TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3
Selective autophagy underlies many of the important physiological roles that autophagy plays in multicellular organisms, but the mechanisms involved in cargo selection are poorly understood. Here we describe a molecular mechanism that can target conventional endosomes for autophagic degradation. We...
Saved in:
Published in | The EMBO journal Vol. 32; no. 4; pp. 566 - 582 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
20.02.2013
Nature Publishing Group UK Blackwell Publishing Ltd Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selective autophagy underlies many of the important physiological roles that autophagy plays in multicellular organisms, but the mechanisms involved in cargo selection are poorly understood. Here we describe a molecular mechanism that can target conventional endosomes for autophagic degradation. We show that the human transmembrane protein TMEM59 contains a minimal 19‐amino‐acid peptide in its intracellular domain that promotes LC3 labelling and lysosomal targeting of its own endosomal compartment. Interestingly, this peptide defines a novel protein motif that mediates interaction with the WD‐repeat domain of ATG16L1, thus providing a mechanistic basis for the activity. The motif is represented with the same ATG16L1‐binding ability in other molecules, suggesting a more general relevance. We propose that this motif may play an important role in targeting specific membranous compartments for autophagic degradation, and therefore it may facilitate the search for adaptor proteins that promote selective autophagy by engaging ATG16L1. Endogenous TMEM59 interacts with ATG16L1 and mediates autophagy in response to
Staphylococcus aureus
infection.
A new ATG16L1‐binding motif identified in several innate immune response proteins is involved in a non‐classical form of autophagy in response to bacterial infection. |
---|---|
AbstractList | Selective autophagy underlies many of the important physiological roles that autophagy plays in multicellular organisms, but the mechanisms involved in cargo selection are poorly understood. Here we describe a molecular mechanism that can target conventional endosomes for autophagic degradation. We show that the human transmembrane protein TMEM59 contains a minimal 19-amino-acid peptide in its intracellular domain that promotes LC3 labelling and lysosomal targeting of its own endosomal compartment. Interestingly, this peptide defines a novel protein motif that mediates interaction with the WD-repeat domain of ATG16L1, thus providing a mechanistic basis for the activity. The motif is represented with the same ATG16L1-binding ability in other molecules, suggesting a more general relevance. We propose that this motif may play an important role in targeting specific membranous compartments for autophagic degradation, and therefore it may facilitate the search for adaptor proteins that promote selective autophagy by engaging ATG16L1. Endogenous TMEM59 interacts with ATG16L1 and mediates autophagy in response to Staphylococcus aureus infection. Selective autophagy underlies many of the important physiological roles that autophagy plays in multicellular organisms, but the mechanisms involved in cargo selection are poorly understood. Here we describe a molecular mechanism that can target conventional endosomes for autophagic degradation. We show that the human transmembrane protein TMEM59 contains a minimal 19‐amino‐acid peptide in its intracellular domain that promotes LC3 labelling and lysosomal targeting of its own endosomal compartment. Interestingly, this peptide defines a novel protein motif that mediates interaction with the WD‐repeat domain of ATG16L1, thus providing a mechanistic basis for the activity. The motif is represented with the same ATG16L1‐binding ability in other molecules, suggesting a more general relevance. We propose that this motif may play an important role in targeting specific membranous compartments for autophagic degradation, and therefore it may facilitate the search for adaptor proteins that promote selective autophagy by engaging ATG16L1. Endogenous TMEM59 interacts with ATG16L1 and mediates autophagy in response to Staphylococcus aureus infection. A new ATG16L1‐binding motif identified in several innate immune response proteins is involved in a non‐classical form of autophagy in response to bacterial infection. Selective autophagy underlies many of the important physiological roles that autophagy plays in multicellular organisms, but the mechanisms involved in cargo selection are poorly understood. Here we describe a molecular mechanism that can target conventional endosomes for autophagic degradation. We show that the human transmembrane protein TMEM59 contains a minimal 19-amino-acid peptide in its intracellular domain that promotes LC3 labelling and lysosomal targeting of its own endosomal compartment. Interestingly, this peptide defines a novel protein motif that mediates interaction with the WD-repeat domain of ATG16L1, thus providing a mechanistic basis for the activity. The motif is represented with the same ATG16L1-binding ability in other molecules, suggesting a more general relevance. We propose that this motif may play an important role in targeting specific membranous compartments for autophagic degradation, and therefore it may facilitate the search for adaptor proteins that promote selective autophagy by engaging ATG16L1. Endogenous TMEM59 interacts with ATG16L1 and mediates autophagy in response to Staphylococcus aureus infection. [PUBLICATION ABSTRACT] A new ATG16L1-binding motif identified in several innate immune response proteins is involved in a non-classical form of autophagy in response to bacterial infection. Selective autophagy underlies many of the important physiological roles that autophagy plays in multicellular organisms, but the mechanisms involved in cargo selection are poorly understood. Here we describe a molecular mechanism that can target conventional endosomes for autophagic degradation. We show that the human transmembrane protein TMEM59 contains a minimal 19-amino-acid peptide in its intracellular domain that promotes LC3 labelling and lysosomal targeting of its own endosomal compartment. Interestingly, this peptide defines a novel protein motif that mediates interaction with the WD-repeat domain of ATG16L1, thus providing a mechanistic basis for the activity. The motif is represented with the same ATG16L1-binding ability in other molecules, suggesting a more general relevance. We propose that this motif may play an important role in targeting specific membranous compartments for autophagic degradation, and therefore it may facilitate the search for adaptor proteins that promote selective autophagy by engaging ATG16L1. Endogenous TMEM59 interacts with ATG16L1 and mediates autophagy in response to Staphylococcus aureus infection. Selective autophagy underlies many of the important physiological roles that autophagy plays in multicellular organisms, but the mechanisms involved in cargo selection are poorly understood. Here we describe a molecular mechanism that can target conventional endosomes for autophagic degradation. We show that the human transmembrane protein TMEM59 contains a minimal 19‐amino‐acid peptide in its intracellular domain that promotes LC3 labelling and lysosomal targeting of its own endosomal compartment. Interestingly, this peptide defines a novel protein motif that mediates interaction with the WD‐repeat domain of ATG16L1, thus providing a mechanistic basis for the activity. The motif is represented with the same ATG16L1‐binding ability in other molecules, suggesting a more general relevance. We propose that this motif may play an important role in targeting specific membranous compartments for autophagic degradation, and therefore it may facilitate the search for adaptor proteins that promote selective autophagy by engaging ATG16L1. Endogenous TMEM59 interacts with ATG16L1 and mediates autophagy in response to Staphylococcus aureus infection. A new ATG16L1‐binding motif identified in several innate immune response proteins is involved in a non‐classical form of autophagy in response to bacterial infection. |
Author | Fleischer, Aarne Boada‐Romero, Emilio Ramón‐Barros, Cristina Letek, Michal Pallauf, Kathrin Pimentel‐Muiños, Felipe X |
Author_xml | – sequence: 1 givenname: Emilio surname: Boada-Romero fullname: Boada-Romero, Emilio organization: Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain – sequence: 2 givenname: Michal surname: Letek fullname: Letek, Michal organization: Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain – sequence: 3 givenname: Aarne surname: Fleischer fullname: Fleischer, Aarne organization: Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain – sequence: 4 givenname: Kathrin surname: Pallauf fullname: Pallauf, Kathrin organization: Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain – sequence: 5 givenname: Cristina surname: Ramón-Barros fullname: Ramón-Barros, Cristina organization: Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain – sequence: 6 givenname: Felipe X surname: Pimentel-Muiños fullname: Pimentel-Muiños, Felipe X email: fxp@usal.es organization: Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23376921$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktvEzEUhS1URNPCjjUaiQ0LJvgx48cGqURpCkqKVAV1aTmeO6nDxE7Hk9D-ezwkRAUhVrbl7557ro_P0IkPHhB6TfCQYCY_wHoRVkOKCRvKZ2hACo5zikV5ggaYcpIXRKpTdBbjCmNcSkFeoFPKmOCKkgG6mc_Gs1JlFdTOQ8xM5sMOmuxiPiF8SvKF85Xzy2wdOldn3Z3psk0b0imxTbCmyYzt3M50Lvgs1Nl0xF6i57VpIrw6rOfo2-V4PrrKp18nn0cX09yWjMocCFZcYcuBc6Ws5bRQkpaVVZgpsNhWQCspieIgmeSMVmAFAV6XUPIiaZyjj3vdzXaxhsqC71rT6E3r1qZ91ME4_eeNd3d6GXaalUKlZ0oC7w4CbbjfQuz02kULTWM8hG3UhBFKBGGs7_X2L3QVtq1P42lCFcFCKMES9X5P2TbE2EJ9NEOw7sPSv8LSfVhaJvzN0wGO8O90EsD2wA_XwON_xfR49ulLv-1l831VTAV-Ce0Tr_-2ceBd7ODh2MW03zUXTJT69nqii_QZ6NXttb5hPwEKF75q |
CODEN | EMJODG |
CitedBy_id | crossref_primary_10_3390_separations9110341 crossref_primary_10_1080_15548627_2016_1256521 crossref_primary_10_1080_15548627_2022_2039994 crossref_primary_10_1016_j_jep_2024_118462 crossref_primary_10_1360_SSV_2022_0048 crossref_primary_10_1111_bph_15192 crossref_primary_10_3390_ijms241411721 crossref_primary_10_1038_cdd_2015_80 crossref_primary_10_14336_AD_2023_0106 crossref_primary_10_1016_j_npep_2018_06_004 crossref_primary_10_1038_ncb3053 crossref_primary_10_1002_cam4_4440 crossref_primary_10_1016_j_neulet_2017_03_007 crossref_primary_10_1038_nrmicro3160 crossref_primary_10_1098_rsob_150008 crossref_primary_10_3389_fimmu_2018_01864 crossref_primary_10_5487_TR_2017_33_3_205 crossref_primary_10_1038_onc_2016_9 crossref_primary_10_3390_cells9081845 crossref_primary_10_1016_j_cell_2017_07_035 crossref_primary_10_3390_genes14122171 crossref_primary_10_3390_cells8010002 crossref_primary_10_1186_s12964_023_01126_z crossref_primary_10_1016_j_neurobiolaging_2018_03_010 crossref_primary_10_3389_fgene_2022_937300 crossref_primary_10_1016_j_celrep_2021_109045 crossref_primary_10_1080_08916934_2024_2321908 crossref_primary_10_1016_j_biochi_2017_10_013 crossref_primary_10_1111_cei_12658 crossref_primary_10_4049_jimmunol_1900750 crossref_primary_10_1016_j_bbagrm_2018_03_001 crossref_primary_10_1126_sciadv_abn3298 crossref_primary_10_1177_10738584241252576 crossref_primary_10_1038_ncomms11821 crossref_primary_10_1128_mSphere_00374_18 crossref_primary_10_4161_auto_27244 crossref_primary_10_1007_s40139_013_0030_y crossref_primary_10_1111_febs_15833 crossref_primary_10_1097_MD_0000000000035422 crossref_primary_10_1126_sciadv_abo1274 crossref_primary_10_1038_s41419_020_02874_3 crossref_primary_10_1007_s12035_016_0349_6 crossref_primary_10_1016_j_ejcb_2018_09_002 crossref_primary_10_1016_j_febslet_2013_04_025 crossref_primary_10_1007_s11064_019_02866_6 crossref_primary_10_1080_15548627_2023_2234797 crossref_primary_10_1038_s41587_022_01539_0 crossref_primary_10_1038_s41598_019_41260_8 crossref_primary_10_3389_fnagi_2022_889057 crossref_primary_10_1002_pro_3222 crossref_primary_10_1016_j_meegid_2020_104404 crossref_primary_10_18632_oncotarget_7120 crossref_primary_10_4161_auto_29411 crossref_primary_10_1038_nsmb_2787 crossref_primary_10_3390_antibiotics8040241 crossref_primary_10_1016_j_molcel_2021_06_017 crossref_primary_10_1371_journal_pone_0076237 crossref_primary_10_1073_pnas_1721321115 crossref_primary_10_3389_fmicb_2022_914971 crossref_primary_10_1080_21505594_2024_2351234 crossref_primary_10_1016_j_tibs_2021_01_004 crossref_primary_10_1128_mBio_00959_18 crossref_primary_10_1007_s00018_022_04308_z crossref_primary_10_1111_bcpt_13869 crossref_primary_10_1038_s41598_019_51894_3 crossref_primary_10_1080_15548627_2018_1534507 crossref_primary_10_1242_jcs_249227 crossref_primary_10_1007_s12035_016_9997_9 crossref_primary_10_15252_embj_2022113012 crossref_primary_10_1038_s41421_020_0155_1 crossref_primary_10_1073_pnas_2005389117 crossref_primary_10_1016_j_nbt_2022_01_010 crossref_primary_10_1098_rsob_140178 crossref_primary_10_15252_embr_202153429 crossref_primary_10_1038_s41467_019_09667_z crossref_primary_10_1038_cddis_2016_230 crossref_primary_10_1038_s41467_020_19670_4 crossref_primary_10_1038_s41556_019_0274_9 crossref_primary_10_3390_cells8090973 crossref_primary_10_1080_15548627_2022_2054241 crossref_primary_10_1038_ncb3089 crossref_primary_10_1097_MOG_0b013e328365d34d crossref_primary_10_3390_cells11152262 crossref_primary_10_15252_embj_201797840 crossref_primary_10_15252_embj_201798895 crossref_primary_10_3389_fimmu_2022_1054157 |
Cites_doi | 10.1038/ncb1192 10.1038/nature04724 10.4161/auto.4600 10.1091/mbc.E05-03-0213 10.1038/nrm3028 10.1016/0092-8674(93)90304-9 10.1038/nrm2708 10.1242/jcs.064576 10.1091/mbc.E10-11-0893 10.1074/jbc.M109.037671 10.1038/sj.onc.1210600 10.1016/j.febslet.2010.01.018 10.1038/ni.1800 10.1038/nature09782 10.1038/embor.2009.256 10.1016/j.molcel.2010.09.023 10.1016/j.ceb.2011.03.003 10.1007/978-3-642-00302-8_1 10.1016/j.bbamcr.2009.03.003 10.1016/j.molcel.2009.01.020 10.1016/j.febslet.2010.04.041 10.1101/gad.1599207 10.1038/ncb2078 10.1089/ars.2010.3482 10.1074/jbc.C700195200 10.1111/j.1600-065X.2010.00995.x 10.1038/cdd.2009.54 10.1016/j.cell.2004.11.038 10.1007/978-3-642-00302-8_7 10.1016/j.chom.2009.05.016 10.1038/nature06421 10.1016/j.ijmm.2009.08.019 10.4161/auto.5338 10.1146/annurev-genet-102808-114910 10.1038/emboj.2009.90 10.1074/jbc.M109.055608 10.1016/S0070-2153(06)78006-1 10.1016/j.devcel.2008.08.012 10.1111/j.1365-2443.2010.01433.x 10.1242/jcs.00381 10.1016/j.cub.2011.11.034 10.1146/annurev-cellbio-092910-154005 10.1126/science.1205405 10.1016/j.gde.2010.12.008 10.4161/auto.7.3.14539 10.1016/j.cell.2007.12.018 10.1146/annurev.biochem.72.121801.161800 10.1038/ni.1823 10.1128/IAI.68.9.5385-5392.2000 10.1016/j.cell.2011.10.026 10.1016/j.cell.2010.01.028 10.1038/nature06639 10.4161/auto.7.3.14487 10.1038/nrm2745 10.1016/j.semcdb.2010.02.008 10.1074/jbc.M702824200 10.1038/cdd.2009.33 10.1126/science.1193497 10.1016/j.cell.2009.03.048 10.1038/sj.cdd.4402120 10.1016/j.molcel.2009.04.026 10.1083/jcb.200408169 10.1074/jbc.M609784200 10.1016/j.mib.2010.11.001 10.1016/j.cmet.2011.04.004 10.1038/nature04723 10.1016/0092-8674(87)90543-5 10.1158/0008-5472.CAN-09-4027 10.1091/mbc.E07-12-1257 |
ContentType | Journal Article |
Copyright | European Molecular Biology Organization 2013 Copyright © 2013 European Molecular Biology Organization Copyright Nature Publishing Group Feb 20, 2013 Copyright © 2013, European Molecular Biology Organization 2013 European Molecular Biology Organization |
Copyright_xml | – notice: European Molecular Biology Organization 2013 – notice: Copyright © 2013 European Molecular Biology Organization – notice: Copyright Nature Publishing Group Feb 20, 2013 – notice: Copyright © 2013, European Molecular Biology Organization 2013 European Molecular Biology Organization |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PCBAR PQEST PQQKQ PQUKI Q9U RC3 7X8 5PM |
DOI | 10.1038/emboj.2013.8 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | A novel ATG16L1-binding motif |
EISSN | 1460-2075 |
EndPage | 582 |
ExternalDocumentID | 2897587501 10_1038_emboj_2013_8 23376921 EMBJ20138 ark_67375_WNG_46L12HWN_R |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 3V. 4.4 53G 5VS 70F 7X7 88A 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ABLJU ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSMW ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BKSAR BMNLL BMXJE BPHCQ BRXPI BSCLL BTFSW BVXVI C6C CCPQU CS3 D1J DCZOG DIK DPXWK DRFUL DRSTM DU5 DWQXO E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HH5 HK~ HMCUK HYE KQ8 LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M0L M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W PCBAR PQQKQ PROAC PSQYO Q2X RHF RHI RIG RNS ROL RPM SV3 TN5 TR2 UKHRP WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PQEST PQUKI Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5328-e109690c6e6699cc6249825dc9039ec0cde2d88196e838632dec71e6f5e564c53 |
IEDL.DBID | RPM |
ISSN | 0261-4189 |
IngestDate | Tue Sep 17 21:23:06 EDT 2024 Fri Aug 16 20:58:33 EDT 2024 Thu Oct 10 20:54:31 EDT 2024 Fri Aug 23 03:16:12 EDT 2024 Sat Sep 28 07:53:06 EDT 2024 Sat Aug 24 00:59:36 EDT 2024 Fri Oct 18 01:25:21 EDT 2024 Wed Oct 30 09:49:15 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | TMEM59 autophagy ATG16L1 WD‐repeat domain vesicle trafficking |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5328-e109690c6e6699cc6249825dc9039ec0cde2d88196e838632dec71e6f5e564c53 |
Notes | Supplementary InformationReview Process FileSource data fig 1Source data fig 2Source data fig 3Source data fig 4Source data fig 5Source data fig 6Source data fig 7Source data fig 8Source data fig 9 ark:/67375/WNG-46L12HWN-R istex:52A3D67A51652CDE1547335BEFB8BAB5C967408D ArticleID:EMBJ20138 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc3579146?pdf=render |
PMID | 23376921 |
PQID | 1291077973 |
PQPubID | 35985 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3579146 proquest_miscellaneous_1312171335 proquest_journals_1291077973 crossref_primary_10_1038_emboj_2013_8 pubmed_primary_23376921 wiley_primary_10_1038_emboj_2013_8_EMBJ20138 springer_journals_10_1038_emboj_2013_8 istex_primary_ark_67375_WNG_46L12HWN_R |
PublicationCentury | 2000 |
PublicationDate | February 20, 2013 |
PublicationDateYYYYMMDD | 2013-02-20 |
PublicationDate_xml | – month: 02 year: 2013 text: February 20, 2013 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: London – name: England – name: Heidelberg |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2013 |
Publisher | John Wiley & Sons, Ltd Nature Publishing Group UK Blackwell Publishing Ltd Nature Publishing Group |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Nature Publishing Group UK – name: Blackwell Publishing Ltd – name: Nature Publishing Group |
References | Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147: 728-741 Noda NN, Ohsumi Y, Inagaki F (2010) Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 584: 1379-1385 Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441: 880-884 Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131-24145 Campoy E, Colombo MI (2009) Autophagy in intracellular bacterial infection. Biochim Biophys Acta 1793: 1465-1477 Noda T, Fujita N, Yoshimori T (2009) The late stages of autophagy: how does the end begin? Cell Death Differ 16: 984-990 Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7: 279-296 Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27: 107-132 Kahl BC, Goulian M, van Wamel W, Herrmann M, Simon SM, Kaplan G, Peters G, Cheung AL (2000) Staphylococcus aureus RN6390 replicates and induces apoptosis in a pulmonary epithelial cell line. Infect Immun 68: 5385-5392 Deretic V (2011) Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 240: 92-104 Mizushima N (2007) Autophagy: process and function. Genes Dev 21: 2861-2873 Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12: 9-14 Dikic I, Johansen T, Kirkin V (2010) Selective autophagy in cancer development and therapy. Cancer Res 70: 3431-3434 Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10: 458-467 Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335: 1-32 Mathew R, White E (2011) Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr Opin Genet Dev 21: 113-119 Kageyama S, Omori H, Saitoh T, Sone T, Guan JL, Akira S, Imamoto F, Noda T, Yoshimori T (2011) The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol Biol Cell 22: 2290-2300 Shahnazari S, Brumell JH (2011) Mechanisms and consequences of bacterial targeting by the autophagy pathway. Curr Opin Microbiol 14: 68-75 Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6: 1221-1228 Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10: 1215-1221 Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469: 323-335 Randow F (2011) How cells deploy ubiquitin and autophagy to defend their cytosol from bacterial invasion. Autophagy 7: 304-309 Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116: 1679-1688 Knaevelsrud H, Simonsen A (2010) Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett 584: 2635-2645 Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5: 527-549 Garcia-Arencibia M, Hochfeld WE, Toh PP, Rubinsztein DC (2010) Autophagy, a guardian against neurodegeneration. Semin Cell Dev Biol 21: 691-698 Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132: 27-42 Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, Green DR (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450: 1253-1257 Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nunez G, Girardin SE, Philpott DJ (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11: 55-62 Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282: 37298-37302 Janvier K, Bonifacino JS (2005) Role of the endocytic machinery in the sorting of lysosome-associated membrane proteins. Mol Biol Cell 16: 4231-4242 Kirkin V, McEwan DG, Novak I, Dikic I (2009b) A role for ubiquitin in selective autophagy. Mol Cell 34: 259-269 Sinha B, Fraunholz M (2010) Staphylococcus aureus host cell invasion and post-invasion events. Int J Med Microbiol 300: 170-175 Tanida I (2011) Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal 14: 2201-2214 Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330: 1344-1348 Fujita N, Saitoh T, Kageyama S, Akira S, Noda T, Yoshimori T (2009) Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts. J Biol Chem 284: 32602-32609 He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43: 67-93 Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Lohr F, Popovic D, Occhipinti A, Reichert AS, Terzic J, Dotsch V, Ney PA, Dikic I (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11: 45-51 Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dotsch V, Bumann D, Dikic I (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333: 228-233 Cadwell K, Stappenbeck TS, Virgin HW (2009) Role of autophagy and autophagy genes in inflammatory bowel disease. Curr Top Microbiol Immunol 335: 141-167 Kolanus W, Romeo C, Seed B (1993) T cell activation by clustered tyrosine kinases. Cell 74: 171-183 Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40: 280-293 Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12: 747-757 Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075 Singh R, Cuervo AM (2011) Autophagy in the cellular energetic balance. Cell Metab 13: 495-504 Rubinsztein DC, Shpilka T, Elazar Z (2012) Mechanisms of autophagosome biogenesis. Curr Biol 22: R29-R34 Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151-175 Klee M, Pallauf K, Alcalá S, Fleischer A, Pimentel-Muiños FX (2009) Mitochondrial apoptosis induced by BH3-only molecules in the exclusive presence of endoplasmic reticular Bak. EMBO J 28: 1757-1768 Lippincott-Schwartz J, Fambrough DM (1987) Cycling of the integral membrane glycoprotein, LEP100, between plasma membrane and lysosomes: kinetic and morphological analysis. Cell 49: 669-677 Schnaith A, Kashkar H, Leggio SA, Addicks K, Kronke M, Krut O (2007) Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J Biol Chem 282: 2695-2706 Klee M, Pimentel-Muiños FX (2005) Bcl-X(L) specifically activates Bak to induce swelling and restructuring of the endoplasmic reticulum. J Cell Biol 168: 723-734 Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3: 542-545 Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062-1075 Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16: 966-975 Komatsu M, Ichimura Y (2010) Selective autophagy regulates various cellular functions. Genes Cells 15: 923-933 Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140: 313-326 Cecconi F, Levine B (2008) The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 15: 344-357 Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10: 623-635 Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72: 395-447 Komatsu M, Ueno T, Waguri S, Uchiyama Y, Kominami E, Tanaka K (2007) Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons. Cell Death Differ 14: 887-894 Ullrich S, Munch A, Neumann S, Kremmer E, Tatzelt J, Lichtenthaler SF (2010) The novel membrane protein TMEM59 modulates complex glycosylation, cell surface expression, and secretion of the amyloid precursor protein. J Biol Chem 285: 20664-20674 Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119: 753-766 Alcalá S, Klee M, Fernandez J, Fleischer A, Pimentel-Muiños FX (2008) A high-throughput screening for mammalian cell death effectors identifies the mitochondrial phosphate carrier as a regulator of cytochrome c release. Oncogene 27: 44-54 Kirkin V, Singh, Cuervo (CR62) 2011; 13 Rabinowitz, White (CR53) 2010; 330 Dikic, Johansen, Kirkin (CR9) 2010; 70 Janvier, Bonifacino (CR21) 2005; 16 Mizushima, Komatsu (CR42) 2011; 147 Rubinsztein, Shpilka, Elazar (CR56) 2012; 22 Gutierrez, Master, Singh, Taylor, Colombo, Deretic (CR17) 2004; 119 He, Klionsky (CR20) 2009; 43 Shimizu, Kanaseki, Mizushima, Mizuta, Arakawa‐Kobayashi, Thompson, Tsujimoto (CR61) 2004; 6 Randow (CR54) 2011; 7 Eisenberg‐Lerner, Bialik, Simon, Kimchi (CR10) 2009; 16 Garcia‐Arencibia, Hochfeld, Toh, Rubinsztein (CR15) 2010; 21 Fujita, Itoh, Omori, Fukuda, Noda, Yoshimori (CR12) 2008; 19 Komatsu, Ichimura (CR32) 2010; 15 Mizushima, Kuma, Kobayashi, Yamamoto, Matsubae, Takao, Natsume, Ohsumi, Yoshimori (CR43) 2003; 116 Tanida (CR64) 2011; 14 Fujita, Yoshimori (CR14) 2011; 23 Mizushima (CR41) 2007; 21 Kirkin, McEwan, Novak, Dikic (CR26) 2009; 34 Komatsu, Ueno, Waguri, Uchiyama, Kominami, Tanaka (CR33) 2007; 14 Chen, Klionsky (CR6) 2011; 124 Komatsu, Waguri, Chiba, Murata, Iwata, Tanida, Ueno, Koike, Uchiyama, Kominami, Tanaka (CR34) 2006; 441 Noda, Ohsumi, Inagaki (CR49) 2010; 584 Klionsky, Abeliovich, Agostinis, Agrawal, Aliev, Askew, Baba, Baehrecke, Bahr, Ballabio, Bamber, Bassham, Bergamini, Bi, Biard‐Piechaczyk, Blum, Bredesen, Brodsky, Brumell, Brunk (CR29) 2008; 4 Kirkin, Lamark, Sou, Bjorkoy, Nunn, Bruun, Shvets, McEwan, Clausen, Wild, Bilusic, Theurillat, Overvatn, Ishii, Elazar, Komatsu, Dikic, Johansen (CR25) 2009; 33 Mizushima, Yoshimori, Levine (CR46) 2010; 140 Kroemer, Marino, Levine (CR35) 2010; 40 Hanada, Noda, Satomi, Ichimura, Fujioka, Takao, Inagaki, Ohsumi (CR18) 2007; 282 Shahnazari, Brumell (CR60) 2011; 14 Kolanus, Romeo, Seed (CR31) 1993; 74 Levine, Mizushima, Virgin (CR37) 2011; 469 Thurston, Ryzhakov, Bloor, von Muhlinen, Randow (CR65) 2009; 10 Klee, Pimentel‐Muiños (CR28) 2005; 168 Mathew, Karp, Beaudoin, Vuong, Chen, Chen, Bray, Reddy, Bhanot, Gelinas, Dipaola, Karantza‐Wadsworth, White (CR39) 2009; 137 Mathew, White (CR40) 2011; 21 Sinha, Fraunholz (CR63) 2010; 300 Gozuacik, Kimchi (CR16) 2007; 78 Travassos, Carneiro, Ramjeet, Hussey, Kim, Magalhaes, Yuan, Soares, Chea, Le Bourhis, Boneca, Allaoui, Jones, Nunez, Girardin, Philpott (CR66) 2010; 11 Ullrich, Munch, Neumann, Kremmer, Tatzelt, Lichtenthaler (CR67) 2010; 285 Kageyama, Omori, Saitoh, Sone, Guan, Akira, Imamoto, Noda, Yoshimori (CR23) 2011; 22 Noda, Fujita, Yoshimori (CR50) 2009; 16 Fujita, Saitoh, Kageyama, Akira, Noda, Yoshimori (CR13) 2009; 284 Nakatogawa, Suzuki, Kamada, Ohsumi (CR48) 2009; 10 Campoy, Colombo (CR4) 2009; 1793 Mizushima, Yoshimori (CR45) 2007; 3 Cecconi, Levine (CR5) 2008; 15 Lippincott‐Schwartz, Fambrough (CR38) 1987; 49 Mizushima, Levine, Cuervo, Klionsky (CR44) 2008; 451 Kahl, Goulian, van Wamel, Herrmann, Simon, Kaplan, Peters, Cheung (CR24) 2000; 68 Levine, Kroemer (CR36) 2008; 132 Deretic, Levine (CR8) 2009; 5 Schnaith, Kashkar, Leggio, Addicks, Kronke, Krut (CR59) 2007; 282 Cadwell, Stappenbeck, Virgin (CR3) 2009; 335 Wild, Farhan, McEwan, Wagner, Rogov, Brady, Richter, Korac, Waidmann, Choudhary, Dotsch, Bumann, Dikic (CR68) 2011; 333 Yang, Klionsky (CR69) 2009; 335 Sanjuan, Dillon, Tait, Moshiach, Dorsey, Connell, Komatsu, Tanaka, Cleveland, Withoff, Green (CR58) 2007; 450 Alcalá, Klee, Fernandez, Fleischer, Pimentel‐Muiños (CR1) 2008; 27 Knaevelsrud, Simonsen (CR30) 2010; 584 Youle, Narendra (CR70) 2011; 12 Ravikumar, Moreau, Jahreiss, Puri, Rubinsztein (CR55) 2010; 12 Klee, Pallauf, Alcalá, Fleischer, Pimentel‐Muiños (CR27) 2009; 28 Bonifacino, Traub (CR2) 2003; 72 Saftig, Klumperman (CR57) 2009; 10 Pankiv, Clausen, Lamark, Brech, Bruun, Outzen, Overvatn, Bjorkoy, Johansen (CR52) 2007; 282 Johansen, Lamark (CR22) 2011; 7 Hara, Nakamura, Matsui, Yamamoto, Nakahara, Suzuki‐Migishima, Yokoyama, Mishima, Saito, Okano, Mizushima (CR19) 2006; 441 Mizushima, Yoshimori, Ohsumi (CR47) 2011; 27 Deretic (CR7) 2011; 240 Novak, Kirkin, McEwan, Zhang, Wild, Rozenknop, Rogov, Lohr, Popovic, Occhipinti, Reichert, Terzic, Dotsch, Ney, Dikic (CR51) 2010; 11 2010; 12 2010; 11 2010; 15 2009; 43 2003; 116 2010; 300 2010; 584 2004; 6 2011; 13 2010; 140 2011; 12 2008; 4 2011; 14 2007; 78 2010; 21 2011; 124 2009; 10 2009a; 33 2008; 27 1993; 74 2007; 450 2011; 22 2011; 21 2011; 23 2009; 284 2007; 3 2011; 240 2010; 70 2007; 21 2011; 27 2012; 22 2009; 1793 2009; 16 2006; 441 1987; 49 2011; 333 2007; 282 2000; 68 2008; 19 2008; 15 2010; 285 2003; 72 2009; 335 2011; 7 2007; 14 2010; 40 2009; 137 2009; 28 2011; 147 2009b; 34 2011; 469 2005; 168 2010; 330 2009; 5 2004; 119 2005; 16 2008; 132 2008; 451 21179058 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):9-14 20424122 - Cancer Res. 2010 May 1;70(9):3431-4 18804433 - Dev Cell. 2008 Sep;15(3):344-57 20427278 - J Biol Chem. 2010 Jul 2;285(27):20664-74 18191218 - Cell. 2008 Jan 11;132(1):27-42 18321988 - Mol Biol Cell. 2008 May;19(5):2092-100 12665549 - J Cell Sci. 2003 May 1;116(Pt 9):1679-88 21193841 - Autophagy. 2011 Mar;7(3):304-9 19450525 - Mol Cell. 2009 May 15;34(3):259-69 19653858 - Annu Rev Genet. 2009;43:67-93 17332773 - Cell Death Differ. 2007 May;14(5):887-94 20188203 - Semin Cell Dev Biol. 2010 Sep;21(7):691-8 22078875 - Cell. 2011 Nov 11;147(4):728-41 21801009 - Annu Rev Cell Dev Biol. 2011;27:107-32 18006683 - Genes Dev. 2007 Nov 15;21(22):2861-73 19524509 - Cell. 2009 Jun 12;137(6):1062-75 17135247 - J Biol Chem. 2007 Jan 26;282(4):2695-706 20083108 - FEBS Lett. 2010 Apr 2;584(7):1379-85 20712405 - Antioxid Redox Signal. 2011 Jun;14(11):2201-14 21450448 - Curr Opin Cell Biol. 2011 Aug;23(4):492-7 21531332 - Cell Metab. 2011 May 4;13(5):495-504 20010802 - EMBO Rep. 2010 Jan;11(1):45-51 10948168 - Infect Immun. 2000 Sep;68(9):5385-92 19783656 - J Biol Chem. 2009 Nov 20;284(47):32602-9 18097414 - Nature. 2007 Dec 20;450(7173):1253-7 19820708 - Nat Immunol. 2009 Nov;10(11):1215-21 17621274 - Oncogene. 2008 Jan 3;27(1):44-54 19672277 - Nat Rev Mol Cell Biol. 2009 Sep;10(9):623-35 21112809 - Curr Opin Microbiol. 2011 Feb;14(1):68-75 19527881 - Cell Host Microbe. 2009 Jun 18;5(6):527-49 21255998 - Curr Opin Genet Dev. 2011 Feb;21(1):113-9 22240478 - Curr Biol. 2012 Jan 10;22(1):R29-34 12651740 - Annu Rev Biochem. 2003;72:395-447 21127245 - Science. 2010 Dec 3;330(6009):1344-8 18188003 - Autophagy. 2008 Feb;4(2):151-75 19898471 - Nat Immunol. 2010 Jan;11(1):55-62 3107839 - Cell. 1987 Jun 5;49(5):669-77 19339988 - EMBO J. 2009 Jun 17;28(12):1757-68 21189453 - Autophagy. 2011 Mar;7(3):279-96 19802558 - Curr Top Microbiol Immunol. 2009;335:1-32 15607973 - Cell. 2004 Dec 17;119(6):753-66 20144757 - Cell. 2010 Feb 5;140(3):313-26 19802564 - Curr Top Microbiol Immunol. 2009;335:141-67 21617041 - Science. 2011 Jul 8;333(6039):228-33 17338918 - Curr Top Dev Biol. 2007;78:217-45 20965422 - Mol Cell. 2010 Oct 22;40(2):280-93 21349088 - Immunol Rev. 2011 Mar;240(1):92-104 17986448 - J Biol Chem. 2007 Dec 28;282(52):37298-302 8334702 - Cell. 1993 Jul 16;74(1):171-83 15558033 - Nat Cell Biol. 2004 Dec;6(12):1221-8 15987739 - Mol Biol Cell. 2005 Sep;16(9):4231-42 17611390 - Autophagy. 2007 Nov-Dec;3(6):542-5 20670274 - Genes Cells. 2010 Sep 1;15(9):923-33 21525242 - Mol Biol Cell. 2011 Jul 1;22(13):2290-300 18305538 - Nature. 2008 Feb 28;451(7182):1069-75 19491929 - Nat Rev Mol Cell Biol. 2009 Jul;10(7):458-67 21248839 - Nature. 2011 Jan 20;469(7330):323-35 19424283 - Cell Death Differ. 2009 Jul;16(7):984-90 19250911 - Mol Cell. 2009 Feb 27;33(4):505-16 20639872 - Nat Cell Biol. 2010 Aug;12(8):747-57 21187343 - J Cell Sci. 2011 Jan 15;124(Pt 2):161-70 17580304 - J Biol Chem. 2007 Aug 17;282(33):24131-45 16625205 - Nature. 2006 Jun 15;441(7095):880-4 15728194 - J Cell Biol. 2005 Feb 28;168(5):723-34 16625204 - Nature. 2006 Jun 15;441(7095):885-9 20412801 - FEBS Lett. 2010 Jun 18;584(12):2635-45 19781990 - Int J Med Microbiol. 2010 Feb;300(2-3):170-5 19303905 - Biochim Biophys Acta. 2009 Sep;1793(9):1465-77 19325568 - Cell Death Differ. 2009 Jul;16(7):966-75 emboj20138-b21 emboj20138-b65 emboj20138-b2 emboj20138-b20 emboj20138-b64 emboj20138-b1 emboj20138-b63 emboj20138-b62 emboj20138-b7 emboj20138-b61 emboj20138-b6 emboj20138-b60 emboj20138-b5 emboj20138-b4 emboj20138-b28 Klionsky DJ (emboj20138-b29) 2008; 4 emboj20138-b27 emboj20138-b26 emboj20138-b25 Cadwell K (emboj20138-b3) 2009; 335 emboj20138-b24 emboj20138-b68 emboj20138-b23 emboj20138-b67 emboj20138-b22 emboj20138-b66 Yang Z (emboj20138-b69) 2009; 335 emboj20138-b19 emboj20138-b10 emboj20138-b54 emboj20138-b53 emboj20138-b52 emboj20138-b51 emboj20138-b50 emboj20138-b18 emboj20138-b17 emboj20138-b15 emboj20138-b59 emboj20138-b14 emboj20138-b58 emboj20138-b13 Gozuacik D (emboj20138-b16) 2007; 78 emboj20138-b57 emboj20138-b12 emboj20138-b56 emboj20138-b55 emboj20138-b43 emboj20138-b42 emboj20138-b41 emboj20138-b40 emboj20138-b49 emboj20138-b48 emboj20138-b47 Komatsu M (emboj20138-b33) 2007; 14 emboj20138-b46 emboj20138-b44 Mizushima N (emboj20138-b45) 2007; 3 emboj20138-b32 emboj20138-b31 emboj20138-b30 emboj20138-b70 emboj20138-b39 emboj20138-b38 emboj20138-b37 emboj20138-b36 emboj20138-b35 emboj20138-b34 emboj20138-b9 emboj20138-b8 |
References_xml | – volume: 78 start-page: 217 year: 2007 end-page: 245 ident: CR16 article-title: Autophagy and cell death publication-title: Curr Top Dev Biol contributor: fullname: Kimchi – volume: 49 start-page: 669 year: 1987 end-page: 677 ident: CR38 article-title: Cycling of the integral membrane glycoprotein, LEP100, between plasma membrane and lysosomes: kinetic and morphological analysis publication-title: Cell contributor: fullname: Fambrough – volume: 12 start-page: 747 year: 2010 end-page: 757 ident: CR55 article-title: Plasma membrane contributes to the formation of pre‐autophagosomal structures publication-title: Nat Cell Biol contributor: fullname: Rubinsztein – volume: 23 start-page: 492 year: 2011 end-page: 497 ident: CR14 article-title: Ubiquitination‐mediated autophagy against invading bacteria publication-title: Curr Opin Cell Biol contributor: fullname: Yoshimori – volume: 10 start-page: 1215 year: 2009 end-page: 1221 ident: CR65 article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin‐coated bacteria publication-title: Nat Immunol contributor: fullname: Randow – volume: 137 start-page: 1062 year: 2009 end-page: 1075 ident: CR39 article-title: Autophagy suppresses tumorigenesis through elimination of p62 publication-title: Cell contributor: fullname: White – volume: 1793 start-page: 1465 year: 2009 end-page: 1477 ident: CR4 article-title: Autophagy in intracellular bacterial infection publication-title: Biochim Biophys Acta contributor: fullname: Colombo – volume: 4 start-page: 151 year: 2008 end-page: 175 ident: CR29 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes publication-title: Autophagy contributor: fullname: Brunk – volume: 330 start-page: 1344 year: 2010 end-page: 1348 ident: CR53 article-title: Autophagy and metabolism publication-title: Science contributor: fullname: White – volume: 300 start-page: 170 year: 2010 end-page: 175 ident: CR63 article-title: Staphylococcus aureus host cell invasion and post‐invasion events publication-title: Int J Med Microbiol contributor: fullname: Fraunholz – volume: 16 start-page: 966 year: 2009 end-page: 975 ident: CR10 article-title: Life and death partners: apoptosis, autophagy and the cross‐talk between them publication-title: Cell Death Differ contributor: fullname: Kimchi – volume: 282 start-page: 24131 year: 2007 end-page: 24145 ident: CR52 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J Biol Chem contributor: fullname: Johansen – volume: 282 start-page: 2695 year: 2007 end-page: 2706 ident: CR59 article-title: Staphylococcus aureus subvert autophagy for induction of caspase‐independent host cell death publication-title: J Biol Chem contributor: fullname: Krut – volume: 13 start-page: 495 year: 2011 end-page: 504 ident: CR62 article-title: Autophagy in the cellular energetic balance publication-title: Cell Metab contributor: fullname: Cuervo – volume: 12 start-page: 9 year: 2011 end-page: 14 ident: CR70 article-title: Mechanisms of mitophagy publication-title: Nat Rev Mol Cell Biol contributor: fullname: Narendra – volume: 584 start-page: 1379 year: 2010 end-page: 1385 ident: CR49 article-title: Atg8‐family interacting motif crucial for selective autophagy publication-title: FEBS Lett contributor: fullname: Inagaki – volume: 16 start-page: 984 year: 2009 end-page: 990 ident: CR50 article-title: The late stages of autophagy: how does the end begin? publication-title: Cell Death Differ contributor: fullname: Yoshimori – volume: 21 start-page: 113 year: 2011 end-page: 119 ident: CR40 article-title: Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night publication-title: Curr Opin Genet Dev contributor: fullname: White – volume: 22 start-page: R29 year: 2012 end-page: R34 ident: CR56 article-title: Mechanisms of autophagosome biogenesis publication-title: Curr Biol contributor: fullname: Elazar – volume: 7 start-page: 279 year: 2011 end-page: 296 ident: CR22 article-title: Selective autophagy mediated by autophagic adapter proteins publication-title: Autophagy contributor: fullname: Lamark – volume: 584 start-page: 2635 year: 2010 end-page: 2645 ident: CR30 article-title: Fighting disease by selective autophagy of aggregate‐prone proteins publication-title: FEBS Lett contributor: fullname: Simonsen – volume: 240 start-page: 92 year: 2011 end-page: 104 ident: CR7 article-title: Autophagy in immunity and cell‐autonomous defense against intracellular microbes publication-title: Immunol Rev contributor: fullname: Deretic – volume: 14 start-page: 2201 year: 2011 end-page: 2214 ident: CR64 article-title: Autophagosome formation and molecular mechanism of autophagy publication-title: Antioxid Redox Signal contributor: fullname: Tanida – volume: 74 start-page: 171 year: 1993 end-page: 183 ident: CR31 article-title: T cell activation by clustered tyrosine kinases publication-title: Cell contributor: fullname: Seed – volume: 70 start-page: 3431 year: 2010 end-page: 3434 ident: CR9 article-title: Selective autophagy in cancer development and therapy publication-title: Cancer Res contributor: fullname: Kirkin – volume: 335 start-page: 1 year: 2009 end-page: 32 ident: CR69 article-title: An overview of the molecular mechanism of autophagy publication-title: Curr Top Microbiol Immunol contributor: fullname: Klionsky – volume: 28 start-page: 1757 year: 2009 end-page: 1768 ident: CR27 article-title: Mitochondrial apoptosis induced by BH3‐only molecules in the exclusive presence of endoplasmic reticular Bak publication-title: EMBO J contributor: fullname: Pimentel‐Muiños – volume: 5 start-page: 527 year: 2009 end-page: 549 ident: CR8 article-title: Autophagy, immunity, and microbial adaptations publication-title: Cell Host Microbe contributor: fullname: Levine – volume: 451 start-page: 1069 year: 2008 end-page: 1075 ident: CR44 article-title: Autophagy fights disease through cellular self‐digestion publication-title: Nature contributor: fullname: Klionsky – volume: 16 start-page: 4231 year: 2005 end-page: 4242 ident: CR21 article-title: Role of the endocytic machinery in the sorting of lysosome‐associated membrane proteins publication-title: Mol Biol Cell contributor: fullname: Bonifacino – volume: 14 start-page: 887 year: 2007 end-page: 894 ident: CR33 article-title: Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons publication-title: Cell Death Differ contributor: fullname: Tanaka – volume: 450 start-page: 1253 year: 2007 end-page: 1257 ident: CR58 article-title: Toll‐like receptor signalling in macrophages links the autophagy pathway to phagocytosis publication-title: Nature contributor: fullname: Green – volume: 469 start-page: 323 year: 2011 end-page: 335 ident: CR37 article-title: Autophagy in immunity and inflammation publication-title: Nature contributor: fullname: Virgin – volume: 441 start-page: 885 year: 2006 end-page: 889 ident: CR19 article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice publication-title: Nature contributor: fullname: Mizushima – volume: 3 start-page: 542 year: 2007 end-page: 545 ident: CR45 article-title: How to interpret LC3 immunoblotting publication-title: Autophagy contributor: fullname: Yoshimori – volume: 6 start-page: 1221 year: 2004 end-page: 1228 ident: CR61 article-title: Role of Bcl‐2 family proteins in a non‐apoptotic programmed cell death dependent on autophagy genes publication-title: Nat Cell Biol contributor: fullname: Tsujimoto – volume: 7 start-page: 304 year: 2011 end-page: 309 ident: CR54 article-title: How cells deploy ubiquitin and autophagy to defend their cytosol from bacterial invasion publication-title: Autophagy contributor: fullname: Randow – volume: 284 start-page: 32602 year: 2009 end-page: 32609 ident: CR13 article-title: Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts publication-title: J Biol Chem contributor: fullname: Yoshimori – volume: 22 start-page: 2290 year: 2011 end-page: 2300 ident: CR23 article-title: The LC3 recruitment mechanism is separate from Atg9L1‐dependent membrane formation in the autophagic response against Salmonella publication-title: Mol Biol Cell contributor: fullname: Yoshimori – volume: 335 start-page: 141 year: 2009 end-page: 167 ident: CR3 article-title: Role of autophagy and autophagy genes in inflammatory bowel disease publication-title: Curr Top Microbiol Immunol contributor: fullname: Virgin – volume: 68 start-page: 5385 year: 2000 end-page: 5392 ident: CR24 article-title: Staphylococcus aureus RN6390 replicates and induces apoptosis in a pulmonary epithelial cell line publication-title: Infect Immun contributor: fullname: Cheung – volume: 21 start-page: 2861 year: 2007 end-page: 2873 ident: CR41 article-title: Autophagy: process and function publication-title: Genes Dev contributor: fullname: Mizushima – volume: 21 start-page: 691 year: 2010 end-page: 698 ident: CR15 article-title: Autophagy, a guardian against neurodegeneration publication-title: Semin Cell Dev Biol contributor: fullname: Rubinsztein – volume: 14 start-page: 68 year: 2011 end-page: 75 ident: CR60 article-title: Mechanisms and consequences of bacterial targeting by the autophagy pathway publication-title: Curr Opin Microbiol contributor: fullname: Brumell – volume: 72 start-page: 395 year: 2003 end-page: 447 ident: CR2 article-title: Signals for sorting of transmembrane proteins to endosomes and lysosomes publication-title: Annu Rev Biochem contributor: fullname: Traub – volume: 15 start-page: 344 year: 2008 end-page: 357 ident: CR5 article-title: The role of autophagy in mammalian development: cell makeover rather than cell death publication-title: Dev Cell contributor: fullname: Levine – volume: 40 start-page: 280 year: 2010 end-page: 293 ident: CR35 article-title: Autophagy and the integrated stress response publication-title: Mol Cell contributor: fullname: Levine – volume: 27 start-page: 107 year: 2011 end-page: 132 ident: CR47 article-title: The role of atg proteins in autophagosome formation publication-title: Annu Rev Cell Dev Biol contributor: fullname: Ohsumi – volume: 147 start-page: 728 year: 2011 end-page: 741 ident: CR42 article-title: Autophagy: renovation of cells and tissues publication-title: Cell contributor: fullname: Komatsu – volume: 132 start-page: 27 year: 2008 end-page: 42 ident: CR36 article-title: Autophagy in the pathogenesis of disease publication-title: Cell contributor: fullname: Kroemer – volume: 333 start-page: 228 year: 2011 end-page: 233 ident: CR68 article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth publication-title: Science contributor: fullname: Dikic – volume: 124 start-page: 161 year: 2011 end-page: 170 ident: CR6 article-title: The regulation of autophagy‐unanswered questions publication-title: J Cell Sci contributor: fullname: Klionsky – volume: 34 start-page: 259 year: 2009 end-page: 269 ident: CR26 article-title: A role for ubiquitin in selective autophagy publication-title: Mol Cell contributor: fullname: Dikic – volume: 11 start-page: 45 year: 2010 end-page: 51 ident: CR51 article-title: Nix is a selective autophagy receptor for mitochondrial clearance publication-title: EMBO Rep contributor: fullname: Dikic – volume: 10 start-page: 623 year: 2009 end-page: 635 ident: CR57 article-title: Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function publication-title: Nat Rev Mol Cell Biol contributor: fullname: Klumperman – volume: 15 start-page: 923 year: 2010 end-page: 933 ident: CR32 article-title: Selective autophagy regulates various cellular functions publication-title: Genes Cells contributor: fullname: Ichimura – volume: 19 start-page: 2092 year: 2008 end-page: 2100 ident: CR12 article-title: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy publication-title: Mol Biol Cell contributor: fullname: Yoshimori – volume: 119 start-page: 753 year: 2004 end-page: 766 ident: CR17 article-title: Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages publication-title: Cell contributor: fullname: Deretic – volume: 43 start-page: 67 year: 2009 end-page: 93 ident: CR20 article-title: Regulation mechanisms and signaling pathways of autophagy publication-title: Annu Rev Genet contributor: fullname: Klionsky – volume: 282 start-page: 37298 year: 2007 end-page: 37302 ident: CR18 article-title: The Atg12‐Atg5 conjugate has a novel E3‐like activity for protein lipidation in autophagy publication-title: J Biol Chem contributor: fullname: Ohsumi – volume: 168 start-page: 723 year: 2005 end-page: 734 ident: CR28 article-title: Bcl‐X(L) specifically activates Bak to induce swelling and restructuring of the endoplasmic reticulum publication-title: J Cell Biol contributor: fullname: Pimentel‐Muiños – volume: 10 start-page: 458 year: 2009 end-page: 467 ident: CR48 article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast publication-title: Nat Rev Mol Cell Biol contributor: fullname: Ohsumi – volume: 116 start-page: 1679 year: 2003 end-page: 1688 ident: CR43 article-title: Mouse Apg16L, a novel WD‐repeat protein, targets to the autophagic isolation membrane with the Apg12‐Apg5 conjugate publication-title: J Cell Sci contributor: fullname: Yoshimori – volume: 140 start-page: 313 year: 2010 end-page: 326 ident: CR46 article-title: Methods in mammalian autophagy research publication-title: Cell contributor: fullname: Levine – volume: 27 start-page: 44 year: 2008 end-page: 54 ident: CR1 article-title: A high‐throughput screening for mammalian cell death effectors identifies the mitochondrial phosphate carrier as a regulator of cytochrome c release publication-title: Oncogene contributor: fullname: Pimentel‐Muiños – volume: 33 start-page: 505 year: 2009 end-page: 516 ident: CR25 article-title: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates publication-title: Mol Cell contributor: fullname: Johansen – volume: 285 start-page: 20664 year: 2010 end-page: 20674 ident: CR67 article-title: The novel membrane protein TMEM59 modulates complex glycosylation, cell surface expression, and secretion of the amyloid precursor protein publication-title: J Biol Chem contributor: fullname: Lichtenthaler – volume: 441 start-page: 880 year: 2006 end-page: 884 ident: CR34 article-title: Loss of autophagy in the central nervous system causes neurodegeneration in mice publication-title: Nature contributor: fullname: Tanaka – volume: 11 start-page: 55 year: 2010 end-page: 62 ident: CR66 article-title: Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry publication-title: Nat Immunol contributor: fullname: Philpott – volume: 22 start-page: R29 year: 2012 end-page: R34 article-title: Mechanisms of autophagosome biogenesis publication-title: Curr Biol – volume: 282 start-page: 37298 year: 2007 end-page: 37302 article-title: The Atg12‐Atg5 conjugate has a novel E3‐like activity for protein lipidation in autophagy publication-title: J Biol Chem – volume: 300 start-page: 170 year: 2010 end-page: 175 article-title: Staphylococcus aureus host cell invasion and post‐invasion events publication-title: Int J Med Microbiol – volume: 27 start-page: 107 year: 2011 end-page: 132 article-title: The role of atg proteins in autophagosome formation publication-title: Annu Rev Cell Dev Biol – volume: 68 start-page: 5385 year: 2000 end-page: 5392 article-title: Staphylococcus aureus RN6390 replicates and induces apoptosis in a pulmonary epithelial cell line publication-title: Infect Immun – volume: 284 start-page: 32602 year: 2009 end-page: 32609 article-title: Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts publication-title: J Biol Chem – volume: 584 start-page: 1379 year: 2010 end-page: 1385 article-title: Atg8‐family interacting motif crucial for selective autophagy publication-title: FEBS Lett – volume: 14 start-page: 2201 year: 2011 end-page: 2214 article-title: Autophagosome formation and molecular mechanism of autophagy publication-title: Antioxid Redox Signal – volume: 16 start-page: 984 year: 2009 end-page: 990 article-title: The late stages of autophagy: how does the end begin? publication-title: Cell Death Differ – volume: 34 start-page: 259 year: 2009b end-page: 269 article-title: A role for ubiquitin in selective autophagy publication-title: Mol Cell – volume: 282 start-page: 2695 year: 2007 end-page: 2706 article-title: Staphylococcus aureus subvert autophagy for induction of caspase‐independent host cell death publication-title: J Biol Chem – volume: 15 start-page: 344 year: 2008 end-page: 357 article-title: The role of autophagy in mammalian development: cell makeover rather than cell death publication-title: Dev Cell – volume: 14 start-page: 68 year: 2011 end-page: 75 article-title: Mechanisms and consequences of bacterial targeting by the autophagy pathway publication-title: Curr Opin Microbiol – volume: 3 start-page: 542 year: 2007 end-page: 545 article-title: How to interpret LC3 immunoblotting publication-title: Autophagy – volume: 335 start-page: 1 year: 2009 end-page: 32 article-title: An overview of the molecular mechanism of autophagy publication-title: Curr Top Microbiol Immunol – volume: 124 start-page: 161 year: 2011 end-page: 170 article-title: The regulation of autophagy‐unanswered questions publication-title: J Cell Sci – volume: 19 start-page: 2092 year: 2008 end-page: 2100 article-title: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy publication-title: Mol Biol Cell – volume: 72 start-page: 395 year: 2003 end-page: 447 article-title: Signals for sorting of transmembrane proteins to endosomes and lysosomes publication-title: Annu Rev Biochem – volume: 240 start-page: 92 year: 2011 end-page: 104 article-title: Autophagy in immunity and cell‐autonomous defense against intracellular microbes publication-title: Immunol Rev – volume: 10 start-page: 458 year: 2009 end-page: 467 article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast publication-title: Nat Rev Mol Cell Biol – volume: 78 start-page: 217 year: 2007 end-page: 245 article-title: Autophagy and cell death publication-title: Curr Top Dev Biol – volume: 49 start-page: 669 year: 1987 end-page: 677 article-title: Cycling of the integral membrane glycoprotein, LEP100, between plasma membrane and lysosomes: kinetic and morphological analysis publication-title: Cell – volume: 23 start-page: 492 year: 2011 end-page: 497 article-title: Ubiquitination‐mediated autophagy against invading bacteria publication-title: Curr Opin Cell Biol – volume: 12 start-page: 9 year: 2011 end-page: 14 article-title: Mechanisms of mitophagy publication-title: Nat Rev Mol Cell Biol – volume: 168 start-page: 723 year: 2005 end-page: 734 article-title: Bcl‐X(L) specifically activates Bak to induce swelling and restructuring of the endoplasmic reticulum publication-title: J Cell Biol – volume: 469 start-page: 323 year: 2011 end-page: 335 article-title: Autophagy in immunity and inflammation publication-title: Nature – volume: 584 start-page: 2635 year: 2010 end-page: 2645 article-title: Fighting disease by selective autophagy of aggregate‐prone proteins publication-title: FEBS Lett – volume: 132 start-page: 27 year: 2008 end-page: 42 article-title: Autophagy in the pathogenesis of disease publication-title: Cell – volume: 27 start-page: 44 year: 2008 end-page: 54 article-title: A high‐throughput screening for mammalian cell death effectors identifies the mitochondrial phosphate carrier as a regulator of cytochrome c release publication-title: Oncogene – volume: 335 start-page: 141 year: 2009 end-page: 167 article-title: Role of autophagy and autophagy genes in inflammatory bowel disease publication-title: Curr Top Microbiol Immunol – volume: 70 start-page: 3431 year: 2010 end-page: 3434 article-title: Selective autophagy in cancer development and therapy publication-title: Cancer Res – volume: 1793 start-page: 1465 year: 2009 end-page: 1477 article-title: Autophagy in intracellular bacterial infection publication-title: Biochim Biophys Acta – volume: 282 start-page: 24131 year: 2007 end-page: 24145 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J Biol Chem – volume: 140 start-page: 313 year: 2010 end-page: 326 article-title: Methods in mammalian autophagy research publication-title: Cell – volume: 11 start-page: 55 year: 2010 end-page: 62 article-title: Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry publication-title: Nat Immunol – volume: 441 start-page: 880 year: 2006 end-page: 884 article-title: Loss of autophagy in the central nervous system causes neurodegeneration in mice publication-title: Nature – volume: 22 start-page: 2290 year: 2011 end-page: 2300 article-title: The LC3 recruitment mechanism is separate from Atg9L1‐dependent membrane formation in the autophagic response against Salmonella publication-title: Mol Biol Cell – volume: 21 start-page: 2861 year: 2007 end-page: 2873 article-title: Autophagy: process and function publication-title: Genes Dev – volume: 5 start-page: 527 year: 2009 end-page: 549 article-title: Autophagy, immunity, and microbial adaptations publication-title: Cell Host Microbe – volume: 16 start-page: 966 year: 2009 end-page: 975 article-title: Life and death partners: apoptosis, autophagy and the cross‐talk between them publication-title: Cell Death Differ – volume: 28 start-page: 1757 year: 2009 end-page: 1768 article-title: Mitochondrial apoptosis induced by BH3‐only molecules in the exclusive presence of endoplasmic reticular Bak publication-title: EMBO J – volume: 21 start-page: 691 year: 2010 end-page: 698 article-title: Autophagy, a guardian against neurodegeneration publication-title: Semin Cell Dev Biol – volume: 7 start-page: 304 year: 2011 end-page: 309 article-title: How cells deploy ubiquitin and autophagy to defend their cytosol from bacterial invasion publication-title: Autophagy – volume: 16 start-page: 4231 year: 2005 end-page: 4242 article-title: Role of the endocytic machinery in the sorting of lysosome‐associated membrane proteins publication-title: Mol Biol Cell – volume: 285 start-page: 20664 year: 2010 end-page: 20674 article-title: The novel membrane protein TMEM59 modulates complex glycosylation, cell surface expression, and secretion of the amyloid precursor protein publication-title: J Biol Chem – volume: 15 start-page: 923 year: 2010 end-page: 933 article-title: Selective autophagy regulates various cellular functions publication-title: Genes Cells – volume: 40 start-page: 280 year: 2010 end-page: 293 article-title: Autophagy and the integrated stress response publication-title: Mol Cell – volume: 450 start-page: 1253 year: 2007 end-page: 1257 article-title: Toll‐like receptor signalling in macrophages links the autophagy pathway to phagocytosis publication-title: Nature – volume: 33 start-page: 505 year: 2009a end-page: 516 article-title: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates publication-title: Mol Cell – volume: 147 start-page: 728 year: 2011 end-page: 741 article-title: Autophagy: renovation of cells and tissues publication-title: Cell – volume: 441 start-page: 885 year: 2006 end-page: 889 article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice publication-title: Nature – volume: 4 start-page: 151 year: 2008 end-page: 175 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes publication-title: Autophagy – volume: 21 start-page: 113 year: 2011 end-page: 119 article-title: Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night publication-title: Curr Opin Genet Dev – volume: 10 start-page: 623 year: 2009 end-page: 635 article-title: Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function publication-title: Nat Rev Mol Cell Biol – volume: 10 start-page: 1215 year: 2009 end-page: 1221 article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin‐coated bacteria publication-title: Nat Immunol – volume: 74 start-page: 171 year: 1993 end-page: 183 article-title: T cell activation by clustered tyrosine kinases publication-title: Cell – volume: 6 start-page: 1221 year: 2004 end-page: 1228 article-title: Role of Bcl‐2 family proteins in a non‐apoptotic programmed cell death dependent on autophagy genes publication-title: Nat Cell Biol – volume: 11 start-page: 45 year: 2010 end-page: 51 article-title: Nix is a selective autophagy receptor for mitochondrial clearance publication-title: EMBO Rep – volume: 14 start-page: 887 year: 2007 end-page: 894 article-title: Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons publication-title: Cell Death Differ – volume: 330 start-page: 1344 year: 2010 end-page: 1348 article-title: Autophagy and metabolism publication-title: Science – volume: 451 start-page: 1069 year: 2008 end-page: 1075 article-title: Autophagy fights disease through cellular self‐digestion publication-title: Nature – volume: 333 start-page: 228 year: 2011 end-page: 233 article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth publication-title: Science – volume: 116 start-page: 1679 year: 2003 end-page: 1688 article-title: Mouse Apg16L, a novel WD‐repeat protein, targets to the autophagic isolation membrane with the Apg12‐Apg5 conjugate publication-title: J Cell Sci – volume: 137 start-page: 1062 year: 2009 end-page: 1075 article-title: Autophagy suppresses tumorigenesis through elimination of p62 publication-title: Cell – volume: 119 start-page: 753 year: 2004 end-page: 766 article-title: Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages publication-title: Cell – volume: 43 start-page: 67 year: 2009 end-page: 93 article-title: Regulation mechanisms and signaling pathways of autophagy publication-title: Annu Rev Genet – volume: 12 start-page: 747 year: 2010 end-page: 757 article-title: Plasma membrane contributes to the formation of pre‐autophagosomal structures publication-title: Nat Cell Biol – volume: 13 start-page: 495 year: 2011 end-page: 504 article-title: Autophagy in the cellular energetic balance publication-title: Cell Metab – volume: 7 start-page: 279 year: 2011 end-page: 296 article-title: Selective autophagy mediated by autophagic adapter proteins publication-title: Autophagy – ident: emboj20138-b61 doi: 10.1038/ncb1192 – ident: emboj20138-b19 doi: 10.1038/nature04724 – volume: 3 start-page: 542 year: 2007 ident: emboj20138-b45 publication-title: Autophagy doi: 10.4161/auto.4600 contributor: fullname: Mizushima N – ident: emboj20138-b21 doi: 10.1091/mbc.E05-03-0213 – ident: emboj20138-b70 doi: 10.1038/nrm3028 – ident: emboj20138-b31 doi: 10.1016/0092-8674(93)90304-9 – ident: emboj20138-b48 doi: 10.1038/nrm2708 – ident: emboj20138-b6 doi: 10.1242/jcs.064576 – ident: emboj20138-b23 doi: 10.1091/mbc.E10-11-0893 – ident: emboj20138-b13 doi: 10.1074/jbc.M109.037671 – ident: emboj20138-b1 doi: 10.1038/sj.onc.1210600 – ident: emboj20138-b49 doi: 10.1016/j.febslet.2010.01.018 – ident: emboj20138-b65 doi: 10.1038/ni.1800 – ident: emboj20138-b37 doi: 10.1038/nature09782 – ident: emboj20138-b51 doi: 10.1038/embor.2009.256 – ident: emboj20138-b35 doi: 10.1016/j.molcel.2010.09.023 – ident: emboj20138-b14 doi: 10.1016/j.ceb.2011.03.003 – volume: 335 start-page: 1 year: 2009 ident: emboj20138-b69 publication-title: Curr Top Microbiol Immunol doi: 10.1007/978-3-642-00302-8_1 contributor: fullname: Yang Z – ident: emboj20138-b4 doi: 10.1016/j.bbamcr.2009.03.003 – ident: emboj20138-b25 doi: 10.1016/j.molcel.2009.01.020 – ident: emboj20138-b30 doi: 10.1016/j.febslet.2010.04.041 – ident: emboj20138-b41 doi: 10.1101/gad.1599207 – ident: emboj20138-b55 doi: 10.1038/ncb2078 – ident: emboj20138-b64 doi: 10.1089/ars.2010.3482 – ident: emboj20138-b18 doi: 10.1074/jbc.C700195200 – ident: emboj20138-b7 doi: 10.1111/j.1600-065X.2010.00995.x – ident: emboj20138-b50 doi: 10.1038/cdd.2009.54 – ident: emboj20138-b17 doi: 10.1016/j.cell.2004.11.038 – volume: 335 start-page: 141 year: 2009 ident: emboj20138-b3 publication-title: Curr Top Microbiol Immunol doi: 10.1007/978-3-642-00302-8_7 contributor: fullname: Cadwell K – ident: emboj20138-b8 doi: 10.1016/j.chom.2009.05.016 – ident: emboj20138-b58 doi: 10.1038/nature06421 – ident: emboj20138-b63 doi: 10.1016/j.ijmm.2009.08.019 – volume: 4 start-page: 151 year: 2008 ident: emboj20138-b29 publication-title: Autophagy doi: 10.4161/auto.5338 contributor: fullname: Klionsky DJ – ident: emboj20138-b20 doi: 10.1146/annurev-genet-102808-114910 – ident: emboj20138-b27 doi: 10.1038/emboj.2009.90 – ident: emboj20138-b67 doi: 10.1074/jbc.M109.055608 – volume: 78 start-page: 217 year: 2007 ident: emboj20138-b16 publication-title: Curr Top Dev Biol doi: 10.1016/S0070-2153(06)78006-1 contributor: fullname: Gozuacik D – ident: emboj20138-b5 doi: 10.1016/j.devcel.2008.08.012 – ident: emboj20138-b32 doi: 10.1111/j.1365-2443.2010.01433.x – ident: emboj20138-b43 doi: 10.1242/jcs.00381 – ident: emboj20138-b56 doi: 10.1016/j.cub.2011.11.034 – ident: emboj20138-b47 doi: 10.1146/annurev-cellbio-092910-154005 – ident: emboj20138-b68 doi: 10.1126/science.1205405 – ident: emboj20138-b40 doi: 10.1016/j.gde.2010.12.008 – ident: emboj20138-b54 doi: 10.4161/auto.7.3.14539 – ident: emboj20138-b36 doi: 10.1016/j.cell.2007.12.018 – ident: emboj20138-b2 doi: 10.1146/annurev.biochem.72.121801.161800 – ident: emboj20138-b66 doi: 10.1038/ni.1823 – ident: emboj20138-b24 doi: 10.1128/IAI.68.9.5385-5392.2000 – ident: emboj20138-b42 doi: 10.1016/j.cell.2011.10.026 – ident: emboj20138-b46 doi: 10.1016/j.cell.2010.01.028 – ident: emboj20138-b44 doi: 10.1038/nature06639 – ident: emboj20138-b22 doi: 10.4161/auto.7.3.14487 – ident: emboj20138-b57 doi: 10.1038/nrm2745 – ident: emboj20138-b15 doi: 10.1016/j.semcdb.2010.02.008 – ident: emboj20138-b52 doi: 10.1074/jbc.M702824200 – ident: emboj20138-b10 doi: 10.1038/cdd.2009.33 – ident: emboj20138-b53 doi: 10.1126/science.1193497 – ident: emboj20138-b39 doi: 10.1016/j.cell.2009.03.048 – volume: 14 start-page: 887 year: 2007 ident: emboj20138-b33 publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4402120 contributor: fullname: Komatsu M – ident: emboj20138-b26 doi: 10.1016/j.molcel.2009.04.026 – ident: emboj20138-b28 doi: 10.1083/jcb.200408169 – ident: emboj20138-b59 doi: 10.1074/jbc.M609784200 – ident: emboj20138-b60 doi: 10.1016/j.mib.2010.11.001 – ident: emboj20138-b62 doi: 10.1016/j.cmet.2011.04.004 – ident: emboj20138-b34 doi: 10.1038/nature04723 – ident: emboj20138-b38 doi: 10.1016/0092-8674(87)90543-5 – ident: emboj20138-b9 doi: 10.1158/0008-5472.CAN-09-4027 – ident: emboj20138-b12 doi: 10.1091/mbc.E07-12-1257 |
SSID | ssj0005871 |
Score | 2.4400039 |
Snippet | Selective autophagy underlies many of the important physiological roles that autophagy plays in multicellular organisms, but the mechanisms involved in cargo... A new ATG16L1-binding motif identified in several innate immune response proteins is involved in a non-classical form of autophagy in response to bacterial... |
SourceID | pubmedcentral proquest crossref pubmed wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 566 |
SubjectTerms | Amino Acid Motifs ATG16L1 Autophagy Autophagy-Related Proteins Carrier Proteins - genetics Carrier Proteins - metabolism EMBO07 EMBO23 HeLa Cells Humans Membrane Proteins - genetics Membrane Proteins - metabolism Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Molecular biology Pathology Peptides Physiology Proteins Proteolysis Staphylococcal Infections - genetics Staphylococcal Infections - metabolism Staphylococcus aureus - metabolism TMEM59 vesicle trafficking WD-repeat domain |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKwQXBAVKoCAjASdC4zh27BOC1barqruHaqvuzco6jgqIZGm3CP49M86jrKh6ixTn4ZmJZ76ZLx6AtxSjuqxEkOP0kgCKjgteVjEal5A5d1I6ykNOZ2pymh0t5KJLuF12tMp-TQwLddk4ypHvo19CpJKbXHxa_YypaxRVV7sWGndhm6eJIkpXvsivKR46AK6QY8m4Nh3xPRF63_9YNt-I2SU-6g2XtE3S_X1TvPk_bXKonW5GtsE1HTyCh11MyT63RvAY7vh6B-61XSb_7MD9Ud_U7QmczKfjqTSs9BXx3VnB6uaXx2vnh1wdc8LJ5MwYUfQqtj4v1mwVCHs4Nrg9Rj9CtGlc1lTseCSewunBeD6axF1bhdhJgbrwHGGLSZzyShnjnEIEhjixdCYRxrvElT4tNUYKymuhlUhL73LuVSW9VBne4xls1U3tnwPLfIGw1tOWMlTBTfWyzAuBEWHlhOdVFsG7XrJ21e6eYUPVW2gbNGBJA1ZH8D6IfRhUXHwnxlku7dns0GYogHRyNrMnEez1erHdx3Zpr00jgjfDaRQs1T6K2jdXOEZwBF8IyGUEu60ah4elAldZk_II8g0FDwNoC-7NM_XX87AVN9qzQV-D79-bwj-vdeNEPwRDuVUadjz9ckSH-sXt030JD9LQnSPFxW4PttYXV_4Vxkjr5evwIfwFiGULLA priority: 102 providerName: ProQuest – databaseName: Springer Open Access dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVgguCMorUJCRCicW1nHs2EeItl1V3T2grdqblTgT9SGSqmwRvfUn8Bv5JYydTSBQIW6R_EgyM_bM5_lsA2z7GNUlJYEcpwsPUPQo52U1IuMSMuVOSufXIWdzNT1I9o7k0Rpsd3thBvl7od_j56I59Qws8U7fgg3yvtoTtzKV_SJy6ACrwkpKwrVZ0dv_bD1wPBteht9uiir_Jkf2GdJh_Boc0M59uLeKHNmHVtUPYA3rTbjd3iV5tQl3su7qtoewWMwmM2lYiZVntbOc1c1XpLaLXa72-Y_r78VJ2M3CPBWvYsvjfMnOAzGPagf3xvyGh3a5ljUV28_EIzjYmSyy6Wh1fcLISUEyR07wxIydQqWMcU4R0iI8WDozFgbd2JUYl5oiAoVaaCXiEl3KUVUSpUqoj8ewXjc1PgWWYE7wFf3RMT5TG-uiTHNBkV_lBPIqieB1J1t73p6SYUN2W2gbdGC9DqyO4E0QfF8pvzjzzLJU2sP5rk1IBPH0cG4_RbDVacauBtUXS6EJgdXUpCKCV30xidbnOPIam0uqIziBLALeMoInrSL7l8WCZlMT8wjSgYr7Cv6o7WFJfXIcjtwmuzXkU-j7O2P47bNu_NG3wVT-KQ07mX3c84_62f_2-xzuxuE-jpimty1YX15c4guKipbFyzAofgIWkwTJ priority: 102 providerName: Springer Nature |
Title | TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3 |
URI | https://api.istex.fr/ark:/67375/WNG-46L12HWN-R/fulltext.pdf https://link.springer.com/article/10.1038/emboj.2013.8 https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2013.8 https://www.ncbi.nlm.nih.gov/pubmed/23376921 https://www.proquest.com/docview/1291077973 https://search.proquest.com/docview/1312171335 https://pubmed.ncbi.nlm.nih.gov/PMC3579146 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IUQvCMqjgbIyEnBiH45jxz7SaNtV1ayq1Vbdm5V1HLXAJquyRfDvGTsPsaLiwCVKZCdxZsaZ-ezPHoD3LkY1UY4gx8ilAyiyn9G86KNxMR5Tw7lx45DpVEyuovMFX-wAb9fCeNK-Wd4Oym-rQXl747mV65UZtjyx4WWa4FOUy9SyC7tooC1Eb3kd0qMsP7ASUakatvuIyaFdLasvjs7FBi5PX8iwd6mQbrmkfSfdnw_Fm3_TJru50-3I1rum06fwpIkpyee67c9gx5aH8KjOMvnrEB4nbVK35zCbp-OUK5LbwvHdSUbK6ofFe-dnVFxQh5OdMyOOoleQzU22IWtP2MO63u0RtxCiHsYlVUEuEvYCrk7H82TSb9Iq9A1nqAtLEbaokRFWCKWMEYjAECfmRo2YsmZkchvmEiMFYSWTgoW5NTG1ouCWiwif8RL2yqq0R0AimyGstW5LGTeDG8plHmcMI8LCMEuLKIAPrWT1ut49Q_tZbya1V4Z2ytAygI9e7F2l7O6rY5zFXF9Pz3SEAggn11M9C-C41YtuOtt3jSELgthYxSyAd10xCtbNfWSlre6xDqMIvhCQ8wBe1WrsXtbaQQDxloK7Cm4L7u0StEy_FXdjidj-1hT-aNaDH_rJG8o_paHH6cm5O5Wv_7tFb-Ag9Ik7QvwPHsPe5u7evsXwabPsYadZxHiUCe3B_sl4ejnDq0QkPd-RfgOJChhL |
link.rule.ids | 230,315,730,783,787,888,12068,12235,21400,27936,27937,31731,31732,33278,33279,33756,33757,41132,42201,43322,43591,43817,51588,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgFRovCMZXYICRgCey1XHs2E-IVd3KaCJUddrerNRxNDaRlK1D8N9z53yMimlvkeI0yd3Fd7-7X-8IeYcxqo0LADlWLRCgqDBnRRmCcXGRMCuExTxkmsnJUXx4Ik7ahNtlS6vs9kS_URe1xRz5LvglQCqJTvin5c8Qp0ZhdbUdoXGXDLBVFYCvwd44-za7JnkoD7l8liVmSrfU9yFXu-7Hoj5DbhffUWtOaYDy_X1TxPk_cbKvnq7Htt457T8kD9qokn5uzOARueOqLXKvmTP5Z4tsjrqxbo_JbJ6OU6Fp4UpkvNOcVvUvB9fOD5icMkTK6M4okvRKujrNV3TpKXuw1js-in-FaBK5tC7pdMSfkKP98Xw0CdvBCqEVHLThGAAXPbTSSam1tRIwGCDFwuoh184ObeGiQkGsIJ3iSvKocDZhTpbCCRnDbzwlG1VdueeExi4HYOuwqQzWcCO1KJKcQ0xYWu5YGQfkfSdZs2z6Zxhf9-bKeA0Y1IBRAfngxd4vyi_OkXOWCHOcHZgYBBBNjjMzC8h2pxfTfm6X5to4AvK2Pw2CxepHXrn6CtZwBvALILkIyLNGjf3NIg77rI5YQJI1BfcLsAn3-pnq-6lvxg0WrcHbwPN3pvDPY934oh-9odwqDTNO9w7xUL24_XXfkM3JPJ2a6Zfs60tyP_KzOiLY-rbJxuriyr2CiGm1eN1-Fn8B06UPgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BKx4XBOUVKGAk4MTSdRw79hGW3S5ld4XQVu3NSmxHLYhk1aYIbvwEfiO_hLHzgIUKcYsUO4-ZsT2f5_MMwBPvo5rEIsgxMvcARQ4yaosBGhfjKTWcG78POV-I6X6yd8gPW1blacd270KSzZkGn6WprHdWtmgPicsd9ymvPnheFnshL8Jm4sul-0CtGP2id8gAtsL-SkKlaknvf_ZeW442vWS_nOdr_k2Z7OOm615tWJYm1-Fa60-Sl40B3IALrtyCS02Fya9bcGXUFXS7CcvlfDznilhXeK47yUhZfXbYd7lLxYz--PY9Pw5nXIgn6BWkPspqsgp0PWwdFj3ij0E0m7ikKshsxG7B_mS8HE0HbVGFgeEMNeEoghY1NMIJoZQxAvEXokRr1JApZ4bGuthK9BOEk0wKFltnUupEwR0XCT7jNmyUVenuAklchqDW-YQyPn4by9ymGUN_sDDM0SKJ4GknW71qcmfoEPNmUgcdaK8DLSN4FgTfN8pOPnq-Wcr1wWJXJyiCeHqw0O8j2O40o9uhdqrRYUEIm6qURfC4v42i9ZGPrHTVGbZhFKEXwnEewZ1Gkf3LYoZzrIppBOmaivsGPgH3-p3y-Cgk4kZrVrjS4Pd3xvDbZ537o8-DqfxTGno8f7XnL-W9_33uI7j87vVEz94s3t6Hq3Eo2BHj_LcNG_XJmXuAblOdPwzj4ydgNw_x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMEM59+defines+a+novel+ATG16L1-binding+motif+that+promotes+local+activation+of+LC3&rft.jtitle=The+EMBO+journal&rft.au=Boada-Romero%2C+Emilio&rft.au=Letek%2C+Michal&rft.au=Fleischer%2C+Aarne&rft.au=Pallauf%2C+Kathrin&rft.date=2013-02-20&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=32&rft.issue=4&rft.spage=566&rft.epage=582&rft_id=info:doi/10.1038%2Femboj.2013.8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_emboj_2013_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |