Understanding COVID-19 transmission through Bayesian probabilistic modeling and GIS-based Voronoi approach: a policy perspective

Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of cli...

Full description

Saved in:
Bibliographic Details
Published inEnvironment, development and sustainability Vol. 23; no. 4; pp. 5846 - 5864
Main Authors Bherwani, Hemant, Anjum, Saima, Kumar, Suman, Gautam, Sneha, Gupta, Ankit, Kumbhare, Himanshu, Anshul, Avneesh, Kumar, Rakesh
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of clinical trials of medicines and vaccines, social distancing, use of personal protective equipment (PPE), and so on are being implemented in order to control the spread. The current study concentrates on lockdown and social distancing policy followed by the Indian Government and evaluates its effectiveness using Bayesian probability model (BPM). The change point analysis (CPA) done through the above approach suggests that the states which implemented the lockdown before the exponential rise of cases are able to control the spread of the disease in a much better and efficient way. The analysis has been done for states of Maharashtra, Gujarat, Madhya Pradesh, Rajasthan, Tamil Nadu, West Bengal, Uttar Pradesh, and Delhi as union territory. The highest value of Δ (delta) is reported for Gujarat and Madhya Pradesh with a value of 9.6 weeks, while the lowest value is 4.7, evidently for Maharashtra which is the worst affected. All of the states indicate a significant correlation ( p  < 0.05, tstat > tcritical) for Δ, i.e., the difference in the time period of CPA and lockdown with cases per population (CPP) and cases per unit area (CPUA), while weak correlation ( p  < 0.1 and tstat < tcritical) is exhibited by delta and cases per unit population density (CPD). For both CPP and CPUA, tstat > tcritical indicating a significant correlation, while Pearson’s correlation indicates the direction to be negative. Further analysis in terms of identification of high-risk areas has been studied from the Voronoi approach of GIS based on the inputs from BPM. All the states follow the above pattern of high population, high case scenario, and the boundaries of risk zones can be identified by Thiessen polygon (TP) constructed therein. The findings of the study help draw strategic and policy-driven response for India, toward tackling COVID-19 pandemic.
AbstractList Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of clinical trials of medicines and vaccines, social distancing, use of personal protective equipment (PPE), and so on are being implemented in order to control the spread. The current study concentrates on lockdown and social distancing policy followed by the Indian Government and evaluates its effectiveness using Bayesian probability model (BPM). The change point analysis (CPA) done through the above approach suggests that the states which implemented the lockdown before the exponential rise of cases are able to control the spread of the disease in a much better and efficient way. The analysis has been done for states of Maharashtra, Gujarat, Madhya Pradesh, Rajasthan, Tamil Nadu, West Bengal, Uttar Pradesh, and Delhi as union territory. The highest value of Δ (delta) is reported for Gujarat and Madhya Pradesh with a value of 9.6 weeks, while the lowest value is 4.7, evidently for Maharashtra which is the worst affected. All of the states indicate a significant correlation ( p  < 0.05, tstat > tcritical) for Δ, i.e., the difference in the time period of CPA and lockdown with cases per population (CPP) and cases per unit area (CPUA), while weak correlation ( p  < 0.1 and tstat < tcritical) is exhibited by delta and cases per unit population density (CPD). For both CPP and CPUA, tstat > tcritical indicating a significant correlation, while Pearson’s correlation indicates the direction to be negative. Further analysis in terms of identification of high-risk areas has been studied from the Voronoi approach of GIS based on the inputs from BPM. All the states follow the above pattern of high population, high case scenario, and the boundaries of risk zones can be identified by Thiessen polygon (TP) constructed therein. The findings of the study help draw strategic and policy-driven response for India, toward tackling COVID-19 pandemic.
Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of clinical trials of medicines and vaccines, social distancing, use of personal protective equipment (PPE), and so on are being implemented in order to control the spread. The current study concentrates on lockdown and social distancing policy followed by the Indian Government and evaluates its effectiveness using Bayesian probability model (BPM). The change point analysis (CPA) done through the above approach suggests that the states which implemented the lockdown before the exponential rise of cases are able to control the spread of the disease in a much better and efficient way. The analysis has been done for states of Maharashtra, Gujarat, Madhya Pradesh, Rajasthan, Tamil Nadu, West Bengal, Uttar Pradesh, and Delhi as union territory. The highest value of Δ (delta) is reported for Gujarat and Madhya Pradesh with a value of 9.6 weeks, while the lowest value is 4.7, evidently for Maharashtra which is the worst affected. All of the states indicate a significant correlation (p < 0.05, tstat > tcritical) for Δ, i.e., the difference in the time period of CPA and lockdown with cases per population (CPP) and cases per unit area (CPUA), while weak correlation (p < 0.1 and tstat < tcritical) is exhibited by delta and cases per unit population density (CPD). For both CPP and CPUA, tstat > tcritical indicating a significant correlation, while Pearson's correlation indicates the direction to be negative. Further analysis in terms of identification of high-risk areas has been studied from the Voronoi approach of GIS based on the inputs from BPM. All the states follow the above pattern of high population, high case scenario, and the boundaries of risk zones can be identified by Thiessen polygon (TP) constructed therein. The findings of the study help draw strategic and policy-driven response for India, toward tackling COVID-19 pandemic.Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of clinical trials of medicines and vaccines, social distancing, use of personal protective equipment (PPE), and so on are being implemented in order to control the spread. The current study concentrates on lockdown and social distancing policy followed by the Indian Government and evaluates its effectiveness using Bayesian probability model (BPM). The change point analysis (CPA) done through the above approach suggests that the states which implemented the lockdown before the exponential rise of cases are able to control the spread of the disease in a much better and efficient way. The analysis has been done for states of Maharashtra, Gujarat, Madhya Pradesh, Rajasthan, Tamil Nadu, West Bengal, Uttar Pradesh, and Delhi as union territory. The highest value of Δ (delta) is reported for Gujarat and Madhya Pradesh with a value of 9.6 weeks, while the lowest value is 4.7, evidently for Maharashtra which is the worst affected. All of the states indicate a significant correlation (p < 0.05, tstat > tcritical) for Δ, i.e., the difference in the time period of CPA and lockdown with cases per population (CPP) and cases per unit area (CPUA), while weak correlation (p < 0.1 and tstat < tcritical) is exhibited by delta and cases per unit population density (CPD). For both CPP and CPUA, tstat > tcritical indicating a significant correlation, while Pearson's correlation indicates the direction to be negative. Further analysis in terms of identification of high-risk areas has been studied from the Voronoi approach of GIS based on the inputs from BPM. All the states follow the above pattern of high population, high case scenario, and the boundaries of risk zones can be identified by Thiessen polygon (TP) constructed therein. The findings of the study help draw strategic and policy-driven response for India, toward tackling COVID-19 pandemic.
Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of clinical trials of medicines and vaccines, social distancing, use of personal protective equipment (PPE), and so on are being implemented in order to control the spread. The current study concentrates on lockdown and social distancing policy followed by the Indian Government and evaluates its effectiveness using Bayesian probability model (BPM). The change point analysis (CPA) done through the above approach suggests that the states which implemented the lockdown before the exponential rise of cases are able to control the spread of the disease in a much better and efficient way. The analysis has been done for states of Maharashtra, Gujarat, Madhya Pradesh, Rajasthan, Tamil Nadu, West Bengal, Uttar Pradesh, and Delhi as union territory. The highest value of Δ (delta) is reported for Gujarat and Madhya Pradesh with a value of 9.6 weeks, while the lowest value is 4.7, evidently for Maharashtra which is the worst affected. All of the states indicate a significant correlation (p < 0.05, tstat > tcritical) for Δ, i.e., the difference in the time period of CPA and lockdown with cases per population (CPP) and cases per unit area (CPUA), while weak correlation (p < 0.1 and tstat < tcritical) is exhibited by delta and cases per unit population density (CPD). For both CPP and CPUA, tstat > tcritical indicating a significant correlation, while Pearson’s correlation indicates the direction to be negative. Further analysis in terms of identification of high-risk areas has been studied from the Voronoi approach of GIS based on the inputs from BPM. All the states follow the above pattern of high population, high case scenario, and the boundaries of risk zones can be identified by Thiessen polygon (TP) constructed therein. The findings of the study help draw strategic and policy-driven response for India, toward tackling COVID-19 pandemic.
Author Kumar, Suman
Gupta, Ankit
Anshul, Avneesh
Kumar, Rakesh
Anjum, Saima
Kumbhare, Himanshu
Bherwani, Hemant
Gautam, Sneha
Author_xml – sequence: 1
  givenname: Hemant
  orcidid: 0000-0002-0043-2589
  surname: Bherwani
  fullname: Bherwani, Hemant
  email: h.bherwani@neeri.res.in
  organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Academy of Scientific and Innovative Research (AcSIR)
– sequence: 2
  givenname: Saima
  surname: Anjum
  fullname: Anjum, Saima
  organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI)
– sequence: 3
  givenname: Suman
  surname: Kumar
  fullname: Kumar, Suman
  organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI)
– sequence: 4
  givenname: Sneha
  surname: Gautam
  fullname: Gautam, Sneha
  organization: Karunya Institute of Technology and Sciences
– sequence: 5
  givenname: Ankit
  surname: Gupta
  fullname: Gupta, Ankit
  organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Academy of Scientific and Innovative Research (AcSIR)
– sequence: 6
  givenname: Himanshu
  surname: Kumbhare
  fullname: Kumbhare, Himanshu
  organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI)
– sequence: 7
  givenname: Avneesh
  surname: Anshul
  fullname: Anshul, Avneesh
  organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI)
– sequence: 8
  givenname: Rakesh
  surname: Kumar
  fullname: Kumar, Rakesh
  organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Academy of Scientific and Innovative Research (AcSIR)
BookMark eNqFkrtuFDEUhkcoiFzgBags0dAYfBnfKJDIEsJKkVJAIjrL4zmz62jWHuzZSNvx6HHYCESKUPlI_v7_XI-bg5giNM1rSt5RQtT7QomUGhNGMCG6NZg8a46oUBwzo8RBjblWWGjx47A5LuWGVNIw-aI55ExzxZQ6an5dxR5ymV3sQ1yhxeX18jOmBs3ZxbIJpYQU0bzOabtao1O3gxJcRFNOnevCGMocPNqkHsZ7dTVB58tvuHMFenSdcoopIDdV3Pn1B-TQlMbgd2iqKSfwc7iFl83zwY0FXj28J83Vl7Pvi6_44vJ8ufh0gb3gbMa89XRoa809BU2kA-eF6iSBAdqOspZIBXzwnTes1z0lA6GeQ53SoHrRGcdPmo9732nbbaD3EGuLo51y2Li8s8kF--9PDGu7SrdW8ZZoSavB2weDnH5uocy2jsfDOLoIaVssk1xSKYng_0dbrig1bWsq-uYRepO2OdZJWCYoMcYIqSvF9pTPqZQMw5-6KbH3t2D3t2Drhu3vW7CkivQjkQ-zm-tCa39hfFrK99JS88QV5L9VPaG6A-80y1s
CitedBy_id crossref_primary_10_7163_GPol_0211
crossref_primary_10_52547_jgst_12_3_17
crossref_primary_10_1016_j_gsf_2021_101291
crossref_primary_10_1108_IJSE_04_2021_0241
crossref_primary_10_1108_SRJ_10_2020_0415
crossref_primary_10_7163_GPol_0215
crossref_primary_10_1007_s11356_021_14462_9
crossref_primary_10_3390_ijerph17239045
crossref_primary_10_1016_j_autcon_2022_104315
crossref_primary_10_1016_j_jfoodeng_2024_112443
crossref_primary_10_1007_s10668_020_00934_4
crossref_primary_10_1016_j_jnca_2025_104129
crossref_primary_10_1155_2021_5524098
crossref_primary_10_1007_s10668_021_01324_0
crossref_primary_10_3390_ijgi10080571
crossref_primary_10_1007_s41748_020_00194_2
crossref_primary_10_1007_s10668_020_00884_x
crossref_primary_10_1016_j_ejrs_2021_12_010
crossref_primary_10_1057_s41284_021_00314_1
crossref_primary_10_1155_2021_4923532
crossref_primary_10_1111_tgis_12792
crossref_primary_10_1007_s10668_020_01055_8
crossref_primary_10_2147_RMHP_S297565
crossref_primary_10_3390_math10010021
crossref_primary_10_1080_19338244_2023_2167799
crossref_primary_10_3390_ijerph17228468
crossref_primary_10_1007_s10708_022_10780_8
crossref_primary_10_1038_s41598_024_51251_z
crossref_primary_10_1007_s10668_021_01366_4
crossref_primary_10_1016_j_scitotenv_2020_141486
crossref_primary_10_3390_ijerph18189657
crossref_primary_10_1007_s41748_021_00278_7
crossref_primary_10_1080_19475683_2025_2451230
crossref_primary_10_1007_s10668_022_02727_3
crossref_primary_10_1007_s00484_020_02019_3
crossref_primary_10_1016_j_seps_2022_101250
crossref_primary_10_1007_s11356_021_13813_w
crossref_primary_10_1080_19475683_2022_2041725
crossref_primary_10_1038_s41598_021_91236_w
crossref_primary_10_1080_25765299_2022_2148439
crossref_primary_10_1007_s40314_022_01949_5
Cites_doi 10.1016/j.eclinm.2020.100354
10.1038/s41569-020-0360-5
10.1007/s11869-020-00842-6
10.1097/MCP.0000000000000046
10.5144/0256-4947.2016.78
10.1002/path.2067
10.1016/j.sste.2010.03.009
10.1186/s40779-020-00240-0
10.1016/j.jare.2020.03.005
10.1007/s10668-020-00801-2
10.7287/peerj.preprints.1686v1
10.1136/amiajnl-2011-000793
10.1016/j.jaut.2020.102433
10.1186/s12911-016-0271-x
10.3758/s13423-012-0295-x
10.1007/s10668-020-00739-5
10.1111/j.0033-0124.2004.05602007.x
10.1111/j.1365-2699.2007.01716.x
10.1101/2020.03.03.20029983
10.1016/S1473-3099(20)30152-3
10.1016/j.chaos.2020.109850
10.1016/j.scitotenv.2020.138762
10.4103/GJTM.GJTM_24_20
10.3855/jidc.12600
10.1007/s11869-020-00845-3
10.1007/s10668-020-00740-y
10.1093/cid/ciaa226
10.1016/j.kint.2020.03.005
10.1056/NEJMp048051
10.1080/02786826.2020.1749229
10.1007/s00128-020-02877-y
10.1001/jama.2020.7878
10.1183/13993003.00524-2020
10.1002/9781118786352.wbieg0157
10.1016/j.watres.2016.11.008
10.1016/j.cmi.2020.03.026
10.1177/0013164414548576
10.1016/s0140-6736(20)30183-5
10.1093/jtm/taaa021
10.1016/j.jash.2011.03.001
10.1029/2006wr005497
10.1093/ajcp/aqaa029
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
3V.
7ST
7U6
7WY
7WZ
7XB
87Z
8AO
8BJ
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FQK
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JBE
K60
K6~
KR7
L.-
L6V
M0C
M7S
PATMY
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7X8
7S9
L.6
5PM
DOI 10.1007/s10668-020-00849-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Sustainability Science Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Pharma Collection
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
International Bibliography of the Social Sciences
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Proquest SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Sustainability Science Abstracts
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest SciTech Collection
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
ProQuest Business Collection (Alumni Edition)
AGRICOLA
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Ecology
EISSN 1573-2975
EndPage 5864
ExternalDocumentID PMC7340861
10_1007_s10668_020_00849_0
GeographicLocations China
India
GeographicLocations_xml – name: China
– name: India
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
7WY
7XC
8AO
8FE
8FG
8FH
8FL
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L6V
L8X
LAK
LLZTM
M0C
M4Y
M7S
MA-
ML.
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7V
Z7Y
Z81
ZMTXR
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7U6
7XB
8BJ
8FD
8FK
ABRTQ
AZQEC
C1K
FQK
FR3
GNUQQ
JBE
KR7
L.-
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
SOI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c532t-34c1f4727d1e806aeac57b60efe4b124067e3fcbc92d8d10f01c3e007f7d5b9a3
IEDL.DBID BENPR
ISSN 1387-585X
1573-2975
IngestDate Thu Aug 21 17:50:04 EDT 2025
Fri Jul 11 00:08:00 EDT 2025
Thu Jul 10 22:15:37 EDT 2025
Sat Aug 23 13:52:09 EDT 2025
Tue Jul 01 02:53:07 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Fri Feb 21 02:48:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords COVID-19
SARS-CoV-2
Voronoi diagram
Change point analysis
Bayesian probability
Language English
License This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-34c1f4727d1e806aeac57b60efe4b124067e3fcbc92d8d10f01c3e007f7d5b9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0043-2589
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7340861
PMID 32837277
PQID 2510999568
PQPubID 25739
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7340861
proquest_miscellaneous_2636166053
proquest_miscellaneous_2437119449
proquest_journals_2510999568
crossref_primary_10_1007_s10668_020_00849_0
crossref_citationtrail_10_1007_s10668_020_00849_0
springer_journals_10_1007_s10668_020_00849_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle A Multidisciplinary Approach to the Theory and Practice of Sustainable Development
PublicationTitle Environment, development and sustainability
PublicationTitleAbbrev Environ Dev Sustain
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Alhogbani (CR2) 2016
Ho, Yu (CR19) 2014
Cheng, Luo, Wang, Zhang, Wang, Dong (CR7) 2020
Kannan, Ali, Sheensza, Hemalatha (CR25) 2020; 24
Wheeler, Waller, Biek (CR46) 2010
Asadi, Bouvier, Wexler, Ristenpart (CR3) 2020
Nagai, Hoshide, Ishikawa, Shimada, Kario (CR32) 2011
Liu, Gu, Xia, Shi, Zhou, Shi, Liu (CR29) 2020
Kass-Hout, Xu, McMurray, Park, Buckeridge, Brownstein, Groseclose (CR26) 2012
Chakraborty, Ghosh (CR6) 2020
Du, Liang, Yang, Wang, Cao, Li (CR10) 2020
Jribi, Ben Ismail, Doggui, Debbabi (CR24) 2020
Jain, Choudhury, Sharma, Kumar, De, Tiwari (CR23) 2020; 5
Zheng, Ma, Zhang, Xie (CR53) 2020
Guo, Cao, Hong, Tan, Chen, Jin (CR17) 2020
Yang, Reichert, Abbaspour (CR52) 2007
Texier, Farouh, Pellegrin, Jackson, Meynard, Deparis, Chaudet (CR42) 2016
Guarner (CR16) 2020
Liu, Gayle, Wilder-Smith, Rocklov (CR28) 2020
Mu (CR31) 2004
Sarkodie, Owusu (CR39) 2020
Fan, Lei, Fang, Li, Wang, Liu, Bao, Sun, Huang, Guo, Ying, Wang (CR12) 2020
Roy, Milton (CR37) 2004; 350
Schulman, Toivonen, Ruokolainen (CR40) 2007
Petrosillo, Viceconte, Ergonul, Ippolito, Petersen (CR33) 2020
CR8
Gautam (CR13) 2020
Rothan, Byrareddy (CR36) 2020
Hui, Memish, Zumla (CR21) 2014; 20
CR9
Dubois (CR11) 2000; 4
Salvatier, Wiecki, Fonnesbeck (CR38) 2016
CR48
He, Ding, Zhang, Che, He, Shen (CR18) 2006
CR47
Porcheddu, Serra, Kelvin, Kelvin, Rubino (CR34) 2020
Gautam (CR14) 2020
Tomar, Gupta (CR44) 2020
Adnan Shereen, Khan, Kazmi, Bashir, Siddique (CR1) 2020
Gautam, Hens (CR15) 2020
Yamada (CR51) 2016
Bherwani, Nair, Musugu (CR4) 2020
Inglesby (CR22) 2020
Huang, Wang, Li, Ren, Zhao, Hu (CR20) 2020
Tindale, Coombe, Stockdale, Garlock, Lau, Saraswat, Yen-Hsiang, Zhang, Chen, Wallinga, Colijn (CR43) 2020
Xiao, Torok (CR50) 2020
Carvajal, Roser, Sisson, Keegan, Khan (CR5) 2017
Wetzels, Wagenmakers (CR45) 2012
849_CR9
G Dubois (849_CR11) 2000; 4
M Adnan Shereen (849_CR1) 2020
Y Cheng (849_CR7) 2020
L Mu (849_CR31) 2004
J Salvatier (849_CR38) 2016
H Bherwani (849_CR4) 2020
C Huang (849_CR20) 2020
S Jribi (849_CR24) 2020
S Gautam (849_CR14) 2020
L He (849_CR18) 2006
S Asadi (849_CR3) 2020
849_CR8
G Texier (849_CR42) 2016
849_CR47
849_CR48
Y Xiao (849_CR50) 2020
J Yang (849_CR52) 2007
Y Liu (849_CR28) 2020
N Jain (849_CR23) 2020; 5
SA Sarkodie (849_CR39) 2020
I Yamada (849_CR51) 2016
T Alhogbani (849_CR2) 2016
TV Inglesby (849_CR22) 2020
R Porcheddu (849_CR34) 2020
R Wetzels (849_CR45) 2012
S Gautam (849_CR13) 2020
S Kannan (849_CR25) 2020; 24
N Petrosillo (849_CR33) 2020
DS Hui (849_CR21) 2014; 20
DC Wheeler (849_CR46) 2010
HA Rothan (849_CR36) 2020
AD Ho (849_CR19) 2014
L Schulman (849_CR40) 2007
TA Kass-Hout (849_CR26) 2012
Y-Y Zheng (849_CR53) 2020
S Gautam (849_CR15) 2020
CJ Roy (849_CR37) 2004; 350
Y-R Guo (849_CR17) 2020
C Fan (849_CR12) 2020
R-H Du (849_CR10) 2020
A Tomar (849_CR44) 2020
M Nagai (849_CR32) 2011
L Tindale (849_CR43) 2020
G Carvajal (849_CR5) 2017
T Chakraborty (849_CR6) 2020
Y Liu (849_CR29) 2020
J Guarner (849_CR16) 2020
References_xml – year: 2020
  ident: CR29
  article-title: What are the underlying transmission patterns of COVID-19 outbreak?—An age-specific social contact characterization
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2020.100354
– year: 2020
  ident: CR53
  article-title: COVID-19 and the cardiovascular system
  publication-title: Nature Reviews Cardiology
  doi: 10.1038/s41569-020-0360-5
– ident: CR47
– year: 2020
  ident: CR13
  article-title: COVID-19: air pollution remains low as people stay at home
  publication-title: Air Quality, Atmosphere & Health,
  doi: 10.1007/s11869-020-00842-6
– volume: 20
  start-page: 233
  issue: 3
  year: 2014
  end-page: 241
  ident: CR21
  article-title: Severe acute respiratory syndrome vs. the Middle East respiratory syndrome
  publication-title: Current Opinion in Pulmonary
  doi: 10.1097/MCP.0000000000000046
– year: 2016
  ident: CR2
  article-title: Acute myocarditis associated with novel middle east respiratory syndrome corornavirus
  publication-title: Annals of Saudi Medicine
  doi: 10.5144/0256-4947.2016.78
– year: 2006
  ident: CR18
  article-title: Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS
  publication-title: The Journal of Pathology
  doi: 10.1002/path.2067
– year: 2010
  ident: CR46
  article-title: Spatial analysis of feline immunodeficiency virus infection in cougars
  publication-title: Spatial and Spatio-Temporal Epidemiology
  doi: 10.1016/j.sste.2010.03.009
– volume: 24
  start-page: 2006
  year: 2020
  end-page: 2201
  ident: CR25
  article-title: COVID-19 (Novel Coronavirus 2019)
  publication-title: European Review For Medical and Pharmacological Sciences
– year: 2020
  ident: CR17
  article-title: The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—an update on the status
  publication-title: Military Medical Research
  doi: 10.1186/s40779-020-00240-0
– year: 2020
  ident: CR1
  article-title: COVID-19 infection: origin, transmission, and characteristics of human coronaviruses
  publication-title: Journal of Advanced Research
  doi: 10.1016/j.jare.2020.03.005
– year: 2020
  ident: CR39
  article-title: Global assessment of environment, health and economic impact of the novel coronavirus (COVID-19)
  publication-title: Environment, Development and Sustainability,
  doi: 10.1007/s10668-020-00801-2
– year: 2016
  ident: CR38
  article-title: Probabilistic programming in Python using PyMC3
  publication-title: PeerJ
  doi: 10.7287/peerj.preprints.1686v1
– ident: CR8
– year: 2012
  ident: CR26
  article-title: Application of change point analysis to daily influenza-like illness emergency department visits
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/amiajnl-2011-000793
– year: 2020
  ident: CR36
  article-title: The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak
  publication-title: Journal of Autoimmunity
  doi: 10.1016/j.jaut.2020.102433
– year: 2016
  ident: CR42
  article-title: Outbreak definition by change point analysis: A tool for public health decision?
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-016-0271-x
– year: 2012
  ident: CR45
  article-title: A default Bayesian hypothesis test for correlations and partial correlations
  publication-title: Psychonomic Bulletin and Review
  doi: 10.3758/s13423-012-0295-x
– year: 2020
  ident: CR15
  article-title: SARS-CoV-2 pandemic in India: what might we expect?
  publication-title: Environment, Development and Sustainability,
  doi: 10.1007/s10668-020-00739-5
– year: 2004
  ident: CR31
  article-title: Polygon characterization with the multiplicatively weighted Voronoi diagram
  publication-title: The Professional Geographer
  doi: 10.1111/j.0033-0124.2004.05602007.x
– volume: 4
  start-page: 1
  issue: 1
  year: 2000
  end-page: 10
  ident: CR11
  article-title: How representative are samples in a sampling network?
  publication-title: Journal of Geographic Information and Decision Analysis
– year: 2007
  ident: CR40
  article-title: Analysing botanical collecting effort in Amazonia and correcting for it in species range estimation
  publication-title: Journal of Biogeography
  doi: 10.1111/j.1365-2699.2007.01716.x
– year: 2020
  ident: CR43
  article-title: Transmission interval estimates suggest pre-symptomatic spread of COVID-19
  publication-title: MedRxiv
  doi: 10.1101/2020.03.03.20029983
– year: 2020
  ident: CR50
  article-title: Taking the right measures to control COVID-19
  publication-title: The Lancet Infectious Diseases
  doi: 10.1016/S1473-3099(20)30152-3
– year: 2020
  ident: CR6
  article-title: Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis
  publication-title: Chaos, Solitons and Fractals,
  doi: 10.1016/j.chaos.2020.109850
– year: 2020
  ident: CR44
  article-title: Prediction for the spread of COVID-19 in India and effectiveness of preventive measures
  publication-title: Science of The Total Environment
  doi: 10.1016/j.scitotenv.2020.138762
– volume: 5
  start-page: 22
  issue: 1
  year: 2020
  end-page: 26
  ident: CR23
  article-title: A review of novel coronavirus infection (Coronavirus Disease-19)
  publication-title: Global Journal of Transfusion Medicine
  doi: 10.4103/GJTM.GJTM_24_20
– year: 2020
  ident: CR34
  article-title: Similarity in case fatality rates (CFR) of COVID-19/SARS-COV-2 in Italy and China
  publication-title: Journal of Infection in Developing Countries
  doi: 10.3855/jidc.12600
– ident: CR48
– year: 2020
  ident: CR4
  article-title: Valuation of air pollution externalities: comparative assessment of economic damage and emission reduction under COVID-19 lockdown
  publication-title: Air Quality, Atmosphere and Health
  doi: 10.1007/s11869-020-00845-3
– year: 2020
  ident: CR24
  article-title: COVID-19 virus outbreak lockdown: What impacts on household food wastage?
  publication-title: Environment, Development and Sustainability,
  doi: 10.1007/s10668-020-00740-y
– year: 2020
  ident: CR12
  article-title: Perinatal transmission of COVID-19 associated SARS-CoV-2: Should we worry?
  publication-title: Clinical Infectious Diseases
  doi: 10.1093/cid/ciaa226
– year: 2020
  ident: CR7
  article-title: Kidney disease is associated with in-hospital death of patients with COVID-19
  publication-title: Kidney International
  doi: 10.1016/j.kint.2020.03.005
– volume: 350
  start-page: 1710
  year: 2004
  end-page: 1712
  ident: CR37
  article-title: Airborne transmission of communicable infection–the elusive pathway
  publication-title: The New England of Journal Medicine
  doi: 10.1056/NEJMp048051
– year: 2020
  ident: CR3
  article-title: The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles?
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2020.1749229
– year: 2020
  ident: CR14
  article-title: The Influence of COVID-19 on air quality in India: A boon or inutile
  publication-title: Bulletin of Environmental Contamination and Toxicology
  doi: 10.1007/s00128-020-02877-y
– year: 2020
  ident: CR22
  article-title: Public health measures and the reproduction number of SARS-CoV-2
  publication-title: JAMA
  doi: 10.1001/jama.2020.7878
– year: 2020
  ident: CR10
  article-title: Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: A prospective cohort study
  publication-title: European Respiratory Journal
  doi: 10.1183/13993003.00524-2020
– year: 2016
  ident: CR51
  article-title: Thiessen polygons
  publication-title: International Encyclopedia of Geography: People, the Earth, Environment and Technology
  doi: 10.1002/9781118786352.wbieg0157
– ident: CR9
– year: 2017
  ident: CR5
  article-title: Bayesian belief network modelling of chlorine disinfection for human pathogenic viruses in municipal wastewater
  publication-title: Water Research
  doi: 10.1016/j.watres.2016.11.008
– year: 2020
  ident: CR33
  article-title: COVID-19, SARS and MERS: Are they closely related?
  publication-title: Clinical Microbiology and Infection
  doi: 10.1016/j.cmi.2020.03.026
– year: 2014
  ident: CR19
  article-title: Descriptive statistics for modern test score distributions
  publication-title: Educational and Psychological Measurement
  doi: 10.1177/0013164414548576
– year: 2020
  ident: CR20
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: The Lancet
  doi: 10.1016/s0140-6736(20)30183-5
– year: 2020
  ident: CR28
  article-title: The reproductive number of COVID-19 is higher compared to SARS coronavirus
  publication-title: Journal of Travel Medicine
  doi: 10.1093/jtm/taaa021
– year: 2011
  ident: CR32
  article-title: Visit-to-visit blood pressure variations: New independent determinants for carotid artery measures in the elderly at high risk of cardiovascular disease
  publication-title: Journal of the American Society of Hypertension
  doi: 10.1016/j.jash.2011.03.001
– year: 2007
  ident: CR52
  article-title: Bayesian uncertainty analysis in distributed hydrologic modeling: A case study in the Thur river basin (Switzerland)
  publication-title: Water Resources Research
  doi: 10.1029/2006wr005497
– year: 2020
  ident: CR16
  article-title: Three emerging coronaviruses in two decades: The story of SARS, MERS, and now COVID-19
  publication-title: American Journal of Clinical Pathology
  doi: 10.1093/ajcp/aqaa029
– year: 2010
  ident: 849_CR46
  publication-title: Spatial and Spatio-Temporal Epidemiology
  doi: 10.1016/j.sste.2010.03.009
– year: 2020
  ident: 849_CR16
  publication-title: American Journal of Clinical Pathology
  doi: 10.1093/ajcp/aqaa029
– year: 2020
  ident: 849_CR17
  publication-title: Military Medical Research
  doi: 10.1186/s40779-020-00240-0
– volume: 24
  start-page: 2006
  year: 2020
  ident: 849_CR25
  publication-title: European Review For Medical and Pharmacological Sciences
– year: 2020
  ident: 849_CR33
  publication-title: Clinical Microbiology and Infection
  doi: 10.1016/j.cmi.2020.03.026
– year: 2020
  ident: 849_CR24
  publication-title: Environment, Development and Sustainability,
  doi: 10.1007/s10668-020-00740-y
– year: 2020
  ident: 849_CR14
  publication-title: Bulletin of Environmental Contamination and Toxicology
  doi: 10.1007/s00128-020-02877-y
– year: 2020
  ident: 849_CR20
  publication-title: The Lancet
  doi: 10.1016/s0140-6736(20)30183-5
– year: 2020
  ident: 849_CR12
  publication-title: Clinical Infectious Diseases
  doi: 10.1093/cid/ciaa226
– year: 2012
  ident: 849_CR26
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/amiajnl-2011-000793
– year: 2020
  ident: 849_CR39
  publication-title: Environment, Development and Sustainability,
  doi: 10.1007/s10668-020-00801-2
– ident: 849_CR8
– year: 2020
  ident: 849_CR6
  publication-title: Chaos, Solitons and Fractals,
  doi: 10.1016/j.chaos.2020.109850
– year: 2017
  ident: 849_CR5
  publication-title: Water Research
  doi: 10.1016/j.watres.2016.11.008
– year: 2020
  ident: 849_CR13
  publication-title: Air Quality, Atmosphere & Health,
  doi: 10.1007/s11869-020-00842-6
– year: 2016
  ident: 849_CR51
  publication-title: International Encyclopedia of Geography: People, the Earth, Environment and Technology
  doi: 10.1002/9781118786352.wbieg0157
– year: 2016
  ident: 849_CR2
  publication-title: Annals of Saudi Medicine
  doi: 10.5144/0256-4947.2016.78
– ident: 849_CR47
– year: 2020
  ident: 849_CR7
  publication-title: Kidney International
  doi: 10.1016/j.kint.2020.03.005
– year: 2020
  ident: 849_CR22
  publication-title: JAMA
  doi: 10.1001/jama.2020.7878
– volume: 5
  start-page: 22
  issue: 1
  year: 2020
  ident: 849_CR23
  publication-title: Global Journal of Transfusion Medicine
  doi: 10.4103/GJTM.GJTM_24_20
– year: 2020
  ident: 849_CR36
  publication-title: Journal of Autoimmunity
  doi: 10.1016/j.jaut.2020.102433
– volume: 350
  start-page: 1710
  year: 2004
  ident: 849_CR37
  publication-title: The New England of Journal Medicine
  doi: 10.1056/NEJMp048051
– year: 2016
  ident: 849_CR42
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-016-0271-x
– year: 2004
  ident: 849_CR31
  publication-title: The Professional Geographer
  doi: 10.1111/j.0033-0124.2004.05602007.x
– year: 2020
  ident: 849_CR44
  publication-title: Science of The Total Environment
  doi: 10.1016/j.scitotenv.2020.138762
– year: 2020
  ident: 849_CR53
  publication-title: Nature Reviews Cardiology
  doi: 10.1038/s41569-020-0360-5
– year: 2020
  ident: 849_CR43
  publication-title: MedRxiv
  doi: 10.1101/2020.03.03.20029983
– year: 2012
  ident: 849_CR45
  publication-title: Psychonomic Bulletin and Review
  doi: 10.3758/s13423-012-0295-x
– year: 2007
  ident: 849_CR52
  publication-title: Water Resources Research
  doi: 10.1029/2006wr005497
– year: 2020
  ident: 849_CR10
  publication-title: European Respiratory Journal
  doi: 10.1183/13993003.00524-2020
– year: 2020
  ident: 849_CR34
  publication-title: Journal of Infection in Developing Countries
  doi: 10.3855/jidc.12600
– year: 2020
  ident: 849_CR3
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2020.1749229
– year: 2020
  ident: 849_CR1
  publication-title: Journal of Advanced Research
  doi: 10.1016/j.jare.2020.03.005
– year: 2016
  ident: 849_CR38
  publication-title: PeerJ
  doi: 10.7287/peerj.preprints.1686v1
– ident: 849_CR9
– year: 2006
  ident: 849_CR18
  publication-title: The Journal of Pathology
  doi: 10.1002/path.2067
– year: 2020
  ident: 849_CR28
  publication-title: Journal of Travel Medicine
  doi: 10.1093/jtm/taaa021
– year: 2020
  ident: 849_CR29
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2020.100354
– volume: 20
  start-page: 233
  issue: 3
  year: 2014
  ident: 849_CR21
  publication-title: Current Opinion in Pulmonary
  doi: 10.1097/MCP.0000000000000046
– year: 2007
  ident: 849_CR40
  publication-title: Journal of Biogeography
  doi: 10.1111/j.1365-2699.2007.01716.x
– year: 2014
  ident: 849_CR19
  publication-title: Educational and Psychological Measurement
  doi: 10.1177/0013164414548576
– year: 2020
  ident: 849_CR4
  publication-title: Air Quality, Atmosphere and Health
  doi: 10.1007/s11869-020-00845-3
– ident: 849_CR48
– volume: 4
  start-page: 1
  issue: 1
  year: 2000
  ident: 849_CR11
  publication-title: Journal of Geographic Information and Decision Analysis
– year: 2020
  ident: 849_CR15
  publication-title: Environment, Development and Sustainability,
  doi: 10.1007/s10668-020-00739-5
– year: 2020
  ident: 849_CR50
  publication-title: The Lancet Infectious Diseases
  doi: 10.1016/S1473-3099(20)30152-3
– year: 2011
  ident: 849_CR32
  publication-title: Journal of the American Society of Hypertension
  doi: 10.1016/j.jash.2011.03.001
SSID ssj0020926
Score 2.4534934
Snippet Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5846
SubjectTerms Bayesian analysis
Bayesian theory
China
Clinical research
Clinical trials
Control equipment
Coronaviridae
Coronaviruses
COVID-19
COVID-19 infection
Disease control
Disease transmission
Drugs
Earth and Environmental Science
Ecology
Economic Geology
Economic Growth
Environment
Environmental and sustainability aspects of the Covid-19 pandemic
Environmental Economics
Environmental Management
High risk
India
issues and policy
Pandemics
Population density
Probabilistic models
Probability
Protective equipment
risk
safety equipment
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Social distancing
Stability
Statistical analysis
Sustainable Development
Vaccines
Viral diseases
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hIgQXRAuIQIuMxA0sxfEr5lb6oOUAB9hqb1Hs2KJSlV2x20Nv_HRm3GS3W9FKnD22HI_t-Sae-QbgvcWNoUOdOJ5CzVVyifs2SZ5qj_bLa0T4OUD2mzmZqK9TPR2SwhZjtPv4JJlv6hvJbsbUnNwdIoF3HB31hxp9dwrkmlT7KzerdLnImiDWWATD0yFV5t9jbJqjNca8HSF565k0W5_jZ_B0gI1s_1rP2_Ag9jvw6ChTTl_twOMxv3jxHP5MbuarsIPvZ6eHXDi2JKuEWqXfY2woz8M-t1eR0igZFZbJZLvE28xyfRzqjYOwL6c_OBm7jp0R3cHsnI1E5J9Yy-aZWJjN10mbL2ByfPTz4IQPdRZ40LJacqmCSAqBTCdiXZoW72JtvSljisoLMvk2yhR8cFVXd6JMpQgy4nom22nvWvkStvpZH18B87jopa6SJt4bq1H1AR3w2jpv6mB0KECMy92EgYScamFcNGv6ZFJRgypqsoqasoAPqz7zawqOe6V3Ry02w3FcNAjiCAlrUxfwbtWMS06vI20fZ5coo6QVwinl7pEx0giDHqAswG7skNXMiK57s6U__5Vpu61U6D-KAj6Oe2k9wbu_5_X_ib-BJxVF3eTYol3YWv6-jHsIm5b-bT4lfwE9bA-a
  priority: 102
  providerName: Springer Nature
Title Understanding COVID-19 transmission through Bayesian probabilistic modeling and GIS-based Voronoi approach: a policy perspective
URI https://link.springer.com/article/10.1007/s10668-020-00849-0
https://www.proquest.com/docview/2510999568
https://www.proquest.com/docview/2437119449
https://www.proquest.com/docview/2636166053
https://pubmed.ncbi.nlm.nih.gov/PMC7340861
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY-wAviE8RGJWReAOLOI4dhxfUjbYbSAMBncpTFDu2NgmlhXYPvPGnc-c5DZ1EX2M7su_Ovjv77neEvCxAMKTVnsEulCz3pWem9oJ5bUB_GQkWfgiQPVMn8_zDQi7ihds6hlV2Z2I4qJulxTvyN6CH0ZiRSr9b_WRYNQpfV2MJjQMyhCNY6wEZHk3OPn_ZulxpGQqucUSQBcN4EdNmYvKcUpqh-4Sg8iVLd1VTb2_ejJa88WQaNNH0HrkbTUg6vub5fXLLtQ_I7S7DeP2Q_Jn_m7FCjz-dn75nvKQb1EvAV7wgo7FADz2qfztMpKRYWibA7SJyMw0VcnA0_ITOTr8yVHcNPUfAg-Ul7aDI39KargK0MF31aZuPyHw6-XZ8wmKlBWalyDZM5Jb7HEyZhjudqhpOY1kYlTrvcsNR6RdOeGtsmTW64alPuRUOqOiLRpqyFo_JoF227gmhBkidysxLRL4pJDDfgguui9IobZW0CeEdkSsbYcixGsaPqgdQRsZUwJgqMKZKE_JqO2Z1DcKxt_dhx7sqbsh11YtPQl5sm4Hk-D5St255BX1yUXBe5nm5p48SiivwAUVCih252M4MAbt3W9rLiwDcXYgcPEiekNedBPUT_P96nu5fzzNyJ8M4mxBNdEgGm19X7jkYShszIgd6OhuR4Xj2_eNkFPcGfJ1n47-iZhSm
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N8TBeEAwQgcGMBE9gEcc_kiAhBBtdy8Z4YJ36liWOLSahtNBOaG_8RfyN3LlJSyfRtz3bjmLf2d-dffcdwPMUFUPbzHPchZorn3telV5yn1WIX5VGCz8EyB6b_lB9GunRBvzpcmEorLI7E8NBXY8t3ZG_RhwmY0ab7N3kB6eqUfS62pXQmKvFobv8hS7b9O1gH-X7Ikl6H0_2-rytKsCtlsmMS2WFVwjbtXBZbEo8eXRamdh5pypBAJc66W1l86TOahH7WFjpEEp9WusqLyV-9wbcVBKRnDLTewcLBy_OQ3k3QXy1aIaP2iSdNlXPmIyTs0YU9jmPV4Fwad1ejc288kAbcK93B263Bit7P9ewu7Dhmm3Y6vKZp_fg9_Df_Bi29-V0sM9FzmaEgqhFdB3H2nJA7EN56Shtk1Ehm0DuSzzRLNTjodH4EXYw-MoJXGt2SvQK43PWEZ-_YSWbBCJjNlkmid6H4bVI4AFsNuPGPQRW4VLHOvGaeHZSjapm0eHP0rwymTXaRiC6RS5sS3pOtTe-F0u6ZhJMgYIpgmCKOIKXizGTOeXH2t47neyKdvtPi6WyRvBs0YxLTq8xZePGF9hHyVSIXKl8TR8jjTDoccoI0hW9WPwZ0YOvtjTn3wJNeCoV-qsigledBi1_8P_zebR-Pruw1T_5fFQcDY4PH8OthCJ8QhzTDmzOfl64J2iizaqnYV8wOLvujfgXQINNfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgJeED9FYICR4AmsxUlsJ0gIsXVlZahMQKe-hcSxxSSUFtoJ7Y2_i7-OOzdp6CT6tuc4luO783cX330H8EyjYkiTOo5WKHniMsfLwsXcpSXiVynRw_cJsiN1OE7eT-RkC_60tTCUVtmeif6grqaG_pHvIg6TMyNVuuuatIjj_uDN7AenDlJ009q201iqyJE9_4Xh2_z1sI-yfh5Fg4Mv-4e86TDAjYyjBY8TI1yCEF4Jm4aqwFNI6lKF1tmkFAR22sbOlCaLqrQSoQuFiS3CqtOVLLMixnmvwLamqKgH23sHo-NPq3AvzHyzN0HsteiUT5qSnaZwT6mUU-hGhPYZD9dhsfN1L2ZqXriu9Sg4uAk3GveVvV3q2y3YsvVtuNZWN8_vwO_xv9UybP_jybDPRcYWhImoU_RzjjXNgdhecW6piJNRWxtP9Uus0cx356G3cRL2bviZE9RW7ITIFqanrKVBf8UKNvO0xmzWlYzehfGlyOAe9Oppbe8DK3GrQxk5Saw7WqLiGQz_U52VKjVKmgBEu8m5aSjQqRPH97wjbybB5CiY3AsmDwN4sXpntiQA2Th6p5Vd3hwG87xT3QCerh7jltPdTFHb6RmOSWItRJYk2YYxKlZCYfwZB6DX9GK1MiILX39Sn37zpOE6TjB6FQG8bDWoW-D_v-fB5u95AlfRCPMPw9HRQ7geUbqPT2ragd7i55l9hP7aonzcGAaDr5dti38BW25TEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+COVID-19+transmission+through+Bayesian+probabilistic+modeling+and+GIS-based+Voronoi+approach%3A+a+policy+perspective&rft.jtitle=Environment%2C+development+and+sustainability&rft.au=Bherwani%2C+Hemant&rft.au=Anjum%2C+Saima&rft.au=Kumar%2C+Suman&rft.au=Gautam%2C+Sneha&rft.date=2021-04-01&rft.issn=1573-2975&rft.eissn=1573-2975&rft.volume=23&rft.issue=4&rft.spage=5846&rft_id=info:doi/10.1007%2Fs10668-020-00849-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-585X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-585X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-585X&client=summon