Printability–A key issue in extrusion-based bioprinting
Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and m...
Saved in:
Published in | Journal of pharmaceutical analysis Vol. 11; no. 5; pp. 564 - 579 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2021
Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada%Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada Department of Mechanical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada Xi'an Jiaotong University Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2095-1779 2214-0883 2214-0883 |
DOI | 10.1016/j.jpha.2021.02.001 |
Cover
Loading…
Abstract | Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink (a mixture of biomaterials and cells). Research shows that printability can be affected by many factors or parameters, including those associated with the bioink, printing process, and scaffold design, but these are far from certain. This review highlights recent developments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability, printability measurements and characterization, and printability-affecting factors. Key issues and challenges related to printability are also identified and discussed, along with approaches or strategies for improving printability in extrusion-based bioprinting.
[Display omitted]
•Focusing on one of the critical challenges in 3D bioprinting called “printability”.•Investigating factors, including those associated with bioink, printing process, and scaffold design affecting printability.•Highlights the recent development in the discovery of printability for the extrusion bioprinting.•Providing a systematic review on “how printability is measured and characterized”.•Identifying key challenges in the printability discovery. |
---|---|
AbstractList | Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink (a mixture of biomaterials and cells). Research shows that printability can be affected by many factors or parameters, including those associated with the bioink, printing process, and scaffold design, but these are far from certain. This review highlights recent developments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability, printability measurements and characterization, and printability-affecting factors. Key issues and challenges related to printability are also identified and discussed, along with approaches or strategies for improving printability in extrusion-based bioprinting. Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink (a mixture of biomaterials and cells). Research shows that printability can be affected by many factors or parameters, including those associated with the bioink, printing process, and scaffold design, but these are far from certain. This review highlights recent developments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability, printability measurements and characterization, and printability-affecting factors. Key issues and challenges related to printability are also identified and discussed, along with approaches or strategies for improving printability in extrusion-based bioprinting. Image 1 • Focusing on one of the critical challenges in 3D bioprinting called “printability”. • Investigating factors, including those associated with bioink, printing process, and scaffold design affecting printability. • Highlights the recent development in the discovery of printability for the extrusion bioprinting. • Providing a systematic review on “how printability is measured and characterized”. • Identifying key challenges in the printability discovery. Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink (a mixture of biomaterials and cells). Research shows that printability can be affected by many factors or parameters, including those associated with the bioink, printing process, and scaffold design, but these are far from certain. This review highlights recent developments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability, printability measurements and characterization, and printability-affecting factors. Key issues and challenges related to printability are also identified and discussed, along with approaches or strategies for improving printability in extrusion-based bioprinting.Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink (a mixture of biomaterials and cells). Research shows that printability can be affected by many factors or parameters, including those associated with the bioink, printing process, and scaffold design, but these are far from certain. This review highlights recent developments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability, printability measurements and characterization, and printability-affecting factors. Key issues and challenges related to printability are also identified and discussed, along with approaches or strategies for improving printability in extrusion-based bioprinting. Three-dimensional(3D)extrusion-based bioprinting is widely used in tissue engineering and regener-ative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique.One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink(a mixture of biomaterials and cells).Research shows that printability can be affected by many factors or parameters,including those associated with the bioink,printing process,and scaffold design,but these are far from certain.This review highlights recent de-velopments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability,printability measurements and characterization,and printability-affecting factors.Key issues and challenges related to printability are also identified and discussed,along with approaches or strategies for improving printability in extrusion-based bioprinting. Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink (a mixture of biomaterials and cells). Research shows that printability can be affected by many factors or parameters, including those associated with the bioink, printing process, and scaffold design, but these are far from certain. This review highlights recent developments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability, printability measurements and characterization, and printability-affecting factors. Key issues and challenges related to printability are also identified and discussed, along with approaches or strategies for improving printability in extrusion-based bioprinting. [Display omitted] •Focusing on one of the critical challenges in 3D bioprinting called “printability”.•Investigating factors, including those associated with bioink, printing process, and scaffold design affecting printability.•Highlights the recent development in the discovery of printability for the extrusion bioprinting.•Providing a systematic review on “how printability is measured and characterized”.•Identifying key challenges in the printability discovery. |
Author | Chen, Xiongbiao Naghieh, Saman |
AuthorAffiliation | Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada%Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada;Department of Mechanical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada |
AuthorAffiliation_xml | – name: Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada%Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada;Department of Mechanical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada |
Author_xml | – sequence: 1 givenname: Saman surname: Naghieh fullname: Naghieh, Saman email: san908@mail.usask.ca organization: Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada – sequence: 2 givenname: Xiongbiao orcidid: 0000-0002-4716-549X surname: Chen fullname: Chen, Xiongbiao email: xbc719@mail.usask.ca organization: Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada |
BookMark | eNp9Uctu1DAUjVARLaU_wCpLWCT4Ece2hJCqCkqlSrCAtXWTXE8dMvZgJ-3Mjn_gD_sleJiyKIt6YVv2Oefec8_L4sgHj0XxmpKaEtq-G-txcwM1I4zWhNWE0GfFCWO0qYhS_CjfiRYVlVIfF2cpjSQvSZjS4kVxzBvZCtbqk0J_jc7P0LnJzbv7X7_Pyx-4K11KC5bOl7id45Jc8FUHCYeyc2GzJzi_elU8tzAlPHs4T4vvnz5-u_hcXX-5vLo4v656wdlccUrathUaKLK-4ZRzsFwrCTw31AjZqoZgA6LlwAfZEcuY7ugwUIQMzttpcXXQHQKMJldfQ9yZAM78fQhxZSDOrp_QQKeIlmKwncJGaKIBVQPUWkssbVFlrQ8Hrc3SrXHo0c8Rpkeij3-8uzGrcGuUkExSlgXeHgTuwFvwKzOGJfps3-zu7HbbGdwHQkS2lrFvHorF8HPBNJu1Sz1OE3gMSzJMaNkoJRueoeoA7WNIKaI1vZthznPPXbjJUGL2oZvR7EM3-xqGMJNDz1T2H_WfmydJ7w8kzMHdOowm9Q59j4OL2M95su4p-h-_YcZZ |
CitedBy_id | crossref_primary_10_1088_1758_5090_ad8966 crossref_primary_10_1016_j_ijbiomac_2024_131958 crossref_primary_10_1002_adhm_202400496 crossref_primary_10_1002_admt_202400620 crossref_primary_10_1016_j_ijmecsci_2024_109636 crossref_primary_10_1038_s41598_023_40680_x crossref_primary_10_3390_jfb13020040 crossref_primary_10_1016_j_carbpol_2022_120267 crossref_primary_10_1007_s10853_024_10021_y crossref_primary_10_1016_j_ijbiomac_2024_131281 crossref_primary_10_3390_app132212158 crossref_primary_10_1016_j_heliyon_2024_e24593 crossref_primary_10_1108_RPJ_06_2024_0275 crossref_primary_10_1039_D4BM01192A crossref_primary_10_1186_s42825_023_00129_3 crossref_primary_10_1186_s40824_022_00299_x crossref_primary_10_1557_s43578_023_01078_7 crossref_primary_10_3390_polym17010121 crossref_primary_10_1016_j_ijbiomac_2023_125201 crossref_primary_10_1177_08853282221101148 crossref_primary_10_1016_j_ijbiomac_2024_130732 crossref_primary_10_3390_ma14123287 crossref_primary_10_1007_s13770_023_00545_w crossref_primary_10_1021_acs_biomac_3c00279 crossref_primary_10_1016_j_bprint_2021_e00172 crossref_primary_10_1016_j_ijbiomac_2022_12_227 crossref_primary_10_1021_acsomega_3c08112 crossref_primary_10_3389_fbioe_2023_1161804 crossref_primary_10_3390_jfb13040214 crossref_primary_10_1080_09205063_2022_2145867 crossref_primary_10_3390_mi15040490 crossref_primary_10_1021_acsapm_2c02171 crossref_primary_10_3390_jfb14060313 crossref_primary_10_1016_j_carbpol_2022_119716 crossref_primary_10_1016_j_bioadv_2024_214145 crossref_primary_10_1007_s42242_024_00281_7 crossref_primary_10_3390_ma18061220 crossref_primary_10_3390_nano14090749 crossref_primary_10_1016_j_actbio_2025_01_006 crossref_primary_10_1093_burnst_tkae053 crossref_primary_10_1002_advs_202406569 crossref_primary_10_1080_17425247_2024_2336492 crossref_primary_10_1088_1758_5090_ad0b3f crossref_primary_10_1186_s13287_024_03989_6 crossref_primary_10_3390_gels10030187 crossref_primary_10_1016_j_bprint_2022_e00241 crossref_primary_10_1016_j_ijpharm_2023_123313 crossref_primary_10_3389_fmats_2023_1239692 crossref_primary_10_3389_fmats_2024_1501505 crossref_primary_10_3390_bioengineering10121358 crossref_primary_10_1016_j_ijbiomac_2023_123348 crossref_primary_10_1021_acsbiomaterials_2c00998 crossref_primary_10_1002_adem_202301074 crossref_primary_10_1007_s10544_024_00713_2 crossref_primary_10_3390_gels11010051 crossref_primary_10_1038_s41598_024_64039_y crossref_primary_10_1016_j_ijbiomac_2022_09_027 crossref_primary_10_1021_acsomega_3c08930 crossref_primary_10_1016_j_amf_2025_200210 crossref_primary_10_1016_j_jmbbm_2024_106499 crossref_primary_10_1039_D3LP00077J crossref_primary_10_1557_s43577_024_00755_0 crossref_primary_10_1016_j_bprint_2023_e00274 crossref_primary_10_1016_j_addr_2021_113923 crossref_primary_10_1016_j_carbpol_2023_120897 crossref_primary_10_1016_j_ijpharm_2022_121506 crossref_primary_10_1016_j_jeurceramsoc_2022_12_008 crossref_primary_10_3390_nano14090760 crossref_primary_10_3390_polym15153223 crossref_primary_10_3390_jfb13040240 crossref_primary_10_1016_j_bioadv_2023_213414 crossref_primary_10_3390_bioengineering10040457 crossref_primary_10_3390_polym14245432 crossref_primary_10_1016_j_ijbiomac_2023_123450 crossref_primary_10_3390_jfb15090251 crossref_primary_10_1038_s41598_024_73383_y crossref_primary_10_1016_j_carpta_2025_100752 crossref_primary_10_1016_j_eurpolymj_2022_111332 crossref_primary_10_1016_j_bprint_2023_e00260 crossref_primary_10_1039_D4SM01197J crossref_primary_10_1016_j_bprint_2024_e00382 crossref_primary_10_3390_polym14091844 crossref_primary_10_1016_j_mtsust_2023_100445 crossref_primary_10_1016_j_bioactmat_2023_06_006 crossref_primary_10_2147_IJN_S435845 crossref_primary_10_1021_acsaelm_3c00075 crossref_primary_10_3390_jfb16010028 crossref_primary_10_1080_10739149_2024_2390907 crossref_primary_10_1016_j_bioadv_2024_213828 crossref_primary_10_1088_1748_605X_ada241 crossref_primary_10_3390_molecules28062766 crossref_primary_10_1016_j_ijbiomac_2023_128595 crossref_primary_10_1021_acspolymersau_4c00028 crossref_primary_10_1016_j_addma_2022_102997 crossref_primary_10_1016_j_matdes_2023_111708 crossref_primary_10_1088_1758_5090_ac6b58 crossref_primary_10_3390_cells13191638 crossref_primary_10_3390_gels9030195 crossref_primary_10_1016_j_heliyon_2024_e25873 crossref_primary_10_1063_5_0227692 crossref_primary_10_1002_smsc_202400097 crossref_primary_10_1016_j_jmapro_2024_09_094 crossref_primary_10_3390_polym14163415 crossref_primary_10_1016_j_ceramint_2023_07_016 crossref_primary_10_1002_advs_202202638 crossref_primary_10_1016_j_reactfunctpolym_2024_106136 crossref_primary_10_3390_biomedicines10061233 crossref_primary_10_1016_j_mfglet_2023_08_009 crossref_primary_10_1002_adfm_202214372 crossref_primary_10_1016_j_bioactmat_2023_01_018 crossref_primary_10_1108_RPJ_06_2023_0207 crossref_primary_10_3390_membranes13090802 crossref_primary_10_3390_polym13224028 crossref_primary_10_1039_D4BM01304B crossref_primary_10_1109_LRA_2024_3349972 crossref_primary_10_1038_s41467_021_23776_8 crossref_primary_10_1016_j_bioadv_2025_214188 crossref_primary_10_3390_jfb15060141 crossref_primary_10_3390_app14146110 crossref_primary_10_3390_ijms23105618 crossref_primary_10_1021_acs_biomac_4c00578 crossref_primary_10_1093_rb_rbad067 crossref_primary_10_1016_j_ijbiomac_2022_01_201 crossref_primary_10_1107_S1600577523000772 crossref_primary_10_1016_j_ijbiomac_2023_126194 crossref_primary_10_1016_j_cej_2024_152703 crossref_primary_10_1016_j_carbpol_2022_119964 crossref_primary_10_1002_adhm_202400643 crossref_primary_10_3389_fbioe_2022_824156 crossref_primary_10_1088_2631_7990_ad88e3 crossref_primary_10_1016_j_ijbiomac_2022_02_191 crossref_primary_10_1016_j_ohx_2023_e00430 crossref_primary_10_1021_acsapm_4c04117 crossref_primary_10_1016_j_jfoodeng_2024_112150 crossref_primary_10_1177_09506608241303436 crossref_primary_10_1016_j_ajps_2023_100812 crossref_primary_10_1007_s13346_024_01596_9 crossref_primary_10_1088_1758_5090_acb573 crossref_primary_10_3390_coatings14101324 crossref_primary_10_1088_1758_5090_acd872 crossref_primary_10_1007_s40964_021_00188_0 crossref_primary_10_1016_j_bioactmat_2025_01_033 |
Cites_doi | 10.1039/C5RA04308E 10.1002/adhm.201801181 10.1002/adma.200902589 10.1007/s10856-010-4173-7 10.1107/S1600577516002344 10.1161/CIRCULATIONAHA.105.001065 10.1021/acsbiomaterials.8b00691 10.1017/S1740925X09990226 10.1088/1758-5090/8/2/025020 10.1021/acsbiomaterials.6b00149 10.1016/j.msec.2016.10.069 10.1016/S0140-6736(08)61598-6 10.1088/1758-5090/ab6f0d 10.1002/jbm.a.34326 10.1088/1758-5082/4/3/035005 10.1038/nbt.3413 10.1016/j.actbio.2019.05.032 10.1016/S0140-6736(06)68438-9 10.1007/s10856-015-5531-2 10.1016/j.cad.2005.08.001 10.1108/13552541211193502 10.1016/j.ijpharm.2019.04.026 10.1016/j.pmatsci.2015.05.001 10.1089/ten.tec.2008.0302 10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7 10.1038/srep13427 10.1088/1758-5090/aacdc7 10.1080/00914037.2016.1201830 10.3390/app8091422 10.1002/biot.200600044 10.1038/srep29977 10.1021/acs.biomac.5b00188 10.1016/j.biomaterials.2009.05.050 10.3390/microarrays4020133 10.1007/s10965-018-1455-0 10.1088/1758-5090/8/3/035020 10.1016/j.msec.2017.05.144 10.1016/j.jmbbm.2018.01.034 10.1016/j.jmbbm.2019.06.014 10.1016/j.cclet.2018.06.008 10.1021/bm3011352 10.1021/acsbiomaterials.6b00140 10.1088/1758-5090/8/1/015016 10.1088/1758-5090/7/4/045012 10.1007/s00586-008-0745-3 10.3390/jfb3040799 10.1021/am401677z 10.1088/1758-5090/aac872 10.1007/s42242-018-0009-y 10.1016/j.bprint.2019.e00057 10.1016/j.actbio.2013.12.005 10.1016/j.jmapro.2017.08.008 10.1089/ten.tea.2013.0198 10.1002/adhm.201600435 10.1021/la104254a 10.1002/adma.201301036 10.1007/s10439-016-1610-x 10.1016/j.bprint.2019.e00045 10.1100/tsw.2006.202 10.1088/1758-5082/3/3/034112 10.1021/la048228d 10.1039/c3bm00012e 10.3390/app10010292 10.1063/1.5059393 10.1016/j.jmbbm.2019.02.014 10.1088/1758-5082/5/3/035001 10.1016/j.biotechadv.2016.12.006 10.1016/j.jmst.2016.01.007 10.1016/j.jmbbm.2017.11.037 10.1016/j.proeng.2013.05.109 10.1021/am403966x 10.1088/1758-5082/6/2/024105 10.1016/j.biomaterials.2005.07.023 10.1208/s12249-012-9824-1 10.1115/1.4039683 10.3390/app8030403 10.1088/1758-5082/3/3/034106 10.1016/j.cherd.2016.02.004 10.1109/TEPM.2006.874964 10.1161/CIRCULATIONAHA.105.000273 10.1039/C8TC06485G 10.1021/acs.chemrev.0c00084 10.1016/j.carbpol.2019.05.026 10.1002/marc.201200524 10.1002/adhm.201801102 10.3390/ma11030454 10.1016/j.biomaterials.2007.04.021 10.1016/j.jclepro.2019.05.082 10.18063/IJB.2016.02.007 10.1089/ten.tea.2011.0097 10.1016/j.actbio.2010.11.003 10.1002/admi.201900572 10.1016/S1389-1723(03)80129-9 10.1016/S0142-9612(03)00043-7 10.1088/1758-5082/5/4/045004 10.1016/j.actbio.2013.10.016 10.1002/adhm.201700264 10.18063/IJB.2015.01.003 10.1021/acsbiomaterials.9b00047 10.1016/j.actbio.2014.06.034 10.1021/acsbiomaterials.9b00167 10.1080/09205063.2018.1433420 |
ContentType | Journal Article |
Copyright | 2021 Xi'an Jiaotong University 2021 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. 2021 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. 2021 Xi'an Jiaotong University |
Copyright_xml | – notice: 2021 Xi'an Jiaotong University – notice: 2021 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. – notice: 2021 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. 2021 Xi'an Jiaotong University |
DBID | 6I. AAFTH AAYXX CITATION 7X8 2B. 4A8 92I 93N PSX TCJ 5PM DOA |
DOI | 10.1016/j.jpha.2021.02.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2214-0883 |
EndPage | 579 |
ExternalDocumentID | oai_doaj_org_article_ab80975dfb8e45909ae84a1fff0f16e8 PMC8572712 ywfxxb_e202105004 10_1016_j_jpha_2021_02_001 S2095177921000162 |
GrantInformation_xml | – fundername: The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada funderid: (NSERC:Grant No::RGPIN-2014-05648) |
GroupedDBID | --- --K -05 -0E -SE -S~ 0R~ 0SF 2B. 2C~ 4.4 457 53G 5VR 5VS 6I. 7.U 8FE 8FH 92F 92I 92M 93N 93R 9D9 9DE AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABKZE ABMAC ABUWG ACGFS ACPRK ADBBV ADEZE AEXQZ AFKRA AFTJW AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BBNVY BENPR BHPHI BPHCQ BVBZV CAJEE CAJUS CCEZO CCPQU CHBEP CIEJG DIK EBS EJD FA0 FDB GROUPED_DOAJ HCIFZ HYE HZ~ IPNFZ IXB JUIAU KQ8 LK8 M41 M7P NCXOZ O-L O9- OK1 PQQKQ Q-- Q-4 R-E RIG ROL RPM RT5 SSZ T8U TCJ TGQ U1F U1G U5E U5O WFFXF XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION PHGZM PHGZT 7X8 PQGLB PUEGO 4A8 PMFND PSX 5PM |
ID | FETCH-LOGICAL-c532t-31066659a1e2c43133af3987a30004576840e4a563a3d7b0f229b1dd1ea313ea3 |
IEDL.DBID | IXB |
ISSN | 2095-1779 2214-0883 |
IngestDate | Wed Aug 27 01:34:38 EDT 2025 Thu Aug 21 13:40:03 EDT 2025 Thu May 29 04:12:21 EDT 2025 Thu Sep 04 23:35:15 EDT 2025 Tue Jul 01 04:32:18 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Fri Feb 23 02:42:19 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Printability Extrusion 3D bioprinting Bioink Tissue engineering |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c532t-31066659a1e2c43133af3987a30004576840e4a563a3d7b0f229b1dd1ea313ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4716-549X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2095177921000162 |
PMID | 34765269 |
PQID | 2597488743 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab80975dfb8e45909ae84a1fff0f16e8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8572712 wanfang_journals_ywfxxb_e202105004 proquest_miscellaneous_2597488743 crossref_citationtrail_10_1016_j_jpha_2021_02_001 crossref_primary_10_1016_j_jpha_2021_02_001 elsevier_sciencedirect_doi_10_1016_j_jpha_2021_02_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of pharmaceutical analysis |
PublicationTitle_FL | Journal of Pharmaceutical Analysis |
PublicationYear | 2021 |
Publisher | Elsevier B.V Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada%Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada Department of Mechanical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada Xi'an Jiaotong University Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada%Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada – name: Department of Mechanical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada – name: Xi'an Jiaotong University – name: Elsevier |
References | Fleming, Walker, Branyan (bib38) 2017 Habib, Sathish, Mallik (bib29) 2018; 11 Jia, Richards, Pollard (bib92) 2014; 10 Hockaday, Kang, Colangelo (bib101) 2012; 4 Li, Clark, Church (bib104) 2007 Vafaei, Wen, Borca-Tasciuc (bib77) 2011; 27 Teo, Stuart, Devaraj (bib62) 2019; 7 Cebotari, Lichtenberg, Tudorache, Batrinac (bib10) 2006; 114 Domingos, Intranuovo, Russo (bib18) 2013; 5 Langer (bib4) 2009; 21 You, Wu, Chen (bib58) 2016; 66 Bertassoni, Cardoso, Manoharan (bib46) 2014; 6 Khoda, Ozbolat, Koc (bib32) 2011; 3 Teo, He, Ramakrishna (bib14) 2006; 1 Habib, Khoda (bib30) 2017; 29 Duan, Kapetanovic, Hockaday (bib93) 2014; 10 Sun, Wei, Ahn (bib98) 2013; 25 Andersen, Auk-Emblem, Dornish (bib52) 2015; 4 Gao, Park, Kim (bib87) 2018; 7 Snyder, Hamid, Wang (bib37) 2011; 3 Markstedt, Mantas, Tournier (bib94) 2015; 16 Olubamiji, Izadifar, Zhu (bib110) 2016; 23 Naghieh, Sarker, Izadifar (bib11) 2018; 78 Perez, Kim, Kim (bib54) 2013; 20 Udofia, Zhou (bib69) 2019; 141 Li, Tian, Chen (bib106) 2009; 131 Zhang, Jaiswal, Rai (bib40) 2018; 18 Atala, Bauer, Soker (bib6) 2006; 367 Rhiner, Hengartner (bib51) 2006; 6 Cutolo, Neirinck, Lietaert (bib33) 2018; 23 Heidarian, Kouzani, Kaynak (bib57) 2019; 5 Sarker, Naghieh, McInnes (bib107) 2019; 14 Warner, Soman, Zhu (bib39) 2016; 2 Ding, Chang (bib43) 2018; 8 Therriault, White, Lewis (bib31) 2007; 17 Kang, Hockaday, Butcher (bib102) 2013; 5 Ouyang, Yao, Zhao (bib45) 2016; 8 Naghieh, Sarker, Abelseth (bib72) 2019; 93 Yang, Wang, Haider (bib81) 2013; 5 Amani, Arzaghi, Bayandori (bib78) 2019; 6 Tabriz, Hermida, Leslie (bib105) 2015; 7 Moroni, de Wijn, van Blitterswijk (bib28) 2006; 27 Schwab, Levato, D’Este (bib19) 2020; 120 Zhang, Cong, Osi (bib21) 2020; 30 Kucukgul, Ozler, Karakas (bib36) 2013; 59 Wüst, Godla, Müller (bib97) 2014; 10 Loh, Pei, Harrison (bib41) 2018; 23 Houben, van Hoorick, van Erps (bib113) 2017; 45 Lee, Ahn, Kim (bib16) 2010; 21 Zhang, Yang, Li (bib35) 2015; 74 Gleadall, Visscher, Yang (bib15) 2018; 6 Göhl, Markstedt, Mark (bib23) 2018; 10 Jin, Chai, Huang (bib70) 2017; 80 Gleadall, Ashcroft, Segal (bib109) 2018; 21 Chung, Naficy, Yue (bib44) 2013; 1 Olubamiji, Izadifar, Si (bib27) 2016; 8 Hutmacher, Schantz, Zein (bib26) 2001; 55 Ariful Islam Sarker, Izadifar, Schreyer (bib85) 2018; 29 Chen, Ke (bib66) 2006; 29 Cader, Rance, Alexander (bib63) 2019; 564 Trachtenberg, Mountziaris, Miller (bib79) 2014; 102 Gillispie, Prim, Copus (bib20) 2020; 12 Matsumura, Hibino, Ikada (bib7) 2003; 24 Naghieh (bib12) 2020 V Murphy, Skardal, Atala (bib91) 2013; 101 Lim, Schon, Mekhileri (bib95) 2016; 2 Park, Lee, Chung (bib48) 2017; 71 Matyash, Despang, Mandal (bib115) 2012; 18 Hospodiuk, Dey, Sosnoski (bib119) 2017; 35 bib74 Naghieh, Karamooz-Ravari, Sarker (bib73) 2018; 80 de Maria, de Acutis, Vozzi (bib112) 2015 Frischknecht, Seidenbecher (bib50) 2008; 4 Vafaei, Tuck, Ashcroft (bib71) 2016; 109 Govindharaj, Roopavath, Rath (bib61) 2019; 230 Ahn, Walker, Slimmer (bib100) 2011; 58 Gratson, Lewis (bib103) 2005; 21 Kyle, Jessop, Al-Sabah (bib65) 2017; 6 Naghieh, Sarker, Karamooz-Ravari (bib75) 2018; 8 Whyte, Rajkhowa, Allardyce (bib88) 2019; 16 Lee, Ahn, Bonassar (bib82) 2013; 34 Ruiz-Cantu, Gleadall, Faris (bib25) 2016; 8 Zhang, Li, Zhu (bib64) 2019; 30 Soltan, Ning, Mohabatpour (bib108) 2019; 5 Purcell, Singh, Kipke (bib114) 2009; 15 Lee, Yeong (bib42) 2016; 5 Chen, Zhang, Yang (bib68) 2013; 5 Domingos, Chiellini, Gloria (bib49) 2012; 18 Bohari, Hukins, Grover (bib55) 2011; 21 Li, Liu, Lin (bib96) 2016; 2 Liu, Carter, Renes (bib86) 2019; 8 Piqué, Chrisey (bib99) 2002 Gao, Kim, Jang (bib3) 2019; 5 Jiang, Munguia-Lopez, Flores-Torres (bib56) 2019; 6 Aljohani, Ullah, Li (bib67) 2018; 25 Olubamiji, Izadifar, Zhu (bib111) 2016; 23 Cernencu, Lungu, Stancu (bib89) 2019; 220 Luo, Lode, Akkineni (bib116) 2015; 5 Boucard, Viton, Agay (bib8) 2007; 28 Izadifar, Chen, Kulyk (bib34) 2012; 3 Kim, Lee, Jung (bib90) 2019; 98 Kang, Lee, Ko (bib1) 2016; 34 Pan, Song, Cao (bib60) 2016; 32 Banerjee, Arha, Choudhary (bib84) 2009; 30 Sekine, Shimizu, Yang (bib5) 2006; 114 Naghieh, Sarker, Sharma (bib24) 2020; 10 Tan, Yeong (bib121) 2015; 1 Chan, Leong (bib118) 2008; 17 Gao, Gillispie, Copus (bib47) 2018; 10 He, Yang, Zhao (bib22) 2016; 6 Ito, Mase, Takizawa (bib59) 2003; 95 Ahn, Lee, Lee (bib53) 2015; 5 Macchiarini, Jungebluth, Go (bib9) 2008; 372 Starly, Lau, Bradbury (bib2) 2006; 38 Sobral, Caridade, Sousa (bib17) 2011; 7 Xu, Dai, Hong (bib120) 2019; 95 Tripathi, Mishra (bib80) 2012; 13 Boccardi, V Belova, Murch (bib13) 2015; 26 Ahn, Lee, Bonassar (bib83) 2012; 13 Jin, Zhao, Huang (bib76) 2018; 1 Ruiz-Cantu (10.1016/j.jpha.2021.02.001_bib25) 2016; 8 Fleming (10.1016/j.jpha.2021.02.001_bib38) 2017 Chen (10.1016/j.jpha.2021.02.001_bib68) 2013; 5 Govindharaj (10.1016/j.jpha.2021.02.001_bib61) 2019; 230 Olubamiji (10.1016/j.jpha.2021.02.001_bib27) 2016; 8 Park (10.1016/j.jpha.2021.02.001_bib48) 2017; 71 Li (10.1016/j.jpha.2021.02.001_bib104) 2007 Moroni (10.1016/j.jpha.2021.02.001_bib28) 2006; 27 Kyle (10.1016/j.jpha.2021.02.001_bib65) 2017; 6 Chan (10.1016/j.jpha.2021.02.001_bib118) 2008; 17 Gratson (10.1016/j.jpha.2021.02.001_bib103) 2005; 21 Naghieh (10.1016/j.jpha.2021.02.001_bib11) 2018; 78 Ito (10.1016/j.jpha.2021.02.001_bib59) 2003; 95 Trachtenberg (10.1016/j.jpha.2021.02.001_bib79) 2014; 102 Hutmacher (10.1016/j.jpha.2021.02.001_bib26) 2001; 55 Langer (10.1016/j.jpha.2021.02.001_bib4) 2009; 21 Loh (10.1016/j.jpha.2021.02.001_bib41) 2018; 23 Gleadall (10.1016/j.jpha.2021.02.001_bib109) 2018; 21 Naghieh (10.1016/j.jpha.2021.02.001_bib12) 2020 Andersen (10.1016/j.jpha.2021.02.001_bib52) 2015; 4 Jin (10.1016/j.jpha.2021.02.001_bib76) 2018; 1 Warner (10.1016/j.jpha.2021.02.001_bib39) 2016; 2 Gleadall (10.1016/j.jpha.2021.02.001_bib15) 2018; 6 Lim (10.1016/j.jpha.2021.02.001_bib95) 2016; 2 Sobral (10.1016/j.jpha.2021.02.001_bib17) 2011; 7 Jiang (10.1016/j.jpha.2021.02.001_bib56) 2019; 6 Pan (10.1016/j.jpha.2021.02.001_bib60) 2016; 32 Zhang (10.1016/j.jpha.2021.02.001_bib64) 2019; 30 Sun (10.1016/j.jpha.2021.02.001_bib98) 2013; 25 Hockaday (10.1016/j.jpha.2021.02.001_bib101) 2012; 4 Purcell (10.1016/j.jpha.2021.02.001_bib114) 2009; 15 Matyash (10.1016/j.jpha.2021.02.001_bib115) 2012; 18 Kucukgul (10.1016/j.jpha.2021.02.001_bib36) 2013; 59 Naghieh (10.1016/j.jpha.2021.02.001_bib73) 2018; 80 Matsumura (10.1016/j.jpha.2021.02.001_bib7) 2003; 24 Heidarian (10.1016/j.jpha.2021.02.001_bib57) 2019; 5 Ding (10.1016/j.jpha.2021.02.001_bib43) 2018; 8 Olubamiji (10.1016/j.jpha.2021.02.001_bib110) 2016; 23 Ariful Islam Sarker (10.1016/j.jpha.2021.02.001_bib85) 2018; 29 V Murphy (10.1016/j.jpha.2021.02.001_bib91) 2013; 101 He (10.1016/j.jpha.2021.02.001_bib22) 2016; 6 Izadifar (10.1016/j.jpha.2021.02.001_bib34) 2012; 3 Ahn (10.1016/j.jpha.2021.02.001_bib83) 2012; 13 Vafaei (10.1016/j.jpha.2021.02.001_bib77) 2011; 27 Teo (10.1016/j.jpha.2021.02.001_bib14) 2006; 1 Lee (10.1016/j.jpha.2021.02.001_bib16) 2010; 21 Teo (10.1016/j.jpha.2021.02.001_bib62) 2019; 7 Whyte (10.1016/j.jpha.2021.02.001_bib88) 2019; 16 You (10.1016/j.jpha.2021.02.001_bib58) 2016; 66 Zhang (10.1016/j.jpha.2021.02.001_bib35) 2015; 74 Khoda (10.1016/j.jpha.2021.02.001_bib32) 2011; 3 Bohari (10.1016/j.jpha.2021.02.001_bib55) 2011; 21 Soltan (10.1016/j.jpha.2021.02.001_bib108) 2019; 5 Lee (10.1016/j.jpha.2021.02.001_bib42) 2016; 5 Tripathi (10.1016/j.jpha.2021.02.001_bib80) 2012; 13 Vafaei (10.1016/j.jpha.2021.02.001_bib71) 2016; 109 Li (10.1016/j.jpha.2021.02.001_bib96) 2016; 2 Göhl (10.1016/j.jpha.2021.02.001_bib23) 2018; 10 Naghieh (10.1016/j.jpha.2021.02.001_bib72) 2019; 93 Gillispie (10.1016/j.jpha.2021.02.001_bib20) 2020; 12 Wüst (10.1016/j.jpha.2021.02.001_bib97) 2014; 10 Amani (10.1016/j.jpha.2021.02.001_bib78) 2019; 6 Frischknecht (10.1016/j.jpha.2021.02.001_bib50) 2008; 4 Boccardi (10.1016/j.jpha.2021.02.001_bib13) 2015; 26 Cutolo (10.1016/j.jpha.2021.02.001_bib33) 2018; 23 Sarker (10.1016/j.jpha.2021.02.001_bib107) 2019; 14 Tabriz (10.1016/j.jpha.2021.02.001_bib105) 2015; 7 Houben (10.1016/j.jpha.2021.02.001_bib113) 2017; 45 Domingos (10.1016/j.jpha.2021.02.001_bib49) 2012; 18 Gao (10.1016/j.jpha.2021.02.001_bib3) 2019; 5 de Maria (10.1016/j.jpha.2021.02.001_bib112) 2015 Gao (10.1016/j.jpha.2021.02.001_bib87) 2018; 7 Atala (10.1016/j.jpha.2021.02.001_bib6) 2006; 367 Cader (10.1016/j.jpha.2021.02.001_bib63) 2019; 564 Lee (10.1016/j.jpha.2021.02.001_bib82) 2013; 34 Xu (10.1016/j.jpha.2021.02.001_bib120) 2019; 95 Yang (10.1016/j.jpha.2021.02.001_bib81) 2013; 5 Therriault (10.1016/j.jpha.2021.02.001_bib31) 2007; 17 Zhang (10.1016/j.jpha.2021.02.001_bib40) 2018; 18 Ahn (10.1016/j.jpha.2021.02.001_bib53) 2015; 5 Olubamiji (10.1016/j.jpha.2021.02.001_bib111) 2016; 23 Tan (10.1016/j.jpha.2021.02.001_bib121) 2015; 1 Snyder (10.1016/j.jpha.2021.02.001_bib37) 2011; 3 Naghieh (10.1016/j.jpha.2021.02.001_bib75) 2018; 8 Ahn (10.1016/j.jpha.2021.02.001_bib100) 2011; 58 Cernencu (10.1016/j.jpha.2021.02.001_bib89) 2019; 220 Starly (10.1016/j.jpha.2021.02.001_bib2) 2006; 38 Bertassoni (10.1016/j.jpha.2021.02.001_bib46) 2014; 6 Kim (10.1016/j.jpha.2021.02.001_bib90) 2019; 98 Luo (10.1016/j.jpha.2021.02.001_bib116) 2015; 5 Hospodiuk (10.1016/j.jpha.2021.02.001_bib119) 2017; 35 Jin (10.1016/j.jpha.2021.02.001_bib70) 2017; 80 Gao (10.1016/j.jpha.2021.02.001_bib47) 2018; 10 Rhiner (10.1016/j.jpha.2021.02.001_bib51) 2006; 6 Sekine (10.1016/j.jpha.2021.02.001_bib5) 2006; 114 Boucard (10.1016/j.jpha.2021.02.001_bib8) 2007; 28 Zhang (10.1016/j.jpha.2021.02.001_bib21) 2020; 30 Perez (10.1016/j.jpha.2021.02.001_bib54) 2013; 20 Habib (10.1016/j.jpha.2021.02.001_bib29) 2018; 11 Ouyang (10.1016/j.jpha.2021.02.001_bib45) 2016; 8 Schwab (10.1016/j.jpha.2021.02.001_bib19) 2020; 120 Kang (10.1016/j.jpha.2021.02.001_bib102) 2013; 5 Piqué (10.1016/j.jpha.2021.02.001_bib99) 2002 Macchiarini (10.1016/j.jpha.2021.02.001_bib9) 2008; 372 Habib (10.1016/j.jpha.2021.02.001_bib30) 2017; 29 Markstedt (10.1016/j.jpha.2021.02.001_bib94) 2015; 16 Domingos (10.1016/j.jpha.2021.02.001_bib18) 2013; 5 Duan (10.1016/j.jpha.2021.02.001_bib93) 2014; 10 Udofia (10.1016/j.jpha.2021.02.001_bib69) 2019; 141 Banerjee (10.1016/j.jpha.2021.02.001_bib84) 2009; 30 Liu (10.1016/j.jpha.2021.02.001_bib86) 2019; 8 Jia (10.1016/j.jpha.2021.02.001_bib92) 2014; 10 Cebotari (10.1016/j.jpha.2021.02.001_bib10) 2006; 114 Aljohani (10.1016/j.jpha.2021.02.001_bib67) 2018; 25 Chen (10.1016/j.jpha.2021.02.001_bib66) 2006; 29 Chung (10.1016/j.jpha.2021.02.001_bib44) 2013; 1 Kang (10.1016/j.jpha.2021.02.001_bib1) 2016; 34 Li (10.1016/j.jpha.2021.02.001_bib106) 2009; 131 Naghieh (10.1016/j.jpha.2021.02.001_bib24) 2020; 10 |
References_xml | – volume: 220 start-page: 12 year: 2019 end-page: 21 ident: bib89 article-title: Bioinspired 3D printable pectin-nanocellulose ink formulations publication-title: Carbohydr. Polym. – volume: 4 start-page: 133 year: 2015 end-page: 161 ident: bib52 article-title: 3D cell culture in alginate hydrogels publication-title: Microarrays (Basel) – volume: 141 start-page: 50801 year: 2019 ident: bib69 article-title: A guiding framework for microextrusion additive manufacturing publication-title: J. Manuf. Sci. Eng. – volume: 13 start-page: 2997 year: 2012 end-page: 3003 ident: bib83 article-title: Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying publication-title: Biomacromolecules – volume: 1 start-page: 918 year: 2006 end-page: 929 ident: bib14 article-title: Electrospun scaffold tailored for tissue specific extracellular matrix publication-title: Biotechnol. J. – volume: 23 start-page: 802 year: 2016 end-page: 812 ident: bib110 article-title: Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering publication-title: J. Synchrotron Radiat. – volume: 5 start-page: 2856 year: 2016 end-page: 2865 ident: bib42 article-title: Design and printing strategies in 3D bioprinting of cell-hydrogels: a review publication-title: Adv. Healthc. Mater. – volume: 80 start-page: 111 year: 2018 end-page: 118 ident: bib73 article-title: Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: experimental and numerical approaches publication-title: J. Mech. Behav. Biomed. Mater. – volume: 18 start-page: 56 year: 2012 end-page: 67 ident: bib49 article-title: Effect of process parameters on the morphological and mechanical properties of 3D bioextruded poly (ε-caprolactone) scaffolds publication-title: Rapid Prototyp. J. – volume: 59 start-page: 183 year: 2013 end-page: 192 ident: bib36 article-title: 3D hybrid bioprinting of macrovascular structures publication-title: Procedia Eng. – volume: 10 start-page: 4323 year: 2014 end-page: 4331 ident: bib92 article-title: Engineering alginate as bioink for bioprinting publication-title: Acta Biomater. – volume: 8 start-page: 1801181 year: 2019 ident: bib86 article-title: Development of a coaxial 3D printing platform for biofabrication of implantable islet-containing constructs publication-title: Adv. Healthc. Mater. – volume: 8 start-page: 1422 year: 2018 ident: bib75 article-title: Modeling of the mechanical behavior of 3D bioplotted scaffolds considering the penetration in interlocked strands publication-title: Appl. Sci. – volume: 16 start-page: 1489 year: 2015 end-page: 1496 ident: bib94 article-title: 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications publication-title: Biomacromolecules – volume: 372 start-page: 2023 year: 2008 end-page: 2030 ident: bib9 article-title: Clinical transplantation of a tissue-engineered airway publication-title: Lancet – volume: 2 start-page: 1752 year: 2016 end-page: 1762 ident: bib95 article-title: New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks publication-title: ACS Biomater. Sci. Eng. – ident: bib74 article-title: Database of Pixabay – volume: 7 year: 2015 ident: bib105 article-title: Three-dimensional bioprinting of complex cell laden alginate hydrogel structures publication-title: Biofabrication – volume: 6 start-page: 1024 year: 2006 end-page: 1036 ident: bib51 article-title: Sugar antennae for guidance signals: syndecans and glypicans integrate directional cues for navigating neurons publication-title: Sci. World J. – volume: 101 start-page: 272 year: 2013 end-page: 284 ident: bib91 article-title: Evaluation of hydrogels for bio-printing applications publication-title: J. Biomed. Mater. Res. A – volume: 17 start-page: 467 year: 2008 end-page: 479 ident: bib118 article-title: Scaffolding in tissue engineering: general approaches and tissue-specific considerations publication-title: Eur. Spine J. – volume: 10 start-page: 034106 year: 2018 ident: bib47 article-title: Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach publication-title: Biofabrication – volume: 71 start-page: 678 year: 2017 end-page: 684 ident: bib48 article-title: Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: characterization and evaluation publication-title: Mater. Sc.i Eng. C Mater. Biol. Appl. – volume: 102 start-page: 4326 year: 2014 end-page: 4335 ident: bib79 article-title: Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering publication-title: J. Biomed. Mater. Res. A – volume: 23 start-page: 802 year: 2016 end-page: 812 ident: bib111 article-title: Using SR-inline-PCI-CT to visualize 3D-printed hybrid constructs for cartilage tissue engineering publication-title: J. Synchrotron Radiat. – volume: 11 start-page: 454 year: 2018 ident: bib29 article-title: 3D printability of alginate-carboxymethyl cellulose hydrogel publication-title: Materials – volume: 98 start-page: 187 year: 2019 end-page: 194 ident: bib90 article-title: Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting publication-title: J. Mech. Behav. Biomed. Mater. – volume: 2 start-page: 163 year: 2016 end-page: 175 ident: bib96 article-title: Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide publication-title: Int. J. Bioprint. – year: 2002 ident: bib99 article-title: Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources – volume: 3 start-page: 034106 year: 2011 ident: bib32 article-title: A functionally gradient variational porosity architecture for hollowed scaffolds fabrication publication-title: Biofabrication – volume: 27 start-page: 2211 year: 2011 end-page: 2218 ident: bib77 article-title: Nanofluid surface wettability through asymptotic contact angle publication-title: Langmuir – volume: 45 start-page: 58 year: 2017 end-page: 83 ident: bib113 article-title: Indirect rapid prototyping: opening up unprecedented opportunities in scaffold design and applications publication-title: Ann. Biomed. Eng. – volume: 114 start-page: I132 year: 2006 end-page: I137 ident: bib10 article-title: Clinical application of tissue engineered human heart valves using autologous progenitor cells publication-title: Circulation – volume: 17 start-page: 10112 year: 2007 ident: bib31 article-title: Rheological behavior of fugitive organic inks for direct-write assembly publication-title: Appl. Rheol. – volume: 14 year: 2019 ident: bib107 article-title: Bio-fabrication of peptide-modified alginate scaffolds: printability, mechanical stability and neurite outgrowth assessments publication-title: Bioprinting – volume: 6 start-page: 1900572 year: 2019 ident: bib78 article-title: Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques publication-title: Adv. Mater. Interfaces – volume: 120 start-page: 11028 year: 2020 end-page: 11055 ident: bib19 article-title: Printability and shape fidelity of bioinks in 3D bioprinting publication-title: Chem. Rev. – volume: 7 start-page: 1801102 year: 2018 ident: bib87 article-title: Coaxial cell printing of freestanding, perfusable, and functional in vitro vascular models for recapitulation of native vascular endothelium pathophysiology publication-title: Adv. Healthc. Mater. – volume: 21 start-page: 3235 year: 2009 end-page: 3236 ident: bib4 article-title: Perspectives and challenges in tissue engineering and regenerative medicine publication-title: Adv. Mater. – volume: 8 year: 2016 ident: bib27 article-title: Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry publication-title: Biofabrication – volume: 367 start-page: 1241 year: 2006 end-page: 1246 ident: bib6 article-title: Tissue-engineered autologous bladders for patients needing cystoplasty publication-title: Lancet – volume: 21 start-page: 3195 year: 2010 end-page: 3205 ident: bib16 article-title: Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology publication-title: J. Mater. Sci. Mater.: Med. – volume: 18 start-page: 55 year: 2012 end-page: 66 ident: bib115 article-title: Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress publication-title: Tissue Eng. A – volume: 5 start-page: 10418 year: 2013 end-page: 10422 ident: bib81 article-title: Strengthening alginate/polyacrylamide hydrogels using various multivalent cations publication-title: ACS Appl. Mater. Interfaces – start-page: 153 year: 2015 end-page: 164 ident: bib112 article-title: Chapter 8 – Indirect Rapid Prototyping for Tissue Engineering publication-title: Essentials of 3D Biofabrication Translation – volume: 7 start-page: 1009 year: 2011 end-page: 1018 ident: bib17 article-title: Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency publication-title: Acta Biomater. – volume: 4 year: 2012 ident: bib101 article-title: Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds publication-title: Biofabrication – volume: 8 start-page: 015016 year: 2016 ident: bib25 article-title: Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing publication-title: Biofabrication – volume: 10 start-page: 630 year: 2014 end-page: 640 ident: bib97 article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting publication-title: Acta Biomater. – volume: 6 year: 2018 ident: bib15 article-title: Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance, Burn publication-title: Trauma – volume: 16 year: 2019 ident: bib88 article-title: A review on the challenges of 3D printing of organic powders publication-title: Bioprinting – year: 2017 ident: bib38 article-title: Toolpath Planning for Continuous Extrusion Additive Manufacturing – volume: 8 start-page: 035020 year: 2016 ident: bib45 article-title: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells publication-title: Biofabrication – volume: 5 start-page: 035001 year: 2013 ident: bib102 article-title: Quantitative optimization of solid freeform deposition of aqueous hydrogels publication-title: Biofabrication – volume: 13 start-page: 1091 year: 2012 end-page: 1102 ident: bib80 article-title: Development and evaluation of sodium alginate–polyacrylamide graft–co-polymer-based stomach targeted hydrogels of famotidine publication-title: AAPS PharmSciTech – volume: 25 start-page: 4539 year: 2013 end-page: 4543 ident: bib98 article-title: 3D printing of interdigitated Li-Ion microbattery architectures publication-title: Adv. Mater. – year: 2020 ident: bib12 article-title: Extrusion Bioprinting of Hydrogel Scaffolds: Printability and Mechanical Behaviour, Dissertation – volume: 1 start-page: 763 year: 2013 end-page: 773 ident: bib44 article-title: Bio-ink properties and printability for extrusion printing living cells publication-title: Biomater. Sci. – volume: 5 start-page: 2688 year: 2019 end-page: 2707 ident: bib57 article-title: Dynamic hydrogels and polymers as inks for 3D printing publication-title: ACS Biomater. Sci. Eng. – volume: 1 start-page: 49 year: 2015 end-page: 56 ident: bib121 article-title: Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique publication-title: Int. J. Bioprint. – volume: 32 start-page: 889 year: 2016 end-page: 900 ident: bib60 article-title: 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties publication-title: J. Mater. Sci. Technol. – volume: 29 start-page: 332 year: 2017 end-page: 342 ident: bib30 article-title: Support grain architecture design for additive manufacturing publication-title: J. Manuf. Process. – volume: 5 start-page: 13427 year: 2015 ident: bib53 article-title: A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures publication-title: Sci. Rep. – volume: 6 start-page: 1700264 year: 2017 ident: bib65 article-title: ‘Printability’ of candidate biomaterials for extrusion based 3D Printing : state-of-the-art publication-title: Adv. Healthc. Mater. – volume: 66 start-page: 299 year: 2016 end-page: 306 ident: bib58 article-title: 3D printing of porous alginate/gelatin hydrogel scaffolds and their mechanical property characterization publication-title: Int. J. Polym. Mater. Polym. Biomater. – volume: 35 start-page: 217 year: 2017 end-page: 239 ident: bib119 article-title: The bioink: a comprehensive review on bioprintable materials publication-title: Biotechnol. Adv. – volume: 80 start-page: 313 year: 2017 end-page: 325 ident: bib70 article-title: Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 12 year: 2020 ident: bib20 article-title: Assessment methodologies for extrusion-based bioink printability publication-title: Biofabrication – volume: 4 start-page: 249 year: 2008 end-page: 257 ident: bib50 article-title: The crosstalk of hyaluronan-based extracellular matrix and synapses publication-title: Neuron Glia Biol. – volume: 109 start-page: 414 year: 2016 end-page: 420 ident: bib71 article-title: Surface microstructuring to modify wettability for 3D printing of nano-filled inks publication-title: Chem. Eng. Res. Des. – volume: 26 start-page: 1 year: 2015 end-page: 9 ident: bib13 article-title: Oxygen diffusion in marine-derived tissue engineering scaffolds publication-title: J. Mater. Sci. Mater. Med. – volume: 5 start-page: 6777 year: 2013 end-page: 6792 ident: bib68 article-title: Bioinspired wetting surface via laser microfabrication publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 4695 year: 2009 end-page: 4699 ident: bib84 article-title: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells publication-title: Biomaterials – volume: 34 start-page: 142 year: 2013 end-page: 149 ident: bib82 article-title: Cell(MC3T3-E1)-Printed Poly(ϵ-caprolactone)/Alginate hybrid scaffolds for tissue regeneration, macromol publication-title: Rapid Commun. – volume: 131 start-page: 034501 year: 2009 ident: bib106 article-title: Modeling of flow rate, pore size, and porosity for the dispensing-based tissue scaffolds fabrication publication-title: J. Manuf. Sci. Eng. – volume: 34 start-page: 312 year: 2016 end-page: 319 ident: bib1 article-title: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity publication-title: Nat. Biotechnol. – volume: 3 start-page: 034112 year: 2011 ident: bib37 article-title: Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip publication-title: Biofabrication – volume: 6 start-page: 11310 year: 2019 ident: bib56 article-title: Extrusion bioprinting of soft materials: an emerging technique for biological model fabrication publication-title: Appl. Phys. Rev. – volume: 5 start-page: 43480 year: 2015 end-page: 43488 ident: bib116 article-title: Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting publication-title: RSC Adv. – volume: 23 start-page: 498 year: 2018 end-page: 504 ident: bib33 article-title: Influence of layer thickness and post-process treatments on the fatigue properties of CoCr scaffolds produced by laser powder bed fusion publication-title: Addit. Manuf. – volume: 20 start-page: 103 year: 2013 end-page: 114 ident: bib54 article-title: Utilizing core–shell fibrous collagen-alginate hydrogel cell delivery system for bone tissue engineering publication-title: Tissue Eng. A – volume: 93 start-page: 183 year: 2019 end-page: 193 ident: bib72 article-title: Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications publication-title: J. Mech. Behav. Biomed. Mater. – start-page: 715 year: 2007 end-page: 721 ident: bib104 article-title: Robust Direct-Write Dispensing Tool and Solutions for Micro/Meso-Scale Manufacturing and Packaging publication-title: International Manufacturing Science and Engineering Conference – volume: 30 start-page: 505 year: 2019 end-page: 508 ident: bib64 article-title: Patterning catalyst via inkjet printing to grow single-walled carbon nanotubes publication-title: Chin. Chem. Lett. – volume: 58 start-page: e3189 year: 2011 ident: bib100 article-title: Planar and three-dimensional printing of conductive inks publication-title: J. Vis. Exp. – volume: 18 start-page: 41002 year: 2018 ident: bib40 article-title: Additive manufacturing of functionally graded material objects: a review publication-title: J. Comput. Inf. Sci. Eng. – volume: 2 start-page: 1763 year: 2016 end-page: 1770 ident: bib39 article-title: Design and 3D printing of hydrogel scaffolds with fractal geometries publication-title: ACS Biomater. Sci. Eng. – volume: 28 start-page: 3478 year: 2007 end-page: 3488 ident: bib8 article-title: The use of physical hydrogels of chitosan for skin regeneration following third-degree burns publication-title: Biomaterials – volume: 38 start-page: 115 year: 2006 end-page: 124 ident: bib2 article-title: Internal architecture design and freeform fabrication of tissue replacement structures publication-title: Comput.-Aided Des. – volume: 1 start-page: 123 year: 2018 end-page: 134 ident: bib76 article-title: Study of extrudability and standoff distance effect during nanoclay-enabled direct printing publication-title: Bio-Des. Manuf. – volume: 29 start-page: 1126 year: 2018 end-page: 1154 ident: bib85 article-title: Influence of ionic cross linkers (Ca2+/Ba2+/Zn2+) on the mechanical and biological properties of 3D bioplotted hydrogel scaffolds publication-title: J. Biomater. Sci. Polym. Ed. – volume: 25 start-page: 62 year: 2018 ident: bib67 article-title: Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system publication-title: J. Polym. Res. – volume: 15 start-page: 541 year: 2009 end-page: 550 ident: bib114 article-title: Alginate composition effects on a neural stem cell–seeded scaffold publication-title: Tissue Eng. C Methods – volume: 21 start-page: 159 year: 2011 end-page: 170 ident: bib55 article-title: Effect of calcium alginate concentration on viability and proliferation of encapsulated fibroblasts publication-title: Biomed. Mater. Eng. – volume: 10 start-page: 1836 year: 2014 end-page: 1846 ident: bib93 article-title: Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells publication-title: Acta Biomater. – volume: 114 start-page: I87 year: 2006 end-page: I93 ident: bib5 article-title: Pulsatile myocardial tubes fabricated with cell sheet engineering publication-title: Circulation – volume: 78 start-page: 298 year: 2018 end-page: 314 ident: bib11 article-title: Dispensing-based bioprinting of mechanically-functional hybrid scaffolds with vessel-like channels for tissue engineering applications – a brief review publication-title: J. Mech. Behav. Biomed. Mater. – volume: 95 start-page: 196 year: 2003 end-page: 199 ident: bib59 article-title: Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering publication-title: J. Biosci. Bioeng. – volume: 24 start-page: 2303 year: 2003 end-page: 2308 ident: bib7 article-title: Successful application of tissue engineered vascular autografts: clinical experience publication-title: Biomaterials – volume: 8 start-page: 403 year: 2018 ident: bib43 article-title: Printability study of bioprinted tubular structures using liquid hydrogel precursors in a support bath publication-title: Appl. Sci. – volume: 5 start-page: 1150 year: 2019 end-page: 1169 ident: bib3 article-title: Recent strategies in extrusion-based three-dimensional cell printing toward organ biofabrication publication-title: ACS Biomater. Sci. Eng. – volume: 55 start-page: 203 year: 2001 end-page: 216 ident: bib26 article-title: Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling publication-title: J. Biomed. Mater. Res. – volume: 7 start-page: 2219 year: 2019 end-page: 2224 ident: bib62 article-title: The in situ synthesis of conductive polyaniline patterns using micro-reactive inkjet printing publication-title: J. Mater. Chem. C. – volume: 6 year: 2014 ident: bib46 article-title: Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels publication-title: Biofabrication – volume: 5 start-page: 2976 year: 2019 end-page: 2987 ident: bib108 article-title: Printability and cell viability in bioprinting alginate dialdehyde-gelatin scaffolds publication-title: ACS Biomater. Sci. Eng. – volume: 27 start-page: 974 year: 2006 end-page: 985 ident: bib28 article-title: 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties publication-title: Biomaterials – volume: 74 start-page: 332 year: 2015 end-page: 400 ident: bib35 article-title: Bioinspired engineering of honeycomb structure–Using nature to inspire human innovation publication-title: Prog. Mater. Sci. – volume: 21 start-page: 605 year: 2018 end-page: 618 ident: bib109 article-title: VOLCO: a predictive model for 3D printed microarchitecture publication-title: Addit. Manuf. – volume: 23 start-page: 34 year: 2018 end-page: 44 ident: bib41 article-title: An overview of functionally graded additive manufacturing publication-title: Addit. Manuf. – volume: 5 year: 2013 ident: bib18 article-title: The first systematic analysis of 3D rapid prototyped poly (ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability publication-title: Biofabrication – volume: 564 start-page: 359 year: 2019 end-page: 368 ident: bib63 article-title: Water-based 3D inkjet printing of an oral pharmaceutical dosage form publication-title: Int. J. Pharm. – volume: 6 start-page: 29977 year: 2016 ident: bib22 article-title: Research on the printability of hydrogels in 3D bioprinting publication-title: Sci. Rep. – volume: 3 start-page: 799 year: 2012 end-page: 838 ident: bib34 article-title: Strategic design and fabrication of engineered scaffolds for articular cartilage repair publication-title: J. Funct. Biomater. – volume: 230 start-page: 412 year: 2019 end-page: 419 ident: bib61 article-title: Valorization of discarded Marine Eel fish skin for collagen extraction as a 3D printable blue biomaterial for tissue engineering publication-title: J. Clean. Prod. – volume: 30 year: 2020 ident: bib21 article-title: Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth publication-title: Adv. Funct. Mater. – volume: 21 start-page: 457 year: 2005 end-page: 464 ident: bib103 article-title: Phase behavior and rheological properties of polyelectrolyte inks for direct-write assembly publication-title: Langmuir – volume: 10 start-page: 292 year: 2020 ident: bib24 article-title: Printability of 3D printed hydrogel scaffolds: influence of hydrogel composition and printing parameters publication-title: Appl. Sci. – volume: 10 start-page: 034105 year: 2018 ident: bib23 article-title: Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks publication-title: Biofabrication – volume: 95 start-page: 50 year: 2019 end-page: 59 ident: bib120 article-title: Recent advances in high strength and elastic hydrogels for 3D printing in biomedical applications publication-title: Acta Biomater. – volume: 29 start-page: 75 year: 2006 end-page: 82 ident: bib66 article-title: Effects of fluid properties on dispensing processes for electronics packaging publication-title: IEEE Trans. Electron. Packag. Manuf. – volume: 30 year: 2020 ident: 10.1016/j.jpha.2021.02.001_bib21 article-title: Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth publication-title: Adv. Funct. Mater. – volume: 5 start-page: 43480 year: 2015 ident: 10.1016/j.jpha.2021.02.001_bib116 article-title: Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting publication-title: RSC Adv. doi: 10.1039/C5RA04308E – volume: 21 start-page: 605 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib109 article-title: VOLCO: a predictive model for 3D printed microarchitecture publication-title: Addit. Manuf. – volume: 8 start-page: 1801181 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib86 article-title: Development of a coaxial 3D printing platform for biofabrication of implantable islet-containing constructs publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201801181 – volume: 21 start-page: 3235 year: 2009 ident: 10.1016/j.jpha.2021.02.001_bib4 article-title: Perspectives and challenges in tissue engineering and regenerative medicine publication-title: Adv. Mater. doi: 10.1002/adma.200902589 – volume: 58 start-page: e3189 year: 2011 ident: 10.1016/j.jpha.2021.02.001_bib100 article-title: Planar and three-dimensional printing of conductive inks publication-title: J. Vis. Exp. – volume: 21 start-page: 3195 year: 2010 ident: 10.1016/j.jpha.2021.02.001_bib16 article-title: Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology publication-title: J. Mater. Sci. Mater.: Med. doi: 10.1007/s10856-010-4173-7 – volume: 23 start-page: 802 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib111 article-title: Using SR-inline-PCI-CT to visualize 3D-printed hybrid constructs for cartilage tissue engineering publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577516002344 – volume: 114 start-page: I132 year: 2006 ident: 10.1016/j.jpha.2021.02.001_bib10 article-title: Clinical application of tissue engineered human heart valves using autologous progenitor cells publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.001065 – volume: 5 start-page: 1150 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib3 article-title: Recent strategies in extrusion-based three-dimensional cell printing toward organ biofabrication publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00691 – volume: 4 start-page: 249 year: 2008 ident: 10.1016/j.jpha.2021.02.001_bib50 article-title: The crosstalk of hyaluronan-based extracellular matrix and synapses publication-title: Neuron Glia Biol. doi: 10.1017/S1740925X09990226 – volume: 8 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib27 article-title: Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry publication-title: Biofabrication doi: 10.1088/1758-5090/8/2/025020 – volume: 2 start-page: 1752 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib95 article-title: New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00149 – volume: 71 start-page: 678 year: 2017 ident: 10.1016/j.jpha.2021.02.001_bib48 article-title: Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: characterization and evaluation publication-title: Mater. Sc.i Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2016.10.069 – volume: 372 start-page: 2023 year: 2008 ident: 10.1016/j.jpha.2021.02.001_bib9 article-title: Clinical transplantation of a tissue-engineered airway publication-title: Lancet doi: 10.1016/S0140-6736(08)61598-6 – volume: 12 year: 2020 ident: 10.1016/j.jpha.2021.02.001_bib20 article-title: Assessment methodologies for extrusion-based bioink printability publication-title: Biofabrication doi: 10.1088/1758-5090/ab6f0d – volume: 141 start-page: 50801 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib69 article-title: A guiding framework for microextrusion additive manufacturing publication-title: J. Manuf. Sci. Eng. – volume: 101 start-page: 272 year: 2013 ident: 10.1016/j.jpha.2021.02.001_bib91 article-title: Evaluation of hydrogels for bio-printing applications publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.34326 – volume: 4 year: 2012 ident: 10.1016/j.jpha.2021.02.001_bib101 article-title: Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds publication-title: Biofabrication doi: 10.1088/1758-5082/4/3/035005 – volume: 34 start-page: 312 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib1 article-title: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3413 – volume: 95 start-page: 50 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib120 article-title: Recent advances in high strength and elastic hydrogels for 3D printing in biomedical applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.05.032 – volume: 367 start-page: 1241 year: 2006 ident: 10.1016/j.jpha.2021.02.001_bib6 article-title: Tissue-engineered autologous bladders for patients needing cystoplasty publication-title: Lancet doi: 10.1016/S0140-6736(06)68438-9 – volume: 26 start-page: 1 year: 2015 ident: 10.1016/j.jpha.2021.02.001_bib13 article-title: Oxygen diffusion in marine-derived tissue engineering scaffolds publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-015-5531-2 – volume: 38 start-page: 115 year: 2006 ident: 10.1016/j.jpha.2021.02.001_bib2 article-title: Internal architecture design and freeform fabrication of tissue replacement structures publication-title: Comput.-Aided Des. doi: 10.1016/j.cad.2005.08.001 – volume: 18 start-page: 56 year: 2012 ident: 10.1016/j.jpha.2021.02.001_bib49 article-title: Effect of process parameters on the morphological and mechanical properties of 3D bioextruded poly (ε-caprolactone) scaffolds publication-title: Rapid Prototyp. J. doi: 10.1108/13552541211193502 – volume: 564 start-page: 359 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib63 article-title: Water-based 3D inkjet printing of an oral pharmaceutical dosage form publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.04.026 – volume: 74 start-page: 332 year: 2015 ident: 10.1016/j.jpha.2021.02.001_bib35 article-title: Bioinspired engineering of honeycomb structure–Using nature to inspire human innovation publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2015.05.001 – volume: 15 start-page: 541 year: 2009 ident: 10.1016/j.jpha.2021.02.001_bib114 article-title: Alginate composition effects on a neural stem cell–seeded scaffold publication-title: Tissue Eng. C Methods doi: 10.1089/ten.tec.2008.0302 – volume: 55 start-page: 203 year: 2001 ident: 10.1016/j.jpha.2021.02.001_bib26 article-title: Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7 – volume: 21 start-page: 159 year: 2011 ident: 10.1016/j.jpha.2021.02.001_bib55 article-title: Effect of calcium alginate concentration on viability and proliferation of encapsulated fibroblasts publication-title: Biomed. Mater. Eng. – volume: 23 start-page: 34 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib41 article-title: An overview of functionally graded additive manufacturing publication-title: Addit. Manuf. – volume: 5 start-page: 13427 year: 2015 ident: 10.1016/j.jpha.2021.02.001_bib53 article-title: A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures publication-title: Sci. Rep. doi: 10.1038/srep13427 – volume: 10 start-page: 034106 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib47 article-title: Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach publication-title: Biofabrication doi: 10.1088/1758-5090/aacdc7 – volume: 66 start-page: 299 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib58 article-title: 3D printing of porous alginate/gelatin hydrogel scaffolds and their mechanical property characterization publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2016.1201830 – volume: 8 start-page: 1422 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib75 article-title: Modeling of the mechanical behavior of 3D bioplotted scaffolds considering the penetration in interlocked strands publication-title: Appl. Sci. doi: 10.3390/app8091422 – volume: 1 start-page: 918 year: 2006 ident: 10.1016/j.jpha.2021.02.001_bib14 article-title: Electrospun scaffold tailored for tissue specific extracellular matrix publication-title: Biotechnol. J. doi: 10.1002/biot.200600044 – volume: 6 start-page: 29977 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib22 article-title: Research on the printability of hydrogels in 3D bioprinting publication-title: Sci. Rep. doi: 10.1038/srep29977 – volume: 23 start-page: 498 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib33 article-title: Influence of layer thickness and post-process treatments on the fatigue properties of CoCr scaffolds produced by laser powder bed fusion publication-title: Addit. Manuf. – volume: 16 start-page: 1489 year: 2015 ident: 10.1016/j.jpha.2021.02.001_bib94 article-title: 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00188 – volume: 30 start-page: 4695 year: 2009 ident: 10.1016/j.jpha.2021.02.001_bib84 article-title: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.05.050 – volume: 4 start-page: 133 year: 2015 ident: 10.1016/j.jpha.2021.02.001_bib52 article-title: 3D cell culture in alginate hydrogels publication-title: Microarrays (Basel) doi: 10.3390/microarrays4020133 – volume: 25 start-page: 62 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib67 article-title: Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system publication-title: J. Polym. Res. doi: 10.1007/s10965-018-1455-0 – volume: 8 start-page: 035020 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib45 article-title: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells publication-title: Biofabrication doi: 10.1088/1758-5090/8/3/035020 – volume: 80 start-page: 313 year: 2017 ident: 10.1016/j.jpha.2021.02.001_bib70 article-title: Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2017.05.144 – volume: 80 start-page: 111 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib73 article-title: Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: experimental and numerical approaches publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2018.01.034 – volume: 98 start-page: 187 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib90 article-title: Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2019.06.014 – volume: 30 start-page: 505 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib64 article-title: Patterning catalyst via inkjet printing to grow single-walled carbon nanotubes publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2018.06.008 – volume: 13 start-page: 2997 year: 2012 ident: 10.1016/j.jpha.2021.02.001_bib83 article-title: Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying publication-title: Biomacromolecules doi: 10.1021/bm3011352 – volume: 2 start-page: 1763 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib39 article-title: Design and 3D printing of hydrogel scaffolds with fractal geometries publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00140 – volume: 8 start-page: 015016 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib25 article-title: Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing publication-title: Biofabrication doi: 10.1088/1758-5090/8/1/015016 – volume: 102 start-page: 4326 year: 2014 ident: 10.1016/j.jpha.2021.02.001_bib79 article-title: Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering publication-title: J. Biomed. Mater. Res. A – volume: 7 year: 2015 ident: 10.1016/j.jpha.2021.02.001_bib105 article-title: Three-dimensional bioprinting of complex cell laden alginate hydrogel structures publication-title: Biofabrication doi: 10.1088/1758-5090/7/4/045012 – volume: 17 start-page: 467 year: 2008 ident: 10.1016/j.jpha.2021.02.001_bib118 article-title: Scaffolding in tissue engineering: general approaches and tissue-specific considerations publication-title: Eur. Spine J. doi: 10.1007/s00586-008-0745-3 – volume: 3 start-page: 799 year: 2012 ident: 10.1016/j.jpha.2021.02.001_bib34 article-title: Strategic design and fabrication of engineered scaffolds for articular cartilage repair publication-title: J. Funct. Biomater. doi: 10.3390/jfb3040799 – volume: 5 start-page: 6777 year: 2013 ident: 10.1016/j.jpha.2021.02.001_bib68 article-title: Bioinspired wetting surface via laser microfabrication publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401677z – volume: 10 start-page: 034105 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib23 article-title: Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks publication-title: Biofabrication doi: 10.1088/1758-5090/aac872 – volume: 1 start-page: 123 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib76 article-title: Study of extrudability and standoff distance effect during nanoclay-enabled direct printing publication-title: Bio-Des. Manuf. doi: 10.1007/s42242-018-0009-y – volume: 16 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib88 article-title: A review on the challenges of 3D printing of organic powders publication-title: Bioprinting doi: 10.1016/j.bprint.2019.e00057 – volume: 10 start-page: 1836 year: 2014 ident: 10.1016/j.jpha.2021.02.001_bib93 article-title: Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.12.005 – volume: 29 start-page: 332 year: 2017 ident: 10.1016/j.jpha.2021.02.001_bib30 article-title: Support grain architecture design for additive manufacturing publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2017.08.008 – volume: 20 start-page: 103 year: 2013 ident: 10.1016/j.jpha.2021.02.001_bib54 article-title: Utilizing core–shell fibrous collagen-alginate hydrogel cell delivery system for bone tissue engineering publication-title: Tissue Eng. A doi: 10.1089/ten.tea.2013.0198 – volume: 5 start-page: 2856 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib42 article-title: Design and printing strategies in 3D bioprinting of cell-hydrogels: a review publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201600435 – volume: 17 start-page: 10112 year: 2007 ident: 10.1016/j.jpha.2021.02.001_bib31 article-title: Rheological behavior of fugitive organic inks for direct-write assembly publication-title: Appl. Rheol. – volume: 27 start-page: 2211 year: 2011 ident: 10.1016/j.jpha.2021.02.001_bib77 article-title: Nanofluid surface wettability through asymptotic contact angle publication-title: Langmuir doi: 10.1021/la104254a – start-page: 715 year: 2007 ident: 10.1016/j.jpha.2021.02.001_bib104 article-title: Robust Direct-Write Dispensing Tool and Solutions for Micro/Meso-Scale Manufacturing and Packaging – year: 2017 ident: 10.1016/j.jpha.2021.02.001_bib38 – volume: 25 start-page: 4539 year: 2013 ident: 10.1016/j.jpha.2021.02.001_bib98 article-title: 3D printing of interdigitated Li-Ion microbattery architectures publication-title: Adv. Mater. doi: 10.1002/adma.201301036 – volume: 45 start-page: 58 year: 2017 ident: 10.1016/j.jpha.2021.02.001_bib113 article-title: Indirect rapid prototyping: opening up unprecedented opportunities in scaffold design and applications publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1610-x – volume: 14 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib107 article-title: Bio-fabrication of peptide-modified alginate scaffolds: printability, mechanical stability and neurite outgrowth assessments publication-title: Bioprinting doi: 10.1016/j.bprint.2019.e00045 – volume: 6 start-page: 1024 year: 2006 ident: 10.1016/j.jpha.2021.02.001_bib51 article-title: Sugar antennae for guidance signals: syndecans and glypicans integrate directional cues for navigating neurons publication-title: Sci. World J. doi: 10.1100/tsw.2006.202 – year: 2002 ident: 10.1016/j.jpha.2021.02.001_bib99 – volume: 3 start-page: 034112 year: 2011 ident: 10.1016/j.jpha.2021.02.001_bib37 article-title: Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip publication-title: Biofabrication doi: 10.1088/1758-5082/3/3/034112 – volume: 21 start-page: 457 year: 2005 ident: 10.1016/j.jpha.2021.02.001_bib103 article-title: Phase behavior and rheological properties of polyelectrolyte inks for direct-write assembly publication-title: Langmuir doi: 10.1021/la048228d – volume: 1 start-page: 763 year: 2013 ident: 10.1016/j.jpha.2021.02.001_bib44 article-title: Bio-ink properties and printability for extrusion printing living cells publication-title: Biomater. Sci. doi: 10.1039/c3bm00012e – volume: 10 start-page: 292 year: 2020 ident: 10.1016/j.jpha.2021.02.001_bib24 article-title: Printability of 3D printed hydrogel scaffolds: influence of hydrogel composition and printing parameters publication-title: Appl. Sci. doi: 10.3390/app10010292 – volume: 6 start-page: 11310 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib56 article-title: Extrusion bioprinting of soft materials: an emerging technique for biological model fabrication publication-title: Appl. Phys. Rev. doi: 10.1063/1.5059393 – volume: 93 start-page: 183 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib72 article-title: Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2019.02.014 – volume: 5 start-page: 035001 year: 2013 ident: 10.1016/j.jpha.2021.02.001_bib102 article-title: Quantitative optimization of solid freeform deposition of aqueous hydrogels publication-title: Biofabrication doi: 10.1088/1758-5082/5/3/035001 – volume: 35 start-page: 217 year: 2017 ident: 10.1016/j.jpha.2021.02.001_bib119 article-title: The bioink: a comprehensive review on bioprintable materials publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.12.006 – volume: 32 start-page: 889 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib60 article-title: 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2016.01.007 – volume: 78 start-page: 298 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib11 article-title: Dispensing-based bioprinting of mechanically-functional hybrid scaffolds with vessel-like channels for tissue engineering applications – a brief review publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.11.037 – volume: 59 start-page: 183 year: 2013 ident: 10.1016/j.jpha.2021.02.001_bib36 article-title: 3D hybrid bioprinting of macrovascular structures publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.05.109 – year: 2020 ident: 10.1016/j.jpha.2021.02.001_bib12 – volume: 5 start-page: 10418 year: 2013 ident: 10.1016/j.jpha.2021.02.001_bib81 article-title: Strengthening alginate/polyacrylamide hydrogels using various multivalent cations publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am403966x – volume: 6 year: 2014 ident: 10.1016/j.jpha.2021.02.001_bib46 article-title: Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels publication-title: Biofabrication doi: 10.1088/1758-5082/6/2/024105 – volume: 23 start-page: 802 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib110 article-title: Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577516002344 – volume: 6 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib15 article-title: Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance, Burn publication-title: Trauma – volume: 27 start-page: 974 year: 2006 ident: 10.1016/j.jpha.2021.02.001_bib28 article-title: 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.07.023 – volume: 13 start-page: 1091 year: 2012 ident: 10.1016/j.jpha.2021.02.001_bib80 article-title: Development and evaluation of sodium alginate–polyacrylamide graft–co-polymer-based stomach targeted hydrogels of famotidine publication-title: AAPS PharmSciTech doi: 10.1208/s12249-012-9824-1 – volume: 18 start-page: 41002 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib40 article-title: Additive manufacturing of functionally graded material objects: a review publication-title: J. Comput. Inf. Sci. Eng. doi: 10.1115/1.4039683 – volume: 8 start-page: 403 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib43 article-title: Printability study of bioprinted tubular structures using liquid hydrogel precursors in a support bath publication-title: Appl. Sci. doi: 10.3390/app8030403 – volume: 3 start-page: 034106 year: 2011 ident: 10.1016/j.jpha.2021.02.001_bib32 article-title: A functionally gradient variational porosity architecture for hollowed scaffolds fabrication publication-title: Biofabrication doi: 10.1088/1758-5082/3/3/034106 – volume: 109 start-page: 414 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib71 article-title: Surface microstructuring to modify wettability for 3D printing of nano-filled inks publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.02.004 – volume: 29 start-page: 75 year: 2006 ident: 10.1016/j.jpha.2021.02.001_bib66 article-title: Effects of fluid properties on dispensing processes for electronics packaging publication-title: IEEE Trans. Electron. Packag. Manuf. doi: 10.1109/TEPM.2006.874964 – volume: 114 start-page: I87 year: 2006 ident: 10.1016/j.jpha.2021.02.001_bib5 article-title: Pulsatile myocardial tubes fabricated with cell sheet engineering publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.000273 – volume: 7 start-page: 2219 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib62 article-title: The in situ synthesis of conductive polyaniline patterns using micro-reactive inkjet printing publication-title: J. Mater. Chem. C. doi: 10.1039/C8TC06485G – start-page: 153 year: 2015 ident: 10.1016/j.jpha.2021.02.001_bib112 article-title: Chapter 8 – Indirect Rapid Prototyping for Tissue Engineering – volume: 120 start-page: 11028 year: 2020 ident: 10.1016/j.jpha.2021.02.001_bib19 article-title: Printability and shape fidelity of bioinks in 3D bioprinting publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00084 – volume: 220 start-page: 12 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib89 article-title: Bioinspired 3D printable pectin-nanocellulose ink formulations publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.05.026 – volume: 34 start-page: 142 year: 2013 ident: 10.1016/j.jpha.2021.02.001_bib82 article-title: Cell(MC3T3-E1)-Printed Poly(ϵ-caprolactone)/Alginate hybrid scaffolds for tissue regeneration, macromol publication-title: Rapid Commun. doi: 10.1002/marc.201200524 – volume: 7 start-page: 1801102 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib87 article-title: Coaxial cell printing of freestanding, perfusable, and functional in vitro vascular models for recapitulation of native vascular endothelium pathophysiology publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201801102 – volume: 11 start-page: 454 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib29 article-title: 3D printability of alginate-carboxymethyl cellulose hydrogel publication-title: Materials doi: 10.3390/ma11030454 – volume: 28 start-page: 3478 year: 2007 ident: 10.1016/j.jpha.2021.02.001_bib8 article-title: The use of physical hydrogels of chitosan for skin regeneration following third-degree burns publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.04.021 – volume: 230 start-page: 412 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib61 article-title: Valorization of discarded Marine Eel fish skin for collagen extraction as a 3D printable blue biomaterial for tissue engineering publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.082 – volume: 2 start-page: 163 year: 2016 ident: 10.1016/j.jpha.2021.02.001_bib96 article-title: Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide publication-title: Int. J. Bioprint. doi: 10.18063/IJB.2016.02.007 – volume: 18 start-page: 55 year: 2012 ident: 10.1016/j.jpha.2021.02.001_bib115 article-title: Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress publication-title: Tissue Eng. A doi: 10.1089/ten.tea.2011.0097 – volume: 7 start-page: 1009 year: 2011 ident: 10.1016/j.jpha.2021.02.001_bib17 article-title: Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.11.003 – volume: 131 start-page: 034501 year: 2009 ident: 10.1016/j.jpha.2021.02.001_bib106 article-title: Modeling of flow rate, pore size, and porosity for the dispensing-based tissue scaffolds fabrication publication-title: J. Manuf. Sci. Eng. – volume: 6 start-page: 1900572 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib78 article-title: Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900572 – volume: 95 start-page: 196 year: 2003 ident: 10.1016/j.jpha.2021.02.001_bib59 article-title: Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering publication-title: J. Biosci. Bioeng. doi: 10.1016/S1389-1723(03)80129-9 – volume: 24 start-page: 2303 year: 2003 ident: 10.1016/j.jpha.2021.02.001_bib7 article-title: Successful application of tissue engineered vascular autografts: clinical experience publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00043-7 – volume: 5 year: 2013 ident: 10.1016/j.jpha.2021.02.001_bib18 article-title: The first systematic analysis of 3D rapid prototyped poly (ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability publication-title: Biofabrication doi: 10.1088/1758-5082/5/4/045004 – volume: 10 start-page: 630 year: 2014 ident: 10.1016/j.jpha.2021.02.001_bib97 article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.10.016 – volume: 6 start-page: 1700264 year: 2017 ident: 10.1016/j.jpha.2021.02.001_bib65 article-title: ‘Printability’ of candidate biomaterials for extrusion based 3D Printing : state-of-the-art publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700264 – volume: 1 start-page: 49 year: 2015 ident: 10.1016/j.jpha.2021.02.001_bib121 article-title: Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique publication-title: Int. J. Bioprint. doi: 10.18063/IJB.2015.01.003 – volume: 5 start-page: 2688 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib57 article-title: Dynamic hydrogels and polymers as inks for 3D printing publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b00047 – volume: 10 start-page: 4323 year: 2014 ident: 10.1016/j.jpha.2021.02.001_bib92 article-title: Engineering alginate as bioink for bioprinting publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.06.034 – volume: 5 start-page: 2976 year: 2019 ident: 10.1016/j.jpha.2021.02.001_bib108 article-title: Printability and cell viability in bioprinting alginate dialdehyde-gelatin scaffolds publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b00167 – volume: 29 start-page: 1126 year: 2018 ident: 10.1016/j.jpha.2021.02.001_bib85 article-title: Influence of ionic cross linkers (Ca2+/Ba2+/Zn2+) on the mechanical and biological properties of 3D bioplotted hydrogel scaffolds publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1080/09205063.2018.1433420 |
SSID | ssj0000702895 |
Score | 2.5749369 |
SecondaryResourceType | review_article |
Snippet | Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or... Three-dimensional(3D)extrusion-based bioprinting is widely used in tissue engineering and regener-ative medicine to create cell-incorporated constructs or... |
SourceID | doaj pubmedcentral wanfang proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 564 |
SubjectTerms | 3D bioprinting Bioink Extrusion Printability Review Paper Tissue engineering |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQJSQ2iKcILxmEuqERcWxP7GVBVBULNItW6s6yHRtSIU_VmaqdHf_AH_Il3Bt72gmLsmGTRew4flzfh318TMg7K4R33DWg_YKshVS-Vn03qzmEHp1Wog9uRPl-nR0eiy8n8mTrqi_EhGV64NxxH6xTje5kH50KQupG26CEZTHGJrJZGI_5gs3bCqZGHdzhDhriFyFR1qzrdDkxk8Fdp8jFBHF_IexkE6s0kvdPjNOW8_k3dPLupU3Rpm9bVungAblf3Em6n5vxkNwJ6RHZnWc-6vUePbo5XrXco7t0fsNUvX5M9Px8SKvM1L3-_fPXPoUpTcehoEOioLfPL3A1rUZb11M3LHAZEIHST8jxweejT4d1uUuh9pK3K1C1GKhIbVloPTgNnNvIteosH7063I5rgrByxi3vO9fEttWO9T0LFjLD4ynZSYsUnhHKrJOuVxCJxChEEKrX0XsfuWW-CVpVhG360vhCNI73XfwwG0TZqcH-N9j_pmkRVleR99ffnGWajVtzf8Qhus6JFNnjCxAcUwTH_EtwKiI3A2yKt5G9CChquPXnbzbSYGAq4v6KTWFxsTQtBmegtAWvSDcRk0lNpylp-D6SeisJniRrK_K2CJQpymRp1pfx6sqZgJVoJAzX8__R_hfkHhaYgYkvyQ5IVHgFDtbKvR7n0h-XlSSx priority: 102 providerName: Directory of Open Access Journals |
Title | Printability–A key issue in extrusion-based bioprinting |
URI | https://dx.doi.org/10.1016/j.jpha.2021.02.001 https://www.proquest.com/docview/2597488743 https://d.wanfangdata.com.cn/periodical/ywfxxb-e202105004 https://pubmed.ncbi.nlm.nih.gov/PMC8572712 https://doaj.org/article/ab80975dfb8e45909ae84a1fff0f16e8 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdBL6ZNuH4tbSi6NWeu1lo7ZkBBaCNs2gb0JyZZSh-INuxuSveU_5B_2l3TGljdxDzn0YrBX9g7S6JsZ-dNnQj5bIQrHXQbo52UqpCpSVebjlEPpkWslSu8alu_x-OhUfJ3J2RbZ7_bCIK0yYn-L6Q1axyuj2Juji6oa_WSYHeS5ZrRJXBCHUakFN_HNJpt1FnBpqCmQyYjtU7wh7p1paV7nqMrEINK10p20F58aGf9emLqXhv5Lonx8Zetg67N78enwGXkaE8tkr7X9Odny9QuyM22Vqde7ycndRqvlbrKTTO80q9cviZ4uqnrVanav_9zc7iUwuZNmUJKqTgDBF5e4rpZi1CsTV81xQRAp06_I6eHByf5RGr-qkBaSsxWALpYsUlvqWQHpA-c2cK1yy5v8Dl_MZV5YOeaWl7nLAmPa0bKk3kJjOLwm2_W89m9IQq2TrlRQk4QghBeq1KEoisAtLTKv1YDQri9NESXH8csXv03HLTs32P8G-99kDAl2A_Jlc89FK7jxYOsJDtGmJYplNxfmizMTvcVYpzKdyzI45YXUmbZeCUtDCFmgYw9mym6ATc_34FHVg3_-sfMGA5MS37TY2s8vl4ZhmQbwLfiA5D036Vna_6WufjXy3kpCTknZgHyKDmUirCzN-ipcXzvj0YhMwnC9_U_T35EneNayEt-TbXAi_wGyq5UbkkeTg-Ppj2GzOjFsJhMcv31XfwG4CyeF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXVF5ioUBAqBcabfxK7GNbUW2hVCuxlfZm2YndpkLZanerdm_8B_4hv4SZPLYNhx647CGxsyN7_M2M8_kLIZ-sELnjLgH08zIWUuWxKrI05lB6ZFqJwrua5XuSjk7F16mcbpCD7iwM0ipb7G8wvUbr9sqwHc3hZVkOfzDMDrJMM1onLoDDDyAbSJHXdTTdX2-0gE9DUYFURuwQY4_28EzD87pAWSYGoa7R7qS9AFXr-Pfi1J089F8W5cNrWwVbnd0JUIdb5EmbWUZ7jfFPyYavnpGdcSNNvdqNJrcnrRa70U40vhWtXj0nejwvq2Uj2r368-v3XgSrO6pnJSqrCCB8foUbazGGvSJy5Qx3BJEz_YKcHn6ZHIzi9rMKcS45WwLqYs0itaWe5ZA_cG4D1yqzvE7w8M1c4oWVKbe8yFwSGNOOFgX1FhrDz0uyWc0q_4pE1DrpCgVFSQhCeKEKHfI8D9zSPPFaDQjtxtLkreY4fvrip-nIZRcGx9_g-JuEIcNuQD6v-1w2ihv3tt7HKVq3RLXs-sJsfmZadzHWqURnsghOeSF1oq1XwtIQQhJo6sFM2U2w6TkfPKq8988_dN5gYFXiqxZb-dnVwjCs0wC_BR-QrOcmPUv7d6ryvNb3VhKSSsoG5GPrUKbFlYVZXYebG2c8GpFImK7X_2n6e_JoNPl-bI6PTr69IY_xTkNR3Cab4FD-LaRaS_euXkp_AYLhJyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Printability%E2%80%93A+key+issue+in+extrusion-based+bioprinting&rft.jtitle=Journal+of+pharmaceutical+analysis&rft.au=Naghieh%2C+Saman&rft.au=Chen%2C+Xiongbiao&rft.date=2021-10-01&rft.pub=Elsevier+B.V&rft.issn=2095-1779&rft.eissn=2214-0883&rft.volume=11&rft.issue=5&rft.spage=564&rft.epage=579&rft_id=info:doi/10.1016%2Fj.jpha.2021.02.001&rft.externalDocID=S2095177921000162 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fywfxxb-e%2Fywfxxb-e.jpg |