Understanding COVID-19 transmission through Bayesian probabilistic modeling and GIS-based Voronoi approach: a policy perspective
Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of cli...
Saved in:
Published in | Environment, development and sustainability Vol. 23; no. 4; pp. 5846 - 5864 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of clinical trials of medicines and vaccines, social distancing, use of personal protective equipment (PPE), and so on are being implemented in order to control the spread. The current study concentrates on lockdown and social distancing policy followed by the Indian Government and evaluates its effectiveness using Bayesian probability model (BPM). The change point analysis (CPA) done through the above approach suggests that the states which implemented the lockdown before the exponential rise of cases are able to control the spread of the disease in a much better and efficient way. The analysis has been done for states of Maharashtra, Gujarat, Madhya Pradesh, Rajasthan, Tamil Nadu, West Bengal, Uttar Pradesh, and Delhi as union territory. The highest value of Δ (delta) is reported for Gujarat and Madhya Pradesh with a value of 9.6 weeks, while the lowest value is 4.7, evidently for Maharashtra which is the worst affected. All of the states indicate a significant correlation (
p
< 0.05, tstat > tcritical) for Δ, i.e., the difference in the time period of CPA and lockdown with cases per population (CPP) and cases per unit area (CPUA), while weak correlation (
p
< 0.1 and tstat < tcritical) is exhibited by delta and cases per unit population density (CPD). For both CPP and CPUA, tstat > tcritical indicating a significant correlation, while Pearson’s correlation indicates the direction to be negative. Further analysis in terms of identification of high-risk areas has been studied from the Voronoi approach of GIS based on the inputs from BPM. All the states follow the above pattern of high population, high case scenario, and the boundaries of risk zones can be identified by Thiessen polygon (TP) constructed therein. The findings of the study help draw strategic and policy-driven response for India, toward tackling COVID-19 pandemic. |
---|---|
AbstractList | Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of clinical trials of medicines and vaccines, social distancing, use of personal protective equipment (PPE), and so on are being implemented in order to control the spread. The current study concentrates on lockdown and social distancing policy followed by the Indian Government and evaluates its effectiveness using Bayesian probability model (BPM). The change point analysis (CPA) done through the above approach suggests that the states which implemented the lockdown before the exponential rise of cases are able to control the spread of the disease in a much better and efficient way. The analysis has been done for states of Maharashtra, Gujarat, Madhya Pradesh, Rajasthan, Tamil Nadu, West Bengal, Uttar Pradesh, and Delhi as union territory. The highest value of Δ (delta) is reported for Gujarat and Madhya Pradesh with a value of 9.6 weeks, while the lowest value is 4.7, evidently for Maharashtra which is the worst affected. All of the states indicate a significant correlation (
p
< 0.05, tstat > tcritical) for Δ, i.e., the difference in the time period of CPA and lockdown with cases per population (CPP) and cases per unit area (CPUA), while weak correlation (
p
< 0.1 and tstat < tcritical) is exhibited by delta and cases per unit population density (CPD). For both CPP and CPUA, tstat > tcritical indicating a significant correlation, while Pearson’s correlation indicates the direction to be negative. Further analysis in terms of identification of high-risk areas has been studied from the Voronoi approach of GIS based on the inputs from BPM. All the states follow the above pattern of high population, high case scenario, and the boundaries of risk zones can be identified by Thiessen polygon (TP) constructed therein. The findings of the study help draw strategic and policy-driven response for India, toward tackling COVID-19 pandemic. Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of clinical trials of medicines and vaccines, social distancing, use of personal protective equipment (PPE), and so on are being implemented in order to control the spread. The current study concentrates on lockdown and social distancing policy followed by the Indian Government and evaluates its effectiveness using Bayesian probability model (BPM). The change point analysis (CPA) done through the above approach suggests that the states which implemented the lockdown before the exponential rise of cases are able to control the spread of the disease in a much better and efficient way. The analysis has been done for states of Maharashtra, Gujarat, Madhya Pradesh, Rajasthan, Tamil Nadu, West Bengal, Uttar Pradesh, and Delhi as union territory. The highest value of Δ (delta) is reported for Gujarat and Madhya Pradesh with a value of 9.6 weeks, while the lowest value is 4.7, evidently for Maharashtra which is the worst affected. All of the states indicate a significant correlation (p < 0.05, tstat > tcritical) for Δ, i.e., the difference in the time period of CPA and lockdown with cases per population (CPP) and cases per unit area (CPUA), while weak correlation (p < 0.1 and tstat < tcritical) is exhibited by delta and cases per unit population density (CPD). For both CPP and CPUA, tstat > tcritical indicating a significant correlation, while Pearson's correlation indicates the direction to be negative. Further analysis in terms of identification of high-risk areas has been studied from the Voronoi approach of GIS based on the inputs from BPM. All the states follow the above pattern of high population, high case scenario, and the boundaries of risk zones can be identified by Thiessen polygon (TP) constructed therein. The findings of the study help draw strategic and policy-driven response for India, toward tackling COVID-19 pandemic.Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of clinical trials of medicines and vaccines, social distancing, use of personal protective equipment (PPE), and so on are being implemented in order to control the spread. The current study concentrates on lockdown and social distancing policy followed by the Indian Government and evaluates its effectiveness using Bayesian probability model (BPM). The change point analysis (CPA) done through the above approach suggests that the states which implemented the lockdown before the exponential rise of cases are able to control the spread of the disease in a much better and efficient way. The analysis has been done for states of Maharashtra, Gujarat, Madhya Pradesh, Rajasthan, Tamil Nadu, West Bengal, Uttar Pradesh, and Delhi as union territory. The highest value of Δ (delta) is reported for Gujarat and Madhya Pradesh with a value of 9.6 weeks, while the lowest value is 4.7, evidently for Maharashtra which is the worst affected. All of the states indicate a significant correlation (p < 0.05, tstat > tcritical) for Δ, i.e., the difference in the time period of CPA and lockdown with cases per population (CPP) and cases per unit area (CPUA), while weak correlation (p < 0.1 and tstat < tcritical) is exhibited by delta and cases per unit population density (CPD). For both CPP and CPUA, tstat > tcritical indicating a significant correlation, while Pearson's correlation indicates the direction to be negative. Further analysis in terms of identification of high-risk areas has been studied from the Voronoi approach of GIS based on the inputs from BPM. All the states follow the above pattern of high population, high case scenario, and the boundaries of risk zones can be identified by Thiessen polygon (TP) constructed therein. The findings of the study help draw strategic and policy-driven response for India, toward tackling COVID-19 pandemic. Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of clinical trials of medicines and vaccines, social distancing, use of personal protective equipment (PPE), and so on are being implemented in order to control the spread. The current study concentrates on lockdown and social distancing policy followed by the Indian Government and evaluates its effectiveness using Bayesian probability model (BPM). The change point analysis (CPA) done through the above approach suggests that the states which implemented the lockdown before the exponential rise of cases are able to control the spread of the disease in a much better and efficient way. The analysis has been done for states of Maharashtra, Gujarat, Madhya Pradesh, Rajasthan, Tamil Nadu, West Bengal, Uttar Pradesh, and Delhi as union territory. The highest value of Δ (delta) is reported for Gujarat and Madhya Pradesh with a value of 9.6 weeks, while the lowest value is 4.7, evidently for Maharashtra which is the worst affected. All of the states indicate a significant correlation (p < 0.05, tstat > tcritical) for Δ, i.e., the difference in the time period of CPA and lockdown with cases per population (CPP) and cases per unit area (CPUA), while weak correlation (p < 0.1 and tstat < tcritical) is exhibited by delta and cases per unit population density (CPD). For both CPP and CPUA, tstat > tcritical indicating a significant correlation, while Pearson’s correlation indicates the direction to be negative. Further analysis in terms of identification of high-risk areas has been studied from the Voronoi approach of GIS based on the inputs from BPM. All the states follow the above pattern of high population, high case scenario, and the boundaries of risk zones can be identified by Thiessen polygon (TP) constructed therein. The findings of the study help draw strategic and policy-driven response for India, toward tackling COVID-19 pandemic. |
Author | Kumar, Suman Gupta, Ankit Anshul, Avneesh Kumar, Rakesh Anjum, Saima Kumbhare, Himanshu Bherwani, Hemant Gautam, Sneha |
Author_xml | – sequence: 1 givenname: Hemant orcidid: 0000-0002-0043-2589 surname: Bherwani fullname: Bherwani, Hemant email: h.bherwani@neeri.res.in organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Academy of Scientific and Innovative Research (AcSIR) – sequence: 2 givenname: Saima surname: Anjum fullname: Anjum, Saima organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI) – sequence: 3 givenname: Suman surname: Kumar fullname: Kumar, Suman organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI) – sequence: 4 givenname: Sneha surname: Gautam fullname: Gautam, Sneha organization: Karunya Institute of Technology and Sciences – sequence: 5 givenname: Ankit surname: Gupta fullname: Gupta, Ankit organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Academy of Scientific and Innovative Research (AcSIR) – sequence: 6 givenname: Himanshu surname: Kumbhare fullname: Kumbhare, Himanshu organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI) – sequence: 7 givenname: Avneesh surname: Anshul fullname: Anshul, Avneesh organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI) – sequence: 8 givenname: Rakesh surname: Kumar fullname: Kumar, Rakesh organization: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Academy of Scientific and Innovative Research (AcSIR) |
BookMark | eNqFkrtuFDEUhkcoiFzgBags0dAYfBnfKJDIEsJKkVJAIjrL4zmz62jWHuzZSNvx6HHYCESKUPlI_v7_XI-bg5giNM1rSt5RQtT7QomUGhNGMCG6NZg8a46oUBwzo8RBjblWWGjx47A5LuWGVNIw-aI55ExzxZQ6an5dxR5ymV3sQ1yhxeX18jOmBs3ZxbIJpYQU0bzOabtao1O3gxJcRFNOnevCGMocPNqkHsZ7dTVB58tvuHMFenSdcoopIDdV3Pn1B-TQlMbgd2iqKSfwc7iFl83zwY0FXj28J83Vl7Pvi6_44vJ8ufh0gb3gbMa89XRoa809BU2kA-eF6iSBAdqOspZIBXzwnTes1z0lA6GeQ53SoHrRGcdPmo9732nbbaD3EGuLo51y2Li8s8kF--9PDGu7SrdW8ZZoSavB2weDnH5uocy2jsfDOLoIaVssk1xSKYng_0dbrig1bWsq-uYRepO2OdZJWCYoMcYIqSvF9pTPqZQMw5-6KbH3t2D3t2Drhu3vW7CkivQjkQ-zm-tCa39hfFrK99JS88QV5L9VPaG6A-80y1s |
CitedBy_id | crossref_primary_10_7163_GPol_0211 crossref_primary_10_52547_jgst_12_3_17 crossref_primary_10_1016_j_gsf_2021_101291 crossref_primary_10_1108_IJSE_04_2021_0241 crossref_primary_10_1108_SRJ_10_2020_0415 crossref_primary_10_7163_GPol_0215 crossref_primary_10_1007_s11356_021_14462_9 crossref_primary_10_3390_ijerph17239045 crossref_primary_10_1016_j_autcon_2022_104315 crossref_primary_10_1016_j_jfoodeng_2024_112443 crossref_primary_10_1007_s10668_020_00934_4 crossref_primary_10_1016_j_jnca_2025_104129 crossref_primary_10_1155_2021_5524098 crossref_primary_10_1007_s10668_021_01324_0 crossref_primary_10_3390_ijgi10080571 crossref_primary_10_1007_s41748_020_00194_2 crossref_primary_10_1007_s10668_020_00884_x crossref_primary_10_1016_j_ejrs_2021_12_010 crossref_primary_10_1057_s41284_021_00314_1 crossref_primary_10_1155_2021_4923532 crossref_primary_10_1111_tgis_12792 crossref_primary_10_1007_s10668_020_01055_8 crossref_primary_10_2147_RMHP_S297565 crossref_primary_10_3390_math10010021 crossref_primary_10_1080_19338244_2023_2167799 crossref_primary_10_3390_ijerph17228468 crossref_primary_10_1007_s10708_022_10780_8 crossref_primary_10_1038_s41598_024_51251_z crossref_primary_10_1007_s10668_021_01366_4 crossref_primary_10_1016_j_scitotenv_2020_141486 crossref_primary_10_3390_ijerph18189657 crossref_primary_10_1007_s41748_021_00278_7 crossref_primary_10_1080_19475683_2025_2451230 crossref_primary_10_1007_s10668_022_02727_3 crossref_primary_10_1007_s00484_020_02019_3 crossref_primary_10_1016_j_seps_2022_101250 crossref_primary_10_1007_s11356_021_13813_w crossref_primary_10_1080_19475683_2022_2041725 crossref_primary_10_1038_s41598_021_91236_w crossref_primary_10_1080_25765299_2022_2148439 crossref_primary_10_1007_s40314_022_01949_5 |
Cites_doi | 10.1016/j.eclinm.2020.100354 10.1038/s41569-020-0360-5 10.1007/s11869-020-00842-6 10.1097/MCP.0000000000000046 10.5144/0256-4947.2016.78 10.1002/path.2067 10.1016/j.sste.2010.03.009 10.1186/s40779-020-00240-0 10.1016/j.jare.2020.03.005 10.1007/s10668-020-00801-2 10.7287/peerj.preprints.1686v1 10.1136/amiajnl-2011-000793 10.1016/j.jaut.2020.102433 10.1186/s12911-016-0271-x 10.3758/s13423-012-0295-x 10.1007/s10668-020-00739-5 10.1111/j.0033-0124.2004.05602007.x 10.1111/j.1365-2699.2007.01716.x 10.1101/2020.03.03.20029983 10.1016/S1473-3099(20)30152-3 10.1016/j.chaos.2020.109850 10.1016/j.scitotenv.2020.138762 10.4103/GJTM.GJTM_24_20 10.3855/jidc.12600 10.1007/s11869-020-00845-3 10.1007/s10668-020-00740-y 10.1093/cid/ciaa226 10.1016/j.kint.2020.03.005 10.1056/NEJMp048051 10.1080/02786826.2020.1749229 10.1007/s00128-020-02877-y 10.1001/jama.2020.7878 10.1183/13993003.00524-2020 10.1002/9781118786352.wbieg0157 10.1016/j.watres.2016.11.008 10.1016/j.cmi.2020.03.026 10.1177/0013164414548576 10.1016/s0140-6736(20)30183-5 10.1093/jtm/taaa021 10.1016/j.jash.2011.03.001 10.1029/2006wr005497 10.1093/ajcp/aqaa029 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2020 Springer Nature B.V. 2020. |
Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: Springer Nature B.V. 2020. |
DBID | AAYXX CITATION 3V. 7ST 7U6 7WY 7WZ 7XB 87Z 8AO 8BJ 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BGLVJ BHPHI C1K CCPQU DWQXO FQK FR3 FRNLG F~G GNUQQ HCIFZ JBE K60 K6~ KR7 L.- L6V M0C M7S PATMY PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7X8 7S9 L.6 5PM |
DOI | 10.1007/s10668-020-00849-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Sustainability Science Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Pharma Collection International Bibliography of the Social Sciences (IBSS) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central International Bibliography of the Social Sciences Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Proquest SciTech Premium Collection International Bibliography of the Social Sciences ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Sustainability Science Abstracts ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest SciTech Collection Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Business Collection (Alumni Edition) AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Ecology |
EISSN | 1573-2975 |
EndPage | 5864 |
ExternalDocumentID | PMC7340861 10_1007_s10668_020_00849_0 |
GeographicLocations | China India |
GeographicLocations_xml | – name: China – name: India |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 7WY 7XC 8AO 8FE 8FG 8FH 8FL 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L6V L8X LAK LLZTM M0C M4Y M7S MA- ML. N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7V Z7Y Z81 ZMTXR ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7U6 7XB 8BJ 8FD 8FK ABRTQ AZQEC C1K FQK FR3 GNUQQ JBE KR7 L.- PKEHL PQEST PQGLB PQUKI PRINS Q9U SOI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c532t-34c1f4727d1e806aeac57b60efe4b124067e3fcbc92d8d10f01c3e007f7d5b9a3 |
IEDL.DBID | BENPR |
ISSN | 1387-585X 1573-2975 |
IngestDate | Thu Aug 21 17:50:04 EDT 2025 Fri Jul 11 00:08:00 EDT 2025 Thu Jul 10 22:15:37 EDT 2025 Sat Aug 23 13:52:09 EDT 2025 Tue Jul 01 02:53:07 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Fri Feb 21 02:48:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | COVID-19 SARS-CoV-2 Voronoi diagram Change point analysis Bayesian probability |
Language | English |
License | This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c532t-34c1f4727d1e806aeac57b60efe4b124067e3fcbc92d8d10f01c3e007f7d5b9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0043-2589 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7340861 |
PMID | 32837277 |
PQID | 2510999568 |
PQPubID | 25739 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7340861 proquest_miscellaneous_2636166053 proquest_miscellaneous_2437119449 proquest_journals_2510999568 crossref_primary_10_1007_s10668_020_00849_0 crossref_citationtrail_10_1007_s10668_020_00849_0 springer_journals_10_1007_s10668_020_00849_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | A Multidisciplinary Approach to the Theory and Practice of Sustainable Development |
PublicationTitle | Environment, development and sustainability |
PublicationTitleAbbrev | Environ Dev Sustain |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Alhogbani (CR2) 2016 Ho, Yu (CR19) 2014 Cheng, Luo, Wang, Zhang, Wang, Dong (CR7) 2020 Kannan, Ali, Sheensza, Hemalatha (CR25) 2020; 24 Wheeler, Waller, Biek (CR46) 2010 Asadi, Bouvier, Wexler, Ristenpart (CR3) 2020 Nagai, Hoshide, Ishikawa, Shimada, Kario (CR32) 2011 Liu, Gu, Xia, Shi, Zhou, Shi, Liu (CR29) 2020 Kass-Hout, Xu, McMurray, Park, Buckeridge, Brownstein, Groseclose (CR26) 2012 Chakraborty, Ghosh (CR6) 2020 Du, Liang, Yang, Wang, Cao, Li (CR10) 2020 Jribi, Ben Ismail, Doggui, Debbabi (CR24) 2020 Jain, Choudhury, Sharma, Kumar, De, Tiwari (CR23) 2020; 5 Zheng, Ma, Zhang, Xie (CR53) 2020 Guo, Cao, Hong, Tan, Chen, Jin (CR17) 2020 Yang, Reichert, Abbaspour (CR52) 2007 Texier, Farouh, Pellegrin, Jackson, Meynard, Deparis, Chaudet (CR42) 2016 Guarner (CR16) 2020 Liu, Gayle, Wilder-Smith, Rocklov (CR28) 2020 Mu (CR31) 2004 Sarkodie, Owusu (CR39) 2020 Fan, Lei, Fang, Li, Wang, Liu, Bao, Sun, Huang, Guo, Ying, Wang (CR12) 2020 Roy, Milton (CR37) 2004; 350 Schulman, Toivonen, Ruokolainen (CR40) 2007 Petrosillo, Viceconte, Ergonul, Ippolito, Petersen (CR33) 2020 CR8 Gautam (CR13) 2020 Rothan, Byrareddy (CR36) 2020 Hui, Memish, Zumla (CR21) 2014; 20 CR9 Dubois (CR11) 2000; 4 Salvatier, Wiecki, Fonnesbeck (CR38) 2016 CR48 He, Ding, Zhang, Che, He, Shen (CR18) 2006 CR47 Porcheddu, Serra, Kelvin, Kelvin, Rubino (CR34) 2020 Gautam (CR14) 2020 Tomar, Gupta (CR44) 2020 Adnan Shereen, Khan, Kazmi, Bashir, Siddique (CR1) 2020 Gautam, Hens (CR15) 2020 Yamada (CR51) 2016 Bherwani, Nair, Musugu (CR4) 2020 Inglesby (CR22) 2020 Huang, Wang, Li, Ren, Zhao, Hu (CR20) 2020 Tindale, Coombe, Stockdale, Garlock, Lau, Saraswat, Yen-Hsiang, Zhang, Chen, Wallinga, Colijn (CR43) 2020 Xiao, Torok (CR50) 2020 Carvajal, Roser, Sisson, Keegan, Khan (CR5) 2017 Wetzels, Wagenmakers (CR45) 2012 849_CR9 G Dubois (849_CR11) 2000; 4 M Adnan Shereen (849_CR1) 2020 Y Cheng (849_CR7) 2020 L Mu (849_CR31) 2004 J Salvatier (849_CR38) 2016 H Bherwani (849_CR4) 2020 C Huang (849_CR20) 2020 S Jribi (849_CR24) 2020 S Gautam (849_CR14) 2020 L He (849_CR18) 2006 S Asadi (849_CR3) 2020 849_CR8 G Texier (849_CR42) 2016 849_CR47 849_CR48 Y Xiao (849_CR50) 2020 J Yang (849_CR52) 2007 Y Liu (849_CR28) 2020 N Jain (849_CR23) 2020; 5 SA Sarkodie (849_CR39) 2020 I Yamada (849_CR51) 2016 T Alhogbani (849_CR2) 2016 TV Inglesby (849_CR22) 2020 R Porcheddu (849_CR34) 2020 R Wetzels (849_CR45) 2012 S Gautam (849_CR13) 2020 S Kannan (849_CR25) 2020; 24 N Petrosillo (849_CR33) 2020 DS Hui (849_CR21) 2014; 20 DC Wheeler (849_CR46) 2010 HA Rothan (849_CR36) 2020 AD Ho (849_CR19) 2014 L Schulman (849_CR40) 2007 TA Kass-Hout (849_CR26) 2012 Y-Y Zheng (849_CR53) 2020 S Gautam (849_CR15) 2020 CJ Roy (849_CR37) 2004; 350 Y-R Guo (849_CR17) 2020 C Fan (849_CR12) 2020 R-H Du (849_CR10) 2020 A Tomar (849_CR44) 2020 M Nagai (849_CR32) 2011 L Tindale (849_CR43) 2020 G Carvajal (849_CR5) 2017 T Chakraborty (849_CR6) 2020 Y Liu (849_CR29) 2020 J Guarner (849_CR16) 2020 |
References_xml | – year: 2020 ident: CR29 article-title: What are the underlying transmission patterns of COVID-19 outbreak?—An age-specific social contact characterization publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2020.100354 – year: 2020 ident: CR53 article-title: COVID-19 and the cardiovascular system publication-title: Nature Reviews Cardiology doi: 10.1038/s41569-020-0360-5 – ident: CR47 – year: 2020 ident: CR13 article-title: COVID-19: air pollution remains low as people stay at home publication-title: Air Quality, Atmosphere & Health, doi: 10.1007/s11869-020-00842-6 – volume: 20 start-page: 233 issue: 3 year: 2014 end-page: 241 ident: CR21 article-title: Severe acute respiratory syndrome vs. the Middle East respiratory syndrome publication-title: Current Opinion in Pulmonary doi: 10.1097/MCP.0000000000000046 – year: 2016 ident: CR2 article-title: Acute myocarditis associated with novel middle east respiratory syndrome corornavirus publication-title: Annals of Saudi Medicine doi: 10.5144/0256-4947.2016.78 – year: 2006 ident: CR18 article-title: Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS publication-title: The Journal of Pathology doi: 10.1002/path.2067 – year: 2010 ident: CR46 article-title: Spatial analysis of feline immunodeficiency virus infection in cougars publication-title: Spatial and Spatio-Temporal Epidemiology doi: 10.1016/j.sste.2010.03.009 – volume: 24 start-page: 2006 year: 2020 end-page: 2201 ident: CR25 article-title: COVID-19 (Novel Coronavirus 2019) publication-title: European Review For Medical and Pharmacological Sciences – year: 2020 ident: CR17 article-title: The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—an update on the status publication-title: Military Medical Research doi: 10.1186/s40779-020-00240-0 – year: 2020 ident: CR1 article-title: COVID-19 infection: origin, transmission, and characteristics of human coronaviruses publication-title: Journal of Advanced Research doi: 10.1016/j.jare.2020.03.005 – year: 2020 ident: CR39 article-title: Global assessment of environment, health and economic impact of the novel coronavirus (COVID-19) publication-title: Environment, Development and Sustainability, doi: 10.1007/s10668-020-00801-2 – year: 2016 ident: CR38 article-title: Probabilistic programming in Python using PyMC3 publication-title: PeerJ doi: 10.7287/peerj.preprints.1686v1 – ident: CR8 – year: 2012 ident: CR26 article-title: Application of change point analysis to daily influenza-like illness emergency department visits publication-title: Journal of the American Medical Informatics Association doi: 10.1136/amiajnl-2011-000793 – year: 2020 ident: CR36 article-title: The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak publication-title: Journal of Autoimmunity doi: 10.1016/j.jaut.2020.102433 – year: 2016 ident: CR42 article-title: Outbreak definition by change point analysis: A tool for public health decision? publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-016-0271-x – year: 2012 ident: CR45 article-title: A default Bayesian hypothesis test for correlations and partial correlations publication-title: Psychonomic Bulletin and Review doi: 10.3758/s13423-012-0295-x – year: 2020 ident: CR15 article-title: SARS-CoV-2 pandemic in India: what might we expect? publication-title: Environment, Development and Sustainability, doi: 10.1007/s10668-020-00739-5 – year: 2004 ident: CR31 article-title: Polygon characterization with the multiplicatively weighted Voronoi diagram publication-title: The Professional Geographer doi: 10.1111/j.0033-0124.2004.05602007.x – volume: 4 start-page: 1 issue: 1 year: 2000 end-page: 10 ident: CR11 article-title: How representative are samples in a sampling network? publication-title: Journal of Geographic Information and Decision Analysis – year: 2007 ident: CR40 article-title: Analysing botanical collecting effort in Amazonia and correcting for it in species range estimation publication-title: Journal of Biogeography doi: 10.1111/j.1365-2699.2007.01716.x – year: 2020 ident: CR43 article-title: Transmission interval estimates suggest pre-symptomatic spread of COVID-19 publication-title: MedRxiv doi: 10.1101/2020.03.03.20029983 – year: 2020 ident: CR50 article-title: Taking the right measures to control COVID-19 publication-title: The Lancet Infectious Diseases doi: 10.1016/S1473-3099(20)30152-3 – year: 2020 ident: CR6 article-title: Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis publication-title: Chaos, Solitons and Fractals, doi: 10.1016/j.chaos.2020.109850 – year: 2020 ident: CR44 article-title: Prediction for the spread of COVID-19 in India and effectiveness of preventive measures publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2020.138762 – volume: 5 start-page: 22 issue: 1 year: 2020 end-page: 26 ident: CR23 article-title: A review of novel coronavirus infection (Coronavirus Disease-19) publication-title: Global Journal of Transfusion Medicine doi: 10.4103/GJTM.GJTM_24_20 – year: 2020 ident: CR34 article-title: Similarity in case fatality rates (CFR) of COVID-19/SARS-COV-2 in Italy and China publication-title: Journal of Infection in Developing Countries doi: 10.3855/jidc.12600 – ident: CR48 – year: 2020 ident: CR4 article-title: Valuation of air pollution externalities: comparative assessment of economic damage and emission reduction under COVID-19 lockdown publication-title: Air Quality, Atmosphere and Health doi: 10.1007/s11869-020-00845-3 – year: 2020 ident: CR24 article-title: COVID-19 virus outbreak lockdown: What impacts on household food wastage? publication-title: Environment, Development and Sustainability, doi: 10.1007/s10668-020-00740-y – year: 2020 ident: CR12 article-title: Perinatal transmission of COVID-19 associated SARS-CoV-2: Should we worry? publication-title: Clinical Infectious Diseases doi: 10.1093/cid/ciaa226 – year: 2020 ident: CR7 article-title: Kidney disease is associated with in-hospital death of patients with COVID-19 publication-title: Kidney International doi: 10.1016/j.kint.2020.03.005 – volume: 350 start-page: 1710 year: 2004 end-page: 1712 ident: CR37 article-title: Airborne transmission of communicable infection–the elusive pathway publication-title: The New England of Journal Medicine doi: 10.1056/NEJMp048051 – year: 2020 ident: CR3 article-title: The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2020.1749229 – year: 2020 ident: CR14 article-title: The Influence of COVID-19 on air quality in India: A boon or inutile publication-title: Bulletin of Environmental Contamination and Toxicology doi: 10.1007/s00128-020-02877-y – year: 2020 ident: CR22 article-title: Public health measures and the reproduction number of SARS-CoV-2 publication-title: JAMA doi: 10.1001/jama.2020.7878 – year: 2020 ident: CR10 article-title: Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: A prospective cohort study publication-title: European Respiratory Journal doi: 10.1183/13993003.00524-2020 – year: 2016 ident: CR51 article-title: Thiessen polygons publication-title: International Encyclopedia of Geography: People, the Earth, Environment and Technology doi: 10.1002/9781118786352.wbieg0157 – ident: CR9 – year: 2017 ident: CR5 article-title: Bayesian belief network modelling of chlorine disinfection for human pathogenic viruses in municipal wastewater publication-title: Water Research doi: 10.1016/j.watres.2016.11.008 – year: 2020 ident: CR33 article-title: COVID-19, SARS and MERS: Are they closely related? publication-title: Clinical Microbiology and Infection doi: 10.1016/j.cmi.2020.03.026 – year: 2014 ident: CR19 article-title: Descriptive statistics for modern test score distributions publication-title: Educational and Psychological Measurement doi: 10.1177/0013164414548576 – year: 2020 ident: CR20 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: The Lancet doi: 10.1016/s0140-6736(20)30183-5 – year: 2020 ident: CR28 article-title: The reproductive number of COVID-19 is higher compared to SARS coronavirus publication-title: Journal of Travel Medicine doi: 10.1093/jtm/taaa021 – year: 2011 ident: CR32 article-title: Visit-to-visit blood pressure variations: New independent determinants for carotid artery measures in the elderly at high risk of cardiovascular disease publication-title: Journal of the American Society of Hypertension doi: 10.1016/j.jash.2011.03.001 – year: 2007 ident: CR52 article-title: Bayesian uncertainty analysis in distributed hydrologic modeling: A case study in the Thur river basin (Switzerland) publication-title: Water Resources Research doi: 10.1029/2006wr005497 – year: 2020 ident: CR16 article-title: Three emerging coronaviruses in two decades: The story of SARS, MERS, and now COVID-19 publication-title: American Journal of Clinical Pathology doi: 10.1093/ajcp/aqaa029 – year: 2010 ident: 849_CR46 publication-title: Spatial and Spatio-Temporal Epidemiology doi: 10.1016/j.sste.2010.03.009 – year: 2020 ident: 849_CR16 publication-title: American Journal of Clinical Pathology doi: 10.1093/ajcp/aqaa029 – year: 2020 ident: 849_CR17 publication-title: Military Medical Research doi: 10.1186/s40779-020-00240-0 – volume: 24 start-page: 2006 year: 2020 ident: 849_CR25 publication-title: European Review For Medical and Pharmacological Sciences – year: 2020 ident: 849_CR33 publication-title: Clinical Microbiology and Infection doi: 10.1016/j.cmi.2020.03.026 – year: 2020 ident: 849_CR24 publication-title: Environment, Development and Sustainability, doi: 10.1007/s10668-020-00740-y – year: 2020 ident: 849_CR14 publication-title: Bulletin of Environmental Contamination and Toxicology doi: 10.1007/s00128-020-02877-y – year: 2020 ident: 849_CR20 publication-title: The Lancet doi: 10.1016/s0140-6736(20)30183-5 – year: 2020 ident: 849_CR12 publication-title: Clinical Infectious Diseases doi: 10.1093/cid/ciaa226 – year: 2012 ident: 849_CR26 publication-title: Journal of the American Medical Informatics Association doi: 10.1136/amiajnl-2011-000793 – year: 2020 ident: 849_CR39 publication-title: Environment, Development and Sustainability, doi: 10.1007/s10668-020-00801-2 – ident: 849_CR8 – year: 2020 ident: 849_CR6 publication-title: Chaos, Solitons and Fractals, doi: 10.1016/j.chaos.2020.109850 – year: 2017 ident: 849_CR5 publication-title: Water Research doi: 10.1016/j.watres.2016.11.008 – year: 2020 ident: 849_CR13 publication-title: Air Quality, Atmosphere & Health, doi: 10.1007/s11869-020-00842-6 – year: 2016 ident: 849_CR51 publication-title: International Encyclopedia of Geography: People, the Earth, Environment and Technology doi: 10.1002/9781118786352.wbieg0157 – year: 2016 ident: 849_CR2 publication-title: Annals of Saudi Medicine doi: 10.5144/0256-4947.2016.78 – ident: 849_CR47 – year: 2020 ident: 849_CR7 publication-title: Kidney International doi: 10.1016/j.kint.2020.03.005 – year: 2020 ident: 849_CR22 publication-title: JAMA doi: 10.1001/jama.2020.7878 – volume: 5 start-page: 22 issue: 1 year: 2020 ident: 849_CR23 publication-title: Global Journal of Transfusion Medicine doi: 10.4103/GJTM.GJTM_24_20 – year: 2020 ident: 849_CR36 publication-title: Journal of Autoimmunity doi: 10.1016/j.jaut.2020.102433 – volume: 350 start-page: 1710 year: 2004 ident: 849_CR37 publication-title: The New England of Journal Medicine doi: 10.1056/NEJMp048051 – year: 2016 ident: 849_CR42 publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-016-0271-x – year: 2004 ident: 849_CR31 publication-title: The Professional Geographer doi: 10.1111/j.0033-0124.2004.05602007.x – year: 2020 ident: 849_CR44 publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2020.138762 – year: 2020 ident: 849_CR53 publication-title: Nature Reviews Cardiology doi: 10.1038/s41569-020-0360-5 – year: 2020 ident: 849_CR43 publication-title: MedRxiv doi: 10.1101/2020.03.03.20029983 – year: 2012 ident: 849_CR45 publication-title: Psychonomic Bulletin and Review doi: 10.3758/s13423-012-0295-x – year: 2007 ident: 849_CR52 publication-title: Water Resources Research doi: 10.1029/2006wr005497 – year: 2020 ident: 849_CR10 publication-title: European Respiratory Journal doi: 10.1183/13993003.00524-2020 – year: 2020 ident: 849_CR34 publication-title: Journal of Infection in Developing Countries doi: 10.3855/jidc.12600 – year: 2020 ident: 849_CR3 publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2020.1749229 – year: 2020 ident: 849_CR1 publication-title: Journal of Advanced Research doi: 10.1016/j.jare.2020.03.005 – year: 2016 ident: 849_CR38 publication-title: PeerJ doi: 10.7287/peerj.preprints.1686v1 – ident: 849_CR9 – year: 2006 ident: 849_CR18 publication-title: The Journal of Pathology doi: 10.1002/path.2067 – year: 2020 ident: 849_CR28 publication-title: Journal of Travel Medicine doi: 10.1093/jtm/taaa021 – year: 2020 ident: 849_CR29 publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2020.100354 – volume: 20 start-page: 233 issue: 3 year: 2014 ident: 849_CR21 publication-title: Current Opinion in Pulmonary doi: 10.1097/MCP.0000000000000046 – year: 2007 ident: 849_CR40 publication-title: Journal of Biogeography doi: 10.1111/j.1365-2699.2007.01716.x – year: 2014 ident: 849_CR19 publication-title: Educational and Psychological Measurement doi: 10.1177/0013164414548576 – year: 2020 ident: 849_CR4 publication-title: Air Quality, Atmosphere and Health doi: 10.1007/s11869-020-00845-3 – ident: 849_CR48 – volume: 4 start-page: 1 issue: 1 year: 2000 ident: 849_CR11 publication-title: Journal of Geographic Information and Decision Analysis – year: 2020 ident: 849_CR15 publication-title: Environment, Development and Sustainability, doi: 10.1007/s10668-020-00739-5 – year: 2020 ident: 849_CR50 publication-title: The Lancet Infectious Diseases doi: 10.1016/S1473-3099(20)30152-3 – year: 2011 ident: 849_CR32 publication-title: Journal of the American Society of Hypertension doi: 10.1016/j.jash.2011.03.001 |
SSID | ssj0020926 |
Score | 2.4534934 |
Snippet | Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of... |
SourceID | pubmedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5846 |
SubjectTerms | Bayesian analysis Bayesian theory China Clinical research Clinical trials Control equipment Coronaviridae Coronaviruses COVID-19 COVID-19 infection Disease control Disease transmission Drugs Earth and Environmental Science Ecology Economic Geology Economic Growth Environment Environmental and sustainability aspects of the Covid-19 pandemic Environmental Economics Environmental Management High risk India issues and policy Pandemics Population density Probabilistic models Probability Protective equipment risk safety equipment Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Social distancing Stability Statistical analysis Sustainable Development Vaccines Viral diseases |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hIgQXRAuIQIuMxA0sxfEr5lb6oOUAB9hqb1Hs2KJSlV2x20Nv_HRm3GS3W9FKnD22HI_t-Sae-QbgvcWNoUOdOJ5CzVVyifs2SZ5qj_bLa0T4OUD2mzmZqK9TPR2SwhZjtPv4JJlv6hvJbsbUnNwdIoF3HB31hxp9dwrkmlT7KzerdLnImiDWWATD0yFV5t9jbJqjNca8HSF565k0W5_jZ_B0gI1s_1rP2_Ag9jvw6ChTTl_twOMxv3jxHP5MbuarsIPvZ6eHXDi2JKuEWqXfY2woz8M-t1eR0igZFZbJZLvE28xyfRzqjYOwL6c_OBm7jp0R3cHsnI1E5J9Yy-aZWJjN10mbL2ByfPTz4IQPdRZ40LJacqmCSAqBTCdiXZoW72JtvSljisoLMvk2yhR8cFVXd6JMpQgy4nom22nvWvkStvpZH18B87jopa6SJt4bq1H1AR3w2jpv6mB0KECMy92EgYScamFcNGv6ZFJRgypqsoqasoAPqz7zawqOe6V3Ry02w3FcNAjiCAlrUxfwbtWMS06vI20fZ5coo6QVwinl7pEx0giDHqAswG7skNXMiK57s6U__5Vpu61U6D-KAj6Oe2k9wbu_5_X_ib-BJxVF3eTYol3YWv6-jHsIm5b-bT4lfwE9bA-a priority: 102 providerName: Springer Nature |
Title | Understanding COVID-19 transmission through Bayesian probabilistic modeling and GIS-based Voronoi approach: a policy perspective |
URI | https://link.springer.com/article/10.1007/s10668-020-00849-0 https://www.proquest.com/docview/2510999568 https://www.proquest.com/docview/2437119449 https://www.proquest.com/docview/2636166053 https://pubmed.ncbi.nlm.nih.gov/PMC7340861 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY-wAviE8RGJWReAOLOI4dhxfUjbYbSAMBncpTFDu2NgmlhXYPvPGnc-c5DZ1EX2M7su_Ovjv77neEvCxAMKTVnsEulCz3pWem9oJ5bUB_GQkWfgiQPVMn8_zDQi7ihds6hlV2Z2I4qJulxTvyN6CH0ZiRSr9b_WRYNQpfV2MJjQMyhCNY6wEZHk3OPn_ZulxpGQqucUSQBcN4EdNmYvKcUpqh-4Sg8iVLd1VTb2_ejJa88WQaNNH0HrkbTUg6vub5fXLLtQ_I7S7DeP2Q_Jn_m7FCjz-dn75nvKQb1EvAV7wgo7FADz2qfztMpKRYWibA7SJyMw0VcnA0_ITOTr8yVHcNPUfAg-Ul7aDI39KargK0MF31aZuPyHw6-XZ8wmKlBWalyDZM5Jb7HEyZhjudqhpOY1kYlTrvcsNR6RdOeGtsmTW64alPuRUOqOiLRpqyFo_JoF227gmhBkidysxLRL4pJDDfgguui9IobZW0CeEdkSsbYcixGsaPqgdQRsZUwJgqMKZKE_JqO2Z1DcKxt_dhx7sqbsh11YtPQl5sm4Hk-D5St255BX1yUXBe5nm5p48SiivwAUVCih252M4MAbt3W9rLiwDcXYgcPEiekNedBPUT_P96nu5fzzNyJ8M4mxBNdEgGm19X7jkYShszIgd6OhuR4Xj2_eNkFPcGfJ1n47-iZhSm |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N8TBeEAwQgcGMBE9gEcc_kiAhBBtdy8Z4YJ36liWOLSahtNBOaG_8RfyN3LlJSyfRtz3bjmLf2d-dffcdwPMUFUPbzHPchZorn3telV5yn1WIX5VGCz8EyB6b_lB9GunRBvzpcmEorLI7E8NBXY8t3ZG_RhwmY0ab7N3kB6eqUfS62pXQmKvFobv8hS7b9O1gH-X7Ikl6H0_2-rytKsCtlsmMS2WFVwjbtXBZbEo8eXRamdh5pypBAJc66W1l86TOahH7WFjpEEp9WusqLyV-9wbcVBKRnDLTewcLBy_OQ3k3QXy1aIaP2iSdNlXPmIyTs0YU9jmPV4Fwad1ejc288kAbcK93B263Bit7P9ewu7Dhmm3Y6vKZp_fg9_Df_Bi29-V0sM9FzmaEgqhFdB3H2nJA7EN56Shtk1Ehm0DuSzzRLNTjodH4EXYw-MoJXGt2SvQK43PWEZ-_YSWbBCJjNlkmid6H4bVI4AFsNuPGPQRW4VLHOvGaeHZSjapm0eHP0rwymTXaRiC6RS5sS3pOtTe-F0u6ZhJMgYIpgmCKOIKXizGTOeXH2t47neyKdvtPi6WyRvBs0YxLTq8xZePGF9hHyVSIXKl8TR8jjTDoccoI0hW9WPwZ0YOvtjTn3wJNeCoV-qsigledBi1_8P_zebR-Pruw1T_5fFQcDY4PH8OthCJ8QhzTDmzOfl64J2iizaqnYV8wOLvujfgXQINNfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgJeED9FYICR4AmsxUlsJ0gIsXVlZahMQKe-hcSxxSSUFtoJ7Y2_i7-OOzdp6CT6tuc4luO783cX330H8EyjYkiTOo5WKHniMsfLwsXcpSXiVynRw_cJsiN1OE7eT-RkC_60tTCUVtmeif6grqaG_pHvIg6TMyNVuuuatIjj_uDN7AenDlJ009q201iqyJE9_4Xh2_z1sI-yfh5Fg4Mv-4e86TDAjYyjBY8TI1yCEF4Jm4aqwFNI6lKF1tmkFAR22sbOlCaLqrQSoQuFiS3CqtOVLLMixnmvwLamqKgH23sHo-NPq3AvzHyzN0HsteiUT5qSnaZwT6mUU-hGhPYZD9dhsfN1L2ZqXriu9Sg4uAk3GveVvV3q2y3YsvVtuNZWN8_vwO_xv9UybP_jybDPRcYWhImoU_RzjjXNgdhecW6piJNRWxtP9Uus0cx356G3cRL2bviZE9RW7ITIFqanrKVBf8UKNvO0xmzWlYzehfGlyOAe9Oppbe8DK3GrQxk5Saw7WqLiGQz_U52VKjVKmgBEu8m5aSjQqRPH97wjbybB5CiY3AsmDwN4sXpntiQA2Th6p5Vd3hwG87xT3QCerh7jltPdTFHb6RmOSWItRJYk2YYxKlZCYfwZB6DX9GK1MiILX39Sn37zpOE6TjB6FQG8bDWoW-D_v-fB5u95AlfRCPMPw9HRQ7geUbqPT2ragd7i55l9hP7aonzcGAaDr5dti38BW25TEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+COVID-19+transmission+through+Bayesian+probabilistic+modeling+and+GIS-based+Voronoi+approach%3A+a+policy+perspective&rft.jtitle=Environment%2C+development+and+sustainability&rft.au=Bherwani%2C+Hemant&rft.au=Anjum%2C+Saima&rft.au=Kumar%2C+Suman&rft.au=Gautam%2C+Sneha&rft.date=2021-04-01&rft.issn=1573-2975&rft.eissn=1573-2975&rft.volume=23&rft.issue=4&rft.spage=5846&rft_id=info:doi/10.1007%2Fs10668-020-00849-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-585X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-585X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-585X&client=summon |