dec 18;456(7224):980-4 – reference: 23598412 - Cell Death Dis. 2013 Apr 18;4:e600 – reference: 9568710 - Cell. 1998 Apr 17;93(2):165-76 – reference: 22564414 - J Cell Biol. 2012 May 14;197(4):509-21 – reference: 27365487 - Stem Cells Transl Med. 2016 Sep;5(9):1238-46 – reference: 21948208 - Curr Osteoporos Rep. 2011 Dec;9(4):264-73 – reference: 21381024 - J Cell Physiol. 2012 Jan;227(1):183-93 – reference: 25043055 - Nature. 2014 Aug 28;512(7515):431-5 – reference: 20533309 - J Bone Miner Res. 2010 Jul;25(7):1468-86 – reference: 22498974 - Hum Mol Genet. 2012 Jul 1;21(13):2991-3000 – reference: 21273303 - Blood. 2011 Mar 31;117(13):3648-57 – reference: 23884436 - Osteoporos Int. 2013 Nov;24(11):2763-4 – reference: 23605904 - Curr Osteoporos Rep. 2013 Jun;11(2):72-82 – reference: 23074166 - J Bone Miner Res. 2013 Mar;28(3):559-73 |
SSID | ssj0000529419 |
Score | 2.5031343 |
Snippet | MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported
in vitro
that miR-21 promotes osteogenesis, while... MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 43191 |
SubjectTerms | 13/1 13/100 13/89 38 38/77 631/136/818 631/337/384/331 64/60 692/308/2056 692/53/2421 692/699/2743/316/801 82/80 96/21 96/63 Animals Apoptosis Apoptosis Regulatory Proteins - metabolism Bone loss Bone mass Bone remodeling Bone Resorption Bone turnover Cancellous bone Cell death Gene Knockout Techniques Humanities and Social Sciences Inactivation Metabolism Mice Mice, Knockout MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism miRNA multidisciplinary Osteoblastogenesis Osteoclastogenesis Osteoclasts Osteoclasts - physiology Osteogenesis Osteoporosis Osteoprotegerin Phenotypes Post-transcription RNA-Binding Proteins - metabolism Rodents Science TRANCE protein Transcription |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBYhJdBLSdu03TyK-jj04ja23ocQQmkIge2hZCE3o5FlYth4N1kHkn-fmfWDbLL0LMkaz2g83yDPN4x9T2UJhfYiEQAhkQp9DkpZoscHU8SgM6eoUHj8V59N5PmlutxgfY_NToGLtakd9ZOa3E5_3t88HKPDH7Ul4_YXxpI5xkGqYX-FAcmQf447lN9SfGdOpq7nFXq6YjUavYCYL_-UfHZduoxCp9vsTQcf-Ulr77dsI9bv2FbbUPLhPRtfV_-SLOVFJGIIqqrkVX1VQdUsOFVzzAKC5YZTMCODcF8XfN6SOC04zOrIpygmruHUpX6HTU7_XPw-S7qGCUlQImsSooIv3WFpg7c2OoiIDYIOhwh5tHKxSAvwENKonYnal6V11noi9HKljh7T1Q9ss8a9PjEOGhOxNKYCnJMSCgAjwXgL0ggDMh2xH73i8tCxiVNTi2m-vNUWNh90PGJfh6nzlkJj3aT9Xvt5fwhyAismk8KqtcOZUVIIoxQOfxmG0T3ozsPXcXaHj7CGPkpa4Q4fW1sOQmC2idmzFiNmVqw8TCDq7dWRurpaUnCjug1imxH71p-HJ1I_f7fd_wu_x15nhBWoTt7ss83m9i4eINJp4PPyHD8CN98Abw priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADB5VoEq9oD5oWQrVFDhwiUoy7yNasUJIcKiKxC0aTyYiEmRXbDjw77HzKsty4DxOxvGMx3Y8_szYUSpLKLQXiQAIiVSoc1DKEjU-mCIGnTlFhcKXV_r8Wl7cqJseLHrZX6vsIC3bY3q4HfYH7cUCbR3VqW8SYjtt5qmejr9TKGElUzdgBwn7_4lVi7PmRq7fhnyVEm0tzewz2-pdRH7aMfWFfYj1V_axaxr59I1d3ld_kyzlRSTwB6qc5FV9W0HVLDlVbMwDOsQNJ4NFQue-LviiA2pacpjXkd8hm_gMp0702-x6dvZvep70TRGSoETWJAT3XrqT0gZvbXQQ0f4HHU7QrdHKxSItwENIo3Ymal-W1lnrCbTLlTp6DEm_s40a59phHDQGW2lMBTgnJRQARoLxFqQRBmQ6YceD4PLQI4ZT44q7vM1cC5uPMp6wg5F00cFkvEW0N0g_7zVlmZNDYjIprHpzODNKCmGUwuHf4zCqAOU1fB3nj_gKa-jg0Qpn-NGt5cgERpQYIWsxYWZllUcCgtdeHamr2xZmG8Vt0H-ZsMNhP7zg-vW37b6L6if7lJFbQCXxZo9tNA-PcR-dmgZ-tdv5GRXJ-Uk priority: 102 providerName: Springer Nature |
Title | miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice |
URI | https://link.springer.com/article/10.1038/srep43191 https://www.ncbi.nlm.nih.gov/pubmed/28240263 https://www.proquest.com/docview/1901724385 https://www.proquest.com/docview/2754337555 https://www.proquest.com/docview/1872578651 https://pubmed.ncbi.nlm.nih.gov/PMC5327426 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGX0vTpNl3Ux6EXk8h6n8J2SQgLG0rawN6MJMvEkHq3XefQf98Zv9JNQi42WLIljx7zjUb6hpAvTJS-UI6n3PuQCgljzpeihBEfdBGDyqzEg8KLM3V6IeZLuewX3Db9tsphTmwn6mIVcI38INNScK6llEfr3ylGjULvah9C4zHZReoy3NKll3pcY0EvlmB2IBTi5gDUzhpUpmXbaugOtry7RfKWn7RVPyfPybMeN9Jp19B75FGsX5AnXSTJvy_J4ld1nmaMFhEZIfA4Ja3qy8pXzYbiMY5VAJTcUNRi2BLU1QVdd-xNG-pXdaRXUE14h2J4-lfk4uT45-w07SMlpEHyrEmRA760h6UJzphofQRQEFQ4BKyjpI0FK7zzgUVldVSuLI01xiGTly1VdGCnviY7NZT1llCvwAJjkXFvrRC-8F4Lr53xQnPtBUvI10FweehpxDGaxVXeurO5yUcZJ-TTmHXdcWfcl2l_kH7eD59NjihFZ4IbeW_yTV9IyMcxGcYFOjtcHVfX8AmjcTZSEkp407XlWAkwM8FsVjwhequVxwzIub2dUleXLfc2iFsDqEnI56E__Ffr2__27uHKvydPMwQJeEBe75Od5s91_AAQp_GTth9PyO50Ov8xh_u347Pv5_B0pmaTdtkArgth_gFHhgQ2 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBcxL4hK1id8HhHi02tLuClWt1FsaO44aqc0u7Faof4rfyMzmAdtW3Hq2YzvjGc-Mx_MNwNtElK5QOY-5cz4WEmXOlaJEife6CF6lVlKi8Gishgfi26E8XIHfXS4MPavszsTFQV1MPN2Rr6daCs61lPLj9EdMVaMoutqV0GjYYiec_0KXbfZh-yvu77s03drc_zKM26oCsZc8nceEl17ajdL43JhgXUAF6pXfQLtASRuKpHC580lQVgeVl6WxxuSEemVLFXL06XDcG7AqOLoyA1j9vDn-vtff6lDcTCS2gzDiZh0V3RSVtE2WFd8la_byo8wLkdmFwtu6C3daS5V9aljrHqyE-j7cbGpXnj-A0Wm1F6cJKwJhUFACJ6vq48pV8xmjxJGJR7t8zkhv0t6zvC7YtMGLmjE3qQM7wWXiN-wUz6qHcHAtVHwEgxrnegLMKfT5kpBwZ60QrnBOC6dz44Tm2okkgvcd4TLfApdT_YyTbBFA5ybraRzB677rtEHruKrTWkf9rBXYWUZ2kU4FN_LK5r_cF8GrvhklkcIreR0mZziE0XT-KYkzPG72sl8EOrboqCsegV7a5b4DoXwvt9TV8QLtG8mt0YyK4E3HD_-s-uK_Pf3_4l_CreH-aDfb3R7vPIPbKZkolJ6v12Aw_3kWnqOBNXcvWq5mcHTdgvQHp6U9Jw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAAfOSuETbxO8DQoiyaimtEKLS3kLsOGqkNruwqVD_Gr-Ombxg24pbz3ZsZzzjmfF4vgF4lYjSFSrnMXfOx0KizLlSlCjxXhfBq9RKShTe21fbB-LTTM7W4PeQC0PPKoczsT2oi7mnO_JJqqXgXEspJ2X_LOLL1vTd4kdMFaQo0jqU0-hYZDec_kL3bfl2Zwv3-nWaTj9--7Ad9xUGYi952sSEnV7azdL43JhgXUBl6pXfRBtBSRuKpHC580lQVgeVl6WxxuSEgGVLFXL073DcK3BVc5mQjOmZHu93KIImEjuAGXEzQZW3QHVtk1UVeM6uPf8880yMtlV901tws7dZ2fuOyW7DWqjvwLWuiuXpXdg7rr7GacKKQGgUlMrJqvqwclWzZJRCMvdooTeMNChxAcvrgi065Kglc_M6sCNcJn7DjvHUugcHl0LD-7Be41wPgTmF3l8SEu6sFcIVzmnhdG6c0Fw7kUTwZiBc5nsIc6qkcZS1oXRuspHGEbwYuy463I6LOm0M1M960V1mZCHpVHAjL2z-y4cRPB-bUSYp0JLXYX6CQxhNJ6GSOMODbi_HRaCLiy674hHolV0eOxDe92pLXR22uN9Ibo0GVQQvB374Z9Vn_-3R_xf_DK6j-GSfd_Z3H8ONlGwVytPXG7De_DwJT9DSatzTlqUZfL9sGfoDvD4_9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-21+deficiency+inhibits+osteoclast+function+and+prevents+bone+loss+in+mice&rft.jtitle=Scientific+reports&rft.au=Hu%2C+Cheng-Hu&rft.au=Sui%2C+Bing-Dong&rft.au=Du%2C+Fang-Ying&rft.au=Shuai%2C+Yi&rft.date=2017-02-27&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=43191&rft_id=info:doi/10.1038%2Fsrep43191&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |