Episomal HIV-1 DNA and its relationship to other markers of HIV-1 persistence

Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episom...

Full description

Saved in:
Bibliographic Details
Published inRetrovirology Vol. 15; no. 1; pp. 15 - 11
Main Authors Martinez-Picado, Javier, Zurakowski, Ryan, Buzón, María José, Stevenson, Mario
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 30.01.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episomal HIV-1 DNA. Circulating CD4 T-cells of treatment-naïve individuals contain significant levels of unintegrated forms of HIV-1 DNA. However, the importance of episomal HIV-1 DNA in the study of viral persistence during antiviral therapy (ART) is debatable. 2-LTR circles are preferentially observed in the effector memory CD4 T cell subset of long-term treated subjects. Treatment intensification of standard regimens has been used to determine if more potent ART can impact viral reservoir activity. Adding a potent antiretroviral drug to a stable triple-drug regimen has no measurable impact on plasma HIV-1 RNA levels, suggesting that ongoing cycles of HIV-1 replication are not a major mechanism driving persistent plasma viremia during triple-drug ART. However, in randomized clinical trials of HIV-1-infected adults on apparently effective ART, the addition of an integrase inhibitor (raltegravir) to stable regimens resulted in a transient increase in 2-LTR circles in some patients, suggesting a pre-intensification steady-state in which the processes of virion generation and de novo infection were occurring. Mathematical modeling of 2-LTR production during integrase inhibitor intensification suggests the coexistence, at different levels, of ongoing de novo infection and de novo replication mechanisms, specifically in inflamed lymphoid drug sanctuaries. Most reports looking into potential changes in 2-LTR circles in interventional clinical studies have simultaneously assessed other potential surrogate markers of viral persistence. Transient increases in 2-LTR circles have been correlated to decreases in CD8 T-cell activation, transient CD45RA CD4 T-cell redistribution, and decreases in the hypercoagulation biomarker D-dimer in ART-intensified individuals. It is difficult, however, to establish a systematic association because the level of correlation with different types of markers differs significantly among studies. In conclusion, despite suppressive ART, a steady-state of de novo infection may persist in some infected individuals and that this may drive immune activation and inflammation changes reflecting residual viral reservoir activity during otherwise apparently suppressive ART.
AbstractList Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episomal HIV-1 DNA. Circulating CD4 + T-cells of treatment-naïve individuals contain significant levels of unintegrated forms of HIV-1 DNA. However, the importance of episomal HIV-1 DNA in the study of viral persistence during antiviral therapy (ART) is debatable. 2-LTR circles are preferentially observed in the effector memory CD4 + T cell subset of long-term treated subjects. Treatment intensification of standard regimens has been used to determine if more potent ART can impact viral reservoir activity. Adding a potent antiretroviral drug to a stable triple-drug regimen has no measurable impact on plasma HIV-1 RNA levels, suggesting that ongoing cycles of HIV-1 replication are not a major mechanism driving persistent plasma viremia during triple-drug ART. However, in randomized clinical trials of HIV-1-infected adults on apparently effective ART, the addition of an integrase inhibitor (raltegravir) to stable regimens resulted in a transient increase in 2-LTR circles in some patients, suggesting a pre-intensification steady-state in which the processes of virion generation and de novo infection were occurring. Mathematical modeling of 2-LTR production during integrase inhibitor intensification suggests the coexistence, at different levels, of ongoing de novo infection and de novo replication mechanisms, specifically in inflamed lymphoid drug sanctuaries. Most reports looking into potential changes in 2-LTR circles in interventional clinical studies have simultaneously assessed other potential surrogate markers of viral persistence. Transient increases in 2-LTR circles have been correlated to decreases in CD8 + T-cell activation, transient CD45RA − CD4 + T-cell redistribution, and decreases in the hypercoagulation biomarker D-dimer in ART-intensified individuals. It is difficult, however, to establish a systematic association because the level of correlation with different types of markers differs significantly among studies. In conclusion, despite suppressive ART, a steady-state of de novo infection may persist in some infected individuals and that this may drive immune activation and inflammation changes reflecting residual viral reservoir activity during otherwise apparently suppressive ART.
Abstract Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episomal HIV-1 DNA. Circulating CD4+ T-cells of treatment-naïve individuals contain significant levels of unintegrated forms of HIV-1 DNA. However, the importance of episomal HIV-1 DNA in the study of viral persistence during antiviral therapy (ART) is debatable. 2-LTR circles are preferentially observed in the effector memory CD4+ T cell subset of long-term treated subjects. Treatment intensification of standard regimens has been used to determine if more potent ART can impact viral reservoir activity. Adding a potent antiretroviral drug to a stable triple-drug regimen has no measurable impact on plasma HIV-1 RNA levels, suggesting that ongoing cycles of HIV-1 replication are not a major mechanism driving persistent plasma viremia during triple-drug ART. However, in randomized clinical trials of HIV-1-infected adults on apparently effective ART, the addition of an integrase inhibitor (raltegravir) to stable regimens resulted in a transient increase in 2-LTR circles in some patients, suggesting a pre-intensification steady-state in which the processes of virion generation and de novo infection were occurring. Mathematical modeling of 2-LTR production during integrase inhibitor intensification suggests the coexistence, at different levels, of ongoing de novo infection and de novo replication mechanisms, specifically in inflamed lymphoid drug sanctuaries. Most reports looking into potential changes in 2-LTR circles in interventional clinical studies have simultaneously assessed other potential surrogate markers of viral persistence. Transient increases in 2-LTR circles have been correlated to decreases in CD8+ T-cell activation, transient CD45RA−CD4+ T-cell redistribution, and decreases in the hypercoagulation biomarker D-dimer in ART-intensified individuals. It is difficult, however, to establish a systematic association because the level of correlation with different types of markers differs significantly among studies. In conclusion, despite suppressive ART, a steady-state of de novo infection may persist in some infected individuals and that this may drive immune activation and inflammation changes reflecting residual viral reservoir activity during otherwise apparently suppressive ART.
Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episomal HIV-1 DNA. Circulating CD4 T-cells of treatment-naïve individuals contain significant levels of unintegrated forms of HIV-1 DNA. However, the importance of episomal HIV-1 DNA in the study of viral persistence during antiviral therapy (ART) is debatable. 2-LTR circles are preferentially observed in the effector memory CD4 T cell subset of long-term treated subjects. Treatment intensification of standard regimens has been used to determine if more potent ART can impact viral reservoir activity. Adding a potent antiretroviral drug to a stable triple-drug regimen has no measurable impact on plasma HIV-1 RNA levels, suggesting that ongoing cycles of HIV-1 replication are not a major mechanism driving persistent plasma viremia during triple-drug ART. However, in randomized clinical trials of HIV-1-infected adults on apparently effective ART, the addition of an integrase inhibitor (raltegravir) to stable regimens resulted in a transient increase in 2-LTR circles in some patients, suggesting a pre-intensification steady-state in which the processes of virion generation and de novo infection were occurring. Mathematical modeling of 2-LTR production during integrase inhibitor intensification suggests the coexistence, at different levels, of ongoing de novo infection and de novo replication mechanisms, specifically in inflamed lymphoid drug sanctuaries. Most reports looking into potential changes in 2-LTR circles in interventional clinical studies have simultaneously assessed other potential surrogate markers of viral persistence. Transient increases in 2-LTR circles have been correlated to decreases in CD8 T-cell activation, transient CD45RA CD4 T-cell redistribution, and decreases in the hypercoagulation biomarker D-dimer in ART-intensified individuals. It is difficult, however, to establish a systematic association because the level of correlation with different types of markers differs significantly among studies. In conclusion, despite suppressive ART, a steady-state of de novo infection may persist in some infected individuals and that this may drive immune activation and inflammation changes reflecting residual viral reservoir activity during otherwise apparently suppressive ART.
Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episomal HIV-1 DNA. Circulating CD4+ T-cells of treatment-naïve individuals contain significant levels of unintegrated forms of HIV-1 DNA. However, the importance of episomal HIV-1 DNA in the study of viral persistence during antiviral therapy (ART) is debatable. 2-LTR circles are preferentially observed in the effector memory CD4+ T cell subset of long-term treated subjects. Treatment intensification of standard regimens has been used to determine if more potent ART can impact viral reservoir activity. Adding a potent antiretroviral drug to a stable triple-drug regimen has no measurable impact on plasma HIV-1 RNA levels, suggesting that ongoing cycles of HIV-1 replication are not a major mechanism driving persistent plasma viremia during triple-drug ART. However, in randomized clinical trials of HIV-1-infected adults on apparently effective ART, the addition of an integrase inhibitor (raltegravir) to stable regimens resulted in a transient increase in 2-LTR circles in some patients, suggesting a pre-intensification steady-state in which the processes of virion generation and de novo infection were occurring. Mathematical modeling of 2-LTR production during integrase inhibitor intensification suggests the coexistence, at different levels, of ongoing de novo infection and de novo replication mechanisms, specifically in inflamed lymphoid drug sanctuaries. Most reports looking into potential changes in 2-LTR circles in interventional clinical studies have simultaneously assessed other potential surrogate markers of viral persistence. Transient increases in 2-LTR circles have been correlated to decreases in CD8+ T-cell activation, transient CD45RA-CD4+ T-cell redistribution, and decreases in the hypercoagulation biomarker D-dimer in ART-intensified individuals. It is difficult, however, to establish a systematic association because the level of correlation with different types of markers differs significantly among studies. In conclusion, despite suppressive ART, a steady-state of de novo infection may persist in some infected individuals and that this may drive immune activation and inflammation changes reflecting residual viral reservoir activity during otherwise apparently suppressive ART.Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episomal HIV-1 DNA. Circulating CD4+ T-cells of treatment-naïve individuals contain significant levels of unintegrated forms of HIV-1 DNA. However, the importance of episomal HIV-1 DNA in the study of viral persistence during antiviral therapy (ART) is debatable. 2-LTR circles are preferentially observed in the effector memory CD4+ T cell subset of long-term treated subjects. Treatment intensification of standard regimens has been used to determine if more potent ART can impact viral reservoir activity. Adding a potent antiretroviral drug to a stable triple-drug regimen has no measurable impact on plasma HIV-1 RNA levels, suggesting that ongoing cycles of HIV-1 replication are not a major mechanism driving persistent plasma viremia during triple-drug ART. However, in randomized clinical trials of HIV-1-infected adults on apparently effective ART, the addition of an integrase inhibitor (raltegravir) to stable regimens resulted in a transient increase in 2-LTR circles in some patients, suggesting a pre-intensification steady-state in which the processes of virion generation and de novo infection were occurring. Mathematical modeling of 2-LTR production during integrase inhibitor intensification suggests the coexistence, at different levels, of ongoing de novo infection and de novo replication mechanisms, specifically in inflamed lymphoid drug sanctuaries. Most reports looking into potential changes in 2-LTR circles in interventional clinical studies have simultaneously assessed other potential surrogate markers of viral persistence. Transient increases in 2-LTR circles have been correlated to decreases in CD8+ T-cell activation, transient CD45RA-CD4+ T-cell redistribution, and decreases in the hypercoagulation biomarker D-dimer in ART-intensified individuals. It is difficult, however, to establish a systematic association because the level of correlation with different types of markers differs significantly among studies. In conclusion, despite suppressive ART, a steady-state of de novo infection may persist in some infected individuals and that this may drive immune activation and inflammation changes reflecting residual viral reservoir activity during otherwise apparently suppressive ART.
ArticleNumber 15
Audience Academic
Author Martinez-Picado, Javier
Stevenson, Mario
Buzón, María José
Zurakowski, Ryan
Author_xml – sequence: 1
  givenname: Javier
  orcidid: 0000-0002-4916-2129
  surname: Martinez-Picado
  fullname: Martinez-Picado, Javier
– sequence: 2
  givenname: Ryan
  surname: Zurakowski
  fullname: Zurakowski, Ryan
– sequence: 3
  givenname: María José
  surname: Buzón
  fullname: Buzón, María José
– sequence: 4
  givenname: Mario
  surname: Stevenson
  fullname: Stevenson, Mario
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29378611$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk2P1SAUJWaM86E_wI1p4sZNR25pKWxMXubzJaNu1C2h9PIeY1sq9Jn476XT52SeMYYFcDnncLicU3I0-AEJeQ30HEDw9xEKWdc5BZFTJkUOz8gJ1GWRl1zSoyfrY3Ia4z2lDAQVL8hxIVktOMAJ-Xg1uuh73WW36285ZJefVpke2sxNMQvY6cn5IW7dmE0-89MWQ9br8B1DzLzdU8a0c3HCweBL8tzqLuKr_XxGvl5ffbm4ze8-36wvVne5qVgx5YWukHNEzgwrm6YqWAGsahGhQSMkGiqlbUypuSitsLQ1BYem0rbVjTA1ZWdkvei2Xt-rMbhk6pfy2qmHgg8bpcPkTIdKVlg0tkj9aXVqBTSCtwictVaUAE2ZtD4sWuOu6bE1OExBdweihyeD26qN_6mqWkjOWBJ4txcI_scO46R6Fw12nR7Q76ICKRmFitbzXW8X6EYna26wPimaGa5WVclZQkpIqPN_oNJosXcmRcC6VD8gvHn6hEfvf745AWABmOBjDGgfIUDVHCW1REmlKKk5Smrm1H9xjJse8pDcuO4_zN-HtctE
CitedBy_id crossref_primary_10_1016_j_idc_2019_04_007
crossref_primary_10_1093_cid_ciy1095
crossref_primary_10_3390_ijms25031704
crossref_primary_10_1080_14787210_2021_1823217
crossref_primary_10_1371_journal_ppat_1007357
crossref_primary_10_1016_j_csbj_2022_10_033
crossref_primary_10_3390_pathogens12020322
crossref_primary_10_3389_fmicb_2019_02878
crossref_primary_10_1016_j_chom_2021_03_001
crossref_primary_10_3390_biom9120851
crossref_primary_10_1186_s12879_020_05675_3
crossref_primary_10_3390_v12050489
crossref_primary_10_1016_S2352_3018_18_30064_X
crossref_primary_10_1016_j_vaccine_2020_04_015
crossref_primary_10_1073_pnas_2120326119
crossref_primary_10_3390_v16030420
crossref_primary_10_1126_sciadv_aav2045
crossref_primary_10_1038_s41467_024_49369_9
crossref_primary_10_1128_JVI_01358_21
crossref_primary_10_1186_s12977_024_00639_w
crossref_primary_10_1371_journal_pone_0206700
crossref_primary_10_3390_v13122512
Cites_doi 10.1049/iet-syb.2015.0066
10.1016/j.jtbi.2012.12.025
10.1089/aid.2016.0171
10.1126/science.278.5341.1291
10.1038/nm.3781
10.1038/nm.2111
10.1128/JVI.64.5.2421-2425.1990
10.1093/infdis/jiq138
10.1371/journal.ppat.1003174
10.1126/science.1254194
10.1098/rsif.2013.0186
10.1038/71569
10.1093/emboj/20.12.3272
10.1016/S0042-6822(02)00043-0
10.1126/science.278.5341.1295
10.1186/s12977-016-0282-9
10.7554/eLife.09115
10.1016/j.virol.2013.02.028
10.1371/journal.ppat.1001300
10.1109/ACC.2014.6859111
10.1128/JVI.69.5.2729-2736.1995
10.1016/j.cell.2015.01.020
10.1109/TAC.2003.817920
10.1371/journal.pone.0040198
10.1371/journal.ppat.1002314
10.1093/infdis/jir559
10.1038/87979
10.1038/343085a0
10.1128/JVI.66.10.5777-5787.1992
10.1093/infdis/jiv218
10.1371/journal.pone.0175899
10.1038/modpathol.3800267
10.1099/vir.0.80570-0
10.1093/infdis/jit453
10.1038/387183a0
10.1093/cid/cir721
10.1128/JVI.75.22.11253-11260.2001
10.1186/s12977-015-0234-9
10.1097/00002030-200303280-00001
10.1097/QAD.0000000000000066
10.1182/blood-2012-06-436345
10.1126/science.1256304
10.1086/650749
10.1016/j.jtbi.2013.12.020
10.1073/pnas.1522675113
10.1109/ACC.2014.6858730
10.1038/nm.1972
10.1097/QAI.0b013e318289439a
10.1128/JVI.76.8.4138-4144.2002
10.1128/JVI.69.1.376-386.1995
10.1128/JVI.79.8.5203-5210.2005
10.1128/JVI.01046-14
10.1089/aid.1994.10.53
10.1186/1742-4690-10-87
10.1073/pnas.0903107106
10.1371/journal.pone.0055943
10.1093/infdis/jiv092
10.1371/journal.pone.0114142
10.1016/j.immuni.2012.08.010
10.1086/320715
10.1177/135965350300800203
10.1097/QAD.0b013e3283584521
10.1097/QAI.0b013e31823fd1f2
10.1038/nature16933
10.1128/JVI.03331-13
10.1097/00002030-200303280-00005
10.1073/pnas.1318249111
10.1109/CDC.2012.6426795
10.1186/s12977-015-0153-9
10.1128/JVI.76.8.3739-3747.2002
10.1002/bimj.200900173
10.3851/IMP1917
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
The Author(s) 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: The Author(s) 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/s12977-018-0398-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ : directory of open access journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Acceso a contenido Full Text - Doaj
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1742-4690
EndPage 11
ExternalDocumentID oai_doaj_org_article_95e2bf2039da4691b86de163df8411b4
PMC5789633
A546399391
29378611
10_1186_s12977_018_0398_1
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
Spain
GeographicLocations_xml – name: Spain
– name: United States
GrantInformation_xml – fundername: amfAR, The Foundation for AIDS Research
  grantid: 109552-61-RSRL
– fundername: NIH HHS
  grantid: AI11028
– fundername: Spanish Secretariat of Science and Innovation
  grantid: SAF2015-67334-R
– fundername: Spanish Secretariat for Research
  grantid: SAF2016-80033-R
– fundername: NIAID NIH HHS
  grantid: R21 AI118411
– fundername: NIH HHS
  grantid: 096109
– fundername: NIH HHS
  grantid: 093306
– fundername: NIH HHS
  grantid: R21AI118411
– fundername: NIAID NIH HHS
  grantid: R21 AI110288
– fundername: Spanish Secretariat for Research
  grantid: RTC-2016-5324-1
– fundername: ;
  grantid: 109552-61-RSRL
– fundername: ;
  grantid: SAF2015-67334-R
– fundername: ;
  grantid: AI11028; R21AI118411; 12065631; 096109; 093306
– fundername: ;
  grantid: SAF2016-80033-R; RTC-2016-5324-1
– fundername: ;
  grantid: HEALTH-602570
GroupedDBID ---
0R~
123
29P
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c532t-2a5e66ee63c34bb5232135dee1bec89ec099fbc4a684f8f0dc261b5afdab8c703
IEDL.DBID M48
ISSN 1742-4690
IngestDate Wed Aug 27 01:29:17 EDT 2025
Thu Aug 21 14:15:05 EDT 2025
Fri Jul 11 13:08:22 EDT 2025
Tue Jun 17 21:01:53 EDT 2025
Tue Jun 10 20:29:09 EDT 2025
Thu Jan 02 23:01:52 EST 2025
Thu Apr 24 22:58:57 EDT 2025
Tue Jul 01 03:39:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-2a5e66ee63c34bb5232135dee1bec89ec099fbc4a684f8f0dc261b5afdab8c703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4916-2129
OpenAccessLink https://doaj.org/article/95e2bf2039da4691b86de163df8411b4
PMID 29378611
PQID 1993015074
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_95e2bf2039da4691b86de163df8411b4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5789633
proquest_miscellaneous_1993015074
gale_infotracmisc_A546399391
gale_infotracacademiconefile_A546399391
pubmed_primary_29378611
crossref_primary_10_1186_s12977_018_0398_1
crossref_citationtrail_10_1186_s12977_018_0398_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-30
PublicationDateYYYYMMDD 2018-01-30
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-30
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Retrovirology
PublicationTitleAlternate Retrovirology
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References L Gillim-Ross (398_CR26) 2005; 86
H Hatano (398_CR41) 2011; 203
JB Dinoso (398_CR39) 2009; 106
S Clarke (398_CR60) 2003; 306
RJ De Boer (398_CR61) 2013; 327
MJ Buzón (398_CR46) 2010; 16
JK Wong (398_CR33) 1997; 278
N Chomont (398_CR2) 2009; 15
WJ Hey-Nguyen (398_CR75) 2017; 33
Y Fukazawa (398_CR54) 2015; 21
F Maldarelli (398_CR4) 2014; 345
398_CR76
A Brussel (398_CR59) 2003; 17
S Munir (398_CR18) 2013; 10
S Pang (398_CR30) 1990; 343
GJ Besson (398_CR36) 2012; 54
N Vandegraaff (398_CR11) 2001; 75
L Li (398_CR12) 2001; 20
L Bergeron (398_CR27) 1992; 66
MC Puertas (398_CR67) 2014; 28
TC Pierson (398_CR21) 2002; 76
M Wiskerchen (398_CR24) 1995; 69
JM Murray (398_CR17) 2014; 88
S Morón-López (398_CR74) 2017; 12
D McMahon (398_CR44) 2010; 50
TW Chun (398_CR31) 1997; 387
TA Wagner (398_CR7) 2014; 345
H Hatano (398_CR47) 2013; 208
G Dornadula (398_CR70) 2001; 183
MC Puertas (398_CR28) 2016; 13
MJ Buzón (398_CR29) 2011; 7
MC Strain (398_CR15) 2013; 8
S Thierry (398_CR13) 2015; 12
A Engelman (398_CR23) 1995; 69
M Massanella (398_CR65) 2013; 63
JM Coffin (398_CR1) 1997
MJ Buzon (398_CR34) 2014; 88
398_CR51
M Massanella (398_CR66) 2014; 9
M Fischer (398_CR69) 2003; 8
398_CR52
S Eriksson (398_CR71) 2013; 9
LB Cohn (398_CR3) 2015; 160
EF Cardozo (398_CR55) 2014; 345
RT Gandhi (398_CR40) 2012; 59
R Luo (398_CR49) 2013; 10
D Finzi (398_CR32) 1997; 278
Y Huang (398_CR64) 2010; 52
M Stevenson (398_CR16) 1990; 64
CN Chan (398_CR25) 2016; 13
A Vallejo (398_CR45) 2012; 26
MJ Pace (398_CR22) 2013; 441
P Barbosa (398_CR8) 1994; 10
I Olivares (398_CR14) 2016; 18
ME Sharkey (398_CR19) 2000; 6
JM Llibre (398_CR43) 2012; 17
FR Simonetti (398_CR5) 2016; 113
R Luo (398_CR63) 2012; 7
A Meyerhans (398_CR9) 2003; 2004
PW Hunt (398_CR42) 2013; 121
L Alòs (398_CR57) 2005; 18
SL Butler (398_CR20) 2002; 76
H Byakwaga (398_CR38) 2011; 204
E Malatinkova (398_CR72) 2015; 4
CV Fletcher (398_CR53) 2014; 111
R Lorenzo-Redondo (398_CR58) 2016; 530
398_CR62
J Morlese (398_CR68) 2003; 17
M Sharkey (398_CR35) 2005; 79
S von Stockenstrom (398_CR6) 2015; 212
E Eisele (398_CR48) 2012; 37
SL Butler (398_CR10) 2001; 7
AM Crooks (398_CR37) 2015; 212
EF Cardozo (398_CR56) 2016; 10
EH Graf (398_CR73) 2011; 7
D Angeli (398_CR50) 2003; 48
References_xml – volume: 10
  start-page: 153
  year: 2016
  ident: 398_CR56
  publication-title: IET Syst Biol
  doi: 10.1049/iet-syb.2015.0066
– volume: 327
  start-page: 45
  year: 2013
  ident: 398_CR61
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2012.12.025
– volume: 33
  start-page: 648
  year: 2017
  ident: 398_CR75
  publication-title: AIDS Res Hum Retroviruses
  doi: 10.1089/aid.2016.0171
– volume: 278
  start-page: 1291
  year: 1997
  ident: 398_CR33
  publication-title: Science
  doi: 10.1126/science.278.5341.1291
– volume: 21
  start-page: 132
  year: 2015
  ident: 398_CR54
  publication-title: Nat Med
  doi: 10.1038/nm.3781
– volume: 16
  start-page: 460
  year: 2010
  ident: 398_CR46
  publication-title: Nat Med
  doi: 10.1038/nm.2111
– volume: 64
  start-page: 2421
  year: 1990
  ident: 398_CR16
  publication-title: J Virol
  doi: 10.1128/JVI.64.5.2421-2425.1990
– volume: 203
  start-page: 960
  year: 2011
  ident: 398_CR41
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiq138
– volume: 9
  start-page: e1003174
  year: 2013
  ident: 398_CR71
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003174
– volume: 345
  start-page: 179
  year: 2014
  ident: 398_CR4
  publication-title: Science
  doi: 10.1126/science.1254194
– volume: 10
  start-page: 20130186
  year: 2013
  ident: 398_CR49
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2013.0186
– volume: 6
  start-page: 76
  year: 2000
  ident: 398_CR19
  publication-title: Nat Med
  doi: 10.1038/71569
– volume: 20
  start-page: 3272
  year: 2001
  ident: 398_CR12
  publication-title: EMBO J
  doi: 10.1093/emboj/20.12.3272
– volume: 306
  start-page: 100
  year: 2003
  ident: 398_CR60
  publication-title: Virology
  doi: 10.1016/S0042-6822(02)00043-0
– volume: 278
  start-page: 1295
  year: 1997
  ident: 398_CR32
  publication-title: Science
  doi: 10.1126/science.278.5341.1295
– volume: 13
  start-page: 51
  year: 2016
  ident: 398_CR28
  publication-title: Retrovirology
  doi: 10.1186/s12977-016-0282-9
– volume: 4
  start-page: e09115
  year: 2015
  ident: 398_CR72
  publication-title: Elife
  doi: 10.7554/eLife.09115
– volume: 441
  start-page: 18
  year: 2013
  ident: 398_CR22
  publication-title: Virology
  doi: 10.1016/j.virol.2013.02.028
– volume: 7
  start-page: e1001300
  year: 2011
  ident: 398_CR73
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1001300
– ident: 398_CR62
  doi: 10.1109/ACC.2014.6859111
– volume: 69
  start-page: 2729
  year: 1995
  ident: 398_CR23
  publication-title: J Virol
  doi: 10.1128/JVI.69.5.2729-2736.1995
– volume: 160
  start-page: 420
  year: 2015
  ident: 398_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.020
– volume: 48
  start-page: 1684
  year: 2003
  ident: 398_CR50
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2003.817920
– ident: 398_CR76
– volume: 7
  start-page: e40198
  year: 2012
  ident: 398_CR63
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0040198
– volume: 7
  start-page: e1002314
  year: 2011
  ident: 398_CR29
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002314
– volume: 204
  start-page: 1532
  year: 2011
  ident: 398_CR38
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jir559
– volume: 18
  start-page: 23
  year: 2016
  ident: 398_CR14
  publication-title: AIDS Rev
– volume: 7
  start-page: 631
  year: 2001
  ident: 398_CR10
  publication-title: Nat Med
  doi: 10.1038/87979
– volume: 343
  start-page: 85
  year: 1990
  ident: 398_CR30
  publication-title: Nature
  doi: 10.1038/343085a0
– volume: 66
  start-page: 5777
  year: 1992
  ident: 398_CR27
  publication-title: J Virol
  doi: 10.1128/JVI.66.10.5777-5787.1992
– volume: 212
  start-page: 1361
  year: 2015
  ident: 398_CR37
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiv218
– volume: 12
  start-page: e0175899
  year: 2017
  ident: 398_CR74
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0175899
– volume: 18
  start-page: 127
  year: 2005
  ident: 398_CR57
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.3800267
– volume: 86
  start-page: 765
  year: 2005
  ident: 398_CR26
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.80570-0
– volume: 208
  start-page: 1436
  year: 2013
  ident: 398_CR47
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jit453
– volume: 387
  start-page: 183
  year: 1997
  ident: 398_CR31
  publication-title: Nature
  doi: 10.1038/387183a0
– volume-title: Retroviruses
  year: 1997
  ident: 398_CR1
– volume: 54
  start-page: 451
  year: 2012
  ident: 398_CR36
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cir721
– volume: 75
  start-page: 11253
  year: 2001
  ident: 398_CR11
  publication-title: J Virol
  doi: 10.1128/JVI.75.22.11253-11260.2001
– volume: 13
  start-page: 1
  year: 2016
  ident: 398_CR25
  publication-title: Retrovirology
  doi: 10.1186/s12977-015-0234-9
– volume: 17
  start-page: 645
  year: 2003
  ident: 398_CR59
  publication-title: AIDS
  doi: 10.1097/00002030-200303280-00001
– volume: 2004
  start-page: 14
  year: 2003
  ident: 398_CR9
  publication-title: HIV Seq Compend
– volume: 28
  start-page: 325
  year: 2014
  ident: 398_CR67
  publication-title: AIDS
  doi: 10.1097/QAD.0000000000000066
– volume: 121
  start-page: 4635
  year: 2013
  ident: 398_CR42
  publication-title: Blood
  doi: 10.1182/blood-2012-06-436345
– volume: 345
  start-page: 570
  year: 2014
  ident: 398_CR7
  publication-title: Science
  doi: 10.1126/science.1256304
– volume: 50
  start-page: 912
  year: 2010
  ident: 398_CR44
  publication-title: Clin Infect Dis
  doi: 10.1086/650749
– volume: 345
  start-page: 61
  year: 2014
  ident: 398_CR55
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2013.12.020
– volume: 113
  start-page: 1883
  year: 2016
  ident: 398_CR5
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1522675113
– ident: 398_CR52
  doi: 10.1109/ACC.2014.6858730
– volume: 15
  start-page: 893
  year: 2009
  ident: 398_CR2
  publication-title: Nat Med
  doi: 10.1038/nm.1972
– volume: 63
  start-page: 152
  year: 2013
  ident: 398_CR65
  publication-title: J Acquir Immune Defic Syndr
  doi: 10.1097/QAI.0b013e318289439a
– volume: 76
  start-page: 4138
  year: 2002
  ident: 398_CR21
  publication-title: J Virol
  doi: 10.1128/JVI.76.8.4138-4144.2002
– volume: 69
  start-page: 376
  year: 1995
  ident: 398_CR24
  publication-title: J Virol
  doi: 10.1128/JVI.69.1.376-386.1995
– volume: 79
  start-page: 5203
  year: 2005
  ident: 398_CR35
  publication-title: J Virol
  doi: 10.1128/JVI.79.8.5203-5210.2005
– volume: 88
  start-page: 10056
  year: 2014
  ident: 398_CR34
  publication-title: J Virol
  doi: 10.1128/JVI.01046-14
– volume: 10
  start-page: 53
  year: 1994
  ident: 398_CR8
  publication-title: AIDS Res Hum Retroviruses
  doi: 10.1089/aid.1994.10.53
– volume: 10
  start-page: 87
  year: 2013
  ident: 398_CR18
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-10-87
– volume: 106
  start-page: 9403
  year: 2009
  ident: 398_CR39
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0903107106
– volume: 8
  start-page: e55943
  year: 2013
  ident: 398_CR15
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0055943
– volume: 212
  start-page: 596
  year: 2015
  ident: 398_CR6
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiv092
– volume: 9
  start-page: e114142
  year: 2014
  ident: 398_CR66
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0114142
– volume: 37
  start-page: 377
  year: 2012
  ident: 398_CR48
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.08.010
– volume: 183
  start-page: 1682
  year: 2001
  ident: 398_CR70
  publication-title: J Infect Dis
  doi: 10.1086/320715
– volume: 8
  start-page: 97
  year: 2003
  ident: 398_CR69
  publication-title: Antivir Ther
  doi: 10.1177/135965350300800203
– volume: 26
  start-page: 1885
  year: 2012
  ident: 398_CR45
  publication-title: AIDS
  doi: 10.1097/QAD.0b013e3283584521
– volume: 59
  start-page: 229
  year: 2012
  ident: 398_CR40
  publication-title: J Acquir Immune Defic Syndr
  doi: 10.1097/QAI.0b013e31823fd1f2
– volume: 530
  start-page: 51
  year: 2016
  ident: 398_CR58
  publication-title: Nature
  doi: 10.1038/nature16933
– volume: 88
  start-page: 3516
  year: 2014
  ident: 398_CR17
  publication-title: J Virol
  doi: 10.1128/JVI.03331-13
– volume: 17
  start-page: 679
  year: 2003
  ident: 398_CR68
  publication-title: AIDS
  doi: 10.1097/00002030-200303280-00005
– volume: 111
  start-page: 2307
  year: 2014
  ident: 398_CR53
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1318249111
– ident: 398_CR51
  doi: 10.1109/CDC.2012.6426795
– volume: 12
  start-page: 24
  year: 2015
  ident: 398_CR13
  publication-title: Retrovirology
  doi: 10.1186/s12977-015-0153-9
– volume: 76
  start-page: 3739
  year: 2002
  ident: 398_CR20
  publication-title: J Virol
  doi: 10.1128/JVI.76.8.3739-3747.2002
– volume: 52
  start-page: 470
  year: 2010
  ident: 398_CR64
  publication-title: Biom J
  doi: 10.1002/bimj.200900173
– volume: 17
  start-page: 355
  year: 2012
  ident: 398_CR43
  publication-title: Antivir Ther
  doi: 10.3851/IMP1917
SSID ssj0031808
Score 2.3331423
SecondaryResourceType review_article
Snippet Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of...
Abstract Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 15
SubjectTerms Antiretroviral Therapy, Highly Active
CD4-Positive T-Lymphocytes - virology
CD8-Positive T-Lymphocytes - immunology
DNA, Circular - genetics
DNA, Circular - metabolism
DNA, Viral - genetics
DNA, Viral - metabolism
Genetic aspects
HIV (Viruses)
HIV Infections - drug therapy
HIV Infections - virology
HIV-1 - genetics
HIV-1 - metabolism
Humans
Models, Biological
Physiological aspects
Review
Virus Latency
Virus Replication - drug effects
SummonAdditionalLinks – databaseName: DOAJ : directory of open access journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUMil9JG226ZFhUCgYGL5IUvHTZuwLSSnpOQm9CQLjb2snUP_fWYk77Km0FxyXUlreTSj-UYefUPIcRF0I-rGZyzUMsNS95lgOZi7CwIAtqsSA9_lFV_cVL9u69udUl-YE5bogZPgTmXtCxOKvJROQyjHjODOA4jA_2LMRCZQ8HmbYCrtwaCouRi_YTLBT3vwag2mWOJ1Mglh08QLRbL-f7fkHZ80zZfccUAXr8jLETnSeZrxa7Ln2zfkRaol-fctuTxfLfvuHnosfv7OGP1xNae6dXQ59HS9yXi7W67o0NF464reY2bOuqddGIes8OysjyD6kNxcnF9_X2RjrYTM1mUxZIWuPefe89KWlTEQXhasrJ33DBZJSG8BCQZjK81FFUTInYXQydQ6OG2EBbN_R_bbrvUfCDWV9NIU0gGUqrjWJsgmrywgExMaaJmRfCM7ZUcicaxn8UfFgEJwlcStQNwKxa3YjHzbDlklFo3_dT7DBdl2RALs-AOohRrVQj2lFjNygsup0ExhclaPtw3gFZHwSs2xDABgMwmPO5r0BPOyk-avG4VQ2IQ5aa3vHnqFqY94XtTAw94nBdnOGUBUIziD0c1EdSYvNW1pl3eR3Ru2UNgUy4_PIYVP5KCISo9njEdkf1g_-M8AogbzJdrLIymiFj8
  priority: 102
  providerName: Directory of Open Access Journals
Title Episomal HIV-1 DNA and its relationship to other markers of HIV-1 persistence
URI https://www.ncbi.nlm.nih.gov/pubmed/29378611
https://www.proquest.com/docview/1993015074
https://pubmed.ncbi.nlm.nih.gov/PMC5789633
https://doaj.org/article/95e2bf2039da4691b86de163df8411b4
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_3geCLnN_rnUsEQRCqmzZN0weRPd1jFXYRcWXfQpMmdwt37dr2wPvvnUnb5Yqnr03Sj8lvMr9JJzOEvA5dlsg4sQFzcRpgqftAsgmoe-4kEOyctxn4FksxX_Gv63i9R_ryVp0A6ztdO6wntaou3_3-dfMRFP6DV3gp3tdgsxIMoMTDYik4RfvkEAxTgnq64LufCoDeiex-bN45DBMDg7WWgrGBlfLJ_P9esm_ZrGE85S0DdXZEHnTMkk5bKDwke7Z4RO61tSZvHpPFbLupyyvoMf_yM2D083JKsyKnm6amVR8Rd7HZ0qak_lQWvcLInaqmpeuGbHFvrfYk-wlZnc1-fJoHXS2FwMRR2ARhFlshrBWRibjW4H6GLIpzaxlMokytAabotOGZkNxJN8kNuFY6zlyeaWlgWXhKDoqysM8J1Ty1qQ7THKgWF1mmXZpMuAHmol0CLSMy6WWnTJdoHOtdXCrvcEihWskrkLxCySs2Im93Q7Ztlo3_dT7FCdl1xATZ_kJZnatO31Qa21C7EEbkGRcp01LkFrgnQpAxzUfkDU6nQmDBy5msO40An4gJsdQUywQAd0vhcSeDnqB-ZtD8qgeEwiaMWStseV0rDI3E_aQEHvasBcjunXucjUgygM7go4YtxebCZ_-GJRYWzejFP-95TO6HHtS4sXhCDprq2r4E5tToMdlP1smYHJ7Olt--j_3-w9jryB8P-hRY
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Episomal+HIV-1+DNA+and+its+relationship+to+other+markers+of+HIV-1+persistence&rft.jtitle=Retrovirology&rft.au=Martinez-Picado%2C+Javier&rft.au=Zurakowski%2C+Ryan&rft.au=Buz%C3%B3n%2C+Mar%C3%ADa+Jos%C3%A9&rft.au=Stevenson%2C+Mario&rft.date=2018-01-30&rft.eissn=1742-4690&rft.volume=15&rft.issue=1&rft.spage=15&rft_id=info:doi/10.1186%2Fs12977-018-0398-1&rft_id=info%3Apmid%2F29378611&rft.externalDocID=29378611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-4690&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-4690&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-4690&client=summon