Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer
The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal...
Saved in:
Published in | Biomaterials Vol. 35; no. 22; pp. 5814 - 5821 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm3 sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy. |
---|---|
AbstractList | The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm³ sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy. Abstract The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm3 sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy. The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm3 sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy. The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm(3) sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy.The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm(3) sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy. The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of interest, but also good soft tissue contrast and excellent high sensitivity, which is very beneficial to the precise guidance for photothermal therapy (PTT). The near infrared (NIR) absorbing Au nanostructures take advantages to operate as a CT contrast agent due to high absorption coefficient of X-ray and outstanding biocompatibility, but show obvious deficiency for PA imaging and PTT because of low photostability. Attacking this problem head on, the Au nanoparticles (NPs) were coated with Prussian blue (PB) which is a typical FDA-approved drug in clinic for safe and effective treatment of radioactive exposure. The obtained core/shell NPs of Au@PB NPs of 17.8 ± 2.3 nm were found to be an excellent photoabsorbing agent for both PTT and PA imaging due to high photostability and high molar extinction coefficient in NIR region. Their gold core of 9.1 ± 0.64 nm ensured a remarkable contrast enhancement for CT imaging. Through a one-time treatment of NIR laser irradiation after intravenous injection of Au@PB NPs, 100 mm(3) sized tumors in nude mice could be completely ablated without recurrence. Such versatile nanoparticles integrating effective cancer diagnosis with noninvasive therapy might bring opportunities to future cancer therapy. |
Author | Jing, Lijia Feng, Shanshan Dai, Zhifei Deng, Zijian Huang, Maomao Li, Xiaoda Li, Changhui Liang, Xiaolong |
Author_xml | – sequence: 1 givenname: Lijia surname: Jing fullname: Jing, Lijia organization: Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China – sequence: 2 givenname: Xiaolong surname: Liang fullname: Liang, Xiaolong organization: Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China – sequence: 3 givenname: Zijian surname: Deng fullname: Deng, Zijian organization: Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China – sequence: 4 givenname: Shanshan surname: Feng fullname: Feng, Shanshan organization: School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China – sequence: 5 givenname: Xiaoda surname: Li fullname: Li, Xiaoda organization: School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China – sequence: 6 givenname: Maomao surname: Huang fullname: Huang, Maomao organization: Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China – sequence: 7 givenname: Changhui surname: Li fullname: Li, Changhui organization: Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China – sequence: 8 givenname: Zhifei surname: Dai fullname: Dai, Zhifei email: zhifei.dai@163.com, zhifei.dai@pku.edu.cn organization: Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24746962$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2LFDEQhoOsuLOrf0GCJy89m6S_PYg6-AULCq7nUJ1UZjOmkzHpFvbgfzdtryKCuFCQhHrqJfVWnZETHzwS8oSzLWe8uThsBxtGmDBacGkrGK-2LAer75EN79quqHtWn5BNToiib7g4JWcpHVh-s0o8IKeiaqumb8SGfP8Y55QseDq4GakKWVbTfXCaevDhCHGyymGiJkSa7Di7CTyGOdHjdZgCqHzNxMXuig52DBoctSPsrd9T8HqFpmuMY07A4GCywdNgqAKvMD4k901uAR_dnufk85vXV7t3xeWHt-93Ly8LVZdiKkowUDOsoB4MR90pVhrdigaxVA1nrG9UZRBUrfsWeaeNQdFAZwRW2iCvynPydNU9xvB1xjTJ0SaFzq29SJF9LUXbCv5flNeC96xvK5HRx7foPIyo5THm1uON_OVuBp6tgIohpYjmN8KZXEYpD_LPUcpllJLlYHUufvFXsbLTT_-mCNbdTeL5KoHZ228Wo1TOeqvAfcEbTIcwR7_UcJmEZPLTsi_LuuQ1YWXTdVng1b8FpA72Lr_4Acj423Q |
CitedBy_id | crossref_primary_10_1021_acs_chemmater_8b00565 crossref_primary_10_1002_btm2_10639 crossref_primary_10_1016_j_ccr_2017_04_005 crossref_primary_10_1016_j_jhazmat_2022_128896 crossref_primary_10_1002_adma_201500323 crossref_primary_10_1016_j_nano_2016_05_003 crossref_primary_10_1002_ange_201904534 crossref_primary_10_1039_C9TB00808J crossref_primary_10_1080_21691401_2018_1430585 crossref_primary_10_1016_j_actbio_2016_07_026 crossref_primary_10_1021_acs_nanolett_9b01716 crossref_primary_10_1039_C6BM00600K crossref_primary_10_1016_j_talanta_2019_03_075 crossref_primary_10_1016_j_bioactmat_2021_07_014 crossref_primary_10_1021_acsanm_0c03346 crossref_primary_10_3390_jnt4020007 crossref_primary_10_1016_j_bioactmat_2021_07_018 crossref_primary_10_1016_j_bioactmat_2022_10_016 crossref_primary_10_1021_acs_chemrev_3c00794 crossref_primary_10_1016_j_jconrel_2023_05_007 crossref_primary_10_1039_D2QI01068B crossref_primary_10_1016_j_nano_2019_102138 crossref_primary_10_1016_j_cej_2022_134781 crossref_primary_10_1039_D2BM01698B crossref_primary_10_1021_acsami_5b02510 crossref_primary_10_1016_j_ijpharm_2019_118561 crossref_primary_10_1002_adhm_201500453 crossref_primary_10_1039_C9DT00141G crossref_primary_10_1016_j_ijpharm_2018_07_055 crossref_primary_10_1039_C8TB03148G crossref_primary_10_1016_j_jcis_2025_02_104 crossref_primary_10_1155_2015_541763 crossref_primary_10_1002_cbic_202000094 crossref_primary_10_1039_C4RA16138F crossref_primary_10_1021_nn506137n crossref_primary_10_1039_C8BM01412D crossref_primary_10_1021_acsami_6b04579 crossref_primary_10_1002_adfm_201601478 crossref_primary_10_1039_C6BM00306K crossref_primary_10_1007_s13534_016_0006_z crossref_primary_10_3390_s17061400 crossref_primary_10_1039_C8DT01687A crossref_primary_10_1039_C9BM00276F crossref_primary_10_1016_j_biomaterials_2016_06_015 crossref_primary_10_1016_j_mtbio_2023_100566 crossref_primary_10_1039_C5NR01557J crossref_primary_10_7567_JJAP_56_06GG06 crossref_primary_10_1039_C6RA24979E crossref_primary_10_1016_j_biomaterials_2019_119443 crossref_primary_10_1002_adfm_201403991 crossref_primary_10_1016_j_colsurfb_2014_10_059 crossref_primary_10_1002_btm2_10749 crossref_primary_10_1016_j_actbio_2023_12_047 crossref_primary_10_1021_acsami_6b05677 crossref_primary_10_1038_s41598_018_20139_0 crossref_primary_10_3390_ijms18081719 crossref_primary_10_1016_j_csbj_2019_04_005 crossref_primary_10_1007_s12274_015_0886_8 crossref_primary_10_4155_fsoa_2017_0048 crossref_primary_10_1016_j_matlet_2021_130592 crossref_primary_10_1002_adma_202000542 crossref_primary_10_1021_acsami_7b04488 crossref_primary_10_1016_j_drudis_2020_05_014 crossref_primary_10_1021_acsabm_9b00129 crossref_primary_10_1007_s11051_022_05557_6 crossref_primary_10_1016_j_biomaterials_2014_09_004 crossref_primary_10_1016_j_ccr_2022_214497 crossref_primary_10_3390_nano8010011 crossref_primary_10_1021_acsami_7b13643 crossref_primary_10_1002_smll_201602896 crossref_primary_10_1002_celc_202000988 crossref_primary_10_1016_j_mtnano_2022_100187 crossref_primary_10_1088_2043_6262_6_2_023002 crossref_primary_10_1021_acsabm_1c00998 crossref_primary_10_1016_j_bbcan_2021_188532 crossref_primary_10_1021_bc500279w crossref_primary_10_1038_s41598_019_42324_5 crossref_primary_10_1039_C9NJ05301H crossref_primary_10_1016_j_drudis_2015_05_009 crossref_primary_10_1021_acsnano_7b03519 crossref_primary_10_2478_pjmpe_2019_0009 crossref_primary_10_3390_jfb7020019 crossref_primary_10_3390_molecules23020419 crossref_primary_10_3390_photonics11121201 crossref_primary_10_1021_acs_molpharmaceut_8b00106 crossref_primary_10_1007_s10103_017_2158_1 crossref_primary_10_1021_acsomega_3c03538 crossref_primary_10_1039_C8TB01214H crossref_primary_10_1155_2018_5837276 crossref_primary_10_1002_wnan_1642 crossref_primary_10_1039_C8BM01444B crossref_primary_10_1371_journal_pone_0264554 crossref_primary_10_1021_acsami_6b15703 crossref_primary_10_1016_j_mtadv_2019_100049 crossref_primary_10_1021_acs_analchem_0c02859 crossref_primary_10_1016_j_jcis_2017_09_027 crossref_primary_10_1016_j_matdes_2023_112088 crossref_primary_10_1016_j_bios_2022_114995 crossref_primary_10_1002_advs_201600356 crossref_primary_10_1002_adma_202200389 crossref_primary_10_2217_nnm_16_16 crossref_primary_10_1016_j_pdpdt_2018_02_015 crossref_primary_10_1088_1361_6528_ab1613 crossref_primary_10_1039_C8NR05203D crossref_primary_10_1039_C8TB00859K crossref_primary_10_1016_j_arabjc_2022_104000 crossref_primary_10_1016_j_biomaterials_2019_05_006 crossref_primary_10_1021_acsami_1c24569 crossref_primary_10_1021_acsnano_7b03062 crossref_primary_10_1039_D0NR01690J crossref_primary_10_1016_j_nantod_2021_101091 crossref_primary_10_1016_j_cossms_2016_03_006 crossref_primary_10_3390_jfb7030019 crossref_primary_10_1039_C8AY01456F crossref_primary_10_1177_08853282231194147 crossref_primary_10_1002_adtp_202000091 crossref_primary_10_1002_smll_201703789 crossref_primary_10_1039_C6NR07520G crossref_primary_10_1039_D0CC08034A crossref_primary_10_1186_s12951_022_01633_0 crossref_primary_10_1021_acs_chemrev_8b00672 crossref_primary_10_1039_C4RA05209A crossref_primary_10_1016_j_ccr_2023_215025 crossref_primary_10_1002_adhm_201800347 crossref_primary_10_3390_ph14111075 crossref_primary_10_1002_smll_201700963 crossref_primary_10_1039_C9BM00239A crossref_primary_10_2147_IJN_S335588 crossref_primary_10_1039_D1TB00888A crossref_primary_10_1016_j_eurpolymj_2016_03_008 crossref_primary_10_2147_IJN_S364108 crossref_primary_10_1016_j_trac_2022_116729 crossref_primary_10_1002_adma_201703588 crossref_primary_10_1016_j_pdpdt_2018_08_008 crossref_primary_10_1002_chem_201702796 crossref_primary_10_1038_s41467_020_20276_z crossref_primary_10_1016_j_bioactmat_2022_11_001 crossref_primary_10_1021_jacs_7b13672 crossref_primary_10_1021_acsnano_6b05990 crossref_primary_10_1039_C9NR08471A crossref_primary_10_1002_adfm_201807859 crossref_primary_10_18632_oncotarget_23092 crossref_primary_10_1039_C6TB02137A crossref_primary_10_3390_molecules22091445 crossref_primary_10_1007_s11307_017_1056_z crossref_primary_10_1002_ppsc_201500189 crossref_primary_10_1016_j_cej_2020_124468 crossref_primary_10_3389_fchem_2022_841316 crossref_primary_10_1016_j_ccr_2017_09_007 crossref_primary_10_1016_j_micromeso_2019_04_064 crossref_primary_10_1016_j_micromeso_2018_05_022 crossref_primary_10_1002_smll_202401059 crossref_primary_10_1039_C7NR01064H crossref_primary_10_1246_bcsj_20180083 crossref_primary_10_1016_j_talanta_2020_121435 crossref_primary_10_1021_acsnano_6b05858 crossref_primary_10_1177_0960327115622258 crossref_primary_10_1016_j_ijbiomac_2025_139535 crossref_primary_10_1016_j_pmatsci_2021_100871 crossref_primary_10_1016_j_pacs_2020_100166 crossref_primary_10_1016_j_ijpharm_2018_01_034 crossref_primary_10_1016_j_biomaterials_2016_08_022 crossref_primary_10_1016_j_inoche_2023_110858 crossref_primary_10_1002_adfm_202312197 crossref_primary_10_1007_s12274_015_0829_4 crossref_primary_10_1002_adhm_202201084 crossref_primary_10_1039_C6DT01299J crossref_primary_10_1002_adtp_201800100 crossref_primary_10_1021_acsami_7b11926 crossref_primary_10_1016_j_actbio_2019_03_008 crossref_primary_10_1039_D1NR02928B crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2024046712 crossref_primary_10_1039_C5SC00781J crossref_primary_10_1002_adfm_201805225 crossref_primary_10_1186_s12951_023_02108_6 crossref_primary_10_3390_bioengineering6030075 crossref_primary_10_1021_acsami_7b18320 crossref_primary_10_1016_j_ijbiomac_2025_142154 crossref_primary_10_1016_j_nano_2015_08_008 crossref_primary_10_1021_nn506130t crossref_primary_10_1002_wnan_1466 crossref_primary_10_2139_ssrn_4017468 crossref_primary_10_3390_app8091567 crossref_primary_10_1039_C7NR07255D crossref_primary_10_1021_acs_inorgchem_6b01556 crossref_primary_10_2147_IJN_S269321 crossref_primary_10_1021_acsami_7b17838 crossref_primary_10_1039_C5CC00362H crossref_primary_10_1016_j_sna_2021_112925 crossref_primary_10_1371_journal_pone_0174687 crossref_primary_10_1016_j_biomaterials_2014_11_053 crossref_primary_10_1021_acs_inorgchem_9b03699 crossref_primary_10_1039_D3CS00565H crossref_primary_10_3390_molecules23061414 crossref_primary_10_1039_C4RA16294C crossref_primary_10_1016_j_jcis_2017_10_085 crossref_primary_10_1016_j_ijbiomac_2022_01_062 crossref_primary_10_1039_C8TB03185A crossref_primary_10_1021_bm501438e crossref_primary_10_1039_D3NR01052J crossref_primary_10_1016_j_ccr_2020_213393 crossref_primary_10_1021_acs_bioconjchem_0c00165 crossref_primary_10_1016_j_msec_2019_110324 crossref_primary_10_1021_acschemneuro_3c00144 crossref_primary_10_1039_C7TB00944E crossref_primary_10_1039_D0TB01248C crossref_primary_10_1021_acsnano_6b05427 crossref_primary_10_1021_acs_analchem_6b03521 crossref_primary_10_1002_adhm_201900948 crossref_primary_10_1016_j_susmat_2019_e00109 crossref_primary_10_1021_acsbiomaterials_9b01693 crossref_primary_10_1016_j_pdpdt_2018_10_021 crossref_primary_10_1021_acsami_9b09296 crossref_primary_10_1002_ppsc_201700306 crossref_primary_10_1016_j_jconrel_2021_01_033 crossref_primary_10_1016_j_canlet_2021_08_019 crossref_primary_10_1039_D1TB02221K crossref_primary_10_1039_C9NR04951G crossref_primary_10_1002_jbm_b_34678 crossref_primary_10_1021_acsami_6b01147 crossref_primary_10_1186_s12989_023_00529_7 crossref_primary_10_1002_adfm_201802026 crossref_primary_10_1021_acsami_6b13493 crossref_primary_10_1016_j_pacs_2021_100284 crossref_primary_10_2147_IJN_S327598 crossref_primary_10_1039_C6NR03398A crossref_primary_10_1039_D0TB01380C crossref_primary_10_1089_ten_tec_2015_0462 crossref_primary_10_1002_adhm_201601094 crossref_primary_10_1002_adhm_202001897 crossref_primary_10_1039_D1CS00056J crossref_primary_10_1039_D2TB02617A crossref_primary_10_53964_jmn_2021001 crossref_primary_10_1016_j_mtsust_2024_101023 crossref_primary_10_1039_D4TC04578E crossref_primary_10_3390_bioengineering9120766 crossref_primary_10_3390_cancers12102893 crossref_primary_10_1002_anie_201904534 crossref_primary_10_1002_chem_201605903 crossref_primary_10_1039_D0TB00182A crossref_primary_10_1021_acs_bioconjchem_9b00669 crossref_primary_10_1016_j_ejphar_2024_176948 crossref_primary_10_1016_j_jconrel_2016_06_031 crossref_primary_10_1002_adfm_201402338 crossref_primary_10_1021_jacs_5b12070 crossref_primary_10_1016_j_talanta_2022_123450 crossref_primary_10_1039_C6RA05648B crossref_primary_10_1002_jbm_a_37613 crossref_primary_10_3390_s20236905 |
Cites_doi | 10.1021/cr9003538 10.1021/ar800018v 10.1021/jp057170o 10.1002/adma.201101295 10.1002/adma.201104964 10.1021/ja057254a 10.1021/nn203124x 10.1021/nl100996u 10.1021/nl047950t 10.1002/adfm.200700482 10.1002/smll.200801546 10.1021/nn100736c 10.1021/ja3016582 10.1039/c2cc36456e 10.1039/c3cc42510j 10.1002/adfm.201201663 10.1109/JSTQE.2003.813302 10.1021/nn103047r 10.1021/ar2000327 10.1021/la062788q 10.1016/j.biomaterials.2010.08.096 10.1021/nl8029114 10.1155/2009/960573 10.1002/anie.201008286 10.1073/pnas.2232479100 10.1364/AO.44.000770 10.1002/adma.201202211 10.1021/cm020732l 10.1021/ja106855m 10.2217/nnm.10.85 10.2217/17435889.2.5.657 10.1039/B514191E 10.1002/anie.200904359 10.1021/ja071471p 10.1021/nl070345g 10.1039/c0pp00237b 10.1021/ja300140c |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2014.04.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 5821 |
ExternalDocumentID | 24746962 10_1016_j_biomaterials_2014_04_005 1_s2_0_S0142961214003688 S0142961214003688 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAYXX AGRNS BNPGV CITATION CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c532t-3afa50e4a5bf1ed8c03fd726ee3c610096c4feac5d97e18dffe26a8f2e4dfe143 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Fri Jul 11 00:22:10 EDT 2025 Tue Aug 05 10:09:01 EDT 2025 Thu Apr 03 07:08:43 EDT 2025 Thu Apr 24 23:02:58 EDT 2025 Tue Aug 05 12:05:56 EDT 2025 Sun Feb 23 10:18:53 EST 2025 Tue Aug 26 17:19:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Photothermal therapy Au nanoparticles Prussian blue X-ray computed tomography Photoacoustic imaging |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c532t-3afa50e4a5bf1ed8c03fd726ee3c610096c4feac5d97e18dffe26a8f2e4dfe143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24746962 |
PQID | 1521909742 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2101327721 proquest_miscellaneous_1521909742 pubmed_primary_24746962 crossref_primary_10_1016_j_biomaterials_2014_04_005 crossref_citationtrail_10_1016_j_biomaterials_2014_04_005 elsevier_clinicalkeyesjournals_1_s2_0_S0142961214003688 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2014_04_005 |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Huang, El-Sayed, Qian, El-Sayed (bib19) 2006; 128 Lee, Cho, Oh, Lee, Kim, Kim (bib22) 2012; 134 Yang, Hu, Ma, Ye, Cheng, Shi (bib10) 2012; 24 Kolkman, Hondebrink, Steenbergen, Mul de (bib24) 2003; 9 Kopelman, Popovtzer, Agrawal, Kotov, Popovtzer, Balter (bib4) 2008; 8 Zhou, Zhang, Huang, Lu, Song, Melancon (bib17) 2010; 132 Lee, Yang, Ko, Oh, Kang, Son (bib20) 2008; 18 Louie (bib21) 2010; 110 Chen, Saeki, Wiley, Chang, Cobb, Li (bib2) 2005; 5 Nikoobakht, El-Sayed (bib33) 2003; 15 Wang, Wang, Cheng, Lee, Liu (bib11) 2012; 134 Tian, Tang, Sun, Zou, Chen, Zhu (bib15) 2011; 23 Jose, Manohar, Kolkman, Steenbergen, van Leeuwen (bib23) 2009; 2 Yang, Zhang, Zhang, Sun, Lee, Liu (bib12) 2010; 10 Ke, Wang, Dai, Jin, Qu, Xing (bib5) 2011; 13 Eustis, El-Sayed (bib26) 2006; 35 Fu, Liu, Feng, Yue (bib35) 2012; 48 Erathodiyil, Ying (bib28) 2011; 44 Jain, Lee, El-Sayed, El-Sayed (bib32) 2006; 110 Choi, Kim, Kang, Byeon, Kim, Tee (bib9) 2011; 5 Ku, Wang, Xie, Stoica, Wang (bib25) 2005; 44 Zhu, Tian, Yan, Qin, Feng (bib38) 2009 Liang, Deng, Jing, Li, Li, Huang (bib36) 2013 Qiu, Peng, Liang, Li, Xia (bib37) 2007; 23 Skrabalak, Au, Lu, Li, Xia (bib8) 2007; 2 Kim, Park, Lee, Jeong, Jon (bib31) 2007; 129 Chen, Wang, Xi, Au, Siekkinen, Warsen (bib3) 2007; 7 Liu, Tao, Yang, Zhang, Lee, Liu (bib13) 2011; 32 Hirsch, Stafford, Bankson, Sershen, Rivera, Price (bib18) 2003; 100 Li, Lu, Huang, Huang, Li, Chen (bib16) 2010; 5 Giljohann, Seferos, Daniel, Massich, Patel, Mirkin (bib27) 2010; 49 Skrabalak, Chen, Sun, Lu, Au, Cobley (bib7) 2008; 41 Zha, Yue, Ren, Dai (bib14) 2013; 25 Cai, Li, Kim, Yuan, Wang, Xia (bib30) 2011; 5 Phillips (bib1) 2010; 9 Alkilany, Nagaria, Hexel, Shaw, Murphy, Wyatt (bib34) 2009; 5 Ma, Liang, Tong, Bao, Ren, Dai (bib6) 2012; 23 Kim, Cho, Chen, Song, Au, Favazza (bib29) 2010; 4 Zhu (10.1016/j.biomaterials.2014.04.005_bib38) 2009 Chen (10.1016/j.biomaterials.2014.04.005_bib3) 2007; 7 Phillips (10.1016/j.biomaterials.2014.04.005_bib1) 2010; 9 Wang (10.1016/j.biomaterials.2014.04.005_bib11) 2012; 134 Hirsch (10.1016/j.biomaterials.2014.04.005_bib18) 2003; 100 Kolkman (10.1016/j.biomaterials.2014.04.005_bib24) 2003; 9 Alkilany (10.1016/j.biomaterials.2014.04.005_bib34) 2009; 5 Ma (10.1016/j.biomaterials.2014.04.005_bib6) 2012; 23 Kim (10.1016/j.biomaterials.2014.04.005_bib31) 2007; 129 Li (10.1016/j.biomaterials.2014.04.005_bib16) 2010; 5 Kim (10.1016/j.biomaterials.2014.04.005_bib29) 2010; 4 Chen (10.1016/j.biomaterials.2014.04.005_bib2) 2005; 5 Zha (10.1016/j.biomaterials.2014.04.005_bib14) 2013; 25 Ku (10.1016/j.biomaterials.2014.04.005_bib25) 2005; 44 Zhou (10.1016/j.biomaterials.2014.04.005_bib17) 2010; 132 Kopelman (10.1016/j.biomaterials.2014.04.005_bib4) 2008; 8 Ke (10.1016/j.biomaterials.2014.04.005_bib5) 2011; 13 Jain (10.1016/j.biomaterials.2014.04.005_bib32) 2006; 110 Liu (10.1016/j.biomaterials.2014.04.005_bib13) 2011; 32 Yang (10.1016/j.biomaterials.2014.04.005_bib10) 2012; 24 Tian (10.1016/j.biomaterials.2014.04.005_bib15) 2011; 23 Choi (10.1016/j.biomaterials.2014.04.005_bib9) 2011; 5 Lee (10.1016/j.biomaterials.2014.04.005_bib22) 2012; 134 Eustis (10.1016/j.biomaterials.2014.04.005_bib26) 2006; 35 Fu (10.1016/j.biomaterials.2014.04.005_bib35) 2012; 48 Nikoobakht (10.1016/j.biomaterials.2014.04.005_bib33) 2003; 15 Qiu (10.1016/j.biomaterials.2014.04.005_bib37) 2007; 23 Giljohann (10.1016/j.biomaterials.2014.04.005_bib27) 2010; 49 Cai (10.1016/j.biomaterials.2014.04.005_bib30) 2011; 5 Skrabalak (10.1016/j.biomaterials.2014.04.005_bib7) 2008; 41 Huang (10.1016/j.biomaterials.2014.04.005_bib19) 2006; 128 Yang (10.1016/j.biomaterials.2014.04.005_bib12) 2010; 10 Lee (10.1016/j.biomaterials.2014.04.005_bib20) 2008; 18 Jose (10.1016/j.biomaterials.2014.04.005_bib23) 2009; 2 Liang (10.1016/j.biomaterials.2014.04.005_bib36) 2013 Louie (10.1016/j.biomaterials.2014.04.005_bib21) 2010; 110 Skrabalak (10.1016/j.biomaterials.2014.04.005_bib8) 2007; 2 Erathodiyil (10.1016/j.biomaterials.2014.04.005_bib28) 2011; 44 |
References_xml | – volume: 132 start-page: 15351 year: 2010 end-page: 15358 ident: bib17 article-title: Chelator-free multifunctional [ publication-title: J Am Chem Soc – volume: 44 start-page: 770 year: 2005 end-page: 775 ident: bib25 article-title: Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography publication-title: Appl Opt – volume: 134 start-page: 7414 year: 2012 end-page: 7422 ident: bib11 article-title: Noble metal coated single-walled carbon nanotubes for applications in surface enhanced raman scattering imaging and photothermal therapy publication-title: J Am Chem Soc – volume: 18 start-page: 258 year: 2008 end-page: 264 ident: bib20 article-title: Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy publication-title: Adv Funct Mater – volume: 5 start-page: 701 year: 2009 end-page: 708 ident: bib34 article-title: Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects publication-title: Small – volume: 129 start-page: 7661 year: 2007 end-page: 7665 ident: bib31 article-title: Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging publication-title: J Am Chem Soc – volume: 5 start-page: 1995 year: 2011 end-page: 2003 ident: bib9 article-title: Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers publication-title: Acs Nano – volume: 110 start-page: 3146 year: 2010 end-page: 3195 ident: bib21 article-title: Multimodality imaging probes: design and challenges publication-title: Chem Rev – volume: 134 start-page: 10309 year: 2012 end-page: 10312 ident: bib22 article-title: Multifunctional Fe publication-title: J Am Chem Soc – volume: 2 start-page: 657 year: 2007 end-page: 668 ident: bib8 article-title: Gold nanocages for cancer detection and treatment publication-title: Nanomedicine – volume: 23 start-page: 2133 year: 2007 end-page: 2137 ident: bib37 article-title: Synthesis, characterization, and immobilization of prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H publication-title: Langmuir – volume: 9 start-page: 343 year: 2003 end-page: 346 ident: bib24 article-title: In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor publication-title: IEEE J Sel Top Quant – volume: 9 start-page: 1589 year: 2010 end-page: 1596 ident: bib1 article-title: Light relief: photochemistry and medicine publication-title: Photochem Photobiol Sci – volume: 5 start-page: 473 year: 2005 end-page: 477 ident: bib2 article-title: Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents publication-title: Nano Lett – volume: 48 start-page: 11567 year: 2012 end-page: 11569 ident: bib35 article-title: Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy publication-title: Chem Commun – volume: 23 start-page: 815 year: 2012 end-page: 822 ident: bib6 article-title: Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy publication-title: Adv Funct Mater – volume: 25 start-page: 777 year: 2013 end-page: 782 ident: bib14 article-title: Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells publication-title: Adv Mater – volume: 128 start-page: 2115 year: 2006 end-page: 2120 ident: bib19 article-title: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods publication-title: J Am Chem Soc – volume: 35 start-page: 209 year: 2006 end-page: 217 ident: bib26 article-title: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes publication-title: Chem Soc Rev – start-page: 11029 year: 2013 end-page: 11031 ident: bib36 article-title: Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging publication-title: Chem Commun – volume: 7 start-page: 1318 year: 2007 end-page: 1322 ident: bib3 article-title: Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells publication-title: Nano Lett – volume: 23 start-page: 3542 year: 2011 end-page: 3547 ident: bib15 article-title: Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells publication-title: Adv Mater – volume: 32 start-page: 144 year: 2011 end-page: 151 ident: bib13 article-title: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors publication-title: Biomaterials – volume: 4 start-page: 4559 year: 2010 end-page: 4564 ident: bib29 article-title: In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages publication-title: ACS Nano – volume: 5 start-page: 1161 year: 2010 end-page: 1171 ident: bib16 article-title: Copper sulfide nanoparticles for photothermal ablation of tumor cells publication-title: Nanomedicine – volume: 5 start-page: 9658 year: 2011 end-page: 9667 ident: bib30 article-title: In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography publication-title: ACS Nano – volume: 2 start-page: 701 year: 2009 end-page: 717 ident: bib23 article-title: Imaging of tumor vasculature using twente photoacoustic systems publication-title: J Biophot – volume: 15 start-page: 1957 year: 2003 end-page: 1962 ident: bib33 article-title: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method publication-title: Chem Mater – start-page: 960573 year: 2009 ident: bib38 article-title: Cone beam micro-CT system for small animal imaging and performance evaluation publication-title: Int J Biomed Imaging – volume: 44 start-page: 925 year: 2011 end-page: 935 ident: bib28 article-title: Functionalization of inorganic nanoparticles for bioimaging applications publication-title: Acc Chem Res – volume: 41 start-page: 1587 year: 2008 end-page: 1595 ident: bib7 article-title: Gold nanocages: synthesis, properties, and applications publication-title: Acc Chem Res – volume: 10 start-page: 3318 year: 2010 end-page: 3323 ident: bib12 article-title: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy publication-title: Nano Lett – volume: 24 start-page: 1868 year: 2012 end-page: 1872 ident: bib10 article-title: Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles publication-title: Adv Mater – volume: 110 start-page: 7238 year: 2006 end-page: 7248 ident: bib32 article-title: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine publication-title: J Phys Chem B – volume: 100 start-page: 13549 year: 2003 end-page: 13554 ident: bib18 article-title: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: 4593 year: 2008 end-page: 4596 ident: bib4 article-title: Targeted gold nanoparticles enable molecular CT imaging of cancer publication-title: Nano Lett – volume: 49 start-page: 3280 year: 2010 end-page: 3294 ident: bib27 article-title: Goldnanoparticles for biology and medicine publication-title: Angew Chem Int Ed – volume: 13 start-page: 3017 year: 2011 end-page: 3021 ident: bib5 article-title: Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy publication-title: Angew Chem Int Ed – volume: 110 start-page: 3146 year: 2010 ident: 10.1016/j.biomaterials.2014.04.005_bib21 article-title: Multimodality imaging probes: design and challenges publication-title: Chem Rev doi: 10.1021/cr9003538 – volume: 41 start-page: 1587 year: 2008 ident: 10.1016/j.biomaterials.2014.04.005_bib7 article-title: Gold nanocages: synthesis, properties, and applications publication-title: Acc Chem Res doi: 10.1021/ar800018v – volume: 110 start-page: 7238 year: 2006 ident: 10.1016/j.biomaterials.2014.04.005_bib32 article-title: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine publication-title: J Phys Chem B doi: 10.1021/jp057170o – volume: 23 start-page: 3542 year: 2011 ident: 10.1016/j.biomaterials.2014.04.005_bib15 article-title: Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells publication-title: Adv Mater doi: 10.1002/adma.201101295 – volume: 2 start-page: 701 year: 2009 ident: 10.1016/j.biomaterials.2014.04.005_bib23 article-title: Imaging of tumor vasculature using twente photoacoustic systems publication-title: J Biophot – volume: 24 start-page: 1868 year: 2012 ident: 10.1016/j.biomaterials.2014.04.005_bib10 article-title: Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles publication-title: Adv Mater doi: 10.1002/adma.201104964 – volume: 128 start-page: 2115 year: 2006 ident: 10.1016/j.biomaterials.2014.04.005_bib19 article-title: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods publication-title: J Am Chem Soc doi: 10.1021/ja057254a – volume: 5 start-page: 9658 year: 2011 ident: 10.1016/j.biomaterials.2014.04.005_bib30 article-title: In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography publication-title: ACS Nano doi: 10.1021/nn203124x – volume: 10 start-page: 3318 year: 2010 ident: 10.1016/j.biomaterials.2014.04.005_bib12 article-title: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy publication-title: Nano Lett doi: 10.1021/nl100996u – volume: 5 start-page: 473 year: 2005 ident: 10.1016/j.biomaterials.2014.04.005_bib2 article-title: Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents publication-title: Nano Lett doi: 10.1021/nl047950t – volume: 18 start-page: 258 year: 2008 ident: 10.1016/j.biomaterials.2014.04.005_bib20 article-title: Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy publication-title: Adv Funct Mater doi: 10.1002/adfm.200700482 – volume: 5 start-page: 701 year: 2009 ident: 10.1016/j.biomaterials.2014.04.005_bib34 article-title: Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects publication-title: Small doi: 10.1002/smll.200801546 – volume: 4 start-page: 4559 year: 2010 ident: 10.1016/j.biomaterials.2014.04.005_bib29 article-title: In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages publication-title: ACS Nano doi: 10.1021/nn100736c – volume: 134 start-page: 10309 year: 2012 ident: 10.1016/j.biomaterials.2014.04.005_bib22 article-title: Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography publication-title: J Am Chem Soc doi: 10.1021/ja3016582 – volume: 48 start-page: 11567 year: 2012 ident: 10.1016/j.biomaterials.2014.04.005_bib35 article-title: Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy publication-title: Chem Commun doi: 10.1039/c2cc36456e – start-page: 11029 year: 2013 ident: 10.1016/j.biomaterials.2014.04.005_bib36 article-title: Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging publication-title: Chem Commun doi: 10.1039/c3cc42510j – volume: 23 start-page: 815 year: 2012 ident: 10.1016/j.biomaterials.2014.04.005_bib6 article-title: Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy publication-title: Adv Funct Mater doi: 10.1002/adfm.201201663 – volume: 9 start-page: 343 year: 2003 ident: 10.1016/j.biomaterials.2014.04.005_bib24 article-title: In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor publication-title: IEEE J Sel Top Quant doi: 10.1109/JSTQE.2003.813302 – volume: 5 start-page: 1995 year: 2011 ident: 10.1016/j.biomaterials.2014.04.005_bib9 article-title: Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers publication-title: Acs Nano doi: 10.1021/nn103047r – volume: 44 start-page: 925 year: 2011 ident: 10.1016/j.biomaterials.2014.04.005_bib28 article-title: Functionalization of inorganic nanoparticles for bioimaging applications publication-title: Acc Chem Res doi: 10.1021/ar2000327 – volume: 23 start-page: 2133 year: 2007 ident: 10.1016/j.biomaterials.2014.04.005_bib37 article-title: Synthesis, characterization, and immobilization of prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2 publication-title: Langmuir doi: 10.1021/la062788q – volume: 32 start-page: 144 year: 2011 ident: 10.1016/j.biomaterials.2014.04.005_bib13 article-title: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.08.096 – volume: 8 start-page: 4593 year: 2008 ident: 10.1016/j.biomaterials.2014.04.005_bib4 article-title: Targeted gold nanoparticles enable molecular CT imaging of cancer publication-title: Nano Lett doi: 10.1021/nl8029114 – start-page: 960573 year: 2009 ident: 10.1016/j.biomaterials.2014.04.005_bib38 article-title: Cone beam micro-CT system for small animal imaging and performance evaluation publication-title: Int J Biomed Imaging doi: 10.1155/2009/960573 – volume: 13 start-page: 3017 year: 2011 ident: 10.1016/j.biomaterials.2014.04.005_bib5 article-title: Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy publication-title: Angew Chem Int Ed doi: 10.1002/anie.201008286 – volume: 100 start-page: 13549 year: 2003 ident: 10.1016/j.biomaterials.2014.04.005_bib18 article-title: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2232479100 – volume: 44 start-page: 770 year: 2005 ident: 10.1016/j.biomaterials.2014.04.005_bib25 article-title: Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography publication-title: Appl Opt doi: 10.1364/AO.44.000770 – volume: 25 start-page: 777 year: 2013 ident: 10.1016/j.biomaterials.2014.04.005_bib14 article-title: Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells publication-title: Adv Mater doi: 10.1002/adma.201202211 – volume: 15 start-page: 1957 year: 2003 ident: 10.1016/j.biomaterials.2014.04.005_bib33 article-title: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method publication-title: Chem Mater doi: 10.1021/cm020732l – volume: 132 start-page: 15351 year: 2010 ident: 10.1016/j.biomaterials.2014.04.005_bib17 article-title: Chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy publication-title: J Am Chem Soc doi: 10.1021/ja106855m – volume: 5 start-page: 1161 year: 2010 ident: 10.1016/j.biomaterials.2014.04.005_bib16 article-title: Copper sulfide nanoparticles for photothermal ablation of tumor cells publication-title: Nanomedicine doi: 10.2217/nnm.10.85 – volume: 2 start-page: 657 year: 2007 ident: 10.1016/j.biomaterials.2014.04.005_bib8 article-title: Gold nanocages for cancer detection and treatment publication-title: Nanomedicine doi: 10.2217/17435889.2.5.657 – volume: 35 start-page: 209 year: 2006 ident: 10.1016/j.biomaterials.2014.04.005_bib26 article-title: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes publication-title: Chem Soc Rev doi: 10.1039/B514191E – volume: 49 start-page: 3280 year: 2010 ident: 10.1016/j.biomaterials.2014.04.005_bib27 article-title: Goldnanoparticles for biology and medicine publication-title: Angew Chem Int Ed doi: 10.1002/anie.200904359 – volume: 129 start-page: 7661 year: 2007 ident: 10.1016/j.biomaterials.2014.04.005_bib31 article-title: Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging publication-title: J Am Chem Soc doi: 10.1021/ja071471p – volume: 7 start-page: 1318 year: 2007 ident: 10.1016/j.biomaterials.2014.04.005_bib3 article-title: Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells publication-title: Nano Lett doi: 10.1021/nl070345g – volume: 9 start-page: 1589 year: 2010 ident: 10.1016/j.biomaterials.2014.04.005_bib1 article-title: Light relief: photochemistry and medicine publication-title: Photochem Photobiol Sci doi: 10.1039/c0pp00237b – volume: 134 start-page: 7414 year: 2012 ident: 10.1016/j.biomaterials.2014.04.005_bib11 article-title: Noble metal coated single-walled carbon nanotubes for applications in surface enhanced raman scattering imaging and photothermal therapy publication-title: J Am Chem Soc doi: 10.1021/ja300140c |
SSID | ssj0014042 |
Score | 2.571552 |
Snippet | The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating tissues of... Abstract The combination of CT imaging and photoacoustic (PA) imaging represents not only high resolution and ease of forming 3D visual image for locating... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5814 |
SubjectTerms | absorption Advanced Basic Science Animals Au nanoparticles biocompatibility Dentistry drugs Ferrocyanides - chemistry Ferrocyanides - therapeutic use gold Gold - chemistry Gold - therapeutic use HeLa Cells Humans Hyperthermia, Induced image analysis intravenous injection irradiation Mice Mice, Nude nanogold nanoparticles Nanoparticles - chemistry Nanoparticles - therapeutic use Nanoparticles - ultrastructure near-infrared spectroscopy neoplasms Neoplasms - diagnosis Neoplasms - therapy Photoacoustic imaging Photoacoustic Techniques photostability Phototherapy Photothermal therapy Prussian blue tissues Tomography, X-Ray Computed X-radiation X-ray computed tomography |
Title | Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961214003688 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961214003688 https://www.ncbi.nlm.nih.gov/pubmed/24746962 https://www.proquest.com/docview/1521909742 https://www.proquest.com/docview/2101327721 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbpFvo4lDZ9pS9U6G1xasuSH_RU0l2WdrcUmoWlF2HZcuOQtZc4uRTav9S_2BlLdpI2gXQhmCCkIHm-zIykb2YIeeMxsEORnzmp7wuHp0I7YGeYE_hhxFWmhGFVnn0OTs75xwtx0ev9XmMtLRdqmP7YGldyHalCG8gVo2T_Q7Ldj0IDfAf5whMkDM-9ZPxlvqybIEg1WyLrPEH38Xs1yw7LpITdsCW9NVTCukDuYFJq5LxeTapFBbqwKeWFKXLHhwqElmEGjktTt6hJIIDd0EO8xIwCata5lyliZb5xIVxU4PuaRXesHFsv5bSYFp32Py3sCfVFkYDitYYTXWlt2r9h7w6yx7b16wRs6sS221MKj3eM1tXBJXPiwNvQvCZRiUWYCU-2elREJrTU2mSM5t2q783Rw3So1haJfD3e5K91xcrKtTf7R6NPnlOzoesgr43hlGCPCXbcVBf8K_m2J2smXflP1xvkJoN9CSrW4a-OU4SpipjhzJrFtlluG0Lhrjnu8oh27Xgaz2d8n9yzWxb63qDpAenpsk9uf0CaGVYK7JO7a0kt--TWmaVrPCQ_W4BSBCg1AKUIULoBUAoApesApRsAfTsaUwtPauFJAZ50HZ60hSetcmrg-YicHx-NRyeOrffhpMJnC8dP8kS4midC5Z7OotT18yxkgdZ-Cl4-bLZTnoOjILI41F6U5blmQRLlTPMs1-D4PyYHZVXqp4TGMZbUViLJfMUDVydh5OYqUaHSzFfaG5C4fecytcnwsSbLTLasx6lcl5dEeUkXPq4YEL8be2VSwuw16l0rWtkGPYOZloDkvUaH20br2mqjWu5C6oC8bnEkwXLgdaCRpETPPXbjkLPdfZiHd7GAdHhjTwwIuzUzHvIgDtiza8_tObmz0hUvyMFivtQvwcdfqFfN_-oPOkIAYA |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prussian+blue+coated+gold+nanoparticles+for+simultaneous+photoacoustic%2FCT+bimodal+imaging+and+photothermal+ablation+of+cancer&rft.jtitle=Biomaterials&rft.au=Jing%2C+Lijia&rft.au=Liang%2C+Xiaolong&rft.au=Deng%2C+Zijian&rft.au=Feng%2C+Shanshan&rft.date=2014-07-01&rft.issn=0142-9612&rft.volume=35&rft.issue=22&rft.spage=5814&rft.epage=5821&rft_id=info:doi/10.1016%2Fj.biomaterials.2014.04.005&rft.externalDBID=ECK1-s2.0-S0142961214003688&rft.externalDocID=1_s2_0_S0142961214003688 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961214X00153%2Fcov150h.gif |