Episomal HIV-1 DNA and its relationship to other markers of HIV-1 persistence
Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episom...
Saved in:
Published in | Retrovirology Vol. 15; no. 1; pp. 15 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
30.01.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episomal HIV-1 DNA. Circulating CD4
T-cells of treatment-naïve individuals contain significant levels of unintegrated forms of HIV-1 DNA. However, the importance of episomal HIV-1 DNA in the study of viral persistence during antiviral therapy (ART) is debatable. 2-LTR circles are preferentially observed in the effector memory CD4
T cell subset of long-term treated subjects. Treatment intensification of standard regimens has been used to determine if more potent ART can impact viral reservoir activity. Adding a potent antiretroviral drug to a stable triple-drug regimen has no measurable impact on plasma HIV-1 RNA levels, suggesting that ongoing cycles of HIV-1 replication are not a major mechanism driving persistent plasma viremia during triple-drug ART. However, in randomized clinical trials of HIV-1-infected adults on apparently effective ART, the addition of an integrase inhibitor (raltegravir) to stable regimens resulted in a transient increase in 2-LTR circles in some patients, suggesting a pre-intensification steady-state in which the processes of virion generation and de novo infection were occurring. Mathematical modeling of 2-LTR production during integrase inhibitor intensification suggests the coexistence, at different levels, of ongoing de novo infection and de novo replication mechanisms, specifically in inflamed lymphoid drug sanctuaries. Most reports looking into potential changes in 2-LTR circles in interventional clinical studies have simultaneously assessed other potential surrogate markers of viral persistence. Transient increases in 2-LTR circles have been correlated to decreases in CD8
T-cell activation, transient CD45RA
CD4
T-cell redistribution, and decreases in the hypercoagulation biomarker D-dimer in ART-intensified individuals. It is difficult, however, to establish a systematic association because the level of correlation with different types of markers differs significantly among studies. In conclusion, despite suppressive ART, a steady-state of de novo infection may persist in some infected individuals and that this may drive immune activation and inflammation changes reflecting residual viral reservoir activity during otherwise apparently suppressive ART. |
---|---|
AbstractList | Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episomal HIV-1 DNA. Circulating CD4
+
T-cells of treatment-naïve individuals contain significant levels of unintegrated forms of HIV-1 DNA. However, the importance of episomal HIV-1 DNA in the study of viral persistence during antiviral therapy (ART) is debatable. 2-LTR circles are preferentially observed in the effector memory CD4
+
T cell subset of long-term treated subjects. Treatment intensification of standard regimens has been used to determine if more potent ART can impact viral reservoir activity. Adding a potent antiretroviral drug to a stable triple-drug regimen has no measurable impact on plasma HIV-1 RNA levels, suggesting that ongoing cycles of HIV-1 replication are not a major mechanism driving persistent plasma viremia during triple-drug ART. However, in randomized clinical trials of HIV-1-infected adults on apparently effective ART, the addition of an integrase inhibitor (raltegravir) to stable regimens resulted in a transient increase in 2-LTR circles in some patients, suggesting a pre-intensification steady-state in which the processes of virion generation and de novo infection were occurring. Mathematical modeling of 2-LTR production during integrase inhibitor intensification suggests the coexistence, at different levels, of ongoing de novo infection and de novo replication mechanisms, specifically in inflamed lymphoid drug sanctuaries. Most reports looking into potential changes in 2-LTR circles in interventional clinical studies have simultaneously assessed other potential surrogate markers of viral persistence. Transient increases in 2-LTR circles have been correlated to decreases in CD8
+
T-cell activation, transient CD45RA
−
CD4
+
T-cell redistribution, and decreases in the hypercoagulation biomarker D-dimer in ART-intensified individuals. It is difficult, however, to establish a systematic association because the level of correlation with different types of markers differs significantly among studies. In conclusion, despite suppressive ART, a steady-state of de novo infection may persist in some infected individuals and that this may drive immune activation and inflammation changes reflecting residual viral reservoir activity during otherwise apparently suppressive ART. Abstract Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episomal HIV-1 DNA. Circulating CD4+ T-cells of treatment-naïve individuals contain significant levels of unintegrated forms of HIV-1 DNA. However, the importance of episomal HIV-1 DNA in the study of viral persistence during antiviral therapy (ART) is debatable. 2-LTR circles are preferentially observed in the effector memory CD4+ T cell subset of long-term treated subjects. Treatment intensification of standard regimens has been used to determine if more potent ART can impact viral reservoir activity. Adding a potent antiretroviral drug to a stable triple-drug regimen has no measurable impact on plasma HIV-1 RNA levels, suggesting that ongoing cycles of HIV-1 replication are not a major mechanism driving persistent plasma viremia during triple-drug ART. However, in randomized clinical trials of HIV-1-infected adults on apparently effective ART, the addition of an integrase inhibitor (raltegravir) to stable regimens resulted in a transient increase in 2-LTR circles in some patients, suggesting a pre-intensification steady-state in which the processes of virion generation and de novo infection were occurring. Mathematical modeling of 2-LTR production during integrase inhibitor intensification suggests the coexistence, at different levels, of ongoing de novo infection and de novo replication mechanisms, specifically in inflamed lymphoid drug sanctuaries. Most reports looking into potential changes in 2-LTR circles in interventional clinical studies have simultaneously assessed other potential surrogate markers of viral persistence. Transient increases in 2-LTR circles have been correlated to decreases in CD8+ T-cell activation, transient CD45RA−CD4+ T-cell redistribution, and decreases in the hypercoagulation biomarker D-dimer in ART-intensified individuals. It is difficult, however, to establish a systematic association because the level of correlation with different types of markers differs significantly among studies. In conclusion, despite suppressive ART, a steady-state of de novo infection may persist in some infected individuals and that this may drive immune activation and inflammation changes reflecting residual viral reservoir activity during otherwise apparently suppressive ART. Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episomal HIV-1 DNA. Circulating CD4 T-cells of treatment-naïve individuals contain significant levels of unintegrated forms of HIV-1 DNA. However, the importance of episomal HIV-1 DNA in the study of viral persistence during antiviral therapy (ART) is debatable. 2-LTR circles are preferentially observed in the effector memory CD4 T cell subset of long-term treated subjects. Treatment intensification of standard regimens has been used to determine if more potent ART can impact viral reservoir activity. Adding a potent antiretroviral drug to a stable triple-drug regimen has no measurable impact on plasma HIV-1 RNA levels, suggesting that ongoing cycles of HIV-1 replication are not a major mechanism driving persistent plasma viremia during triple-drug ART. However, in randomized clinical trials of HIV-1-infected adults on apparently effective ART, the addition of an integrase inhibitor (raltegravir) to stable regimens resulted in a transient increase in 2-LTR circles in some patients, suggesting a pre-intensification steady-state in which the processes of virion generation and de novo infection were occurring. Mathematical modeling of 2-LTR production during integrase inhibitor intensification suggests the coexistence, at different levels, of ongoing de novo infection and de novo replication mechanisms, specifically in inflamed lymphoid drug sanctuaries. Most reports looking into potential changes in 2-LTR circles in interventional clinical studies have simultaneously assessed other potential surrogate markers of viral persistence. Transient increases in 2-LTR circles have been correlated to decreases in CD8 T-cell activation, transient CD45RA CD4 T-cell redistribution, and decreases in the hypercoagulation biomarker D-dimer in ART-intensified individuals. It is difficult, however, to establish a systematic association because the level of correlation with different types of markers differs significantly among studies. In conclusion, despite suppressive ART, a steady-state of de novo infection may persist in some infected individuals and that this may drive immune activation and inflammation changes reflecting residual viral reservoir activity during otherwise apparently suppressive ART. Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episomal HIV-1 DNA. Circulating CD4+ T-cells of treatment-naïve individuals contain significant levels of unintegrated forms of HIV-1 DNA. However, the importance of episomal HIV-1 DNA in the study of viral persistence during antiviral therapy (ART) is debatable. 2-LTR circles are preferentially observed in the effector memory CD4+ T cell subset of long-term treated subjects. Treatment intensification of standard regimens has been used to determine if more potent ART can impact viral reservoir activity. Adding a potent antiretroviral drug to a stable triple-drug regimen has no measurable impact on plasma HIV-1 RNA levels, suggesting that ongoing cycles of HIV-1 replication are not a major mechanism driving persistent plasma viremia during triple-drug ART. However, in randomized clinical trials of HIV-1-infected adults on apparently effective ART, the addition of an integrase inhibitor (raltegravir) to stable regimens resulted in a transient increase in 2-LTR circles in some patients, suggesting a pre-intensification steady-state in which the processes of virion generation and de novo infection were occurring. Mathematical modeling of 2-LTR production during integrase inhibitor intensification suggests the coexistence, at different levels, of ongoing de novo infection and de novo replication mechanisms, specifically in inflamed lymphoid drug sanctuaries. Most reports looking into potential changes in 2-LTR circles in interventional clinical studies have simultaneously assessed other potential surrogate markers of viral persistence. Transient increases in 2-LTR circles have been correlated to decreases in CD8+ T-cell activation, transient CD45RA-CD4+ T-cell redistribution, and decreases in the hypercoagulation biomarker D-dimer in ART-intensified individuals. It is difficult, however, to establish a systematic association because the level of correlation with different types of markers differs significantly among studies. In conclusion, despite suppressive ART, a steady-state of de novo infection may persist in some infected individuals and that this may drive immune activation and inflammation changes reflecting residual viral reservoir activity during otherwise apparently suppressive ART.Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of extrachromosomal viral cDNA molecules can be found in acutely infected cells including the 1-LTR and 2-LTR circles of viral DNA, also referred as episomal HIV-1 DNA. Circulating CD4+ T-cells of treatment-naïve individuals contain significant levels of unintegrated forms of HIV-1 DNA. However, the importance of episomal HIV-1 DNA in the study of viral persistence during antiviral therapy (ART) is debatable. 2-LTR circles are preferentially observed in the effector memory CD4+ T cell subset of long-term treated subjects. Treatment intensification of standard regimens has been used to determine if more potent ART can impact viral reservoir activity. Adding a potent antiretroviral drug to a stable triple-drug regimen has no measurable impact on plasma HIV-1 RNA levels, suggesting that ongoing cycles of HIV-1 replication are not a major mechanism driving persistent plasma viremia during triple-drug ART. However, in randomized clinical trials of HIV-1-infected adults on apparently effective ART, the addition of an integrase inhibitor (raltegravir) to stable regimens resulted in a transient increase in 2-LTR circles in some patients, suggesting a pre-intensification steady-state in which the processes of virion generation and de novo infection were occurring. Mathematical modeling of 2-LTR production during integrase inhibitor intensification suggests the coexistence, at different levels, of ongoing de novo infection and de novo replication mechanisms, specifically in inflamed lymphoid drug sanctuaries. Most reports looking into potential changes in 2-LTR circles in interventional clinical studies have simultaneously assessed other potential surrogate markers of viral persistence. Transient increases in 2-LTR circles have been correlated to decreases in CD8+ T-cell activation, transient CD45RA-CD4+ T-cell redistribution, and decreases in the hypercoagulation biomarker D-dimer in ART-intensified individuals. It is difficult, however, to establish a systematic association because the level of correlation with different types of markers differs significantly among studies. In conclusion, despite suppressive ART, a steady-state of de novo infection may persist in some infected individuals and that this may drive immune activation and inflammation changes reflecting residual viral reservoir activity during otherwise apparently suppressive ART. |
ArticleNumber | 15 |
Audience | Academic |
Author | Martinez-Picado, Javier Stevenson, Mario Buzón, María José Zurakowski, Ryan |
Author_xml | – sequence: 1 givenname: Javier orcidid: 0000-0002-4916-2129 surname: Martinez-Picado fullname: Martinez-Picado, Javier – sequence: 2 givenname: Ryan surname: Zurakowski fullname: Zurakowski, Ryan – sequence: 3 givenname: María José surname: Buzón fullname: Buzón, María José – sequence: 4 givenname: Mario surname: Stevenson fullname: Stevenson, Mario |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29378611$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk2P1SAUJWaM86E_wI1p4sZNR25pKWxMXubzJaNu1C2h9PIeY1sq9Jn476XT52SeMYYFcDnncLicU3I0-AEJeQ30HEDw9xEKWdc5BZFTJkUOz8gJ1GWRl1zSoyfrY3Ia4z2lDAQVL8hxIVktOMAJ-Xg1uuh73WW36285ZJefVpke2sxNMQvY6cn5IW7dmE0-89MWQ9br8B1DzLzdU8a0c3HCweBL8tzqLuKr_XxGvl5ffbm4ze8-36wvVne5qVgx5YWukHNEzgwrm6YqWAGsahGhQSMkGiqlbUypuSitsLQ1BYem0rbVjTA1ZWdkvei2Xt-rMbhk6pfy2qmHgg8bpcPkTIdKVlg0tkj9aXVqBTSCtwictVaUAE2ZtD4sWuOu6bE1OExBdweihyeD26qN_6mqWkjOWBJ4txcI_scO46R6Fw12nR7Q76ICKRmFitbzXW8X6EYna26wPimaGa5WVclZQkpIqPN_oNJosXcmRcC6VD8gvHn6hEfvf745AWABmOBjDGgfIUDVHCW1REmlKKk5Smrm1H9xjJse8pDcuO4_zN-HtctE |
CitedBy_id | crossref_primary_10_1016_j_idc_2019_04_007 crossref_primary_10_1093_cid_ciy1095 crossref_primary_10_3390_ijms25031704 crossref_primary_10_1080_14787210_2021_1823217 crossref_primary_10_1371_journal_ppat_1007357 crossref_primary_10_1016_j_csbj_2022_10_033 crossref_primary_10_3390_pathogens12020322 crossref_primary_10_3389_fmicb_2019_02878 crossref_primary_10_1016_j_chom_2021_03_001 crossref_primary_10_3390_biom9120851 crossref_primary_10_1186_s12879_020_05675_3 crossref_primary_10_3390_v12050489 crossref_primary_10_1016_S2352_3018_18_30064_X crossref_primary_10_1016_j_vaccine_2020_04_015 crossref_primary_10_1073_pnas_2120326119 crossref_primary_10_3390_v16030420 crossref_primary_10_1126_sciadv_aav2045 crossref_primary_10_1038_s41467_024_49369_9 crossref_primary_10_1128_JVI_01358_21 crossref_primary_10_1186_s12977_024_00639_w crossref_primary_10_1371_journal_pone_0206700 crossref_primary_10_3390_v13122512 |
Cites_doi | 10.1049/iet-syb.2015.0066 10.1016/j.jtbi.2012.12.025 10.1089/aid.2016.0171 10.1126/science.278.5341.1291 10.1038/nm.3781 10.1038/nm.2111 10.1128/JVI.64.5.2421-2425.1990 10.1093/infdis/jiq138 10.1371/journal.ppat.1003174 10.1126/science.1254194 10.1098/rsif.2013.0186 10.1038/71569 10.1093/emboj/20.12.3272 10.1016/S0042-6822(02)00043-0 10.1126/science.278.5341.1295 10.1186/s12977-016-0282-9 10.7554/eLife.09115 10.1016/j.virol.2013.02.028 10.1371/journal.ppat.1001300 10.1109/ACC.2014.6859111 10.1128/JVI.69.5.2729-2736.1995 10.1016/j.cell.2015.01.020 10.1109/TAC.2003.817920 10.1371/journal.pone.0040198 10.1371/journal.ppat.1002314 10.1093/infdis/jir559 10.1038/87979 10.1038/343085a0 10.1128/JVI.66.10.5777-5787.1992 10.1093/infdis/jiv218 10.1371/journal.pone.0175899 10.1038/modpathol.3800267 10.1099/vir.0.80570-0 10.1093/infdis/jit453 10.1038/387183a0 10.1093/cid/cir721 10.1128/JVI.75.22.11253-11260.2001 10.1186/s12977-015-0234-9 10.1097/00002030-200303280-00001 10.1097/QAD.0000000000000066 10.1182/blood-2012-06-436345 10.1126/science.1256304 10.1086/650749 10.1016/j.jtbi.2013.12.020 10.1073/pnas.1522675113 10.1109/ACC.2014.6858730 10.1038/nm.1972 10.1097/QAI.0b013e318289439a 10.1128/JVI.76.8.4138-4144.2002 10.1128/JVI.69.1.376-386.1995 10.1128/JVI.79.8.5203-5210.2005 10.1128/JVI.01046-14 10.1089/aid.1994.10.53 10.1186/1742-4690-10-87 10.1073/pnas.0903107106 10.1371/journal.pone.0055943 10.1093/infdis/jiv092 10.1371/journal.pone.0114142 10.1016/j.immuni.2012.08.010 10.1086/320715 10.1177/135965350300800203 10.1097/QAD.0b013e3283584521 10.1097/QAI.0b013e31823fd1f2 10.1038/nature16933 10.1128/JVI.03331-13 10.1097/00002030-200303280-00005 10.1073/pnas.1318249111 10.1109/CDC.2012.6426795 10.1186/s12977-015-0153-9 10.1128/JVI.76.8.3739-3747.2002 10.1002/bimj.200900173 10.3851/IMP1917 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. The Author(s) 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: The Author(s) 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1186/s12977-018-0398-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ : directory of open access journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Acceso a contenido Full Text - Doaj url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1742-4690 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_95e2bf2039da4691b86de163df8411b4 PMC5789633 A546399391 29378611 10_1186_s12977_018_0398_1 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States Spain |
GeographicLocations_xml | – name: Spain – name: United States |
GrantInformation_xml | – fundername: amfAR, The Foundation for AIDS Research grantid: 109552-61-RSRL – fundername: NIH HHS grantid: AI11028 – fundername: Spanish Secretariat of Science and Innovation grantid: SAF2015-67334-R – fundername: Spanish Secretariat for Research grantid: SAF2016-80033-R – fundername: NIAID NIH HHS grantid: R21 AI118411 – fundername: NIH HHS grantid: 096109 – fundername: NIH HHS grantid: 093306 – fundername: NIH HHS grantid: R21AI118411 – fundername: NIAID NIH HHS grantid: R21 AI110288 – fundername: Spanish Secretariat for Research grantid: RTC-2016-5324-1 – fundername: ; grantid: 109552-61-RSRL – fundername: ; grantid: SAF2015-67334-R – fundername: ; grantid: AI11028; R21AI118411; 12065631; 096109; 093306 – fundername: ; grantid: SAF2016-80033-R; RTC-2016-5324-1 – fundername: ; grantid: HEALTH-602570 |
GroupedDBID | --- 0R~ 123 29P 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c532t-2a5e66ee63c34bb5232135dee1bec89ec099fbc4a684f8f0dc261b5afdab8c703 |
IEDL.DBID | M48 |
ISSN | 1742-4690 |
IngestDate | Wed Aug 27 01:29:17 EDT 2025 Thu Aug 21 14:15:05 EDT 2025 Fri Jul 11 13:08:22 EDT 2025 Tue Jun 17 21:01:53 EDT 2025 Tue Jun 10 20:29:09 EDT 2025 Thu Jan 02 23:01:52 EST 2025 Thu Apr 24 22:58:57 EDT 2025 Tue Jul 01 03:39:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c532t-2a5e66ee63c34bb5232135dee1bec89ec099fbc4a684f8f0dc261b5afdab8c703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4916-2129 |
OpenAccessLink | https://doaj.org/article/95e2bf2039da4691b86de163df8411b4 |
PMID | 29378611 |
PQID | 1993015074 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_95e2bf2039da4691b86de163df8411b4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5789633 proquest_miscellaneous_1993015074 gale_infotracmisc_A546399391 gale_infotracacademiconefile_A546399391 pubmed_primary_29378611 crossref_primary_10_1186_s12977_018_0398_1 crossref_citationtrail_10_1186_s12977_018_0398_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-30 |
PublicationDateYYYYMMDD | 2018-01-30 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Retrovirology |
PublicationTitleAlternate | Retrovirology |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | L Gillim-Ross (398_CR26) 2005; 86 H Hatano (398_CR41) 2011; 203 JB Dinoso (398_CR39) 2009; 106 S Clarke (398_CR60) 2003; 306 RJ De Boer (398_CR61) 2013; 327 MJ Buzón (398_CR46) 2010; 16 JK Wong (398_CR33) 1997; 278 N Chomont (398_CR2) 2009; 15 WJ Hey-Nguyen (398_CR75) 2017; 33 Y Fukazawa (398_CR54) 2015; 21 F Maldarelli (398_CR4) 2014; 345 398_CR76 A Brussel (398_CR59) 2003; 17 S Munir (398_CR18) 2013; 10 S Pang (398_CR30) 1990; 343 GJ Besson (398_CR36) 2012; 54 N Vandegraaff (398_CR11) 2001; 75 L Li (398_CR12) 2001; 20 L Bergeron (398_CR27) 1992; 66 MC Puertas (398_CR67) 2014; 28 TC Pierson (398_CR21) 2002; 76 M Wiskerchen (398_CR24) 1995; 69 JM Murray (398_CR17) 2014; 88 S Morón-López (398_CR74) 2017; 12 D McMahon (398_CR44) 2010; 50 TW Chun (398_CR31) 1997; 387 TA Wagner (398_CR7) 2014; 345 H Hatano (398_CR47) 2013; 208 G Dornadula (398_CR70) 2001; 183 MC Puertas (398_CR28) 2016; 13 MJ Buzón (398_CR29) 2011; 7 MC Strain (398_CR15) 2013; 8 S Thierry (398_CR13) 2015; 12 A Engelman (398_CR23) 1995; 69 M Massanella (398_CR65) 2013; 63 JM Coffin (398_CR1) 1997 MJ Buzon (398_CR34) 2014; 88 398_CR51 M Massanella (398_CR66) 2014; 9 M Fischer (398_CR69) 2003; 8 398_CR52 S Eriksson (398_CR71) 2013; 9 LB Cohn (398_CR3) 2015; 160 EF Cardozo (398_CR55) 2014; 345 RT Gandhi (398_CR40) 2012; 59 R Luo (398_CR49) 2013; 10 D Finzi (398_CR32) 1997; 278 Y Huang (398_CR64) 2010; 52 M Stevenson (398_CR16) 1990; 64 CN Chan (398_CR25) 2016; 13 A Vallejo (398_CR45) 2012; 26 MJ Pace (398_CR22) 2013; 441 P Barbosa (398_CR8) 1994; 10 I Olivares (398_CR14) 2016; 18 ME Sharkey (398_CR19) 2000; 6 JM Llibre (398_CR43) 2012; 17 FR Simonetti (398_CR5) 2016; 113 R Luo (398_CR63) 2012; 7 A Meyerhans (398_CR9) 2003; 2004 PW Hunt (398_CR42) 2013; 121 L Alòs (398_CR57) 2005; 18 SL Butler (398_CR20) 2002; 76 H Byakwaga (398_CR38) 2011; 204 E Malatinkova (398_CR72) 2015; 4 CV Fletcher (398_CR53) 2014; 111 R Lorenzo-Redondo (398_CR58) 2016; 530 398_CR62 J Morlese (398_CR68) 2003; 17 M Sharkey (398_CR35) 2005; 79 S von Stockenstrom (398_CR6) 2015; 212 E Eisele (398_CR48) 2012; 37 SL Butler (398_CR10) 2001; 7 AM Crooks (398_CR37) 2015; 212 EF Cardozo (398_CR56) 2016; 10 EH Graf (398_CR73) 2011; 7 D Angeli (398_CR50) 2003; 48 |
References_xml | – volume: 10 start-page: 153 year: 2016 ident: 398_CR56 publication-title: IET Syst Biol doi: 10.1049/iet-syb.2015.0066 – volume: 327 start-page: 45 year: 2013 ident: 398_CR61 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2012.12.025 – volume: 33 start-page: 648 year: 2017 ident: 398_CR75 publication-title: AIDS Res Hum Retroviruses doi: 10.1089/aid.2016.0171 – volume: 278 start-page: 1291 year: 1997 ident: 398_CR33 publication-title: Science doi: 10.1126/science.278.5341.1291 – volume: 21 start-page: 132 year: 2015 ident: 398_CR54 publication-title: Nat Med doi: 10.1038/nm.3781 – volume: 16 start-page: 460 year: 2010 ident: 398_CR46 publication-title: Nat Med doi: 10.1038/nm.2111 – volume: 64 start-page: 2421 year: 1990 ident: 398_CR16 publication-title: J Virol doi: 10.1128/JVI.64.5.2421-2425.1990 – volume: 203 start-page: 960 year: 2011 ident: 398_CR41 publication-title: J Infect Dis doi: 10.1093/infdis/jiq138 – volume: 9 start-page: e1003174 year: 2013 ident: 398_CR71 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003174 – volume: 345 start-page: 179 year: 2014 ident: 398_CR4 publication-title: Science doi: 10.1126/science.1254194 – volume: 10 start-page: 20130186 year: 2013 ident: 398_CR49 publication-title: J R Soc Interface doi: 10.1098/rsif.2013.0186 – volume: 6 start-page: 76 year: 2000 ident: 398_CR19 publication-title: Nat Med doi: 10.1038/71569 – volume: 20 start-page: 3272 year: 2001 ident: 398_CR12 publication-title: EMBO J doi: 10.1093/emboj/20.12.3272 – volume: 306 start-page: 100 year: 2003 ident: 398_CR60 publication-title: Virology doi: 10.1016/S0042-6822(02)00043-0 – volume: 278 start-page: 1295 year: 1997 ident: 398_CR32 publication-title: Science doi: 10.1126/science.278.5341.1295 – volume: 13 start-page: 51 year: 2016 ident: 398_CR28 publication-title: Retrovirology doi: 10.1186/s12977-016-0282-9 – volume: 4 start-page: e09115 year: 2015 ident: 398_CR72 publication-title: Elife doi: 10.7554/eLife.09115 – volume: 441 start-page: 18 year: 2013 ident: 398_CR22 publication-title: Virology doi: 10.1016/j.virol.2013.02.028 – volume: 7 start-page: e1001300 year: 2011 ident: 398_CR73 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1001300 – ident: 398_CR62 doi: 10.1109/ACC.2014.6859111 – volume: 69 start-page: 2729 year: 1995 ident: 398_CR23 publication-title: J Virol doi: 10.1128/JVI.69.5.2729-2736.1995 – volume: 160 start-page: 420 year: 2015 ident: 398_CR3 publication-title: Cell doi: 10.1016/j.cell.2015.01.020 – volume: 48 start-page: 1684 year: 2003 ident: 398_CR50 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2003.817920 – ident: 398_CR76 – volume: 7 start-page: e40198 year: 2012 ident: 398_CR63 publication-title: PLoS ONE doi: 10.1371/journal.pone.0040198 – volume: 7 start-page: e1002314 year: 2011 ident: 398_CR29 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002314 – volume: 204 start-page: 1532 year: 2011 ident: 398_CR38 publication-title: J Infect Dis doi: 10.1093/infdis/jir559 – volume: 18 start-page: 23 year: 2016 ident: 398_CR14 publication-title: AIDS Rev – volume: 7 start-page: 631 year: 2001 ident: 398_CR10 publication-title: Nat Med doi: 10.1038/87979 – volume: 343 start-page: 85 year: 1990 ident: 398_CR30 publication-title: Nature doi: 10.1038/343085a0 – volume: 66 start-page: 5777 year: 1992 ident: 398_CR27 publication-title: J Virol doi: 10.1128/JVI.66.10.5777-5787.1992 – volume: 212 start-page: 1361 year: 2015 ident: 398_CR37 publication-title: J Infect Dis doi: 10.1093/infdis/jiv218 – volume: 12 start-page: e0175899 year: 2017 ident: 398_CR74 publication-title: PLoS ONE doi: 10.1371/journal.pone.0175899 – volume: 18 start-page: 127 year: 2005 ident: 398_CR57 publication-title: Mod Pathol doi: 10.1038/modpathol.3800267 – volume: 86 start-page: 765 year: 2005 ident: 398_CR26 publication-title: J Gen Virol doi: 10.1099/vir.0.80570-0 – volume: 208 start-page: 1436 year: 2013 ident: 398_CR47 publication-title: J Infect Dis doi: 10.1093/infdis/jit453 – volume: 387 start-page: 183 year: 1997 ident: 398_CR31 publication-title: Nature doi: 10.1038/387183a0 – volume-title: Retroviruses year: 1997 ident: 398_CR1 – volume: 54 start-page: 451 year: 2012 ident: 398_CR36 publication-title: Clin Infect Dis doi: 10.1093/cid/cir721 – volume: 75 start-page: 11253 year: 2001 ident: 398_CR11 publication-title: J Virol doi: 10.1128/JVI.75.22.11253-11260.2001 – volume: 13 start-page: 1 year: 2016 ident: 398_CR25 publication-title: Retrovirology doi: 10.1186/s12977-015-0234-9 – volume: 17 start-page: 645 year: 2003 ident: 398_CR59 publication-title: AIDS doi: 10.1097/00002030-200303280-00001 – volume: 2004 start-page: 14 year: 2003 ident: 398_CR9 publication-title: HIV Seq Compend – volume: 28 start-page: 325 year: 2014 ident: 398_CR67 publication-title: AIDS doi: 10.1097/QAD.0000000000000066 – volume: 121 start-page: 4635 year: 2013 ident: 398_CR42 publication-title: Blood doi: 10.1182/blood-2012-06-436345 – volume: 345 start-page: 570 year: 2014 ident: 398_CR7 publication-title: Science doi: 10.1126/science.1256304 – volume: 50 start-page: 912 year: 2010 ident: 398_CR44 publication-title: Clin Infect Dis doi: 10.1086/650749 – volume: 345 start-page: 61 year: 2014 ident: 398_CR55 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2013.12.020 – volume: 113 start-page: 1883 year: 2016 ident: 398_CR5 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1522675113 – ident: 398_CR52 doi: 10.1109/ACC.2014.6858730 – volume: 15 start-page: 893 year: 2009 ident: 398_CR2 publication-title: Nat Med doi: 10.1038/nm.1972 – volume: 63 start-page: 152 year: 2013 ident: 398_CR65 publication-title: J Acquir Immune Defic Syndr doi: 10.1097/QAI.0b013e318289439a – volume: 76 start-page: 4138 year: 2002 ident: 398_CR21 publication-title: J Virol doi: 10.1128/JVI.76.8.4138-4144.2002 – volume: 69 start-page: 376 year: 1995 ident: 398_CR24 publication-title: J Virol doi: 10.1128/JVI.69.1.376-386.1995 – volume: 79 start-page: 5203 year: 2005 ident: 398_CR35 publication-title: J Virol doi: 10.1128/JVI.79.8.5203-5210.2005 – volume: 88 start-page: 10056 year: 2014 ident: 398_CR34 publication-title: J Virol doi: 10.1128/JVI.01046-14 – volume: 10 start-page: 53 year: 1994 ident: 398_CR8 publication-title: AIDS Res Hum Retroviruses doi: 10.1089/aid.1994.10.53 – volume: 10 start-page: 87 year: 2013 ident: 398_CR18 publication-title: Retrovirology doi: 10.1186/1742-4690-10-87 – volume: 106 start-page: 9403 year: 2009 ident: 398_CR39 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0903107106 – volume: 8 start-page: e55943 year: 2013 ident: 398_CR15 publication-title: PLoS ONE doi: 10.1371/journal.pone.0055943 – volume: 212 start-page: 596 year: 2015 ident: 398_CR6 publication-title: J Infect Dis doi: 10.1093/infdis/jiv092 – volume: 9 start-page: e114142 year: 2014 ident: 398_CR66 publication-title: PLoS ONE doi: 10.1371/journal.pone.0114142 – volume: 37 start-page: 377 year: 2012 ident: 398_CR48 publication-title: Immunity doi: 10.1016/j.immuni.2012.08.010 – volume: 183 start-page: 1682 year: 2001 ident: 398_CR70 publication-title: J Infect Dis doi: 10.1086/320715 – volume: 8 start-page: 97 year: 2003 ident: 398_CR69 publication-title: Antivir Ther doi: 10.1177/135965350300800203 – volume: 26 start-page: 1885 year: 2012 ident: 398_CR45 publication-title: AIDS doi: 10.1097/QAD.0b013e3283584521 – volume: 59 start-page: 229 year: 2012 ident: 398_CR40 publication-title: J Acquir Immune Defic Syndr doi: 10.1097/QAI.0b013e31823fd1f2 – volume: 530 start-page: 51 year: 2016 ident: 398_CR58 publication-title: Nature doi: 10.1038/nature16933 – volume: 88 start-page: 3516 year: 2014 ident: 398_CR17 publication-title: J Virol doi: 10.1128/JVI.03331-13 – volume: 17 start-page: 679 year: 2003 ident: 398_CR68 publication-title: AIDS doi: 10.1097/00002030-200303280-00005 – volume: 111 start-page: 2307 year: 2014 ident: 398_CR53 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1318249111 – ident: 398_CR51 doi: 10.1109/CDC.2012.6426795 – volume: 12 start-page: 24 year: 2015 ident: 398_CR13 publication-title: Retrovirology doi: 10.1186/s12977-015-0153-9 – volume: 76 start-page: 3739 year: 2002 ident: 398_CR20 publication-title: J Virol doi: 10.1128/JVI.76.8.3739-3747.2002 – volume: 52 start-page: 470 year: 2010 ident: 398_CR64 publication-title: Biom J doi: 10.1002/bimj.200900173 – volume: 17 start-page: 355 year: 2012 ident: 398_CR43 publication-title: Antivir Ther doi: 10.3851/IMP1917 |
SSID | ssj0031808 |
Score | 2.3331423 |
SecondaryResourceType | review_article |
Snippet | Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of... Abstract Reverse transcription of HIV-1 results in the generation of a linear cDNA that serves as the precursor to the integrated provirus. Other classes of... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 15 |
SubjectTerms | Antiretroviral Therapy, Highly Active CD4-Positive T-Lymphocytes - virology CD8-Positive T-Lymphocytes - immunology DNA, Circular - genetics DNA, Circular - metabolism DNA, Viral - genetics DNA, Viral - metabolism Genetic aspects HIV (Viruses) HIV Infections - drug therapy HIV Infections - virology HIV-1 - genetics HIV-1 - metabolism Humans Models, Biological Physiological aspects Review Virus Latency Virus Replication - drug effects |
SummonAdditionalLinks | – databaseName: DOAJ : directory of open access journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUMil9JG226ZFhUCgYGL5IUvHTZuwLSSnpOQm9CQLjb2snUP_fWYk77Km0FxyXUlreTSj-UYefUPIcRF0I-rGZyzUMsNS95lgOZi7CwIAtqsSA9_lFV_cVL9u69udUl-YE5bogZPgTmXtCxOKvJROQyjHjODOA4jA_2LMRCZQ8HmbYCrtwaCouRi_YTLBT3vwag2mWOJ1Mglh08QLRbL-f7fkHZ80zZfccUAXr8jLETnSeZrxa7Ln2zfkRaol-fctuTxfLfvuHnosfv7OGP1xNae6dXQ59HS9yXi7W67o0NF464reY2bOuqddGIes8OysjyD6kNxcnF9_X2RjrYTM1mUxZIWuPefe89KWlTEQXhasrJ33DBZJSG8BCQZjK81FFUTInYXQydQ6OG2EBbN_R_bbrvUfCDWV9NIU0gGUqrjWJsgmrywgExMaaJmRfCM7ZUcicaxn8UfFgEJwlcStQNwKxa3YjHzbDlklFo3_dT7DBdl2RALs-AOohRrVQj2lFjNygsup0ExhclaPtw3gFZHwSs2xDABgMwmPO5r0BPOyk-avG4VQ2IQ5aa3vHnqFqY94XtTAw94nBdnOGUBUIziD0c1EdSYvNW1pl3eR3Ru2UNgUy4_PIYVP5KCISo9njEdkf1g_-M8AogbzJdrLIymiFj8 priority: 102 providerName: Directory of Open Access Journals |
Title | Episomal HIV-1 DNA and its relationship to other markers of HIV-1 persistence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29378611 https://www.proquest.com/docview/1993015074 https://pubmed.ncbi.nlm.nih.gov/PMC5789633 https://doaj.org/article/95e2bf2039da4691b86de163df8411b4 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_3geCLnN_rnUsEQRCqmzZN0weRPd1jFXYRcWXfQpMmdwt37dr2wPvvnUnb5Yqnr03Sj8lvMr9JJzOEvA5dlsg4sQFzcRpgqftAsgmoe-4kEOyctxn4FksxX_Gv63i9R_ryVp0A6ztdO6wntaou3_3-dfMRFP6DV3gp3tdgsxIMoMTDYik4RfvkEAxTgnq64LufCoDeiex-bN45DBMDg7WWgrGBlfLJ_P9esm_ZrGE85S0DdXZEHnTMkk5bKDwke7Z4RO61tSZvHpPFbLupyyvoMf_yM2D083JKsyKnm6amVR8Rd7HZ0qak_lQWvcLInaqmpeuGbHFvrfYk-wlZnc1-fJoHXS2FwMRR2ARhFlshrBWRibjW4H6GLIpzaxlMokytAabotOGZkNxJN8kNuFY6zlyeaWlgWXhKDoqysM8J1Ty1qQ7THKgWF1mmXZpMuAHmol0CLSMy6WWnTJdoHOtdXCrvcEihWskrkLxCySs2Im93Q7Ztlo3_dT7FCdl1xATZ_kJZnatO31Qa21C7EEbkGRcp01LkFrgnQpAxzUfkDU6nQmDBy5msO40An4gJsdQUywQAd0vhcSeDnqB-ZtD8qgeEwiaMWStseV0rDI3E_aQEHvasBcjunXucjUgygM7go4YtxebCZ_-GJRYWzejFP-95TO6HHtS4sXhCDprq2r4E5tToMdlP1smYHJ7Olt--j_3-w9jryB8P-hRY |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Episomal+HIV-1+DNA+and+its+relationship+to+other+markers+of+HIV-1+persistence&rft.jtitle=Retrovirology&rft.au=Martinez-Picado%2C+Javier&rft.au=Zurakowski%2C+Ryan&rft.au=Buz%C3%B3n%2C+Mar%C3%ADa+Jos%C3%A9&rft.au=Stevenson%2C+Mario&rft.date=2018-01-30&rft.eissn=1742-4690&rft.volume=15&rft.issue=1&rft.spage=15&rft_id=info:doi/10.1186%2Fs12977-018-0398-1&rft_id=info%3Apmid%2F29378611&rft.externalDocID=29378611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-4690&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-4690&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-4690&client=summon |