Printability–A key issue in extrusion-based bioprinting

Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and m...

Full description

Saved in:
Bibliographic Details
Published inJournal of pharmaceutical analysis Vol. 11; no. 5; pp. 564 - 579
Main Authors Naghieh, Saman, Chen, Xiongbiao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2021
Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada%Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada
Department of Mechanical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada
Xi'an Jiaotong University
Elsevier
Subjects
Online AccessGet full text
ISSN2095-1779
2214-0883
2214-0883
DOI10.1016/j.jpha.2021.02.001

Cover

Loading…
Abstract Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink (a mixture of biomaterials and cells). Research shows that printability can be affected by many factors or parameters, including those associated with the bioink, printing process, and scaffold design, but these are far from certain. This review highlights recent developments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability, printability measurements and characterization, and printability-affecting factors. Key issues and challenges related to printability are also identified and discussed, along with approaches or strategies for improving printability in extrusion-based bioprinting. [Display omitted] •Focusing on one of the critical challenges in 3D bioprinting called “printability”.•Investigating factors, including those associated with bioink, printing process, and scaffold design affecting printability.•Highlights the recent development in the discovery of printability for the extrusion bioprinting.•Providing a systematic review on “how printability is measured and characterized”.•Identifying key challenges in the printability discovery.
AbstractList Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink (a mixture of biomaterials and cells). Research shows that printability can be affected by many factors or parameters, including those associated with the bioink, printing process, and scaffold design, but these are far from certain. This review highlights recent developments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability, printability measurements and characterization, and printability-affecting factors. Key issues and challenges related to printability are also identified and discussed, along with approaches or strategies for improving printability in extrusion-based bioprinting.
Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink (a mixture of biomaterials and cells). Research shows that printability can be affected by many factors or parameters, including those associated with the bioink, printing process, and scaffold design, but these are far from certain. This review highlights recent developments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability, printability measurements and characterization, and printability-affecting factors. Key issues and challenges related to printability are also identified and discussed, along with approaches or strategies for improving printability in extrusion-based bioprinting. Image 1 • Focusing on one of the critical challenges in 3D bioprinting called “printability”. • Investigating factors, including those associated with bioink, printing process, and scaffold design affecting printability. • Highlights the recent development in the discovery of printability for the extrusion bioprinting. • Providing a systematic review on “how printability is measured and characterized”. • Identifying key challenges in the printability discovery.
Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink (a mixture of biomaterials and cells). Research shows that printability can be affected by many factors or parameters, including those associated with the bioink, printing process, and scaffold design, but these are far from certain. This review highlights recent developments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability, printability measurements and characterization, and printability-affecting factors. Key issues and challenges related to printability are also identified and discussed, along with approaches or strategies for improving printability in extrusion-based bioprinting.Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink (a mixture of biomaterials and cells). Research shows that printability can be affected by many factors or parameters, including those associated with the bioink, printing process, and scaffold design, but these are far from certain. This review highlights recent developments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability, printability measurements and characterization, and printability-affecting factors. Key issues and challenges related to printability are also identified and discussed, along with approaches or strategies for improving printability in extrusion-based bioprinting.
Three-dimensional(3D)extrusion-based bioprinting is widely used in tissue engineering and regener-ative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique.One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink(a mixture of biomaterials and cells).Research shows that printability can be affected by many factors or parameters,including those associated with the bioink,printing process,and scaffold design,but these are far from certain.This review highlights recent de-velopments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability,printability measurements and characterization,and printability-affecting factors.Key issues and challenges related to printability are also identified and discussed,along with approaches or strategies for improving printability in extrusion-based bioprinting.
Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique. One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink (a mixture of biomaterials and cells). Research shows that printability can be affected by many factors or parameters, including those associated with the bioink, printing process, and scaffold design, but these are far from certain. This review highlights recent developments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability, printability measurements and characterization, and printability-affecting factors. Key issues and challenges related to printability are also identified and discussed, along with approaches or strategies for improving printability in extrusion-based bioprinting. [Display omitted] •Focusing on one of the critical challenges in 3D bioprinting called “printability”.•Investigating factors, including those associated with bioink, printing process, and scaffold design affecting printability.•Highlights the recent development in the discovery of printability for the extrusion bioprinting.•Providing a systematic review on “how printability is measured and characterized”.•Identifying key challenges in the printability discovery.
Author Chen, Xiongbiao
Naghieh, Saman
AuthorAffiliation Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada%Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada;Department of Mechanical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada
AuthorAffiliation_xml – name: Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada%Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada;Department of Mechanical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada
Author_xml – sequence: 1
  givenname: Saman
  surname: Naghieh
  fullname: Naghieh, Saman
  email: san908@mail.usask.ca
  organization: Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
– sequence: 2
  givenname: Xiongbiao
  orcidid: 0000-0002-4716-549X
  surname: Chen
  fullname: Chen, Xiongbiao
  email: xbc719@mail.usask.ca
  organization: Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
BookMark eNp9Uctu1DAUjVARLaU_wCpLWCT4Ece2hJCqCkqlSrCAtXWTXE8dMvZgJ-3Mjn_gD_sleJiyKIt6YVv2Oefec8_L4sgHj0XxmpKaEtq-G-txcwM1I4zWhNWE0GfFCWO0qYhS_CjfiRYVlVIfF2cpjSQvSZjS4kVxzBvZCtbqk0J_jc7P0LnJzbv7X7_Pyx-4K11KC5bOl7id45Jc8FUHCYeyc2GzJzi_elU8tzAlPHs4T4vvnz5-u_hcXX-5vLo4v656wdlccUrathUaKLK-4ZRzsFwrCTw31AjZqoZgA6LlwAfZEcuY7ugwUIQMzttpcXXQHQKMJldfQ9yZAM78fQhxZSDOrp_QQKeIlmKwncJGaKIBVQPUWkssbVFlrQ8Hrc3SrXHo0c8Rpkeij3-8uzGrcGuUkExSlgXeHgTuwFvwKzOGJfps3-zu7HbbGdwHQkS2lrFvHorF8HPBNJu1Sz1OE3gMSzJMaNkoJRueoeoA7WNIKaI1vZthznPPXbjJUGL2oZvR7EM3-xqGMJNDz1T2H_WfmydJ7w8kzMHdOowm9Q59j4OL2M95su4p-h-_YcZZ
CitedBy_id crossref_primary_10_1088_1758_5090_ad8966
crossref_primary_10_1016_j_ijbiomac_2024_131958
crossref_primary_10_1002_adhm_202400496
crossref_primary_10_1002_admt_202400620
crossref_primary_10_1016_j_ijmecsci_2024_109636
crossref_primary_10_1038_s41598_023_40680_x
crossref_primary_10_3390_jfb13020040
crossref_primary_10_1016_j_carbpol_2022_120267
crossref_primary_10_1007_s10853_024_10021_y
crossref_primary_10_1016_j_ijbiomac_2024_131281
crossref_primary_10_3390_app132212158
crossref_primary_10_1016_j_heliyon_2024_e24593
crossref_primary_10_1108_RPJ_06_2024_0275
crossref_primary_10_1039_D4BM01192A
crossref_primary_10_1186_s42825_023_00129_3
crossref_primary_10_1186_s40824_022_00299_x
crossref_primary_10_1557_s43578_023_01078_7
crossref_primary_10_3390_polym17010121
crossref_primary_10_1016_j_ijbiomac_2023_125201
crossref_primary_10_1177_08853282221101148
crossref_primary_10_1016_j_ijbiomac_2024_130732
crossref_primary_10_3390_ma14123287
crossref_primary_10_1007_s13770_023_00545_w
crossref_primary_10_1021_acs_biomac_3c00279
crossref_primary_10_1016_j_bprint_2021_e00172
crossref_primary_10_1016_j_ijbiomac_2022_12_227
crossref_primary_10_1021_acsomega_3c08112
crossref_primary_10_3389_fbioe_2023_1161804
crossref_primary_10_3390_jfb13040214
crossref_primary_10_1080_09205063_2022_2145867
crossref_primary_10_3390_mi15040490
crossref_primary_10_1021_acsapm_2c02171
crossref_primary_10_3390_jfb14060313
crossref_primary_10_1016_j_carbpol_2022_119716
crossref_primary_10_1016_j_bioadv_2024_214145
crossref_primary_10_1007_s42242_024_00281_7
crossref_primary_10_3390_ma18061220
crossref_primary_10_3390_nano14090749
crossref_primary_10_1016_j_actbio_2025_01_006
crossref_primary_10_1093_burnst_tkae053
crossref_primary_10_1002_advs_202406569
crossref_primary_10_1080_17425247_2024_2336492
crossref_primary_10_1088_1758_5090_ad0b3f
crossref_primary_10_1186_s13287_024_03989_6
crossref_primary_10_3390_gels10030187
crossref_primary_10_1016_j_bprint_2022_e00241
crossref_primary_10_1016_j_ijpharm_2023_123313
crossref_primary_10_3389_fmats_2023_1239692
crossref_primary_10_3389_fmats_2024_1501505
crossref_primary_10_3390_bioengineering10121358
crossref_primary_10_1016_j_ijbiomac_2023_123348
crossref_primary_10_1021_acsbiomaterials_2c00998
crossref_primary_10_1002_adem_202301074
crossref_primary_10_1007_s10544_024_00713_2
crossref_primary_10_3390_gels11010051
crossref_primary_10_1038_s41598_024_64039_y
crossref_primary_10_1016_j_ijbiomac_2022_09_027
crossref_primary_10_1021_acsomega_3c08930
crossref_primary_10_1016_j_amf_2025_200210
crossref_primary_10_1016_j_jmbbm_2024_106499
crossref_primary_10_1039_D3LP00077J
crossref_primary_10_1557_s43577_024_00755_0
crossref_primary_10_1016_j_bprint_2023_e00274
crossref_primary_10_1016_j_addr_2021_113923
crossref_primary_10_1016_j_carbpol_2023_120897
crossref_primary_10_1016_j_ijpharm_2022_121506
crossref_primary_10_1016_j_jeurceramsoc_2022_12_008
crossref_primary_10_3390_nano14090760
crossref_primary_10_3390_polym15153223
crossref_primary_10_3390_jfb13040240
crossref_primary_10_1016_j_bioadv_2023_213414
crossref_primary_10_3390_bioengineering10040457
crossref_primary_10_3390_polym14245432
crossref_primary_10_1016_j_ijbiomac_2023_123450
crossref_primary_10_3390_jfb15090251
crossref_primary_10_1038_s41598_024_73383_y
crossref_primary_10_1016_j_carpta_2025_100752
crossref_primary_10_1016_j_eurpolymj_2022_111332
crossref_primary_10_1016_j_bprint_2023_e00260
crossref_primary_10_1039_D4SM01197J
crossref_primary_10_1016_j_bprint_2024_e00382
crossref_primary_10_3390_polym14091844
crossref_primary_10_1016_j_mtsust_2023_100445
crossref_primary_10_1016_j_bioactmat_2023_06_006
crossref_primary_10_2147_IJN_S435845
crossref_primary_10_1021_acsaelm_3c00075
crossref_primary_10_3390_jfb16010028
crossref_primary_10_1080_10739149_2024_2390907
crossref_primary_10_1016_j_bioadv_2024_213828
crossref_primary_10_1088_1748_605X_ada241
crossref_primary_10_3390_molecules28062766
crossref_primary_10_1016_j_ijbiomac_2023_128595
crossref_primary_10_1021_acspolymersau_4c00028
crossref_primary_10_1016_j_addma_2022_102997
crossref_primary_10_1016_j_matdes_2023_111708
crossref_primary_10_1088_1758_5090_ac6b58
crossref_primary_10_3390_cells13191638
crossref_primary_10_3390_gels9030195
crossref_primary_10_1016_j_heliyon_2024_e25873
crossref_primary_10_1063_5_0227692
crossref_primary_10_1002_smsc_202400097
crossref_primary_10_1016_j_jmapro_2024_09_094
crossref_primary_10_3390_polym14163415
crossref_primary_10_1016_j_ceramint_2023_07_016
crossref_primary_10_1002_advs_202202638
crossref_primary_10_1016_j_reactfunctpolym_2024_106136
crossref_primary_10_3390_biomedicines10061233
crossref_primary_10_1016_j_mfglet_2023_08_009
crossref_primary_10_1002_adfm_202214372
crossref_primary_10_1016_j_bioactmat_2023_01_018
crossref_primary_10_1108_RPJ_06_2023_0207
crossref_primary_10_3390_membranes13090802
crossref_primary_10_3390_polym13224028
crossref_primary_10_1039_D4BM01304B
crossref_primary_10_1109_LRA_2024_3349972
crossref_primary_10_1038_s41467_021_23776_8
crossref_primary_10_1016_j_bioadv_2025_214188
crossref_primary_10_3390_jfb15060141
crossref_primary_10_3390_app14146110
crossref_primary_10_3390_ijms23105618
crossref_primary_10_1021_acs_biomac_4c00578
crossref_primary_10_1093_rb_rbad067
crossref_primary_10_1016_j_ijbiomac_2022_01_201
crossref_primary_10_1107_S1600577523000772
crossref_primary_10_1016_j_ijbiomac_2023_126194
crossref_primary_10_1016_j_cej_2024_152703
crossref_primary_10_1016_j_carbpol_2022_119964
crossref_primary_10_1002_adhm_202400643
crossref_primary_10_3389_fbioe_2022_824156
crossref_primary_10_1088_2631_7990_ad88e3
crossref_primary_10_1016_j_ijbiomac_2022_02_191
crossref_primary_10_1016_j_ohx_2023_e00430
crossref_primary_10_1021_acsapm_4c04117
crossref_primary_10_1016_j_jfoodeng_2024_112150
crossref_primary_10_1177_09506608241303436
crossref_primary_10_1016_j_ajps_2023_100812
crossref_primary_10_1007_s13346_024_01596_9
crossref_primary_10_1088_1758_5090_acb573
crossref_primary_10_3390_coatings14101324
crossref_primary_10_1088_1758_5090_acd872
crossref_primary_10_1007_s40964_021_00188_0
crossref_primary_10_1016_j_bioactmat_2025_01_033
Cites_doi 10.1039/C5RA04308E
10.1002/adhm.201801181
10.1002/adma.200902589
10.1007/s10856-010-4173-7
10.1107/S1600577516002344
10.1161/CIRCULATIONAHA.105.001065
10.1021/acsbiomaterials.8b00691
10.1017/S1740925X09990226
10.1088/1758-5090/8/2/025020
10.1021/acsbiomaterials.6b00149
10.1016/j.msec.2016.10.069
10.1016/S0140-6736(08)61598-6
10.1088/1758-5090/ab6f0d
10.1002/jbm.a.34326
10.1088/1758-5082/4/3/035005
10.1038/nbt.3413
10.1016/j.actbio.2019.05.032
10.1016/S0140-6736(06)68438-9
10.1007/s10856-015-5531-2
10.1016/j.cad.2005.08.001
10.1108/13552541211193502
10.1016/j.ijpharm.2019.04.026
10.1016/j.pmatsci.2015.05.001
10.1089/ten.tec.2008.0302
10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
10.1038/srep13427
10.1088/1758-5090/aacdc7
10.1080/00914037.2016.1201830
10.3390/app8091422
10.1002/biot.200600044
10.1038/srep29977
10.1021/acs.biomac.5b00188
10.1016/j.biomaterials.2009.05.050
10.3390/microarrays4020133
10.1007/s10965-018-1455-0
10.1088/1758-5090/8/3/035020
10.1016/j.msec.2017.05.144
10.1016/j.jmbbm.2018.01.034
10.1016/j.jmbbm.2019.06.014
10.1016/j.cclet.2018.06.008
10.1021/bm3011352
10.1021/acsbiomaterials.6b00140
10.1088/1758-5090/8/1/015016
10.1088/1758-5090/7/4/045012
10.1007/s00586-008-0745-3
10.3390/jfb3040799
10.1021/am401677z
10.1088/1758-5090/aac872
10.1007/s42242-018-0009-y
10.1016/j.bprint.2019.e00057
10.1016/j.actbio.2013.12.005
10.1016/j.jmapro.2017.08.008
10.1089/ten.tea.2013.0198
10.1002/adhm.201600435
10.1021/la104254a
10.1002/adma.201301036
10.1007/s10439-016-1610-x
10.1016/j.bprint.2019.e00045
10.1100/tsw.2006.202
10.1088/1758-5082/3/3/034112
10.1021/la048228d
10.1039/c3bm00012e
10.3390/app10010292
10.1063/1.5059393
10.1016/j.jmbbm.2019.02.014
10.1088/1758-5082/5/3/035001
10.1016/j.biotechadv.2016.12.006
10.1016/j.jmst.2016.01.007
10.1016/j.jmbbm.2017.11.037
10.1016/j.proeng.2013.05.109
10.1021/am403966x
10.1088/1758-5082/6/2/024105
10.1016/j.biomaterials.2005.07.023
10.1208/s12249-012-9824-1
10.1115/1.4039683
10.3390/app8030403
10.1088/1758-5082/3/3/034106
10.1016/j.cherd.2016.02.004
10.1109/TEPM.2006.874964
10.1161/CIRCULATIONAHA.105.000273
10.1039/C8TC06485G
10.1021/acs.chemrev.0c00084
10.1016/j.carbpol.2019.05.026
10.1002/marc.201200524
10.1002/adhm.201801102
10.3390/ma11030454
10.1016/j.biomaterials.2007.04.021
10.1016/j.jclepro.2019.05.082
10.18063/IJB.2016.02.007
10.1089/ten.tea.2011.0097
10.1016/j.actbio.2010.11.003
10.1002/admi.201900572
10.1016/S1389-1723(03)80129-9
10.1016/S0142-9612(03)00043-7
10.1088/1758-5082/5/4/045004
10.1016/j.actbio.2013.10.016
10.1002/adhm.201700264
10.18063/IJB.2015.01.003
10.1021/acsbiomaterials.9b00047
10.1016/j.actbio.2014.06.034
10.1021/acsbiomaterials.9b00167
10.1080/09205063.2018.1433420
ContentType Journal Article
Copyright 2021 Xi'an Jiaotong University
2021 Xi'an Jiaotong University. Production and hosting by Elsevier B.V.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
2021 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. 2021 Xi'an Jiaotong University
Copyright_xml – notice: 2021 Xi'an Jiaotong University
– notice: 2021 Xi'an Jiaotong University. Production and hosting by Elsevier B.V.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
– notice: 2021 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. 2021 Xi'an Jiaotong University
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
2B.
4A8
92I
93N
PSX
TCJ
5PM
DOA
DOI 10.1016/j.jpha.2021.02.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2214-0883
EndPage 579
ExternalDocumentID oai_doaj_org_article_ab80975dfb8e45909ae84a1fff0f16e8
PMC8572712
ywfxxb_e202105004
10_1016_j_jpha_2021_02_001
S2095177921000162
GrantInformation_xml – fundername: The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada
  funderid: (NSERC:Grant No::RGPIN-2014-05648)
GroupedDBID ---
--K
-05
-0E
-SE
-S~
0R~
0SF
2B.
2C~
4.4
457
53G
5VR
5VS
6I.
7.U
8FE
8FH
92F
92I
92M
93N
93R
9D9
9DE
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABKZE
ABMAC
ABUWG
ACGFS
ACPRK
ADBBV
ADEZE
AEXQZ
AFKRA
AFTJW
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BBNVY
BENPR
BHPHI
BPHCQ
BVBZV
CAJEE
CAJUS
CCEZO
CCPQU
CHBEP
CIEJG
DIK
EBS
EJD
FA0
FDB
GROUPED_DOAJ
HCIFZ
HYE
HZ~
IPNFZ
IXB
JUIAU
KQ8
LK8
M41
M7P
NCXOZ
O-L
O9-
OK1
PQQKQ
Q--
Q-4
R-E
RIG
ROL
RPM
RT5
SSZ
T8U
TCJ
TGQ
U1F
U1G
U5E
U5O
WFFXF
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
PHGZM
PHGZT
7X8
PQGLB
PUEGO
4A8
PMFND
PSX
5PM
ID FETCH-LOGICAL-c532t-31066659a1e2c43133af3987a30004576840e4a563a3d7b0f229b1dd1ea313ea3
IEDL.DBID IXB
ISSN 2095-1779
2214-0883
IngestDate Wed Aug 27 01:34:38 EDT 2025
Thu Aug 21 13:40:03 EDT 2025
Thu May 29 04:12:21 EDT 2025
Thu Sep 04 23:35:15 EDT 2025
Tue Jul 01 04:32:18 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Fri Feb 23 02:42:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Printability
Extrusion
3D bioprinting
Bioink
Tissue engineering
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-31066659a1e2c43133af3987a30004576840e4a563a3d7b0f229b1dd1ea313ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4716-549X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2095177921000162
PMID 34765269
PQID 2597488743
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_ab80975dfb8e45909ae84a1fff0f16e8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8572712
wanfang_journals_ywfxxb_e202105004
proquest_miscellaneous_2597488743
crossref_citationtrail_10_1016_j_jpha_2021_02_001
crossref_primary_10_1016_j_jpha_2021_02_001
elsevier_sciencedirect_doi_10_1016_j_jpha_2021_02_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of pharmaceutical analysis
PublicationTitle_FL Journal of Pharmaceutical Analysis
PublicationYear 2021
Publisher Elsevier B.V
Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada%Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada
Department of Mechanical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada
Xi'an Jiaotong University
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada%Division of Biomedical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada
– name: Department of Mechanical Engineering,College of Engineering,University of Saskatchewan,Saskatoon,SK,S7N 5A9,Canada
– name: Xi'an Jiaotong University
– name: Elsevier
References Fleming, Walker, Branyan (bib38) 2017
Habib, Sathish, Mallik (bib29) 2018; 11
Jia, Richards, Pollard (bib92) 2014; 10
Hockaday, Kang, Colangelo (bib101) 2012; 4
Li, Clark, Church (bib104) 2007
Vafaei, Wen, Borca-Tasciuc (bib77) 2011; 27
Teo, Stuart, Devaraj (bib62) 2019; 7
Cebotari, Lichtenberg, Tudorache, Batrinac (bib10) 2006; 114
Domingos, Intranuovo, Russo (bib18) 2013; 5
Langer (bib4) 2009; 21
You, Wu, Chen (bib58) 2016; 66
Bertassoni, Cardoso, Manoharan (bib46) 2014; 6
Khoda, Ozbolat, Koc (bib32) 2011; 3
Teo, He, Ramakrishna (bib14) 2006; 1
Habib, Khoda (bib30) 2017; 29
Duan, Kapetanovic, Hockaday (bib93) 2014; 10
Sun, Wei, Ahn (bib98) 2013; 25
Andersen, Auk-Emblem, Dornish (bib52) 2015; 4
Gao, Park, Kim (bib87) 2018; 7
Snyder, Hamid, Wang (bib37) 2011; 3
Markstedt, Mantas, Tournier (bib94) 2015; 16
Olubamiji, Izadifar, Zhu (bib110) 2016; 23
Naghieh, Sarker, Izadifar (bib11) 2018; 78
Perez, Kim, Kim (bib54) 2013; 20
Udofia, Zhou (bib69) 2019; 141
Li, Tian, Chen (bib106) 2009; 131
Zhang, Jaiswal, Rai (bib40) 2018; 18
Atala, Bauer, Soker (bib6) 2006; 367
Rhiner, Hengartner (bib51) 2006; 6
Cutolo, Neirinck, Lietaert (bib33) 2018; 23
Heidarian, Kouzani, Kaynak (bib57) 2019; 5
Sarker, Naghieh, McInnes (bib107) 2019; 14
Warner, Soman, Zhu (bib39) 2016; 2
Ding, Chang (bib43) 2018; 8
Therriault, White, Lewis (bib31) 2007; 17
Kang, Hockaday, Butcher (bib102) 2013; 5
Ouyang, Yao, Zhao (bib45) 2016; 8
Naghieh, Sarker, Abelseth (bib72) 2019; 93
Yang, Wang, Haider (bib81) 2013; 5
Amani, Arzaghi, Bayandori (bib78) 2019; 6
Tabriz, Hermida, Leslie (bib105) 2015; 7
Moroni, de Wijn, van Blitterswijk (bib28) 2006; 27
Schwab, Levato, D’Este (bib19) 2020; 120
Zhang, Cong, Osi (bib21) 2020; 30
Kucukgul, Ozler, Karakas (bib36) 2013; 59
Wüst, Godla, Müller (bib97) 2014; 10
Loh, Pei, Harrison (bib41) 2018; 23
Houben, van Hoorick, van Erps (bib113) 2017; 45
Lee, Ahn, Kim (bib16) 2010; 21
Zhang, Yang, Li (bib35) 2015; 74
Gleadall, Visscher, Yang (bib15) 2018; 6
Göhl, Markstedt, Mark (bib23) 2018; 10
Jin, Chai, Huang (bib70) 2017; 80
Gleadall, Ashcroft, Segal (bib109) 2018; 21
Chung, Naficy, Yue (bib44) 2013; 1
Olubamiji, Izadifar, Si (bib27) 2016; 8
Hutmacher, Schantz, Zein (bib26) 2001; 55
Ariful Islam Sarker, Izadifar, Schreyer (bib85) 2018; 29
Chen, Ke (bib66) 2006; 29
Cader, Rance, Alexander (bib63) 2019; 564
Trachtenberg, Mountziaris, Miller (bib79) 2014; 102
Gillispie, Prim, Copus (bib20) 2020; 12
Matsumura, Hibino, Ikada (bib7) 2003; 24
Naghieh (bib12) 2020
V Murphy, Skardal, Atala (bib91) 2013; 101
Lim, Schon, Mekhileri (bib95) 2016; 2
Park, Lee, Chung (bib48) 2017; 71
Matyash, Despang, Mandal (bib115) 2012; 18
Hospodiuk, Dey, Sosnoski (bib119) 2017; 35
bib74
Naghieh, Karamooz-Ravari, Sarker (bib73) 2018; 80
de Maria, de Acutis, Vozzi (bib112) 2015
Frischknecht, Seidenbecher (bib50) 2008; 4
Vafaei, Tuck, Ashcroft (bib71) 2016; 109
Govindharaj, Roopavath, Rath (bib61) 2019; 230
Ahn, Walker, Slimmer (bib100) 2011; 58
Gratson, Lewis (bib103) 2005; 21
Kyle, Jessop, Al-Sabah (bib65) 2017; 6
Naghieh, Sarker, Karamooz-Ravari (bib75) 2018; 8
Whyte, Rajkhowa, Allardyce (bib88) 2019; 16
Lee, Ahn, Bonassar (bib82) 2013; 34
Ruiz-Cantu, Gleadall, Faris (bib25) 2016; 8
Zhang, Li, Zhu (bib64) 2019; 30
Soltan, Ning, Mohabatpour (bib108) 2019; 5
Purcell, Singh, Kipke (bib114) 2009; 15
Lee, Yeong (bib42) 2016; 5
Chen, Zhang, Yang (bib68) 2013; 5
Domingos, Chiellini, Gloria (bib49) 2012; 18
Bohari, Hukins, Grover (bib55) 2011; 21
Li, Liu, Lin (bib96) 2016; 2
Liu, Carter, Renes (bib86) 2019; 8
Piqué, Chrisey (bib99) 2002
Gao, Kim, Jang (bib3) 2019; 5
Jiang, Munguia-Lopez, Flores-Torres (bib56) 2019; 6
Aljohani, Ullah, Li (bib67) 2018; 25
Olubamiji, Izadifar, Zhu (bib111) 2016; 23
Cernencu, Lungu, Stancu (bib89) 2019; 220
Luo, Lode, Akkineni (bib116) 2015; 5
Boucard, Viton, Agay (bib8) 2007; 28
Izadifar, Chen, Kulyk (bib34) 2012; 3
Kim, Lee, Jung (bib90) 2019; 98
Kang, Lee, Ko (bib1) 2016; 34
Pan, Song, Cao (bib60) 2016; 32
Banerjee, Arha, Choudhary (bib84) 2009; 30
Sekine, Shimizu, Yang (bib5) 2006; 114
Naghieh, Sarker, Sharma (bib24) 2020; 10
Tan, Yeong (bib121) 2015; 1
Chan, Leong (bib118) 2008; 17
Gao, Gillispie, Copus (bib47) 2018; 10
He, Yang, Zhao (bib22) 2016; 6
Ito, Mase, Takizawa (bib59) 2003; 95
Ahn, Lee, Lee (bib53) 2015; 5
Macchiarini, Jungebluth, Go (bib9) 2008; 372
Starly, Lau, Bradbury (bib2) 2006; 38
Sobral, Caridade, Sousa (bib17) 2011; 7
Xu, Dai, Hong (bib120) 2019; 95
Tripathi, Mishra (bib80) 2012; 13
Boccardi, V Belova, Murch (bib13) 2015; 26
Ahn, Lee, Bonassar (bib83) 2012; 13
Jin, Zhao, Huang (bib76) 2018; 1
Ruiz-Cantu (10.1016/j.jpha.2021.02.001_bib25) 2016; 8
Fleming (10.1016/j.jpha.2021.02.001_bib38) 2017
Chen (10.1016/j.jpha.2021.02.001_bib68) 2013; 5
Govindharaj (10.1016/j.jpha.2021.02.001_bib61) 2019; 230
Olubamiji (10.1016/j.jpha.2021.02.001_bib27) 2016; 8
Park (10.1016/j.jpha.2021.02.001_bib48) 2017; 71
Li (10.1016/j.jpha.2021.02.001_bib104) 2007
Moroni (10.1016/j.jpha.2021.02.001_bib28) 2006; 27
Kyle (10.1016/j.jpha.2021.02.001_bib65) 2017; 6
Chan (10.1016/j.jpha.2021.02.001_bib118) 2008; 17
Gratson (10.1016/j.jpha.2021.02.001_bib103) 2005; 21
Naghieh (10.1016/j.jpha.2021.02.001_bib11) 2018; 78
Ito (10.1016/j.jpha.2021.02.001_bib59) 2003; 95
Trachtenberg (10.1016/j.jpha.2021.02.001_bib79) 2014; 102
Hutmacher (10.1016/j.jpha.2021.02.001_bib26) 2001; 55
Langer (10.1016/j.jpha.2021.02.001_bib4) 2009; 21
Loh (10.1016/j.jpha.2021.02.001_bib41) 2018; 23
Gleadall (10.1016/j.jpha.2021.02.001_bib109) 2018; 21
Naghieh (10.1016/j.jpha.2021.02.001_bib12) 2020
Andersen (10.1016/j.jpha.2021.02.001_bib52) 2015; 4
Jin (10.1016/j.jpha.2021.02.001_bib76) 2018; 1
Warner (10.1016/j.jpha.2021.02.001_bib39) 2016; 2
Gleadall (10.1016/j.jpha.2021.02.001_bib15) 2018; 6
Lim (10.1016/j.jpha.2021.02.001_bib95) 2016; 2
Sobral (10.1016/j.jpha.2021.02.001_bib17) 2011; 7
Jiang (10.1016/j.jpha.2021.02.001_bib56) 2019; 6
Pan (10.1016/j.jpha.2021.02.001_bib60) 2016; 32
Zhang (10.1016/j.jpha.2021.02.001_bib64) 2019; 30
Sun (10.1016/j.jpha.2021.02.001_bib98) 2013; 25
Hockaday (10.1016/j.jpha.2021.02.001_bib101) 2012; 4
Purcell (10.1016/j.jpha.2021.02.001_bib114) 2009; 15
Matyash (10.1016/j.jpha.2021.02.001_bib115) 2012; 18
Kucukgul (10.1016/j.jpha.2021.02.001_bib36) 2013; 59
Naghieh (10.1016/j.jpha.2021.02.001_bib73) 2018; 80
Matsumura (10.1016/j.jpha.2021.02.001_bib7) 2003; 24
Heidarian (10.1016/j.jpha.2021.02.001_bib57) 2019; 5
Ding (10.1016/j.jpha.2021.02.001_bib43) 2018; 8
Olubamiji (10.1016/j.jpha.2021.02.001_bib110) 2016; 23
Ariful Islam Sarker (10.1016/j.jpha.2021.02.001_bib85) 2018; 29
V Murphy (10.1016/j.jpha.2021.02.001_bib91) 2013; 101
He (10.1016/j.jpha.2021.02.001_bib22) 2016; 6
Izadifar (10.1016/j.jpha.2021.02.001_bib34) 2012; 3
Ahn (10.1016/j.jpha.2021.02.001_bib83) 2012; 13
Vafaei (10.1016/j.jpha.2021.02.001_bib77) 2011; 27
Teo (10.1016/j.jpha.2021.02.001_bib14) 2006; 1
Lee (10.1016/j.jpha.2021.02.001_bib16) 2010; 21
Teo (10.1016/j.jpha.2021.02.001_bib62) 2019; 7
Whyte (10.1016/j.jpha.2021.02.001_bib88) 2019; 16
You (10.1016/j.jpha.2021.02.001_bib58) 2016; 66
Zhang (10.1016/j.jpha.2021.02.001_bib35) 2015; 74
Khoda (10.1016/j.jpha.2021.02.001_bib32) 2011; 3
Bohari (10.1016/j.jpha.2021.02.001_bib55) 2011; 21
Soltan (10.1016/j.jpha.2021.02.001_bib108) 2019; 5
Lee (10.1016/j.jpha.2021.02.001_bib42) 2016; 5
Tripathi (10.1016/j.jpha.2021.02.001_bib80) 2012; 13
Vafaei (10.1016/j.jpha.2021.02.001_bib71) 2016; 109
Li (10.1016/j.jpha.2021.02.001_bib96) 2016; 2
Göhl (10.1016/j.jpha.2021.02.001_bib23) 2018; 10
Naghieh (10.1016/j.jpha.2021.02.001_bib72) 2019; 93
Gillispie (10.1016/j.jpha.2021.02.001_bib20) 2020; 12
Wüst (10.1016/j.jpha.2021.02.001_bib97) 2014; 10
Amani (10.1016/j.jpha.2021.02.001_bib78) 2019; 6
Frischknecht (10.1016/j.jpha.2021.02.001_bib50) 2008; 4
Boccardi (10.1016/j.jpha.2021.02.001_bib13) 2015; 26
Cutolo (10.1016/j.jpha.2021.02.001_bib33) 2018; 23
Sarker (10.1016/j.jpha.2021.02.001_bib107) 2019; 14
Tabriz (10.1016/j.jpha.2021.02.001_bib105) 2015; 7
Houben (10.1016/j.jpha.2021.02.001_bib113) 2017; 45
Domingos (10.1016/j.jpha.2021.02.001_bib49) 2012; 18
Gao (10.1016/j.jpha.2021.02.001_bib3) 2019; 5
de Maria (10.1016/j.jpha.2021.02.001_bib112) 2015
Gao (10.1016/j.jpha.2021.02.001_bib87) 2018; 7
Atala (10.1016/j.jpha.2021.02.001_bib6) 2006; 367
Cader (10.1016/j.jpha.2021.02.001_bib63) 2019; 564
Lee (10.1016/j.jpha.2021.02.001_bib82) 2013; 34
Xu (10.1016/j.jpha.2021.02.001_bib120) 2019; 95
Yang (10.1016/j.jpha.2021.02.001_bib81) 2013; 5
Therriault (10.1016/j.jpha.2021.02.001_bib31) 2007; 17
Zhang (10.1016/j.jpha.2021.02.001_bib40) 2018; 18
Ahn (10.1016/j.jpha.2021.02.001_bib53) 2015; 5
Olubamiji (10.1016/j.jpha.2021.02.001_bib111) 2016; 23
Tan (10.1016/j.jpha.2021.02.001_bib121) 2015; 1
Snyder (10.1016/j.jpha.2021.02.001_bib37) 2011; 3
Naghieh (10.1016/j.jpha.2021.02.001_bib75) 2018; 8
Ahn (10.1016/j.jpha.2021.02.001_bib100) 2011; 58
Cernencu (10.1016/j.jpha.2021.02.001_bib89) 2019; 220
Starly (10.1016/j.jpha.2021.02.001_bib2) 2006; 38
Bertassoni (10.1016/j.jpha.2021.02.001_bib46) 2014; 6
Kim (10.1016/j.jpha.2021.02.001_bib90) 2019; 98
Luo (10.1016/j.jpha.2021.02.001_bib116) 2015; 5
Hospodiuk (10.1016/j.jpha.2021.02.001_bib119) 2017; 35
Jin (10.1016/j.jpha.2021.02.001_bib70) 2017; 80
Gao (10.1016/j.jpha.2021.02.001_bib47) 2018; 10
Rhiner (10.1016/j.jpha.2021.02.001_bib51) 2006; 6
Sekine (10.1016/j.jpha.2021.02.001_bib5) 2006; 114
Boucard (10.1016/j.jpha.2021.02.001_bib8) 2007; 28
Zhang (10.1016/j.jpha.2021.02.001_bib21) 2020; 30
Perez (10.1016/j.jpha.2021.02.001_bib54) 2013; 20
Habib (10.1016/j.jpha.2021.02.001_bib29) 2018; 11
Ouyang (10.1016/j.jpha.2021.02.001_bib45) 2016; 8
Schwab (10.1016/j.jpha.2021.02.001_bib19) 2020; 120
Kang (10.1016/j.jpha.2021.02.001_bib102) 2013; 5
Piqué (10.1016/j.jpha.2021.02.001_bib99) 2002
Macchiarini (10.1016/j.jpha.2021.02.001_bib9) 2008; 372
Habib (10.1016/j.jpha.2021.02.001_bib30) 2017; 29
Markstedt (10.1016/j.jpha.2021.02.001_bib94) 2015; 16
Domingos (10.1016/j.jpha.2021.02.001_bib18) 2013; 5
Duan (10.1016/j.jpha.2021.02.001_bib93) 2014; 10
Udofia (10.1016/j.jpha.2021.02.001_bib69) 2019; 141
Banerjee (10.1016/j.jpha.2021.02.001_bib84) 2009; 30
Liu (10.1016/j.jpha.2021.02.001_bib86) 2019; 8
Jia (10.1016/j.jpha.2021.02.001_bib92) 2014; 10
Cebotari (10.1016/j.jpha.2021.02.001_bib10) 2006; 114
Aljohani (10.1016/j.jpha.2021.02.001_bib67) 2018; 25
Chen (10.1016/j.jpha.2021.02.001_bib66) 2006; 29
Chung (10.1016/j.jpha.2021.02.001_bib44) 2013; 1
Kang (10.1016/j.jpha.2021.02.001_bib1) 2016; 34
Li (10.1016/j.jpha.2021.02.001_bib106) 2009; 131
Naghieh (10.1016/j.jpha.2021.02.001_bib24) 2020; 10
References_xml – volume: 220
  start-page: 12
  year: 2019
  end-page: 21
  ident: bib89
  article-title: Bioinspired 3D printable pectin-nanocellulose ink formulations
  publication-title: Carbohydr. Polym.
– volume: 4
  start-page: 133
  year: 2015
  end-page: 161
  ident: bib52
  article-title: 3D cell culture in alginate hydrogels
  publication-title: Microarrays (Basel)
– volume: 141
  start-page: 50801
  year: 2019
  ident: bib69
  article-title: A guiding framework for microextrusion additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
– volume: 13
  start-page: 2997
  year: 2012
  end-page: 3003
  ident: bib83
  article-title: Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying
  publication-title: Biomacromolecules
– volume: 1
  start-page: 918
  year: 2006
  end-page: 929
  ident: bib14
  article-title: Electrospun scaffold tailored for tissue specific extracellular matrix
  publication-title: Biotechnol. J.
– volume: 23
  start-page: 802
  year: 2016
  end-page: 812
  ident: bib110
  article-title: Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering
  publication-title: J. Synchrotron Radiat.
– volume: 5
  start-page: 2856
  year: 2016
  end-page: 2865
  ident: bib42
  article-title: Design and printing strategies in 3D bioprinting of cell-hydrogels: a review
  publication-title: Adv. Healthc. Mater.
– volume: 80
  start-page: 111
  year: 2018
  end-page: 118
  ident: bib73
  article-title: Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: experimental and numerical approaches
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 18
  start-page: 56
  year: 2012
  end-page: 67
  ident: bib49
  article-title: Effect of process parameters on the morphological and mechanical properties of 3D bioextruded poly (ε-caprolactone) scaffolds
  publication-title: Rapid Prototyp. J.
– volume: 59
  start-page: 183
  year: 2013
  end-page: 192
  ident: bib36
  article-title: 3D hybrid bioprinting of macrovascular structures
  publication-title: Procedia Eng.
– volume: 10
  start-page: 4323
  year: 2014
  end-page: 4331
  ident: bib92
  article-title: Engineering alginate as bioink for bioprinting
  publication-title: Acta Biomater.
– volume: 8
  start-page: 1801181
  year: 2019
  ident: bib86
  article-title: Development of a coaxial 3D printing platform for biofabrication of implantable islet-containing constructs
  publication-title: Adv. Healthc. Mater.
– volume: 8
  start-page: 1422
  year: 2018
  ident: bib75
  article-title: Modeling of the mechanical behavior of 3D bioplotted scaffolds considering the penetration in interlocked strands
  publication-title: Appl. Sci.
– volume: 16
  start-page: 1489
  year: 2015
  end-page: 1496
  ident: bib94
  article-title: 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications
  publication-title: Biomacromolecules
– volume: 372
  start-page: 2023
  year: 2008
  end-page: 2030
  ident: bib9
  article-title: Clinical transplantation of a tissue-engineered airway
  publication-title: Lancet
– volume: 2
  start-page: 1752
  year: 2016
  end-page: 1762
  ident: bib95
  article-title: New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks
  publication-title: ACS Biomater. Sci. Eng.
– ident: bib74
  article-title: Database of Pixabay
– volume: 7
  year: 2015
  ident: bib105
  article-title: Three-dimensional bioprinting of complex cell laden alginate hydrogel structures
  publication-title: Biofabrication
– volume: 6
  start-page: 1024
  year: 2006
  end-page: 1036
  ident: bib51
  article-title: Sugar antennae for guidance signals: syndecans and glypicans integrate directional cues for navigating neurons
  publication-title: Sci. World J.
– volume: 101
  start-page: 272
  year: 2013
  end-page: 284
  ident: bib91
  article-title: Evaluation of hydrogels for bio-printing applications
  publication-title: J. Biomed. Mater. Res. A
– volume: 17
  start-page: 467
  year: 2008
  end-page: 479
  ident: bib118
  article-title: Scaffolding in tissue engineering: general approaches and tissue-specific considerations
  publication-title: Eur. Spine J.
– volume: 10
  start-page: 034106
  year: 2018
  ident: bib47
  article-title: Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach
  publication-title: Biofabrication
– volume: 71
  start-page: 678
  year: 2017
  end-page: 684
  ident: bib48
  article-title: Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: characterization and evaluation
  publication-title: Mater. Sc.i Eng. C Mater. Biol. Appl.
– volume: 102
  start-page: 4326
  year: 2014
  end-page: 4335
  ident: bib79
  article-title: Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering
  publication-title: J. Biomed. Mater. Res. A
– volume: 23
  start-page: 802
  year: 2016
  end-page: 812
  ident: bib111
  article-title: Using SR-inline-PCI-CT to visualize 3D-printed hybrid constructs for cartilage tissue engineering
  publication-title: J. Synchrotron Radiat.
– volume: 11
  start-page: 454
  year: 2018
  ident: bib29
  article-title: 3D printability of alginate-carboxymethyl cellulose hydrogel
  publication-title: Materials
– volume: 98
  start-page: 187
  year: 2019
  end-page: 194
  ident: bib90
  article-title: Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 2
  start-page: 163
  year: 2016
  end-page: 175
  ident: bib96
  article-title: Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide
  publication-title: Int. J. Bioprint.
– year: 2002
  ident: bib99
  article-title: Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources
– volume: 3
  start-page: 034106
  year: 2011
  ident: bib32
  article-title: A functionally gradient variational porosity architecture for hollowed scaffolds fabrication
  publication-title: Biofabrication
– volume: 27
  start-page: 2211
  year: 2011
  end-page: 2218
  ident: bib77
  article-title: Nanofluid surface wettability through asymptotic contact angle
  publication-title: Langmuir
– volume: 45
  start-page: 58
  year: 2017
  end-page: 83
  ident: bib113
  article-title: Indirect rapid prototyping: opening up unprecedented opportunities in scaffold design and applications
  publication-title: Ann. Biomed. Eng.
– volume: 114
  start-page: I132
  year: 2006
  end-page: I137
  ident: bib10
  article-title: Clinical application of tissue engineered human heart valves using autologous progenitor cells
  publication-title: Circulation
– volume: 17
  start-page: 10112
  year: 2007
  ident: bib31
  article-title: Rheological behavior of fugitive organic inks for direct-write assembly
  publication-title: Appl. Rheol.
– volume: 14
  year: 2019
  ident: bib107
  article-title: Bio-fabrication of peptide-modified alginate scaffolds: printability, mechanical stability and neurite outgrowth assessments
  publication-title: Bioprinting
– volume: 6
  start-page: 1900572
  year: 2019
  ident: bib78
  article-title: Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques
  publication-title: Adv. Mater. Interfaces
– volume: 120
  start-page: 11028
  year: 2020
  end-page: 11055
  ident: bib19
  article-title: Printability and shape fidelity of bioinks in 3D bioprinting
  publication-title: Chem. Rev.
– volume: 7
  start-page: 1801102
  year: 2018
  ident: bib87
  article-title: Coaxial cell printing of freestanding, perfusable, and functional in vitro vascular models for recapitulation of native vascular endothelium pathophysiology
  publication-title: Adv. Healthc. Mater.
– volume: 21
  start-page: 3235
  year: 2009
  end-page: 3236
  ident: bib4
  article-title: Perspectives and challenges in tissue engineering and regenerative medicine
  publication-title: Adv. Mater.
– volume: 8
  year: 2016
  ident: bib27
  article-title: Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry
  publication-title: Biofabrication
– volume: 367
  start-page: 1241
  year: 2006
  end-page: 1246
  ident: bib6
  article-title: Tissue-engineered autologous bladders for patients needing cystoplasty
  publication-title: Lancet
– volume: 21
  start-page: 3195
  year: 2010
  end-page: 3205
  ident: bib16
  article-title: Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology
  publication-title: J. Mater. Sci. Mater.: Med.
– volume: 18
  start-page: 55
  year: 2012
  end-page: 66
  ident: bib115
  article-title: Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress
  publication-title: Tissue Eng. A
– volume: 5
  start-page: 10418
  year: 2013
  end-page: 10422
  ident: bib81
  article-title: Strengthening alginate/polyacrylamide hydrogels using various multivalent cations
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 153
  year: 2015
  end-page: 164
  ident: bib112
  article-title: Chapter 8 – Indirect Rapid Prototyping for Tissue Engineering
  publication-title: Essentials of 3D Biofabrication Translation
– volume: 7
  start-page: 1009
  year: 2011
  end-page: 1018
  ident: bib17
  article-title: Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency
  publication-title: Acta Biomater.
– volume: 4
  year: 2012
  ident: bib101
  article-title: Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds
  publication-title: Biofabrication
– volume: 8
  start-page: 015016
  year: 2016
  ident: bib25
  article-title: Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing
  publication-title: Biofabrication
– volume: 10
  start-page: 630
  year: 2014
  end-page: 640
  ident: bib97
  article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
  publication-title: Acta Biomater.
– volume: 6
  year: 2018
  ident: bib15
  article-title: Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance, Burn
  publication-title: Trauma
– volume: 16
  year: 2019
  ident: bib88
  article-title: A review on the challenges of 3D printing of organic powders
  publication-title: Bioprinting
– year: 2017
  ident: bib38
  article-title: Toolpath Planning for Continuous Extrusion Additive Manufacturing
– volume: 8
  start-page: 035020
  year: 2016
  ident: bib45
  article-title: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells
  publication-title: Biofabrication
– volume: 5
  start-page: 035001
  year: 2013
  ident: bib102
  article-title: Quantitative optimization of solid freeform deposition of aqueous hydrogels
  publication-title: Biofabrication
– volume: 13
  start-page: 1091
  year: 2012
  end-page: 1102
  ident: bib80
  article-title: Development and evaluation of sodium alginate–polyacrylamide graft–co-polymer-based stomach targeted hydrogels of famotidine
  publication-title: AAPS PharmSciTech
– volume: 25
  start-page: 4539
  year: 2013
  end-page: 4543
  ident: bib98
  article-title: 3D printing of interdigitated Li-Ion microbattery architectures
  publication-title: Adv. Mater.
– year: 2020
  ident: bib12
  article-title: Extrusion Bioprinting of Hydrogel Scaffolds: Printability and Mechanical Behaviour, Dissertation
– volume: 1
  start-page: 763
  year: 2013
  end-page: 773
  ident: bib44
  article-title: Bio-ink properties and printability for extrusion printing living cells
  publication-title: Biomater. Sci.
– volume: 5
  start-page: 2688
  year: 2019
  end-page: 2707
  ident: bib57
  article-title: Dynamic hydrogels and polymers as inks for 3D printing
  publication-title: ACS Biomater. Sci. Eng.
– volume: 1
  start-page: 49
  year: 2015
  end-page: 56
  ident: bib121
  article-title: Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique
  publication-title: Int. J. Bioprint.
– volume: 32
  start-page: 889
  year: 2016
  end-page: 900
  ident: bib60
  article-title: 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties
  publication-title: J. Mater. Sci. Technol.
– volume: 29
  start-page: 332
  year: 2017
  end-page: 342
  ident: bib30
  article-title: Support grain architecture design for additive manufacturing
  publication-title: J. Manuf. Process.
– volume: 5
  start-page: 13427
  year: 2015
  ident: bib53
  article-title: A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures
  publication-title: Sci. Rep.
– volume: 6
  start-page: 1700264
  year: 2017
  ident: bib65
  article-title: ‘Printability’ of candidate biomaterials for extrusion based 3D Printing : state-of-the-art
  publication-title: Adv. Healthc. Mater.
– volume: 66
  start-page: 299
  year: 2016
  end-page: 306
  ident: bib58
  article-title: 3D printing of porous alginate/gelatin hydrogel scaffolds and their mechanical property characterization
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
– volume: 35
  start-page: 217
  year: 2017
  end-page: 239
  ident: bib119
  article-title: The bioink: a comprehensive review on bioprintable materials
  publication-title: Biotechnol. Adv.
– volume: 80
  start-page: 313
  year: 2017
  end-page: 325
  ident: bib70
  article-title: Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 12
  year: 2020
  ident: bib20
  article-title: Assessment methodologies for extrusion-based bioink printability
  publication-title: Biofabrication
– volume: 4
  start-page: 249
  year: 2008
  end-page: 257
  ident: bib50
  article-title: The crosstalk of hyaluronan-based extracellular matrix and synapses
  publication-title: Neuron Glia Biol.
– volume: 109
  start-page: 414
  year: 2016
  end-page: 420
  ident: bib71
  article-title: Surface microstructuring to modify wettability for 3D printing of nano-filled inks
  publication-title: Chem. Eng. Res. Des.
– volume: 26
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib13
  article-title: Oxygen diffusion in marine-derived tissue engineering scaffolds
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 5
  start-page: 6777
  year: 2013
  end-page: 6792
  ident: bib68
  article-title: Bioinspired wetting surface via laser microfabrication
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 4695
  year: 2009
  end-page: 4699
  ident: bib84
  article-title: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells
  publication-title: Biomaterials
– volume: 34
  start-page: 142
  year: 2013
  end-page: 149
  ident: bib82
  article-title: Cell(MC3T3-E1)-Printed Poly(ϵ-caprolactone)/Alginate hybrid scaffolds for tissue regeneration, macromol
  publication-title: Rapid Commun.
– volume: 131
  start-page: 034501
  year: 2009
  ident: bib106
  article-title: Modeling of flow rate, pore size, and porosity for the dispensing-based tissue scaffolds fabrication
  publication-title: J. Manuf. Sci. Eng.
– volume: 34
  start-page: 312
  year: 2016
  end-page: 319
  ident: bib1
  article-title: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
  publication-title: Nat. Biotechnol.
– volume: 3
  start-page: 034112
  year: 2011
  ident: bib37
  article-title: Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip
  publication-title: Biofabrication
– volume: 6
  start-page: 11310
  year: 2019
  ident: bib56
  article-title: Extrusion bioprinting of soft materials: an emerging technique for biological model fabrication
  publication-title: Appl. Phys. Rev.
– volume: 5
  start-page: 43480
  year: 2015
  end-page: 43488
  ident: bib116
  article-title: Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting
  publication-title: RSC Adv.
– volume: 23
  start-page: 498
  year: 2018
  end-page: 504
  ident: bib33
  article-title: Influence of layer thickness and post-process treatments on the fatigue properties of CoCr scaffolds produced by laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 20
  start-page: 103
  year: 2013
  end-page: 114
  ident: bib54
  article-title: Utilizing core–shell fibrous collagen-alginate hydrogel cell delivery system for bone tissue engineering
  publication-title: Tissue Eng. A
– volume: 93
  start-page: 183
  year: 2019
  end-page: 193
  ident: bib72
  article-title: Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications
  publication-title: J. Mech. Behav. Biomed. Mater.
– start-page: 715
  year: 2007
  end-page: 721
  ident: bib104
  article-title: Robust Direct-Write Dispensing Tool and Solutions for Micro/Meso-Scale Manufacturing and Packaging
  publication-title: International Manufacturing Science and Engineering Conference
– volume: 30
  start-page: 505
  year: 2019
  end-page: 508
  ident: bib64
  article-title: Patterning catalyst via inkjet printing to grow single-walled carbon nanotubes
  publication-title: Chin. Chem. Lett.
– volume: 58
  start-page: e3189
  year: 2011
  ident: bib100
  article-title: Planar and three-dimensional printing of conductive inks
  publication-title: J. Vis. Exp.
– volume: 18
  start-page: 41002
  year: 2018
  ident: bib40
  article-title: Additive manufacturing of functionally graded material objects: a review
  publication-title: J. Comput. Inf. Sci. Eng.
– volume: 2
  start-page: 1763
  year: 2016
  end-page: 1770
  ident: bib39
  article-title: Design and 3D printing of hydrogel scaffolds with fractal geometries
  publication-title: ACS Biomater. Sci. Eng.
– volume: 28
  start-page: 3478
  year: 2007
  end-page: 3488
  ident: bib8
  article-title: The use of physical hydrogels of chitosan for skin regeneration following third-degree burns
  publication-title: Biomaterials
– volume: 38
  start-page: 115
  year: 2006
  end-page: 124
  ident: bib2
  article-title: Internal architecture design and freeform fabrication of tissue replacement structures
  publication-title: Comput.-Aided Des.
– volume: 1
  start-page: 123
  year: 2018
  end-page: 134
  ident: bib76
  article-title: Study of extrudability and standoff distance effect during nanoclay-enabled direct printing
  publication-title: Bio-Des. Manuf.
– volume: 29
  start-page: 1126
  year: 2018
  end-page: 1154
  ident: bib85
  article-title: Influence of ionic cross linkers (Ca2+/Ba2+/Zn2+) on the mechanical and biological properties of 3D bioplotted hydrogel scaffolds
  publication-title: J. Biomater. Sci. Polym. Ed.
– volume: 25
  start-page: 62
  year: 2018
  ident: bib67
  article-title: Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system
  publication-title: J. Polym. Res.
– volume: 15
  start-page: 541
  year: 2009
  end-page: 550
  ident: bib114
  article-title: Alginate composition effects on a neural stem cell–seeded scaffold
  publication-title: Tissue Eng. C Methods
– volume: 21
  start-page: 159
  year: 2011
  end-page: 170
  ident: bib55
  article-title: Effect of calcium alginate concentration on viability and proliferation of encapsulated fibroblasts
  publication-title: Biomed. Mater. Eng.
– volume: 10
  start-page: 1836
  year: 2014
  end-page: 1846
  ident: bib93
  article-title: Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
  publication-title: Acta Biomater.
– volume: 114
  start-page: I87
  year: 2006
  end-page: I93
  ident: bib5
  article-title: Pulsatile myocardial tubes fabricated with cell sheet engineering
  publication-title: Circulation
– volume: 78
  start-page: 298
  year: 2018
  end-page: 314
  ident: bib11
  article-title: Dispensing-based bioprinting of mechanically-functional hybrid scaffolds with vessel-like channels for tissue engineering applications – a brief review
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 95
  start-page: 196
  year: 2003
  end-page: 199
  ident: bib59
  article-title: Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering
  publication-title: J. Biosci. Bioeng.
– volume: 24
  start-page: 2303
  year: 2003
  end-page: 2308
  ident: bib7
  article-title: Successful application of tissue engineered vascular autografts: clinical experience
  publication-title: Biomaterials
– volume: 8
  start-page: 403
  year: 2018
  ident: bib43
  article-title: Printability study of bioprinted tubular structures using liquid hydrogel precursors in a support bath
  publication-title: Appl. Sci.
– volume: 5
  start-page: 1150
  year: 2019
  end-page: 1169
  ident: bib3
  article-title: Recent strategies in extrusion-based three-dimensional cell printing toward organ biofabrication
  publication-title: ACS Biomater. Sci. Eng.
– volume: 55
  start-page: 203
  year: 2001
  end-page: 216
  ident: bib26
  article-title: Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling
  publication-title: J. Biomed. Mater. Res.
– volume: 7
  start-page: 2219
  year: 2019
  end-page: 2224
  ident: bib62
  article-title: The in situ synthesis of conductive polyaniline patterns using micro-reactive inkjet printing
  publication-title: J. Mater. Chem. C.
– volume: 6
  year: 2014
  ident: bib46
  article-title: Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels
  publication-title: Biofabrication
– volume: 5
  start-page: 2976
  year: 2019
  end-page: 2987
  ident: bib108
  article-title: Printability and cell viability in bioprinting alginate dialdehyde-gelatin scaffolds
  publication-title: ACS Biomater. Sci. Eng.
– volume: 27
  start-page: 974
  year: 2006
  end-page: 985
  ident: bib28
  article-title: 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties
  publication-title: Biomaterials
– volume: 74
  start-page: 332
  year: 2015
  end-page: 400
  ident: bib35
  article-title: Bioinspired engineering of honeycomb structure–Using nature to inspire human innovation
  publication-title: Prog. Mater. Sci.
– volume: 21
  start-page: 605
  year: 2018
  end-page: 618
  ident: bib109
  article-title: VOLCO: a predictive model for 3D printed microarchitecture
  publication-title: Addit. Manuf.
– volume: 23
  start-page: 34
  year: 2018
  end-page: 44
  ident: bib41
  article-title: An overview of functionally graded additive manufacturing
  publication-title: Addit. Manuf.
– volume: 5
  year: 2013
  ident: bib18
  article-title: The first systematic analysis of 3D rapid prototyped poly (ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability
  publication-title: Biofabrication
– volume: 564
  start-page: 359
  year: 2019
  end-page: 368
  ident: bib63
  article-title: Water-based 3D inkjet printing of an oral pharmaceutical dosage form
  publication-title: Int. J. Pharm.
– volume: 6
  start-page: 29977
  year: 2016
  ident: bib22
  article-title: Research on the printability of hydrogels in 3D bioprinting
  publication-title: Sci. Rep.
– volume: 3
  start-page: 799
  year: 2012
  end-page: 838
  ident: bib34
  article-title: Strategic design and fabrication of engineered scaffolds for articular cartilage repair
  publication-title: J. Funct. Biomater.
– volume: 230
  start-page: 412
  year: 2019
  end-page: 419
  ident: bib61
  article-title: Valorization of discarded Marine Eel fish skin for collagen extraction as a 3D printable blue biomaterial for tissue engineering
  publication-title: J. Clean. Prod.
– volume: 30
  year: 2020
  ident: bib21
  article-title: Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 457
  year: 2005
  end-page: 464
  ident: bib103
  article-title: Phase behavior and rheological properties of polyelectrolyte inks for direct-write assembly
  publication-title: Langmuir
– volume: 10
  start-page: 292
  year: 2020
  ident: bib24
  article-title: Printability of 3D printed hydrogel scaffolds: influence of hydrogel composition and printing parameters
  publication-title: Appl. Sci.
– volume: 10
  start-page: 034105
  year: 2018
  ident: bib23
  article-title: Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks
  publication-title: Biofabrication
– volume: 95
  start-page: 50
  year: 2019
  end-page: 59
  ident: bib120
  article-title: Recent advances in high strength and elastic hydrogels for 3D printing in biomedical applications
  publication-title: Acta Biomater.
– volume: 29
  start-page: 75
  year: 2006
  end-page: 82
  ident: bib66
  article-title: Effects of fluid properties on dispensing processes for electronics packaging
  publication-title: IEEE Trans. Electron. Packag. Manuf.
– volume: 30
  year: 2020
  ident: 10.1016/j.jpha.2021.02.001_bib21
  article-title: Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 43480
  year: 2015
  ident: 10.1016/j.jpha.2021.02.001_bib116
  article-title: Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting
  publication-title: RSC Adv.
  doi: 10.1039/C5RA04308E
– volume: 21
  start-page: 605
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib109
  article-title: VOLCO: a predictive model for 3D printed microarchitecture
  publication-title: Addit. Manuf.
– volume: 8
  start-page: 1801181
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib86
  article-title: Development of a coaxial 3D printing platform for biofabrication of implantable islet-containing constructs
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201801181
– volume: 21
  start-page: 3235
  year: 2009
  ident: 10.1016/j.jpha.2021.02.001_bib4
  article-title: Perspectives and challenges in tissue engineering and regenerative medicine
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902589
– volume: 58
  start-page: e3189
  year: 2011
  ident: 10.1016/j.jpha.2021.02.001_bib100
  article-title: Planar and three-dimensional printing of conductive inks
  publication-title: J. Vis. Exp.
– volume: 21
  start-page: 3195
  year: 2010
  ident: 10.1016/j.jpha.2021.02.001_bib16
  article-title: Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology
  publication-title: J. Mater. Sci. Mater.: Med.
  doi: 10.1007/s10856-010-4173-7
– volume: 23
  start-page: 802
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib111
  article-title: Using SR-inline-PCI-CT to visualize 3D-printed hybrid constructs for cartilage tissue engineering
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577516002344
– volume: 114
  start-page: I132
  year: 2006
  ident: 10.1016/j.jpha.2021.02.001_bib10
  article-title: Clinical application of tissue engineered human heart valves using autologous progenitor cells
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.001065
– volume: 5
  start-page: 1150
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib3
  article-title: Recent strategies in extrusion-based three-dimensional cell printing toward organ biofabrication
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00691
– volume: 4
  start-page: 249
  year: 2008
  ident: 10.1016/j.jpha.2021.02.001_bib50
  article-title: The crosstalk of hyaluronan-based extracellular matrix and synapses
  publication-title: Neuron Glia Biol.
  doi: 10.1017/S1740925X09990226
– volume: 8
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib27
  article-title: Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/2/025020
– volume: 2
  start-page: 1752
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib95
  article-title: New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00149
– volume: 71
  start-page: 678
  year: 2017
  ident: 10.1016/j.jpha.2021.02.001_bib48
  article-title: Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: characterization and evaluation
  publication-title: Mater. Sc.i Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2016.10.069
– volume: 372
  start-page: 2023
  year: 2008
  ident: 10.1016/j.jpha.2021.02.001_bib9
  article-title: Clinical transplantation of a tissue-engineered airway
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)61598-6
– volume: 12
  year: 2020
  ident: 10.1016/j.jpha.2021.02.001_bib20
  article-title: Assessment methodologies for extrusion-based bioink printability
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab6f0d
– volume: 141
  start-page: 50801
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib69
  article-title: A guiding framework for microextrusion additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
– volume: 101
  start-page: 272
  year: 2013
  ident: 10.1016/j.jpha.2021.02.001_bib91
  article-title: Evaluation of hydrogels for bio-printing applications
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.34326
– volume: 4
  year: 2012
  ident: 10.1016/j.jpha.2021.02.001_bib101
  article-title: Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/4/3/035005
– volume: 34
  start-page: 312
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib1
  article-title: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3413
– volume: 95
  start-page: 50
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib120
  article-title: Recent advances in high strength and elastic hydrogels for 3D printing in biomedical applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.05.032
– volume: 367
  start-page: 1241
  year: 2006
  ident: 10.1016/j.jpha.2021.02.001_bib6
  article-title: Tissue-engineered autologous bladders for patients needing cystoplasty
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68438-9
– volume: 26
  start-page: 1
  year: 2015
  ident: 10.1016/j.jpha.2021.02.001_bib13
  article-title: Oxygen diffusion in marine-derived tissue engineering scaffolds
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-015-5531-2
– volume: 38
  start-page: 115
  year: 2006
  ident: 10.1016/j.jpha.2021.02.001_bib2
  article-title: Internal architecture design and freeform fabrication of tissue replacement structures
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2005.08.001
– volume: 18
  start-page: 56
  year: 2012
  ident: 10.1016/j.jpha.2021.02.001_bib49
  article-title: Effect of process parameters on the morphological and mechanical properties of 3D bioextruded poly (ε-caprolactone) scaffolds
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552541211193502
– volume: 564
  start-page: 359
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib63
  article-title: Water-based 3D inkjet printing of an oral pharmaceutical dosage form
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.04.026
– volume: 74
  start-page: 332
  year: 2015
  ident: 10.1016/j.jpha.2021.02.001_bib35
  article-title: Bioinspired engineering of honeycomb structure–Using nature to inspire human innovation
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2015.05.001
– volume: 15
  start-page: 541
  year: 2009
  ident: 10.1016/j.jpha.2021.02.001_bib114
  article-title: Alginate composition effects on a neural stem cell–seeded scaffold
  publication-title: Tissue Eng. C Methods
  doi: 10.1089/ten.tec.2008.0302
– volume: 55
  start-page: 203
  year: 2001
  ident: 10.1016/j.jpha.2021.02.001_bib26
  article-title: Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
– volume: 21
  start-page: 159
  year: 2011
  ident: 10.1016/j.jpha.2021.02.001_bib55
  article-title: Effect of calcium alginate concentration on viability and proliferation of encapsulated fibroblasts
  publication-title: Biomed. Mater. Eng.
– volume: 23
  start-page: 34
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib41
  article-title: An overview of functionally graded additive manufacturing
  publication-title: Addit. Manuf.
– volume: 5
  start-page: 13427
  year: 2015
  ident: 10.1016/j.jpha.2021.02.001_bib53
  article-title: A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures
  publication-title: Sci. Rep.
  doi: 10.1038/srep13427
– volume: 10
  start-page: 034106
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib47
  article-title: Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aacdc7
– volume: 66
  start-page: 299
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib58
  article-title: 3D printing of porous alginate/gelatin hydrogel scaffolds and their mechanical property characterization
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
  doi: 10.1080/00914037.2016.1201830
– volume: 8
  start-page: 1422
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib75
  article-title: Modeling of the mechanical behavior of 3D bioplotted scaffolds considering the penetration in interlocked strands
  publication-title: Appl. Sci.
  doi: 10.3390/app8091422
– volume: 1
  start-page: 918
  year: 2006
  ident: 10.1016/j.jpha.2021.02.001_bib14
  article-title: Electrospun scaffold tailored for tissue specific extracellular matrix
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.200600044
– volume: 6
  start-page: 29977
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib22
  article-title: Research on the printability of hydrogels in 3D bioprinting
  publication-title: Sci. Rep.
  doi: 10.1038/srep29977
– volume: 23
  start-page: 498
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib33
  article-title: Influence of layer thickness and post-process treatments on the fatigue properties of CoCr scaffolds produced by laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 16
  start-page: 1489
  year: 2015
  ident: 10.1016/j.jpha.2021.02.001_bib94
  article-title: 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00188
– volume: 30
  start-page: 4695
  year: 2009
  ident: 10.1016/j.jpha.2021.02.001_bib84
  article-title: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.05.050
– volume: 4
  start-page: 133
  year: 2015
  ident: 10.1016/j.jpha.2021.02.001_bib52
  article-title: 3D cell culture in alginate hydrogels
  publication-title: Microarrays (Basel)
  doi: 10.3390/microarrays4020133
– volume: 25
  start-page: 62
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib67
  article-title: Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-018-1455-0
– volume: 8
  start-page: 035020
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib45
  article-title: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/3/035020
– volume: 80
  start-page: 313
  year: 2017
  ident: 10.1016/j.jpha.2021.02.001_bib70
  article-title: Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2017.05.144
– volume: 80
  start-page: 111
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib73
  article-title: Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: experimental and numerical approaches
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.01.034
– volume: 98
  start-page: 187
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib90
  article-title: Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2019.06.014
– volume: 30
  start-page: 505
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib64
  article-title: Patterning catalyst via inkjet printing to grow single-walled carbon nanotubes
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2018.06.008
– volume: 13
  start-page: 2997
  year: 2012
  ident: 10.1016/j.jpha.2021.02.001_bib83
  article-title: Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying
  publication-title: Biomacromolecules
  doi: 10.1021/bm3011352
– volume: 2
  start-page: 1763
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib39
  article-title: Design and 3D printing of hydrogel scaffolds with fractal geometries
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00140
– volume: 8
  start-page: 015016
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib25
  article-title: Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/1/015016
– volume: 102
  start-page: 4326
  year: 2014
  ident: 10.1016/j.jpha.2021.02.001_bib79
  article-title: Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering
  publication-title: J. Biomed. Mater. Res. A
– volume: 7
  year: 2015
  ident: 10.1016/j.jpha.2021.02.001_bib105
  article-title: Three-dimensional bioprinting of complex cell laden alginate hydrogel structures
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/7/4/045012
– volume: 17
  start-page: 467
  year: 2008
  ident: 10.1016/j.jpha.2021.02.001_bib118
  article-title: Scaffolding in tissue engineering: general approaches and tissue-specific considerations
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-008-0745-3
– volume: 3
  start-page: 799
  year: 2012
  ident: 10.1016/j.jpha.2021.02.001_bib34
  article-title: Strategic design and fabrication of engineered scaffolds for articular cartilage repair
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb3040799
– volume: 5
  start-page: 6777
  year: 2013
  ident: 10.1016/j.jpha.2021.02.001_bib68
  article-title: Bioinspired wetting surface via laser microfabrication
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401677z
– volume: 10
  start-page: 034105
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib23
  article-title: Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aac872
– volume: 1
  start-page: 123
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib76
  article-title: Study of extrudability and standoff distance effect during nanoclay-enabled direct printing
  publication-title: Bio-Des. Manuf.
  doi: 10.1007/s42242-018-0009-y
– volume: 16
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib88
  article-title: A review on the challenges of 3D printing of organic powders
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2019.e00057
– volume: 10
  start-page: 1836
  year: 2014
  ident: 10.1016/j.jpha.2021.02.001_bib93
  article-title: Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.12.005
– volume: 29
  start-page: 332
  year: 2017
  ident: 10.1016/j.jpha.2021.02.001_bib30
  article-title: Support grain architecture design for additive manufacturing
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2017.08.008
– volume: 20
  start-page: 103
  year: 2013
  ident: 10.1016/j.jpha.2021.02.001_bib54
  article-title: Utilizing core–shell fibrous collagen-alginate hydrogel cell delivery system for bone tissue engineering
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2013.0198
– volume: 5
  start-page: 2856
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib42
  article-title: Design and printing strategies in 3D bioprinting of cell-hydrogels: a review
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201600435
– volume: 17
  start-page: 10112
  year: 2007
  ident: 10.1016/j.jpha.2021.02.001_bib31
  article-title: Rheological behavior of fugitive organic inks for direct-write assembly
  publication-title: Appl. Rheol.
– volume: 27
  start-page: 2211
  year: 2011
  ident: 10.1016/j.jpha.2021.02.001_bib77
  article-title: Nanofluid surface wettability through asymptotic contact angle
  publication-title: Langmuir
  doi: 10.1021/la104254a
– start-page: 715
  year: 2007
  ident: 10.1016/j.jpha.2021.02.001_bib104
  article-title: Robust Direct-Write Dispensing Tool and Solutions for Micro/Meso-Scale Manufacturing and Packaging
– year: 2017
  ident: 10.1016/j.jpha.2021.02.001_bib38
– volume: 25
  start-page: 4539
  year: 2013
  ident: 10.1016/j.jpha.2021.02.001_bib98
  article-title: 3D printing of interdigitated Li-Ion microbattery architectures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301036
– volume: 45
  start-page: 58
  year: 2017
  ident: 10.1016/j.jpha.2021.02.001_bib113
  article-title: Indirect rapid prototyping: opening up unprecedented opportunities in scaffold design and applications
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1610-x
– volume: 14
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib107
  article-title: Bio-fabrication of peptide-modified alginate scaffolds: printability, mechanical stability and neurite outgrowth assessments
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2019.e00045
– volume: 6
  start-page: 1024
  year: 2006
  ident: 10.1016/j.jpha.2021.02.001_bib51
  article-title: Sugar antennae for guidance signals: syndecans and glypicans integrate directional cues for navigating neurons
  publication-title: Sci. World J.
  doi: 10.1100/tsw.2006.202
– year: 2002
  ident: 10.1016/j.jpha.2021.02.001_bib99
– volume: 3
  start-page: 034112
  year: 2011
  ident: 10.1016/j.jpha.2021.02.001_bib37
  article-title: Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/3/3/034112
– volume: 21
  start-page: 457
  year: 2005
  ident: 10.1016/j.jpha.2021.02.001_bib103
  article-title: Phase behavior and rheological properties of polyelectrolyte inks for direct-write assembly
  publication-title: Langmuir
  doi: 10.1021/la048228d
– volume: 1
  start-page: 763
  year: 2013
  ident: 10.1016/j.jpha.2021.02.001_bib44
  article-title: Bio-ink properties and printability for extrusion printing living cells
  publication-title: Biomater. Sci.
  doi: 10.1039/c3bm00012e
– volume: 10
  start-page: 292
  year: 2020
  ident: 10.1016/j.jpha.2021.02.001_bib24
  article-title: Printability of 3D printed hydrogel scaffolds: influence of hydrogel composition and printing parameters
  publication-title: Appl. Sci.
  doi: 10.3390/app10010292
– volume: 6
  start-page: 11310
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib56
  article-title: Extrusion bioprinting of soft materials: an emerging technique for biological model fabrication
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5059393
– volume: 93
  start-page: 183
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib72
  article-title: Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2019.02.014
– volume: 5
  start-page: 035001
  year: 2013
  ident: 10.1016/j.jpha.2021.02.001_bib102
  article-title: Quantitative optimization of solid freeform deposition of aqueous hydrogels
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/5/3/035001
– volume: 35
  start-page: 217
  year: 2017
  ident: 10.1016/j.jpha.2021.02.001_bib119
  article-title: The bioink: a comprehensive review on bioprintable materials
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2016.12.006
– volume: 32
  start-page: 889
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib60
  article-title: 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2016.01.007
– volume: 78
  start-page: 298
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib11
  article-title: Dispensing-based bioprinting of mechanically-functional hybrid scaffolds with vessel-like channels for tissue engineering applications – a brief review
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.11.037
– volume: 59
  start-page: 183
  year: 2013
  ident: 10.1016/j.jpha.2021.02.001_bib36
  article-title: 3D hybrid bioprinting of macrovascular structures
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.05.109
– year: 2020
  ident: 10.1016/j.jpha.2021.02.001_bib12
– volume: 5
  start-page: 10418
  year: 2013
  ident: 10.1016/j.jpha.2021.02.001_bib81
  article-title: Strengthening alginate/polyacrylamide hydrogels using various multivalent cations
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am403966x
– volume: 6
  year: 2014
  ident: 10.1016/j.jpha.2021.02.001_bib46
  article-title: Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/6/2/024105
– volume: 23
  start-page: 802
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib110
  article-title: Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577516002344
– volume: 6
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib15
  article-title: Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance, Burn
  publication-title: Trauma
– volume: 27
  start-page: 974
  year: 2006
  ident: 10.1016/j.jpha.2021.02.001_bib28
  article-title: 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.07.023
– volume: 13
  start-page: 1091
  year: 2012
  ident: 10.1016/j.jpha.2021.02.001_bib80
  article-title: Development and evaluation of sodium alginate–polyacrylamide graft–co-polymer-based stomach targeted hydrogels of famotidine
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-012-9824-1
– volume: 18
  start-page: 41002
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib40
  article-title: Additive manufacturing of functionally graded material objects: a review
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4039683
– volume: 8
  start-page: 403
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib43
  article-title: Printability study of bioprinted tubular structures using liquid hydrogel precursors in a support bath
  publication-title: Appl. Sci.
  doi: 10.3390/app8030403
– volume: 3
  start-page: 034106
  year: 2011
  ident: 10.1016/j.jpha.2021.02.001_bib32
  article-title: A functionally gradient variational porosity architecture for hollowed scaffolds fabrication
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/3/3/034106
– volume: 109
  start-page: 414
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib71
  article-title: Surface microstructuring to modify wettability for 3D printing of nano-filled inks
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2016.02.004
– volume: 29
  start-page: 75
  year: 2006
  ident: 10.1016/j.jpha.2021.02.001_bib66
  article-title: Effects of fluid properties on dispensing processes for electronics packaging
  publication-title: IEEE Trans. Electron. Packag. Manuf.
  doi: 10.1109/TEPM.2006.874964
– volume: 114
  start-page: I87
  year: 2006
  ident: 10.1016/j.jpha.2021.02.001_bib5
  article-title: Pulsatile myocardial tubes fabricated with cell sheet engineering
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.000273
– volume: 7
  start-page: 2219
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib62
  article-title: The in situ synthesis of conductive polyaniline patterns using micro-reactive inkjet printing
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C8TC06485G
– start-page: 153
  year: 2015
  ident: 10.1016/j.jpha.2021.02.001_bib112
  article-title: Chapter 8 – Indirect Rapid Prototyping for Tissue Engineering
– volume: 120
  start-page: 11028
  year: 2020
  ident: 10.1016/j.jpha.2021.02.001_bib19
  article-title: Printability and shape fidelity of bioinks in 3D bioprinting
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00084
– volume: 220
  start-page: 12
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib89
  article-title: Bioinspired 3D printable pectin-nanocellulose ink formulations
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.05.026
– volume: 34
  start-page: 142
  year: 2013
  ident: 10.1016/j.jpha.2021.02.001_bib82
  article-title: Cell(MC3T3-E1)-Printed Poly(ϵ-caprolactone)/Alginate hybrid scaffolds for tissue regeneration, macromol
  publication-title: Rapid Commun.
  doi: 10.1002/marc.201200524
– volume: 7
  start-page: 1801102
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib87
  article-title: Coaxial cell printing of freestanding, perfusable, and functional in vitro vascular models for recapitulation of native vascular endothelium pathophysiology
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201801102
– volume: 11
  start-page: 454
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib29
  article-title: 3D printability of alginate-carboxymethyl cellulose hydrogel
  publication-title: Materials
  doi: 10.3390/ma11030454
– volume: 28
  start-page: 3478
  year: 2007
  ident: 10.1016/j.jpha.2021.02.001_bib8
  article-title: The use of physical hydrogels of chitosan for skin regeneration following third-degree burns
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.04.021
– volume: 230
  start-page: 412
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib61
  article-title: Valorization of discarded Marine Eel fish skin for collagen extraction as a 3D printable blue biomaterial for tissue engineering
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.05.082
– volume: 2
  start-page: 163
  year: 2016
  ident: 10.1016/j.jpha.2021.02.001_bib96
  article-title: Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide
  publication-title: Int. J. Bioprint.
  doi: 10.18063/IJB.2016.02.007
– volume: 18
  start-page: 55
  year: 2012
  ident: 10.1016/j.jpha.2021.02.001_bib115
  article-title: Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2011.0097
– volume: 7
  start-page: 1009
  year: 2011
  ident: 10.1016/j.jpha.2021.02.001_bib17
  article-title: Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.11.003
– volume: 131
  start-page: 034501
  year: 2009
  ident: 10.1016/j.jpha.2021.02.001_bib106
  article-title: Modeling of flow rate, pore size, and porosity for the dispensing-based tissue scaffolds fabrication
  publication-title: J. Manuf. Sci. Eng.
– volume: 6
  start-page: 1900572
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib78
  article-title: Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201900572
– volume: 95
  start-page: 196
  year: 2003
  ident: 10.1016/j.jpha.2021.02.001_bib59
  article-title: Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/S1389-1723(03)80129-9
– volume: 24
  start-page: 2303
  year: 2003
  ident: 10.1016/j.jpha.2021.02.001_bib7
  article-title: Successful application of tissue engineered vascular autografts: clinical experience
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00043-7
– volume: 5
  year: 2013
  ident: 10.1016/j.jpha.2021.02.001_bib18
  article-title: The first systematic analysis of 3D rapid prototyped poly (ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/5/4/045004
– volume: 10
  start-page: 630
  year: 2014
  ident: 10.1016/j.jpha.2021.02.001_bib97
  article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.10.016
– volume: 6
  start-page: 1700264
  year: 2017
  ident: 10.1016/j.jpha.2021.02.001_bib65
  article-title: ‘Printability’ of candidate biomaterials for extrusion based 3D Printing : state-of-the-art
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700264
– volume: 1
  start-page: 49
  year: 2015
  ident: 10.1016/j.jpha.2021.02.001_bib121
  article-title: Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique
  publication-title: Int. J. Bioprint.
  doi: 10.18063/IJB.2015.01.003
– volume: 5
  start-page: 2688
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib57
  article-title: Dynamic hydrogels and polymers as inks for 3D printing
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b00047
– volume: 10
  start-page: 4323
  year: 2014
  ident: 10.1016/j.jpha.2021.02.001_bib92
  article-title: Engineering alginate as bioink for bioprinting
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.06.034
– volume: 5
  start-page: 2976
  year: 2019
  ident: 10.1016/j.jpha.2021.02.001_bib108
  article-title: Printability and cell viability in bioprinting alginate dialdehyde-gelatin scaffolds
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b00167
– volume: 29
  start-page: 1126
  year: 2018
  ident: 10.1016/j.jpha.2021.02.001_bib85
  article-title: Influence of ionic cross linkers (Ca2+/Ba2+/Zn2+) on the mechanical and biological properties of 3D bioplotted hydrogel scaffolds
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1080/09205063.2018.1433420
SSID ssj0000702895
Score 2.5749369
SecondaryResourceType review_article
Snippet Three-dimensional (3D) extrusion-based bioprinting is widely used in tissue engineering and regenerative medicine to create cell-incorporated constructs or...
Three-dimensional(3D)extrusion-based bioprinting is widely used in tissue engineering and regener-ative medicine to create cell-incorporated constructs or...
SourceID doaj
pubmedcentral
wanfang
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 564
SubjectTerms 3D bioprinting
Bioink
Extrusion
Printability
Review Paper
Tissue engineering
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQJSQ2iKcILxmEuqERcWxP7GVBVBULNItW6s6yHRtSIU_VmaqdHf_AH_Il3Bt72gmLsmGTRew4flzfh318TMg7K4R33DWg_YKshVS-Vn03qzmEHp1Wog9uRPl-nR0eiy8n8mTrqi_EhGV64NxxH6xTje5kH50KQupG26CEZTHGJrJZGI_5gs3bCqZGHdzhDhriFyFR1qzrdDkxk8Fdp8jFBHF_IexkE6s0kvdPjNOW8_k3dPLupU3Rpm9bVungAblf3Em6n5vxkNwJ6RHZnWc-6vUePbo5XrXco7t0fsNUvX5M9Px8SKvM1L3-_fPXPoUpTcehoEOioLfPL3A1rUZb11M3LHAZEIHST8jxweejT4d1uUuh9pK3K1C1GKhIbVloPTgNnNvIteosH7063I5rgrByxi3vO9fEttWO9T0LFjLD4ynZSYsUnhHKrJOuVxCJxChEEKrX0XsfuWW-CVpVhG360vhCNI73XfwwG0TZqcH-N9j_pmkRVleR99ffnGWajVtzf8Qhus6JFNnjCxAcUwTH_EtwKiI3A2yKt5G9CChquPXnbzbSYGAq4v6KTWFxsTQtBmegtAWvSDcRk0lNpylp-D6SeisJniRrK_K2CJQpymRp1pfx6sqZgJVoJAzX8__R_hfkHhaYgYkvyQ5IVHgFDtbKvR7n0h-XlSSx
  priority: 102
  providerName: Directory of Open Access Journals
Title Printability–A key issue in extrusion-based bioprinting
URI https://dx.doi.org/10.1016/j.jpha.2021.02.001
https://www.proquest.com/docview/2597488743
https://d.wanfangdata.com.cn/periodical/ywfxxb-e202105004
https://pubmed.ncbi.nlm.nih.gov/PMC8572712
https://doaj.org/article/ab80975dfb8e45909ae84a1fff0f16e8
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdBL6ZNuH4tbSi6NWeu1lo7ZkBBaCNs2gb0JyZZSh-INuxuSveU_5B_2l3TGljdxDzn0YrBX9g7S6JsZ-dNnQj5bIQrHXQbo52UqpCpSVebjlEPpkWslSu8alu_x-OhUfJ3J2RbZ7_bCIK0yYn-L6Q1axyuj2Juji6oa_WSYHeS5ZrRJXBCHUakFN_HNJpt1FnBpqCmQyYjtU7wh7p1paV7nqMrEINK10p20F58aGf9emLqXhv5Lonx8Zetg67N78enwGXkaE8tkr7X9Odny9QuyM22Vqde7ycndRqvlbrKTTO80q9cviZ4uqnrVanav_9zc7iUwuZNmUJKqTgDBF5e4rpZi1CsTV81xQRAp06_I6eHByf5RGr-qkBaSsxWALpYsUlvqWQHpA-c2cK1yy5v8Dl_MZV5YOeaWl7nLAmPa0bKk3kJjOLwm2_W89m9IQq2TrlRQk4QghBeq1KEoisAtLTKv1YDQri9NESXH8csXv03HLTs32P8G-99kDAl2A_Jlc89FK7jxYOsJDtGmJYplNxfmizMTvcVYpzKdyzI45YXUmbZeCUtDCFmgYw9mym6ATc_34FHVg3_-sfMGA5MS37TY2s8vl4ZhmQbwLfiA5D036Vna_6WufjXy3kpCTknZgHyKDmUirCzN-ipcXzvj0YhMwnC9_U_T35EneNayEt-TbXAi_wGyq5UbkkeTg-Ppj2GzOjFsJhMcv31XfwG4CyeF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXVF5ioUBAqBcabfxK7GNbUW2hVCuxlfZm2YndpkLZanerdm_8B_4hv4SZPLYNhx647CGxsyN7_M2M8_kLIZ-sELnjLgH08zIWUuWxKrI05lB6ZFqJwrua5XuSjk7F16mcbpCD7iwM0ipb7G8wvUbr9sqwHc3hZVkOfzDMDrJMM1onLoDDDyAbSJHXdTTdX2-0gE9DUYFURuwQY4_28EzD87pAWSYGoa7R7qS9AFXr-Pfi1J089F8W5cNrWwVbnd0JUIdb5EmbWUZ7jfFPyYavnpGdcSNNvdqNJrcnrRa70U40vhWtXj0nejwvq2Uj2r368-v3XgSrO6pnJSqrCCB8foUbazGGvSJy5Qx3BJEz_YKcHn6ZHIzi9rMKcS45WwLqYs0itaWe5ZA_cG4D1yqzvE7w8M1c4oWVKbe8yFwSGNOOFgX1FhrDz0uyWc0q_4pE1DrpCgVFSQhCeKEKHfI8D9zSPPFaDQjtxtLkreY4fvrip-nIZRcGx9_g-JuEIcNuQD6v-1w2ihv3tt7HKVq3RLXs-sJsfmZadzHWqURnsghOeSF1oq1XwtIQQhJo6sFM2U2w6TkfPKq8988_dN5gYFXiqxZb-dnVwjCs0wC_BR-QrOcmPUv7d6ryvNb3VhKSSsoG5GPrUKbFlYVZXYebG2c8GpFImK7X_2n6e_JoNPl-bI6PTr69IY_xTkNR3Cab4FD-LaRaS_euXkp_AYLhJyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Printability%E2%80%93A+key+issue+in+extrusion-based+bioprinting&rft.jtitle=Journal+of+pharmaceutical+analysis&rft.au=Naghieh%2C+Saman&rft.au=Chen%2C+Xiongbiao&rft.date=2021-10-01&rft.pub=Elsevier+B.V&rft.issn=2095-1779&rft.eissn=2214-0883&rft.volume=11&rft.issue=5&rft.spage=564&rft.epage=579&rft_id=info:doi/10.1016%2Fj.jpha.2021.02.001&rft.externalDocID=S2095177921000162
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fywfxxb-e%2Fywfxxb-e.jpg