Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer

The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 35; no. 22; pp. 5814 - 5821
Main Authors Jing, Lijia, Liang, Xiaolong, Deng, Zijian, Feng, Shanshan, Li, Xiaoda, Huang, Maomao, Li, Changhui, Dai, Zhifei
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm3 sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy.
AbstractList The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm³ sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy.
Abstract The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm3 sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy.
The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm3 sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy.
The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm(3) sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy.The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm(3) sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy.
The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm(3) sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy.
Author Jing, Lijia
Feng, Shanshan
Dai, Zhifei
Deng, Zijian
Huang, Maomao
Li, Xiaoda
Li, Changhui
Liang, Xiaolong
Author_xml – sequence: 1
  givenname: Lijia
  surname: Jing
  fullname: Jing, Lijia
  organization: Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
– sequence: 2
  givenname: Xiaolong
  surname: Liang
  fullname: Liang, Xiaolong
  organization: Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
– sequence: 3
  givenname: Zijian
  surname: Deng
  fullname: Deng, Zijian
  organization: Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
– sequence: 4
  givenname: Shanshan
  surname: Feng
  fullname: Feng, Shanshan
  organization: School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
– sequence: 5
  givenname: Xiaoda
  surname: Li
  fullname: Li, Xiaoda
  organization: School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
– sequence: 6
  givenname: Maomao
  surname: Huang
  fullname: Huang, Maomao
  organization: Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
– sequence: 7
  givenname: Changhui
  surname: Li
  fullname: Li, Changhui
  organization: Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
– sequence: 8
  givenname: Zhifei
  surname: Dai
  fullname: Dai, Zhifei
  email: zhifei.dai@163.com, zhifei.dai@pku.edu.cn
  organization: Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24746962$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2LFDEQhoOsuLOrf0GCJy89m6S_PYg6-AULCq7nUJ1UZjOmkzHpFvbgfzdtryKCuFCQhHrqJfVWnZETHzwS8oSzLWe8uThsBxtGmDBacGkrGK-2LAer75EN79quqHtWn5BNToiib7g4JWcpHVh-s0o8IKeiaqumb8SGfP8Y55QseDq4GakKWVbTfXCaevDhCHGyymGiJkSa7Di7CTyGOdHjdZgCqHzNxMXuig52DBoctSPsrd9T8HqFpmuMY07A4GCywdNgqAKvMD4k901uAR_dnufk85vXV7t3xeWHt-93Ly8LVZdiKkowUDOsoB4MR90pVhrdigaxVA1nrG9UZRBUrfsWeaeNQdFAZwRW2iCvynPydNU9xvB1xjTJ0SaFzq29SJF9LUXbCv5flNeC96xvK5HRx7foPIyo5THm1uON_OVuBp6tgIohpYjmN8KZXEYpD_LPUcpllJLlYHUufvFXsbLTT_-mCNbdTeL5KoHZ228Wo1TOeqvAfcEbTIcwR7_UcJmEZPLTsi_LuuQ1YWXTdVng1b8FpA72Lr_4Acj423Q
CitedBy_id crossref_primary_10_1021_acs_chemmater_8b00565
crossref_primary_10_1002_btm2_10639
crossref_primary_10_1016_j_ccr_2017_04_005
crossref_primary_10_1016_j_jhazmat_2022_128896
crossref_primary_10_1002_adma_201500323
crossref_primary_10_1016_j_nano_2016_05_003
crossref_primary_10_1002_ange_201904534
crossref_primary_10_1039_C9TB00808J
crossref_primary_10_1080_21691401_2018_1430585
crossref_primary_10_1016_j_actbio_2016_07_026
crossref_primary_10_1021_acs_nanolett_9b01716
crossref_primary_10_1039_C6BM00600K
crossref_primary_10_1016_j_talanta_2019_03_075
crossref_primary_10_1016_j_bioactmat_2021_07_014
crossref_primary_10_1021_acsanm_0c03346
crossref_primary_10_3390_jnt4020007
crossref_primary_10_1016_j_bioactmat_2021_07_018
crossref_primary_10_1016_j_bioactmat_2022_10_016
crossref_primary_10_1021_acs_chemrev_3c00794
crossref_primary_10_1016_j_jconrel_2023_05_007
crossref_primary_10_1039_D2QI01068B
crossref_primary_10_1016_j_nano_2019_102138
crossref_primary_10_1016_j_cej_2022_134781
crossref_primary_10_1039_D2BM01698B
crossref_primary_10_1021_acsami_5b02510
crossref_primary_10_1016_j_ijpharm_2019_118561
crossref_primary_10_1002_adhm_201500453
crossref_primary_10_1039_C9DT00141G
crossref_primary_10_1016_j_ijpharm_2018_07_055
crossref_primary_10_1039_C8TB03148G
crossref_primary_10_1016_j_jcis_2025_02_104
crossref_primary_10_1155_2015_541763
crossref_primary_10_1002_cbic_202000094
crossref_primary_10_1039_C4RA16138F
crossref_primary_10_1021_nn506137n
crossref_primary_10_1039_C8BM01412D
crossref_primary_10_1021_acsami_6b04579
crossref_primary_10_1002_adfm_201601478
crossref_primary_10_1039_C6BM00306K
crossref_primary_10_1007_s13534_016_0006_z
crossref_primary_10_3390_s17061400
crossref_primary_10_1039_C8DT01687A
crossref_primary_10_1039_C9BM00276F
crossref_primary_10_1016_j_biomaterials_2016_06_015
crossref_primary_10_1016_j_mtbio_2023_100566
crossref_primary_10_1039_C5NR01557J
crossref_primary_10_7567_JJAP_56_06GG06
crossref_primary_10_1039_C6RA24979E
crossref_primary_10_1016_j_biomaterials_2019_119443
crossref_primary_10_1002_adfm_201403991
crossref_primary_10_1016_j_colsurfb_2014_10_059
crossref_primary_10_1002_btm2_10749
crossref_primary_10_1016_j_actbio_2023_12_047
crossref_primary_10_1021_acsami_6b05677
crossref_primary_10_1038_s41598_018_20139_0
crossref_primary_10_3390_ijms18081719
crossref_primary_10_1016_j_csbj_2019_04_005
crossref_primary_10_1007_s12274_015_0886_8
crossref_primary_10_4155_fsoa_2017_0048
crossref_primary_10_1016_j_matlet_2021_130592
crossref_primary_10_1002_adma_202000542
crossref_primary_10_1021_acsami_7b04488
crossref_primary_10_1016_j_drudis_2020_05_014
crossref_primary_10_1021_acsabm_9b00129
crossref_primary_10_1007_s11051_022_05557_6
crossref_primary_10_1016_j_biomaterials_2014_09_004
crossref_primary_10_1016_j_ccr_2022_214497
crossref_primary_10_3390_nano8010011
crossref_primary_10_1021_acsami_7b13643
crossref_primary_10_1002_smll_201602896
crossref_primary_10_1002_celc_202000988
crossref_primary_10_1016_j_mtnano_2022_100187
crossref_primary_10_1088_2043_6262_6_2_023002
crossref_primary_10_1021_acsabm_1c00998
crossref_primary_10_1016_j_bbcan_2021_188532
crossref_primary_10_1021_bc500279w
crossref_primary_10_1038_s41598_019_42324_5
crossref_primary_10_1039_C9NJ05301H
crossref_primary_10_1016_j_drudis_2015_05_009
crossref_primary_10_1021_acsnano_7b03519
crossref_primary_10_2478_pjmpe_2019_0009
crossref_primary_10_3390_jfb7020019
crossref_primary_10_3390_molecules23020419
crossref_primary_10_3390_photonics11121201
crossref_primary_10_1021_acs_molpharmaceut_8b00106
crossref_primary_10_1007_s10103_017_2158_1
crossref_primary_10_1021_acsomega_3c03538
crossref_primary_10_1039_C8TB01214H
crossref_primary_10_1155_2018_5837276
crossref_primary_10_1002_wnan_1642
crossref_primary_10_1039_C8BM01444B
crossref_primary_10_1371_journal_pone_0264554
crossref_primary_10_1021_acsami_6b15703
crossref_primary_10_1016_j_mtadv_2019_100049
crossref_primary_10_1021_acs_analchem_0c02859
crossref_primary_10_1016_j_jcis_2017_09_027
crossref_primary_10_1016_j_matdes_2023_112088
crossref_primary_10_1016_j_bios_2022_114995
crossref_primary_10_1002_advs_201600356
crossref_primary_10_1002_adma_202200389
crossref_primary_10_2217_nnm_16_16
crossref_primary_10_1016_j_pdpdt_2018_02_015
crossref_primary_10_1088_1361_6528_ab1613
crossref_primary_10_1039_C8NR05203D
crossref_primary_10_1039_C8TB00859K
crossref_primary_10_1016_j_arabjc_2022_104000
crossref_primary_10_1016_j_biomaterials_2019_05_006
crossref_primary_10_1021_acsami_1c24569
crossref_primary_10_1021_acsnano_7b03062
crossref_primary_10_1039_D0NR01690J
crossref_primary_10_1016_j_nantod_2021_101091
crossref_primary_10_1016_j_cossms_2016_03_006
crossref_primary_10_3390_jfb7030019
crossref_primary_10_1039_C8AY01456F
crossref_primary_10_1177_08853282231194147
crossref_primary_10_1002_adtp_202000091
crossref_primary_10_1002_smll_201703789
crossref_primary_10_1039_C6NR07520G
crossref_primary_10_1039_D0CC08034A
crossref_primary_10_1186_s12951_022_01633_0
crossref_primary_10_1021_acs_chemrev_8b00672
crossref_primary_10_1039_C4RA05209A
crossref_primary_10_1016_j_ccr_2023_215025
crossref_primary_10_1002_adhm_201800347
crossref_primary_10_3390_ph14111075
crossref_primary_10_1002_smll_201700963
crossref_primary_10_1039_C9BM00239A
crossref_primary_10_2147_IJN_S335588
crossref_primary_10_1039_D1TB00888A
crossref_primary_10_1016_j_eurpolymj_2016_03_008
crossref_primary_10_2147_IJN_S364108
crossref_primary_10_1016_j_trac_2022_116729
crossref_primary_10_1002_adma_201703588
crossref_primary_10_1016_j_pdpdt_2018_08_008
crossref_primary_10_1002_chem_201702796
crossref_primary_10_1038_s41467_020_20276_z
crossref_primary_10_1016_j_bioactmat_2022_11_001
crossref_primary_10_1021_jacs_7b13672
crossref_primary_10_1021_acsnano_6b05990
crossref_primary_10_1039_C9NR08471A
crossref_primary_10_1002_adfm_201807859
crossref_primary_10_18632_oncotarget_23092
crossref_primary_10_1039_C6TB02137A
crossref_primary_10_3390_molecules22091445
crossref_primary_10_1007_s11307_017_1056_z
crossref_primary_10_1002_ppsc_201500189
crossref_primary_10_1016_j_cej_2020_124468
crossref_primary_10_3389_fchem_2022_841316
crossref_primary_10_1016_j_ccr_2017_09_007
crossref_primary_10_1016_j_micromeso_2019_04_064
crossref_primary_10_1016_j_micromeso_2018_05_022
crossref_primary_10_1002_smll_202401059
crossref_primary_10_1039_C7NR01064H
crossref_primary_10_1246_bcsj_20180083
crossref_primary_10_1016_j_talanta_2020_121435
crossref_primary_10_1021_acsnano_6b05858
crossref_primary_10_1177_0960327115622258
crossref_primary_10_1016_j_ijbiomac_2025_139535
crossref_primary_10_1016_j_pmatsci_2021_100871
crossref_primary_10_1016_j_pacs_2020_100166
crossref_primary_10_1016_j_ijpharm_2018_01_034
crossref_primary_10_1016_j_biomaterials_2016_08_022
crossref_primary_10_1016_j_inoche_2023_110858
crossref_primary_10_1002_adfm_202312197
crossref_primary_10_1007_s12274_015_0829_4
crossref_primary_10_1002_adhm_202201084
crossref_primary_10_1039_C6DT01299J
crossref_primary_10_1002_adtp_201800100
crossref_primary_10_1021_acsami_7b11926
crossref_primary_10_1016_j_actbio_2019_03_008
crossref_primary_10_1039_D1NR02928B
crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2024046712
crossref_primary_10_1039_C5SC00781J
crossref_primary_10_1002_adfm_201805225
crossref_primary_10_1186_s12951_023_02108_6
crossref_primary_10_3390_bioengineering6030075
crossref_primary_10_1021_acsami_7b18320
crossref_primary_10_1016_j_ijbiomac_2025_142154
crossref_primary_10_1016_j_nano_2015_08_008
crossref_primary_10_1021_nn506130t
crossref_primary_10_1002_wnan_1466
crossref_primary_10_2139_ssrn_4017468
crossref_primary_10_3390_app8091567
crossref_primary_10_1039_C7NR07255D
crossref_primary_10_1021_acs_inorgchem_6b01556
crossref_primary_10_2147_IJN_S269321
crossref_primary_10_1021_acsami_7b17838
crossref_primary_10_1039_C5CC00362H
crossref_primary_10_1016_j_sna_2021_112925
crossref_primary_10_1371_journal_pone_0174687
crossref_primary_10_1016_j_biomaterials_2014_11_053
crossref_primary_10_1021_acs_inorgchem_9b03699
crossref_primary_10_1039_D3CS00565H
crossref_primary_10_3390_molecules23061414
crossref_primary_10_1039_C4RA16294C
crossref_primary_10_1016_j_jcis_2017_10_085
crossref_primary_10_1016_j_ijbiomac_2022_01_062
crossref_primary_10_1039_C8TB03185A
crossref_primary_10_1021_bm501438e
crossref_primary_10_1039_D3NR01052J
crossref_primary_10_1016_j_ccr_2020_213393
crossref_primary_10_1021_acs_bioconjchem_0c00165
crossref_primary_10_1016_j_msec_2019_110324
crossref_primary_10_1021_acschemneuro_3c00144
crossref_primary_10_1039_C7TB00944E
crossref_primary_10_1039_D0TB01248C
crossref_primary_10_1021_acsnano_6b05427
crossref_primary_10_1021_acs_analchem_6b03521
crossref_primary_10_1002_adhm_201900948
crossref_primary_10_1016_j_susmat_2019_e00109
crossref_primary_10_1021_acsbiomaterials_9b01693
crossref_primary_10_1016_j_pdpdt_2018_10_021
crossref_primary_10_1021_acsami_9b09296
crossref_primary_10_1002_ppsc_201700306
crossref_primary_10_1016_j_jconrel_2021_01_033
crossref_primary_10_1016_j_canlet_2021_08_019
crossref_primary_10_1039_D1TB02221K
crossref_primary_10_1039_C9NR04951G
crossref_primary_10_1002_jbm_b_34678
crossref_primary_10_1021_acsami_6b01147
crossref_primary_10_1186_s12989_023_00529_7
crossref_primary_10_1002_adfm_201802026
crossref_primary_10_1021_acsami_6b13493
crossref_primary_10_1016_j_pacs_2021_100284
crossref_primary_10_2147_IJN_S327598
crossref_primary_10_1039_C6NR03398A
crossref_primary_10_1039_D0TB01380C
crossref_primary_10_1089_ten_tec_2015_0462
crossref_primary_10_1002_adhm_201601094
crossref_primary_10_1002_adhm_202001897
crossref_primary_10_1039_D1CS00056J
crossref_primary_10_1039_D2TB02617A
crossref_primary_10_53964_jmn_2021001
crossref_primary_10_1016_j_mtsust_2024_101023
crossref_primary_10_1039_D4TC04578E
crossref_primary_10_3390_bioengineering9120766
crossref_primary_10_3390_cancers12102893
crossref_primary_10_1002_anie_201904534
crossref_primary_10_1002_chem_201605903
crossref_primary_10_1039_D0TB00182A
crossref_primary_10_1021_acs_bioconjchem_9b00669
crossref_primary_10_1016_j_ejphar_2024_176948
crossref_primary_10_1016_j_jconrel_2016_06_031
crossref_primary_10_1002_adfm_201402338
crossref_primary_10_1021_jacs_5b12070
crossref_primary_10_1016_j_talanta_2022_123450
crossref_primary_10_1039_C6RA05648B
crossref_primary_10_1002_jbm_a_37613
crossref_primary_10_3390_s20236905
Cites_doi 10.1021/cr9003538
10.1021/ar800018v
10.1021/jp057170o
10.1002/adma.201101295
10.1002/adma.201104964
10.1021/ja057254a
10.1021/nn203124x
10.1021/nl100996u
10.1021/nl047950t
10.1002/adfm.200700482
10.1002/smll.200801546
10.1021/nn100736c
10.1021/ja3016582
10.1039/c2cc36456e
10.1039/c3cc42510j
10.1002/adfm.201201663
10.1109/JSTQE.2003.813302
10.1021/nn103047r
10.1021/ar2000327
10.1021/la062788q
10.1016/j.biomaterials.2010.08.096
10.1021/nl8029114
10.1155/2009/960573
10.1002/anie.201008286
10.1073/pnas.2232479100
10.1364/AO.44.000770
10.1002/adma.201202211
10.1021/cm020732l
10.1021/ja106855m
10.2217/nnm.10.85
10.2217/17435889.2.5.657
10.1039/B514191E
10.1002/anie.200904359
10.1021/ja071471p
10.1021/nl070345g
10.1039/c0pp00237b
10.1021/ja300140c
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2014.04.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 5821
ExternalDocumentID 24746962
10_1016_j_biomaterials_2014_04_005
1_s2_0_S0142961214003688
S0142961214003688
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAYXX
AGRNS
BNPGV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c532t-3afa50e4a5bf1ed8c03fd726ee3c610096c4feac5d97e18dffe26a8f2e4dfe143
ISSN 0142-9612
1878-5905
IngestDate Fri Jul 11 00:22:10 EDT 2025
Tue Aug 05 10:09:01 EDT 2025
Thu Apr 03 07:08:43 EDT 2025
Thu Apr 24 23:02:58 EDT 2025
Tue Aug 05 12:05:56 EDT 2025
Sun Feb 23 10:18:53 EST 2025
Tue Aug 26 17:19:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Photothermal therapy
Au nanoparticles
Prussian blue
X-ray computed tomography
Photoacoustic imaging
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c532t-3afa50e4a5bf1ed8c03fd726ee3c610096c4feac5d97e18dffe26a8f2e4dfe143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24746962
PQID 1521909742
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2101327721
proquest_miscellaneous_1521909742
pubmed_primary_24746962
crossref_primary_10_1016_j_biomaterials_2014_04_005
crossref_citationtrail_10_1016_j_biomaterials_2014_04_005
elsevier_clinicalkeyesjournals_1_s2_0_S0142961214003688
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2014_04_005
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huang, El-Sayed, Qian, El-Sayed (bib19) 2006; 128
Lee, Cho, Oh, Lee, Kim, Kim (bib22) 2012; 134
Yang, Hu, Ma, Ye, Cheng, Shi (bib10) 2012; 24
Kolkman, Hondebrink, Steenbergen, Mul de (bib24) 2003; 9
Kopelman, Popovtzer, Agrawal, Kotov, Popovtzer, Balter (bib4) 2008; 8
Zhou, Zhang, Huang, Lu, Song, Melancon (bib17) 2010; 132
Lee, Yang, Ko, Oh, Kang, Son (bib20) 2008; 18
Louie (bib21) 2010; 110
Chen, Saeki, Wiley, Chang, Cobb, Li (bib2) 2005; 5
Nikoobakht, El-Sayed (bib33) 2003; 15
Wang, Wang, Cheng, Lee, Liu (bib11) 2012; 134
Tian, Tang, Sun, Zou, Chen, Zhu (bib15) 2011; 23
Jose, Manohar, Kolkman, Steenbergen, van Leeuwen (bib23) 2009; 2
Yang, Zhang, Zhang, Sun, Lee, Liu (bib12) 2010; 10
Ke, Wang, Dai, Jin, Qu, Xing (bib5) 2011; 13
Eustis, El-Sayed (bib26) 2006; 35
Fu, Liu, Feng, Yue (bib35) 2012; 48
Erathodiyil, Ying (bib28) 2011; 44
Jain, Lee, El-Sayed, El-Sayed (bib32) 2006; 110
Choi, Kim, Kang, Byeon, Kim, Tee (bib9) 2011; 5
Ku, Wang, Xie, Stoica, Wang (bib25) 2005; 44
Zhu, Tian, Yan, Qin, Feng (bib38) 2009
Liang, Deng, Jing, Li, Li, Huang (bib36) 2013
Qiu, Peng, Liang, Li, Xia (bib37) 2007; 23
Skrabalak, Au, Lu, Li, Xia (bib8) 2007; 2
Kim, Park, Lee, Jeong, Jon (bib31) 2007; 129
Chen, Wang, Xi, Au, Siekkinen, Warsen (bib3) 2007; 7
Liu, Tao, Yang, Zhang, Lee, Liu (bib13) 2011; 32
Hirsch, Stafford, Bankson, Sershen, Rivera, Price (bib18) 2003; 100
Li, Lu, Huang, Huang, Li, Chen (bib16) 2010; 5
Giljohann, Seferos, Daniel, Massich, Patel, Mirkin (bib27) 2010; 49
Skrabalak, Chen, Sun, Lu, Au, Cobley (bib7) 2008; 41
Zha, Yue, Ren, Dai (bib14) 2013; 25
Cai, Li, Kim, Yuan, Wang, Xia (bib30) 2011; 5
Phillips (bib1) 2010; 9
Alkilany, Nagaria, Hexel, Shaw, Murphy, Wyatt (bib34) 2009; 5
Ma, Liang, Tong, Bao, Ren, Dai (bib6) 2012; 23
Kim, Cho, Chen, Song, Au, Favazza (bib29) 2010; 4
Zhu (10.1016/j.biomaterials.2014.04.005_bib38) 2009
Chen (10.1016/j.biomaterials.2014.04.005_bib3) 2007; 7
Phillips (10.1016/j.biomaterials.2014.04.005_bib1) 2010; 9
Wang (10.1016/j.biomaterials.2014.04.005_bib11) 2012; 134
Hirsch (10.1016/j.biomaterials.2014.04.005_bib18) 2003; 100
Kolkman (10.1016/j.biomaterials.2014.04.005_bib24) 2003; 9
Alkilany (10.1016/j.biomaterials.2014.04.005_bib34) 2009; 5
Ma (10.1016/j.biomaterials.2014.04.005_bib6) 2012; 23
Kim (10.1016/j.biomaterials.2014.04.005_bib31) 2007; 129
Li (10.1016/j.biomaterials.2014.04.005_bib16) 2010; 5
Kim (10.1016/j.biomaterials.2014.04.005_bib29) 2010; 4
Chen (10.1016/j.biomaterials.2014.04.005_bib2) 2005; 5
Zha (10.1016/j.biomaterials.2014.04.005_bib14) 2013; 25
Ku (10.1016/j.biomaterials.2014.04.005_bib25) 2005; 44
Zhou (10.1016/j.biomaterials.2014.04.005_bib17) 2010; 132
Kopelman (10.1016/j.biomaterials.2014.04.005_bib4) 2008; 8
Ke (10.1016/j.biomaterials.2014.04.005_bib5) 2011; 13
Jain (10.1016/j.biomaterials.2014.04.005_bib32) 2006; 110
Liu (10.1016/j.biomaterials.2014.04.005_bib13) 2011; 32
Yang (10.1016/j.biomaterials.2014.04.005_bib10) 2012; 24
Tian (10.1016/j.biomaterials.2014.04.005_bib15) 2011; 23
Choi (10.1016/j.biomaterials.2014.04.005_bib9) 2011; 5
Lee (10.1016/j.biomaterials.2014.04.005_bib22) 2012; 134
Eustis (10.1016/j.biomaterials.2014.04.005_bib26) 2006; 35
Fu (10.1016/j.biomaterials.2014.04.005_bib35) 2012; 48
Nikoobakht (10.1016/j.biomaterials.2014.04.005_bib33) 2003; 15
Qiu (10.1016/j.biomaterials.2014.04.005_bib37) 2007; 23
Giljohann (10.1016/j.biomaterials.2014.04.005_bib27) 2010; 49
Cai (10.1016/j.biomaterials.2014.04.005_bib30) 2011; 5
Skrabalak (10.1016/j.biomaterials.2014.04.005_bib7) 2008; 41
Huang (10.1016/j.biomaterials.2014.04.005_bib19) 2006; 128
Yang (10.1016/j.biomaterials.2014.04.005_bib12) 2010; 10
Lee (10.1016/j.biomaterials.2014.04.005_bib20) 2008; 18
Jose (10.1016/j.biomaterials.2014.04.005_bib23) 2009; 2
Liang (10.1016/j.biomaterials.2014.04.005_bib36) 2013
Louie (10.1016/j.biomaterials.2014.04.005_bib21) 2010; 110
Skrabalak (10.1016/j.biomaterials.2014.04.005_bib8) 2007; 2
Erathodiyil (10.1016/j.biomaterials.2014.04.005_bib28) 2011; 44
References_xml – volume: 132
  start-page: 15351
  year: 2010
  end-page: 15358
  ident: bib17
  article-title: Chelator-free multifunctional [
  publication-title: J Am Chem Soc
– volume: 44
  start-page: 770
  year: 2005
  end-page: 775
  ident: bib25
  article-title: Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography
  publication-title: Appl Opt
– volume: 134
  start-page: 7414
  year: 2012
  end-page: 7422
  ident: bib11
  article-title: Noble metal coated single-walled carbon nanotubes for applications in surface enhanced raman scattering imaging and photothermal therapy
  publication-title: J Am Chem Soc
– volume: 18
  start-page: 258
  year: 2008
  end-page: 264
  ident: bib20
  article-title: Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy
  publication-title: Adv Funct Mater
– volume: 5
  start-page: 701
  year: 2009
  end-page: 708
  ident: bib34
  article-title: Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects
  publication-title: Small
– volume: 129
  start-page: 7661
  year: 2007
  end-page: 7665
  ident: bib31
  article-title: Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging
  publication-title: J Am Chem Soc
– volume: 5
  start-page: 1995
  year: 2011
  end-page: 2003
  ident: bib9
  article-title: Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers
  publication-title: Acs Nano
– volume: 110
  start-page: 3146
  year: 2010
  end-page: 3195
  ident: bib21
  article-title: Multimodality imaging probes: design and challenges
  publication-title: Chem Rev
– volume: 134
  start-page: 10309
  year: 2012
  end-page: 10312
  ident: bib22
  article-title: Multifunctional Fe
  publication-title: J Am Chem Soc
– volume: 2
  start-page: 657
  year: 2007
  end-page: 668
  ident: bib8
  article-title: Gold nanocages for cancer detection and treatment
  publication-title: Nanomedicine
– volume: 23
  start-page: 2133
  year: 2007
  end-page: 2137
  ident: bib37
  article-title: Synthesis, characterization, and immobilization of prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H
  publication-title: Langmuir
– volume: 9
  start-page: 343
  year: 2003
  end-page: 346
  ident: bib24
  article-title: In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor
  publication-title: IEEE J Sel Top Quant
– volume: 9
  start-page: 1589
  year: 2010
  end-page: 1596
  ident: bib1
  article-title: Light relief: photochemistry and medicine
  publication-title: Photochem Photobiol Sci
– volume: 5
  start-page: 473
  year: 2005
  end-page: 477
  ident: bib2
  article-title: Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents
  publication-title: Nano Lett
– volume: 48
  start-page: 11567
  year: 2012
  end-page: 11569
  ident: bib35
  article-title: Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy
  publication-title: Chem Commun
– volume: 23
  start-page: 815
  year: 2012
  end-page: 822
  ident: bib6
  article-title: Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy
  publication-title: Adv Funct Mater
– volume: 25
  start-page: 777
  year: 2013
  end-page: 782
  ident: bib14
  article-title: Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells
  publication-title: Adv Mater
– volume: 128
  start-page: 2115
  year: 2006
  end-page: 2120
  ident: bib19
  article-title: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods
  publication-title: J Am Chem Soc
– volume: 35
  start-page: 209
  year: 2006
  end-page: 217
  ident: bib26
  article-title: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes
  publication-title: Chem Soc Rev
– start-page: 11029
  year: 2013
  end-page: 11031
  ident: bib36
  article-title: Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging
  publication-title: Chem Commun
– volume: 7
  start-page: 1318
  year: 2007
  end-page: 1322
  ident: bib3
  article-title: Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells
  publication-title: Nano Lett
– volume: 23
  start-page: 3542
  year: 2011
  end-page: 3547
  ident: bib15
  article-title: Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells
  publication-title: Adv Mater
– volume: 32
  start-page: 144
  year: 2011
  end-page: 151
  ident: bib13
  article-title: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors
  publication-title: Biomaterials
– volume: 4
  start-page: 4559
  year: 2010
  end-page: 4564
  ident: bib29
  article-title: In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages
  publication-title: ACS Nano
– volume: 5
  start-page: 1161
  year: 2010
  end-page: 1171
  ident: bib16
  article-title: Copper sulfide nanoparticles for photothermal ablation of tumor cells
  publication-title: Nanomedicine
– volume: 5
  start-page: 9658
  year: 2011
  end-page: 9667
  ident: bib30
  article-title: In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography
  publication-title: ACS Nano
– volume: 2
  start-page: 701
  year: 2009
  end-page: 717
  ident: bib23
  article-title: Imaging of tumor vasculature using twente photoacoustic systems
  publication-title: J Biophot
– volume: 15
  start-page: 1957
  year: 2003
  end-page: 1962
  ident: bib33
  article-title: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method
  publication-title: Chem Mater
– start-page: 960573
  year: 2009
  ident: bib38
  article-title: Cone beam micro-CT system for small animal imaging and performance evaluation
  publication-title: Int J Biomed Imaging
– volume: 44
  start-page: 925
  year: 2011
  end-page: 935
  ident: bib28
  article-title: Functionalization of inorganic nanoparticles for bioimaging applications
  publication-title: Acc Chem Res
– volume: 41
  start-page: 1587
  year: 2008
  end-page: 1595
  ident: bib7
  article-title: Gold nanocages: synthesis, properties, and applications
  publication-title: Acc Chem Res
– volume: 10
  start-page: 3318
  year: 2010
  end-page: 3323
  ident: bib12
  article-title: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy
  publication-title: Nano Lett
– volume: 24
  start-page: 1868
  year: 2012
  end-page: 1872
  ident: bib10
  article-title: Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles
  publication-title: Adv Mater
– volume: 110
  start-page: 7238
  year: 2006
  end-page: 7248
  ident: bib32
  article-title: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine
  publication-title: J Phys Chem B
– volume: 100
  start-page: 13549
  year: 2003
  end-page: 13554
  ident: bib18
  article-title: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 4593
  year: 2008
  end-page: 4596
  ident: bib4
  article-title: Targeted gold nanoparticles enable molecular CT imaging of cancer
  publication-title: Nano Lett
– volume: 49
  start-page: 3280
  year: 2010
  end-page: 3294
  ident: bib27
  article-title: Goldnanoparticles for biology and medicine
  publication-title: Angew Chem Int Ed
– volume: 13
  start-page: 3017
  year: 2011
  end-page: 3021
  ident: bib5
  article-title: Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy
  publication-title: Angew Chem Int Ed
– volume: 110
  start-page: 3146
  year: 2010
  ident: 10.1016/j.biomaterials.2014.04.005_bib21
  article-title: Multimodality imaging probes: design and challenges
  publication-title: Chem Rev
  doi: 10.1021/cr9003538
– volume: 41
  start-page: 1587
  year: 2008
  ident: 10.1016/j.biomaterials.2014.04.005_bib7
  article-title: Gold nanocages: synthesis, properties, and applications
  publication-title: Acc Chem Res
  doi: 10.1021/ar800018v
– volume: 110
  start-page: 7238
  year: 2006
  ident: 10.1016/j.biomaterials.2014.04.005_bib32
  article-title: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine
  publication-title: J Phys Chem B
  doi: 10.1021/jp057170o
– volume: 23
  start-page: 3542
  year: 2011
  ident: 10.1016/j.biomaterials.2014.04.005_bib15
  article-title: Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells
  publication-title: Adv Mater
  doi: 10.1002/adma.201101295
– volume: 2
  start-page: 701
  year: 2009
  ident: 10.1016/j.biomaterials.2014.04.005_bib23
  article-title: Imaging of tumor vasculature using twente photoacoustic systems
  publication-title: J Biophot
– volume: 24
  start-page: 1868
  year: 2012
  ident: 10.1016/j.biomaterials.2014.04.005_bib10
  article-title: Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles
  publication-title: Adv Mater
  doi: 10.1002/adma.201104964
– volume: 128
  start-page: 2115
  year: 2006
  ident: 10.1016/j.biomaterials.2014.04.005_bib19
  article-title: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods
  publication-title: J Am Chem Soc
  doi: 10.1021/ja057254a
– volume: 5
  start-page: 9658
  year: 2011
  ident: 10.1016/j.biomaterials.2014.04.005_bib30
  article-title: In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography
  publication-title: ACS Nano
  doi: 10.1021/nn203124x
– volume: 10
  start-page: 3318
  year: 2010
  ident: 10.1016/j.biomaterials.2014.04.005_bib12
  article-title: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy
  publication-title: Nano Lett
  doi: 10.1021/nl100996u
– volume: 5
  start-page: 473
  year: 2005
  ident: 10.1016/j.biomaterials.2014.04.005_bib2
  article-title: Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents
  publication-title: Nano Lett
  doi: 10.1021/nl047950t
– volume: 18
  start-page: 258
  year: 2008
  ident: 10.1016/j.biomaterials.2014.04.005_bib20
  article-title: Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200700482
– volume: 5
  start-page: 701
  year: 2009
  ident: 10.1016/j.biomaterials.2014.04.005_bib34
  article-title: Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects
  publication-title: Small
  doi: 10.1002/smll.200801546
– volume: 4
  start-page: 4559
  year: 2010
  ident: 10.1016/j.biomaterials.2014.04.005_bib29
  article-title: In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages
  publication-title: ACS Nano
  doi: 10.1021/nn100736c
– volume: 134
  start-page: 10309
  year: 2012
  ident: 10.1016/j.biomaterials.2014.04.005_bib22
  article-title: Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3016582
– volume: 48
  start-page: 11567
  year: 2012
  ident: 10.1016/j.biomaterials.2014.04.005_bib35
  article-title: Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy
  publication-title: Chem Commun
  doi: 10.1039/c2cc36456e
– start-page: 11029
  year: 2013
  ident: 10.1016/j.biomaterials.2014.04.005_bib36
  article-title: Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging
  publication-title: Chem Commun
  doi: 10.1039/c3cc42510j
– volume: 23
  start-page: 815
  year: 2012
  ident: 10.1016/j.biomaterials.2014.04.005_bib6
  article-title: Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201201663
– volume: 9
  start-page: 343
  year: 2003
  ident: 10.1016/j.biomaterials.2014.04.005_bib24
  article-title: In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor
  publication-title: IEEE J Sel Top Quant
  doi: 10.1109/JSTQE.2003.813302
– volume: 5
  start-page: 1995
  year: 2011
  ident: 10.1016/j.biomaterials.2014.04.005_bib9
  article-title: Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers
  publication-title: Acs Nano
  doi: 10.1021/nn103047r
– volume: 44
  start-page: 925
  year: 2011
  ident: 10.1016/j.biomaterials.2014.04.005_bib28
  article-title: Functionalization of inorganic nanoparticles for bioimaging applications
  publication-title: Acc Chem Res
  doi: 10.1021/ar2000327
– volume: 23
  start-page: 2133
  year: 2007
  ident: 10.1016/j.biomaterials.2014.04.005_bib37
  article-title: Synthesis, characterization, and immobilization of prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2
  publication-title: Langmuir
  doi: 10.1021/la062788q
– volume: 32
  start-page: 144
  year: 2011
  ident: 10.1016/j.biomaterials.2014.04.005_bib13
  article-title: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.08.096
– volume: 8
  start-page: 4593
  year: 2008
  ident: 10.1016/j.biomaterials.2014.04.005_bib4
  article-title: Targeted gold nanoparticles enable molecular CT imaging of cancer
  publication-title: Nano Lett
  doi: 10.1021/nl8029114
– start-page: 960573
  year: 2009
  ident: 10.1016/j.biomaterials.2014.04.005_bib38
  article-title: Cone beam micro-CT system for small animal imaging and performance evaluation
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2009/960573
– volume: 13
  start-page: 3017
  year: 2011
  ident: 10.1016/j.biomaterials.2014.04.005_bib5
  article-title: Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201008286
– volume: 100
  start-page: 13549
  year: 2003
  ident: 10.1016/j.biomaterials.2014.04.005_bib18
  article-title: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2232479100
– volume: 44
  start-page: 770
  year: 2005
  ident: 10.1016/j.biomaterials.2014.04.005_bib25
  article-title: Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography
  publication-title: Appl Opt
  doi: 10.1364/AO.44.000770
– volume: 25
  start-page: 777
  year: 2013
  ident: 10.1016/j.biomaterials.2014.04.005_bib14
  article-title: Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells
  publication-title: Adv Mater
  doi: 10.1002/adma.201202211
– volume: 15
  start-page: 1957
  year: 2003
  ident: 10.1016/j.biomaterials.2014.04.005_bib33
  article-title: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method
  publication-title: Chem Mater
  doi: 10.1021/cm020732l
– volume: 132
  start-page: 15351
  year: 2010
  ident: 10.1016/j.biomaterials.2014.04.005_bib17
  article-title: Chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy
  publication-title: J Am Chem Soc
  doi: 10.1021/ja106855m
– volume: 5
  start-page: 1161
  year: 2010
  ident: 10.1016/j.biomaterials.2014.04.005_bib16
  article-title: Copper sulfide nanoparticles for photothermal ablation of tumor cells
  publication-title: Nanomedicine
  doi: 10.2217/nnm.10.85
– volume: 2
  start-page: 657
  year: 2007
  ident: 10.1016/j.biomaterials.2014.04.005_bib8
  article-title: Gold nanocages for cancer detection and treatment
  publication-title: Nanomedicine
  doi: 10.2217/17435889.2.5.657
– volume: 35
  start-page: 209
  year: 2006
  ident: 10.1016/j.biomaterials.2014.04.005_bib26
  article-title: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes
  publication-title: Chem Soc Rev
  doi: 10.1039/B514191E
– volume: 49
  start-page: 3280
  year: 2010
  ident: 10.1016/j.biomaterials.2014.04.005_bib27
  article-title: Goldnanoparticles for biology and medicine
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200904359
– volume: 129
  start-page: 7661
  year: 2007
  ident: 10.1016/j.biomaterials.2014.04.005_bib31
  article-title: Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging
  publication-title: J Am Chem Soc
  doi: 10.1021/ja071471p
– volume: 7
  start-page: 1318
  year: 2007
  ident: 10.1016/j.biomaterials.2014.04.005_bib3
  article-title: Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells
  publication-title: Nano Lett
  doi: 10.1021/nl070345g
– volume: 9
  start-page: 1589
  year: 2010
  ident: 10.1016/j.biomaterials.2014.04.005_bib1
  article-title: Light relief: photochemistry and medicine
  publication-title: Photochem Photobiol Sci
  doi: 10.1039/c0pp00237b
– volume: 134
  start-page: 7414
  year: 2012
  ident: 10.1016/j.biomaterials.2014.04.005_bib11
  article-title: Noble metal coated single-walled carbon nanotubes for applications in surface enhanced raman scattering imaging and photothermal therapy
  publication-title: J Am Chem Soc
  doi: 10.1021/ja300140c
SSID ssj0014042
Score 2.571552
Snippet The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of...
Abstract The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5814
SubjectTerms absorption
Advanced Basic Science
Animals
Au nanoparticles
biocompatibility
Dentistry
drugs
Ferrocyanides - chemistry
Ferrocyanides - therapeutic use
gold
Gold - chemistry
Gold - therapeutic use
HeLa Cells
Humans
Hyperthermia, Induced
image analysis
intravenous injection
irradiation
Mice
Mice, Nude
nanogold
nanoparticles
Nanoparticles - chemistry
Nanoparticles - therapeutic use
Nanoparticles - ultrastructure
near-infrared spectroscopy
neoplasms
Neoplasms - diagnosis
Neoplasms - therapy
Photoacoustic imaging
Photoacoustic Techniques
photostability
Phototherapy
Photothermal therapy
Prussian blue
tissues
Tomography, X-Ray Computed
X-radiation
X-ray computed tomography
Title Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961214003688
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961214003688
https://www.ncbi.nlm.nih.gov/pubmed/24746962
https://www.proquest.com/docview/1521909742
https://www.proquest.com/docview/2101327721
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbpFvo4lDZ9pS9U6G1xasuSH_RU0l2WdrcUmoWlF2HZcuOQtZc4uRTav9S_2BlLdpI2gXQhmCCkIHm-zIykb2YIeeMxsEORnzmp7wuHp0I7YGeYE_hhxFWmhGFVnn0OTs75xwtx0ev9XmMtLRdqmP7YGldyHalCG8gVo2T_Q7Ldj0IDfAf5whMkDM-9ZPxlvqybIEg1WyLrPEH38Xs1yw7LpITdsCW9NVTCukDuYFJq5LxeTapFBbqwKeWFKXLHhwqElmEGjktTt6hJIIDd0EO8xIwCata5lyliZb5xIVxU4PuaRXesHFsv5bSYFp32Py3sCfVFkYDitYYTXWlt2r9h7w6yx7b16wRs6sS221MKj3eM1tXBJXPiwNvQvCZRiUWYCU-2elREJrTU2mSM5t2q783Rw3So1haJfD3e5K91xcrKtTf7R6NPnlOzoesgr43hlGCPCXbcVBf8K_m2J2smXflP1xvkJoN9CSrW4a-OU4SpipjhzJrFtlluG0Lhrjnu8oh27Xgaz2d8n9yzWxb63qDpAenpsk9uf0CaGVYK7JO7a0kt--TWmaVrPCQ_W4BSBCg1AKUIULoBUAoApesApRsAfTsaUwtPauFJAZ50HZ60hSetcmrg-YicHx-NRyeOrffhpMJnC8dP8kS4midC5Z7OotT18yxkgdZ-Cl4-bLZTnoOjILI41F6U5blmQRLlTPMs1-D4PyYHZVXqp4TGMZbUViLJfMUDVydh5OYqUaHSzFfaG5C4fecytcnwsSbLTLasx6lcl5dEeUkXPq4YEL8be2VSwuw16l0rWtkGPYOZloDkvUaH20br2mqjWu5C6oC8bnEkwXLgdaCRpETPPXbjkLPdfZiHd7GAdHhjTwwIuzUzHvIgDtiza8_tObmz0hUvyMFivtQvwcdfqFfN_-oPOkIAYA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prussian+blue+coated+gold+nanoparticles+for+simultaneous+photoacoustic%2FCT+bimodal+imaging+and+photothermal+ablation+of+cancer&rft.jtitle=Biomaterials&rft.au=Jing%2C+Lijia&rft.au=Liang%2C+Xiaolong&rft.au=Deng%2C+Zijian&rft.au=Feng%2C+Shanshan&rft.date=2014-07-01&rft.issn=0142-9612&rft.volume=35&rft.issue=22&rft.spage=5814&rft.epage=5821&rft_id=info:doi/10.1016%2Fj.biomaterials.2014.04.005&rft.externalDBID=ECK1-s2.0-S0142961214003688&rft.externalDocID=1_s2_0_S0142961214003688
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961214X00153%2Fcov150h.gif