Artificial Photosynthesis: From Molecular Catalysts for Light-driven Water Splitting to Photoelectrochemical Cells
Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light‐to‐chemical energetic transduction. This field of research, called “artificial photosynthesis,” is currently the subject of intense interest, driven by the...
Saved in:
Published in | Photochemistry and photobiology Vol. 87; no. 5; pp. 946 - 964 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2011
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light‐to‐chemical energetic transduction. This field of research, called “artificial photosynthesis,” is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon‐free fuel hydrogen through the light‐driven water splitting. In this review, we highlight the recent achievements on light‐driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices.
This review surveys the recent achievements in the field of artificial photosynthesis and light‐driven water splitting. Homogeneous photocatalytic H2‐ and O2‐evolving systems (bioconstructs as well as synthetic molecules) are presented, with a specific focus on those containing noble‐metal‐free catalytic centres. Openings regarding the development of a fully molecular‐based technological device for water splitting are discussed. |
---|---|
AbstractList | Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light-to-chemical energetic transduction. This field of research, called "artificial photosynthesis," is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon-free fuel hydrogen through the light-driven water splitting. In this review, we highlight the recent achievements on light-driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices.Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light-to-chemical energetic transduction. This field of research, called "artificial photosynthesis," is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon-free fuel hydrogen through the light-driven water splitting. In this review, we highlight the recent achievements on light-driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices. Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light‐to‐chemical energetic transduction. This field of research, called “artificial photosynthesis,” is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon‐free fuel hydrogen through the light‐driven water splitting. In this review, we highlight the recent achievements on light‐driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices. Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light-to-chemical energetic transduction. This field of research, called "artificial photosynthesis," is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon-free fuel hydrogen through the light-driven water splitting. In this review, we highlight the recent achievements on light-driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices. [PUBLICATION ABSTRACT] Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light‐to‐chemical energetic transduction. This field of research, called “artificial photosynthesis,” is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon‐free fuel hydrogen through the light‐driven water splitting. In this review, we highlight the recent achievements on light‐driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices. This review surveys the recent achievements in the field of artificial photosynthesis and light‐driven water splitting. Homogeneous photocatalytic H2‐ and O2‐evolving systems (bioconstructs as well as synthetic molecules) are presented, with a specific focus on those containing noble‐metal‐free catalytic centres. Openings regarding the development of a fully molecular‐based technological device for water splitting are discussed. |
Author | Artero, Vincent Andreiadis, Eugen S. Fontecave, Marc Chavarot-Kerlidou, Murielle |
Author_xml | – sequence: 1 givenname: Eugen S. surname: Andreiadis fullname: Andreiadis, Eugen S. organization: Laboratoire de Chimie et Biologie des Métaux, UMR 5249, Université Grenoble 1 - CNRS - CEA, DSV/iRTSV K', Grenoble, France – sequence: 2 givenname: Murielle surname: Chavarot-Kerlidou fullname: Chavarot-Kerlidou, Murielle email: murielle.chavarot-kerlidou@cea.fr organization: Laboratoire de Chimie et Biologie des Métaux, UMR 5249, Université Grenoble 1 - CNRS - CEA, DSV/iRTSV K', Grenoble, France – sequence: 3 givenname: Marc surname: Fontecave fullname: Fontecave, Marc email: murielle.chavarot-kerlidou@cea.fr organization: Laboratoire de Chimie et Biologie des Métaux, UMR 5249, Université Grenoble 1 - CNRS - CEA, DSV/iRTSV K', Grenoble, France – sequence: 4 givenname: Vincent surname: Artero fullname: Artero, Vincent organization: Laboratoire de Chimie et Biologie des Métaux, UMR 5249, Université Grenoble 1 - CNRS - CEA, DSV/iRTSV K', Grenoble, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21740444$$D View this record in MEDLINE/PubMed https://hal.science/hal-01063100$$DView record in HAL |
BookMark | eNqNkVFv0zAUhS00xLrBX0ARL4iHBN84TmKEkKrCVrQMigDt0XIdZ3Vx42K7o_33OGT0YU_zi617v3Ou7XOGTnrbK4QSwBnE9XadQUUhBcyqLMcAGcasLLP9EzQ5Nk7QBGMCaV1SeorOvF9jDAWr4Bk6zaEqcFEUE-SmLuhOSy1MsljZYP2hDyvltX-XXDi7Sa6tUXJnhEtmIghz8MEnnXVJo29XIW2dvlN9ciOCcsn3rdEh6P42CXY0U1EbnJUrtdEyTpgpY_xz9LQTxqsX9_s5-nnx6cdsnjZfLz_Ppk0qKcnLVEjR5lBUuJB5lbcCQJGWVTjvGBV1LZe0oy1jbVcyMTTqltb1knQgK9YRkpNz9Gb0XQnDt05vhDtwKzSfTxs-1DDgkgDGdxDZ1yO7dfb3TvnAN9rLeFvRK7vzvK4riotoGslXD8i13bk-PoSzvGZACbAIvbyHdsuNao_T__97BOoRkM5671R3RADzIWK-5kOSfEiSDxHzfxHzfZR-eCCVOoigbR-c0OYxBu9Hgz_aqMOjB_PFfBEPUZ6Ocu2D2h_lwv3iZUUqym--XPLm6uO35npxxYH8BY1mzls |
CODEN | PHCBAP |
CitedBy_id | crossref_primary_10_1021_jacs_7b02142 crossref_primary_10_1039_D1CP03114G crossref_primary_10_1039_C8CS00897C crossref_primary_10_1002_cssc_201501002 crossref_primary_10_1142_S1088424615500339 crossref_primary_10_1002_ange_201907247 crossref_primary_10_2516_ogst_2015034 crossref_primary_10_1021_jacs_2c10033 crossref_primary_10_1021_acs_jctc_5b00968 crossref_primary_10_1002_chem_201804999 crossref_primary_10_1016_j_checat_2021_09_008 crossref_primary_10_1098_rsfs_2014_0083 crossref_primary_10_1039_D1SC06335A crossref_primary_10_1002_chem_201403872 crossref_primary_10_1016_j_jphotobiol_2015_04_004 crossref_primary_10_1039_C5SC04863J crossref_primary_10_1002_celc_201402133 crossref_primary_10_1039_C6DT01221C crossref_primary_10_1016_j_ccr_2019_213079 crossref_primary_10_1039_C6FD00204H crossref_primary_10_1002_chem_201204385 crossref_primary_10_1021_acs_jctc_7b00474 crossref_primary_10_1021_acsomega_4c00217 crossref_primary_10_1021_acs_jpcc_8b00301 crossref_primary_10_1016_j_jphotobiol_2015_04_010 crossref_primary_10_1039_c2dt30403a crossref_primary_10_1016_j_ccr_2023_215522 crossref_primary_10_1039_C3CS60375J crossref_primary_10_1007_s10847_019_00889_8 crossref_primary_10_1186_s43170_022_00117_3 crossref_primary_10_1039_D1SC06608K crossref_primary_10_1007_s11120_019_00648_3 crossref_primary_10_1039_C6DT03044K crossref_primary_10_1002_anie_201106293 crossref_primary_10_1039_C7EE00751E crossref_primary_10_1149_2162_8777_aba1ff crossref_primary_10_1002_adma_201902069 crossref_primary_10_1002_ejic_201300683 crossref_primary_10_1021_acs_jpcc_9b09453 crossref_primary_10_1021_jp4010554 crossref_primary_10_1016_j_cap_2013_05_013 crossref_primary_10_1021_cm303595s crossref_primary_10_1039_D2SC03258A crossref_primary_10_1016_j_jcat_2015_02_020 crossref_primary_10_1021_acs_jpca_7b11470 crossref_primary_10_1016_j_poly_2017_12_002 crossref_primary_10_1021_cr300459q crossref_primary_10_1039_D2SE01119K crossref_primary_10_1039_C7EE03115G crossref_primary_10_1002_ange_201409442 crossref_primary_10_1016_j_ijhydene_2014_04_164 crossref_primary_10_1021_jo500031g crossref_primary_10_1002_ejic_202000026 crossref_primary_10_1016_j_ccr_2012_07_010 crossref_primary_10_1021_acs_inorgchem_3c01841 crossref_primary_10_1016_j_surfin_2023_102632 crossref_primary_10_1016_j_ccr_2021_214375 crossref_primary_10_1039_c3ee40352a crossref_primary_10_1002_solr_202000111 crossref_primary_10_1002_solr_202000474 crossref_primary_10_1002_ange_201607018 crossref_primary_10_1039_C7SE00428A crossref_primary_10_3389_fchem_2022_868373 crossref_primary_10_1039_C7TA04045H crossref_primary_10_1021_acs_jpca_7b04670 crossref_primary_10_1039_C5CY00365B crossref_primary_10_1016_j_jphotochem_2017_08_028 crossref_primary_10_1039_D2CC00339B crossref_primary_10_1021_acscatal_6b03278 crossref_primary_10_1007_s11244_016_0547_5 crossref_primary_10_1016_j_jphotochemrev_2012_08_001 crossref_primary_10_1134_S0036023624601600 crossref_primary_10_1016_j_dyepig_2018_11_029 crossref_primary_10_1016_j_crci_2012_11_006 crossref_primary_10_3389_fchem_2019_00405 crossref_primary_10_1038_s41598_021_82395_x crossref_primary_10_3390_molecules27123770 crossref_primary_10_1021_acs_inorgchem_1c01279 crossref_primary_10_1039_C7NR04299J crossref_primary_10_1002_anie_202203955 crossref_primary_10_1002_ejic_201900652 crossref_primary_10_1016_j_ijhydene_2021_05_054 crossref_primary_10_1039_C5CP05326A crossref_primary_10_1002_anie_201607018 crossref_primary_10_1002_celc_201600190 crossref_primary_10_1016_j_ccr_2021_214390 crossref_primary_10_1021_jacs_8b00599 crossref_primary_10_1039_C9DT03144H crossref_primary_10_1039_D2TC01640K crossref_primary_10_3390_catal9010012 crossref_primary_10_1002_ange_201205915 crossref_primary_10_2138_am_2020_7112 crossref_primary_10_1016_j_ccr_2015_03_014 crossref_primary_10_1063_5_0092864 crossref_primary_10_1002_asia_201500723 crossref_primary_10_1039_C7CC08013A crossref_primary_10_1016_j_ccr_2012_02_016 crossref_primary_10_1021_acs_accounts_5b00058 crossref_primary_10_1002_cssc_201600422 crossref_primary_10_1016_j_ica_2020_119950 crossref_primary_10_1039_c3cy00475a crossref_primary_10_1002_advs_201700684 crossref_primary_10_1021_jp2100717 crossref_primary_10_1002_chem_201404480 crossref_primary_10_1002_chem_201801698 crossref_primary_10_1002_anie_201205915 crossref_primary_10_1007_s43630_021_00099_7 crossref_primary_10_1007_s11244_023_01799_3 crossref_primary_10_1002_celc_201600506 crossref_primary_10_1039_c3cp54240h crossref_primary_10_1016_j_jinorgbio_2021_111384 crossref_primary_10_1016_j_ccr_2012_02_004 crossref_primary_10_1021_jp309148u crossref_primary_10_1021_acsami_3c11592 crossref_primary_10_1021_acs_jpcc_8b03317 crossref_primary_10_1002_ange_202306287 crossref_primary_10_1002_cctc_201901686 crossref_primary_10_1039_C6SC00386A crossref_primary_10_1021_acscatal_7b00326 crossref_primary_10_1038_s41557_021_00860_6 crossref_primary_10_1021_acscatal_4c00336 crossref_primary_10_1021_acsaem_4c00912 crossref_primary_10_1039_C4DT03730H crossref_primary_10_1016_j_ccr_2014_12_004 crossref_primary_10_1016_j_ijhydene_2018_03_097 crossref_primary_10_1039_C6DT01705C crossref_primary_10_1002_hlca_201800036 crossref_primary_10_1039_C8SE00155C crossref_primary_10_1002_anie_201409442 crossref_primary_10_1039_C9CP00335E crossref_primary_10_1039_C4CP00453A crossref_primary_10_1039_C4RA01413H crossref_primary_10_1039_C7SC01276D crossref_primary_10_1007_s11172_024_4445_x crossref_primary_10_1016_j_ccr_2015_02_002 crossref_primary_10_1021_cs400141t crossref_primary_10_1039_c3ta10728k crossref_primary_10_1146_annurev_physchem_040513_103742 crossref_primary_10_1016_j_ccr_2012_08_008 crossref_primary_10_1039_c3ra00157a crossref_primary_10_1021_acs_inorgchem_8b03549 crossref_primary_10_1021_ic502591a crossref_primary_10_1039_C5NR08953K crossref_primary_10_1002_ange_201407319 crossref_primary_10_1002_ange_202203955 crossref_primary_10_1021_acscatal_2c05033 crossref_primary_10_1021_acs_inorgchem_5b01536 crossref_primary_10_1007_s11801_014_4055_1 crossref_primary_10_1039_C7CP01588G crossref_primary_10_1021_acsenergylett_9b01683 crossref_primary_10_1002_cssc_202001428 crossref_primary_10_1002_ange_202305639 crossref_primary_10_1021_acs_jpcc_0c02556 crossref_primary_10_1039_C6CP00911E crossref_primary_10_3390_nano10122341 crossref_primary_10_1016_j_mencom_2020_07_013 crossref_primary_10_1038_ncomms13169 crossref_primary_10_1039_C7SC01277B crossref_primary_10_1039_C4CC08423C crossref_primary_10_1002_smll_201503077 crossref_primary_10_1002_cssc_201100661 crossref_primary_10_1002_cssc_201701511 crossref_primary_10_1039_C7SC04348A crossref_primary_10_1039_C6EE00629A crossref_primary_10_3389_fchem_2014_00036 crossref_primary_10_1002_asia_201402303 crossref_primary_10_1021_acs_inorgchem_9b00042 crossref_primary_10_1039_C4CP02997F crossref_primary_10_1021_acscatal_3c06216 crossref_primary_10_1021_acsnano_5b05579 crossref_primary_10_1021_acsami_6b13438 crossref_primary_10_1016_j_ijhydene_2021_08_016 crossref_primary_10_3390_catal12080919 crossref_primary_10_1002_cctc_201600186 crossref_primary_10_1039_c3cy00536d crossref_primary_10_1021_acs_jpca_5b01737 crossref_primary_10_1016_j_rser_2016_04_016 crossref_primary_10_1021_acs_jpcc_9b03621 crossref_primary_10_1039_D1CS00577D crossref_primary_10_1002_ange_201106293 crossref_primary_10_1039_C4SC02196G crossref_primary_10_1016_j_jphotochemrev_2015_08_001 crossref_primary_10_1039_C4GC01707B crossref_primary_10_1002_chem_201703989 crossref_primary_10_1039_D0DT01195A crossref_primary_10_1021_ic302629q crossref_primary_10_3390_molecules23102693 crossref_primary_10_1016_j_cej_2023_143329 crossref_primary_10_1021_acs_jpclett_7b01911 crossref_primary_10_1039_C4CY01112K crossref_primary_10_1002_cctc_201600772 crossref_primary_10_1007_s10593_021_02983_7 crossref_primary_10_1021_acs_jpclett_0c02009 crossref_primary_10_1002_ejic_201402669 crossref_primary_10_1039_C5TA02565F crossref_primary_10_1002_ange_201303671 crossref_primary_10_1002_anie_202305639 crossref_primary_10_1039_D4SE00423J crossref_primary_10_1016_j_materresbull_2015_06_045 crossref_primary_10_1002_asia_201800487 crossref_primary_10_1002_cphc_201300122 crossref_primary_10_1073_pnas_1212254109 crossref_primary_10_1016_j_jiec_2019_01_004 crossref_primary_10_1021_acs_inorgchem_9b01838 crossref_primary_10_1002_anie_202306287 crossref_primary_10_1002_cphc_201300383 crossref_primary_10_1021_cs4006925 crossref_primary_10_1039_D0SC06429G crossref_primary_10_5402_2012_964936 crossref_primary_10_1021_ja410592d crossref_primary_10_1039_C2CS35247H crossref_primary_10_1021_acsnano_7b07841 crossref_primary_10_1039_C9SE00597H crossref_primary_10_1021_acsami_7b12168 crossref_primary_10_1038_ncomms3695 crossref_primary_10_1021_acssuschemeng_9b00305 crossref_primary_10_1021_cs4011716 crossref_primary_10_1039_C6CS00369A crossref_primary_10_1016_j_crci_2015_11_026 crossref_primary_10_1021_acs_jpca_7b05255 crossref_primary_10_1021_ja311310k crossref_primary_10_1038_nenergy_2015_21 crossref_primary_10_1002_nadc_201390093 crossref_primary_10_1016_j_ccr_2017_10_016 crossref_primary_10_1002_anie_201303671 crossref_primary_10_1021_acscatal_6b03087 crossref_primary_10_1039_C8SC03058H crossref_primary_10_1002_anie_201407319 crossref_primary_10_1039_C9SE00320G crossref_primary_10_1039_D4CC03301A crossref_primary_10_1039_D4DT01077A crossref_primary_10_1002_cssc_201402381 crossref_primary_10_1016_j_ijhydene_2021_02_005 crossref_primary_10_1039_C7RA03190D crossref_primary_10_1021_jacs_4c02808 crossref_primary_10_1021_ic502431x crossref_primary_10_1016_j_jphotochemrev_2024_100680 crossref_primary_10_1021_acs_jpcc_1c05827 crossref_primary_10_1039_D3SE00295K crossref_primary_10_1002_celc_202300620 crossref_primary_10_4019_bjscc_71_18 crossref_primary_10_1021_acs_inorgchem_3c02648 crossref_primary_10_1039_C5TA03910J crossref_primary_10_1021_acs_jpca_6b05957 crossref_primary_10_1007_s11426_014_5293_6 crossref_primary_10_1021_acs_inorgchem_7b03273 crossref_primary_10_1039_C2CS35334B crossref_primary_10_1002_anie_201907247 crossref_primary_10_1002_ejic_201301573 crossref_primary_10_1016_j_jphotochemrev_2017_12_006 crossref_primary_10_1039_D0CS01336F crossref_primary_10_1039_D3DT00121K crossref_primary_10_1002_cctc_202301100 crossref_primary_10_1039_c3pp50446h crossref_primary_10_1039_D1CS01144H |
Cites_doi | 10.1016/S0969-2126(99)80005-7 10.1098/rstb.2007.2217 10.1562/2006-07-14-RC-969 10.1016/j.crci.2008.04.001 10.1021/jo060225d 10.1038/nature09913 10.1039/b926064a 10.1002/anie.201005427 10.1039/b817371k 10.1098/rstb.2007.2208 10.1246/cl.1982.187 10.1038/nchem.1049 10.1021/om900141x 10.1021/ar900240w 10.1021/ja00392a022 10.1021/ja00293a035 10.1039/b801198m 10.1021/ja00322a051 10.1021/jp106512a 10.1557/mrs2008.78 10.1039/c0cc01828g 10.1021/ic8014817 10.1021/cr950201z 10.1002/chem.200902278 10.1021/ja00398a066 10.1021/cr050195z 10.1021/ar900225y 10.1021/ja907923r 10.1016/0010-8545(85)80058-8 10.1039/b916246a 10.1073/pnas.0907775106 10.1016/j.catcom.2011.03.024 10.1002/asia.201000087 10.1021/ic801947v 10.1021/jp063679n 10.1002/anie.200503602 10.1104/pp.122.1.127 10.1016/j.ccr.2007.06.002 10.1021/ar9002398 10.1021/ja00411a010 10.1039/b923159p 10.1021/ic101731j 10.1039/c0sc00418a 10.1073/pnas.79.2.701 10.1021/ja077837f 10.1021/ja804650g 10.1016/j.ccr.2010.06.004 10.1038/nmat3008 10.1002/ejic.201000986 10.1016/S1381-1169(97)00098-8 10.1021/bi901704v 10.1021/ic900389z 10.1021/ic100036v 10.1021/ja039780c 10.1021/nn900748j 10.1021/ja067876b 10.1039/b910564f 10.1021/ic102317u 10.1021/ja901373m 10.1016/j.elecom.2006.08.036 10.1021/ic9017486 10.1021/ar700282n 10.1021/ja1057357 10.1021/ja0427101 10.1002/chem.200902489 10.1021/ic0303385 10.1021/ar9001679 10.1002/anie.200502114 10.1021/ar9801301 10.1039/b601785c 10.1039/c0cc02486d 10.1126/science.282.5395.1853 10.1039/b201337a 10.1021/ic802052u 10.1002/hlca.19790620449 10.1038/373580a0 10.1021/ic050167z 10.1002/anie.200705652 10.1002/anie.201007987 10.1039/b811098k 10.1016/j.jorganchem.2009.04.041 10.1021/ar900249x 10.1021/bi1016167 10.1002/anie.200906745 10.1021/ja903044n 10.1021/ja109681d 10.1039/b907257h 10.1016/S1010-6030(96)04436-X 10.1039/b812605b 10.1021/ic8013255 10.1021/ic00197a036 10.1002/cssc.201000416 10.1039/c0cc03154b 10.1002/cssc.201000358 10.1039/b802885k 10.1002/anie.200802659 10.1016/S0167-7799(00)01511-0 10.1126/science.283.5407.1524 10.1039/cs9962500041 10.1021/ar9901220 10.1002/elan.200804191 10.1007/128_2007_131 10.1016/j.jphotochemrev.2008.01.002 10.1021/ar9001697 10.1021/ar9001735 10.1021/cr800542q 10.1016/0010-8545(85)80030-8 10.1021/ar9001526 10.1002/cssc.201000313 10.1126/science.280.5362.425 10.1039/b606659c 10.1021/ja910055a 10.1016/S1369-7021(08)70250-5 10.1016/S0020-1693(99)00407-7 10.1080/00958970701767002 10.1562/2006-01-16-RA-778 10.1039/c0cc04658b 10.1073/pnas.0809666106 10.1021/ja1009025 10.1021/ar900253e 10.1126/science.1096767 10.1007/128_2007_133 10.1016/j.chembiol.2010.05.005 10.1016/S1381-1169(01)00159-5 10.1016/j.ccr.2008.10.010 10.1021/ic061625m 10.1039/c0cc03114c 10.1021/jp710498v 10.1021/ic702010w 10.1002/anie.200702953 10.1016/S1387-7003(03)00140-0 10.1021/om070133u 10.1016/0010-8545(88)80032-8 10.1002/anie.201004278 10.1021/ja00256a010 10.1021/ic070234k 10.1039/b816677n 10.1002/anie.200351192 10.1104/pp.010498 10.1016/j.crci.2008.03.004 10.1016/j.ccr.2008.10.020 10.1039/b509188h 10.1016/0304-5102(89)80082-3 10.1039/c0cc01250e 10.1126/science.1179773 10.1002/chem.200902603 10.1039/B802262N |
ContentType | Journal Article |
Copyright | 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology. Copyright Blackwell Publishing Ltd. Sep/Oct 2011 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology – notice: 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology. – notice: Copyright Blackwell Publishing Ltd. Sep/Oct 2011 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION NPM 4T- 7TM 7U7 8FD C1K FR3 K9. NAPCQ P64 RC3 7X8 1XC |
DOI | 10.1111/j.1751-1097.2011.00966.x |
DatabaseName | Istex CrossRef PubMed Docstoc Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed Nursing & Allied Health Premium Genetics Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts Docstoc ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1751-1097 0031-8655 |
EndPage | 964 |
ExternalDocumentID | oai_HAL_hal_01063100v1 2612668481 21740444 10_1111_j_1751_1097_2011_00966_x PHP966 ark_67375_WNG_LKDQLMPK_1 |
Genre | reviewArticle Journal Article |
GroupedDBID | --- -JH -~X .3N .GA .GJ .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 3O- 3SF 3V. 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 7RV 7X2 7X7 8-0 8-1 8-3 8-4 8-5 88A 88E 88I 8AF 8AO 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AAPSS AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEPYG AEQDE AEUQT AEUYR AFBPY AFFIJ AFFPM AFGKR AFKRA AFNWH AFPWT AFRAH AFZJQ AHBTC AHEFC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR AKPMI ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BKEYQ BLYAC BMNLL BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 C1A CAG CCPQU COF CS3 D-E D-F DC7 DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO E3Z EBS ECGQY EJD ESX EX3 F00 F01 F04 F5P FEDTE FYUFA FZ0 G-S G.N GNUQQ GODZA H.T H.X H13 HCIFZ HF~ HGLYW HMCUK HVGLF HZ~ H~9 IH2 IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M0K M0L M1P M2P M2Q M7P MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NAPCQ NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQ0 PQQKQ PROAC PSQYO Q.N Q11 Q2X Q5J QB0 R.K RBO RIG RIWAO RJQFR ROL RWL RX1 S0X SAMSI SJN SUPJJ TAE UB1 UKHRP W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WOW WQJ WRC WSB WXSBR WYISQ XG1 XOL YNT ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEUYN AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM PJZUB PPXIY PQGLB 4T- 7TM 7U7 8FD C1K FR3 K9. P64 RC3 7X8 1XC |
ID | FETCH-LOGICAL-c5326-acad214704c272da11e3d9702f95a88cb5f5d99df69a3d978d588b3f1c79f3323 |
IEDL.DBID | DR2 |
ISSN | 0031-8655 1751-1097 |
IngestDate | Wed Aug 13 07:44:59 EDT 2025 Thu Jul 10 18:47:52 EDT 2025 Wed Aug 13 08:30:51 EDT 2025 Mon Jul 21 05:39:56 EDT 2025 Tue Jul 01 02:14:33 EDT 2025 Thu Apr 24 23:04:19 EDT 2025 Wed Jan 22 16:35:20 EST 2025 Wed Oct 30 09:55:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5326-acad214704c272da11e3d9702f95a88cb5f5d99df69a3d978d588b3f1c79f3323 |
Notes | istex:5ABC3A10CCDC58A10A3EDA672550FBC93CDBE58E ark:/67375/WNG-LKDQLMPK-1 ArticleID:PHP966 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6148-8471 0000-0002-8016-4747 0000-0003-2709-3772 0000-0002-0617-5616 |
PMID | 21740444 |
PQID | 928915319 |
PQPubID | 30729 |
PageCount | 19 |
ParticipantIDs | hal_primary_oai_HAL_hal_01063100v1 proquest_miscellaneous_887504323 proquest_journals_928915319 pubmed_primary_21740444 crossref_primary_10_1111_j_1751_1097_2011_00966_x crossref_citationtrail_10_1111_j_1751_1097_2011_00966_x wiley_primary_10_1111_j_1751_1097_2011_00966_x_PHP966 istex_primary_ark_67375_WNG_LKDQLMPK_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September/October 2011 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: September/October 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: United States – name: Lawrence |
PublicationTitle | Photochemistry and photobiology |
PublicationTitleAlternate | Photochem Photobiol |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | Kanan, M. W., Y. Surendranath and D. G. Nocera (2009) Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 38, 109-114. Durr, H. and S. Bossmann (2001) Ruthenium polypyridine complexes. On the route to biomimetic assemblies as models for the photosynthetic reaction center. Acc. Chem. Res. 34, 905-917. Capon, J. F., F. Gloaguen, F. Y. Petillon, P. Schollhammer and J. Talarmin (2009) Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases. Coord. Chem. Rev. 253, 1476-1494. Probst, B., C. Kolano, P. Hamm and R. Alberto (2009) An efficient homogeneous intermolecular rhenium-based photocatalytic system for the production of H2. Inorg. Chem. 48, 1836-1843. Hu, X., B. S. Brunschwig and J. C. Peters (2007) Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 129, 8988-8998. Yagi, M., A. Syouji, S. Yamada, M. Komi, H. Yamazaki and S. Tajima (2009) Molecular catalysts for water oxidation toward artificial photosynthesis. Photochem. Photobiol. Sci. 8, 139-147. Dempsey, J. L., B. S. Brunschwig, J. R. Winkler and H. B. Gray (2009) Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995-2004. Duan, L., Y. Xu, P. Zhang, M. Wang and L. Sun (2010) Visible light-driven water oxidation by a molecular ruthenium catalyst in homogeneous system. Inorg. Chem. 49, 209-215. Romain, S., L. Vigara and A. Llobet (2009) Oxygen-oxygen bond formation pathways promoted by ruthenium complexes. Acc. Chem. Res. 42, 1944-1953. Na, Y., J. Pan, M. Wang and L. Sun (2007) Intermolecular electron transfer from photogenerated Ru(bpy)32+ to [2Fe2S] model complexes of the iron-only hydrogenase active site. Inorg. Chem. 46, 3813-3815. Fukuzumi, S. (2008) Development of bioinspired artificial photosynthetic systems. Phys. Chem. Chem. Phys. 10, 2283-2297. Baffert, C., V. Artero and M. Fontecave (2007) Cobaloximes as functional models for hydrogenases. 2. proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. Inorg. Chem. 46, 1817-1824. Gong, L., J. Wang, H. Li, L. Wang, J. Zhao and Z. Zhu (2011) Acriflavine-cobaloxime-triethanolamine homogeneous photocatalytic system for water splitting and the multiple effects of cobaloxime and triethanolamine. Catal. Commun. 12, 1099-1103. Okura, I., M. Takeuchi, S. Kusunoki and S. Aono (1982) Photoreduction of cytochrome c3 and hydrogen evolution with hydrogenase. Chem. Lett. 11, 187-188. Asakura, N., T. Hiraishi, T. Kamachi and I. Okura (2001) Photoinduced hydrogen evolution with cytochrom c3-viologen-ruthenium(II) triad complex and hydrogenase. J. Mol. Catal. A: Chem. 172, 1-7. Barber, J. and J. W. Murray (2008) The structure of the Mn4Ca2+ cluster of photosystem II and its protein environment as revealed by X-ray crystallography. Phil. Trans. R. Soc. B 363, 1129-1138. Krishnan, C. V., B. S. Brunschwig, C. Creutz and N. Sutin (1985) Homogeneous catalysis of the photoreduction of water .6. mediation by polypyridine complexes of ruthenium(II) and cobalt(II) in alkaline media. J. Am. Chem. Soc. 107, 2005-2015. Inoue, Y. (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10 -related electronic configurations. Energy Environ. Sci. 2, 364-386. Reisner, E., D. J. Powell, C. Cavazza, J. C. Fontecilla-Camps and F. A. Armstrong (2009) Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131, 18467-18477. Maeda, K., M. Higashi, D. L. Lu, R. Abe and K. Domen (2010) Efficient non-sacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 5858-5868. Probst, B., M. Guttentag, A. Rodenberg, P. Hamm and R. Alberto (2011) Photocatalytic H2 production from water with rhenium and cobalt complexes. Inorg. Chem. 50, 3404-3412. Ekström, J., M. Abrahamsson, C. Olson, J. Bergquist, F. B. Kaynak, L. Erikssin, L. Sun, H.-C. Becker, B. Akermark, L. Hammarström and S. Ott (2006) Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model. Dalton Trans., 4599-4606. Borgarello, E., J. Kiwi, E. Pelizetti, M. Visca and M. Gratzel (1981) Sustained water cleavage by visible light. J. Am. Chem. Soc. 103, 6324-6329. Fihri, A., V. Artero, A. Pereira and M. Fontecave (2008) Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Trans., 5567-5569. Juris, A., V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky (1988) Ru(II) polypyridine complexes-photophysics, photochemistry, electrochemistry, and chemi-luminescence. Coord. Chem. Rev. 84, 85-277. Fihri, A., V. Artero, M. Razavet, C. Baffert, W. Leibl and M. Fontecave (2008) Cobaloxime-based photocatalytic devices for hydrogen production. Angew. Chem. Int. Ed. 47, 564-567. Na, Y., M. Wang, J. Pan, P. Zhang, B. Akermark and L. Sun (2008) Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes. Inorg. Chem. 47, 2805-2810. Roeser, S., P. Farr, F. Bozoglian, M. Martinez-Belmonte, J. Benet-Buchholz and A. Llobet (2011) Chemical, electrochemical, and photochemical catalytic oxidation of water to dioxygen with mononuclear ruthenium complexes. ChemSusChem. 4, 197-207. Amao, Y., T. Hiraishi and I. Okura (1997) Photoinduced hydrogen evolution using water soluble viologen-linked trisulfonatophenylporphyrins (TPPSCnV) with hydrogenase. J. Mol. Catal. A: Chem. 126, 21-26. Schwartz, L., P. S. Singh, L. Eriksson, R. Lomoth and S. Ott (2008) Tuning the electronic properties of Fe2(μ-arenedithiolate)(CO)6−n(PMe3)n (n = 0, 2) complexes related to the [Fe-Fe]-hydrogenase active site. C. R. Chim. 11, 875-889. Jasimuddin, S., T. Yamada, K. Fukuju, J. Otsuki and K. Sakai (2010) Photocatalytic hydrogen production from water in self-assembled supramolecular iridium-cobalt systems. Chem. Commun., 8466-8468. Brimblecombe, R., A. Koo, G. C. Dismukes, G. F. Swiegers and L. Spiccia (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J. Am. Chem. Soc. 132, 2892-2894. McCormick, T. M., B. D. Calitree, A. Orchard, N. D. Kraut, F. V. Bright, M. R. Detty and R. Eisenberg (2010) Reductive side of water splitting in artificial photosynthesis: New homogeneous photosystems of great activity and mechanistic insight. J. Am. Chem. Soc. 132, 15480-15483. Concepcion, J. J., J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton and T. J. Meyer (2009) Making oxygen with ruthenium complexes. Acc. Chem. Res. 42, 1954-1965. Hou, Y., B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Sett, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Norskov and I. Chorkendorff (2011) Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434-438. Gust, D., T. A. Moore and A. L. Moore (2001) Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34, 40-48. Melis, A. and T. Happe (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol. 127, 740-748. Dau, H. and I. Zaharieva (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861-1870. Le Goff, A., V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Metaye, A. Fihri, S. Palacin and M. Fontecave (2009) From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384-1387. Sivula, K., F. Le Formal and M. Gratzel (2011) Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4, 432-449. Ghirardi, M. L., J. P. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum and A. Melis (2000) Microalgae: A green source of renewable H2. Trends Biotechnol. 18, 506-511. Peters, J. W., W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt (1998) X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853-1858. Streich, D., Y. Astuti, M. Orlandi, L. Schwartz, R. Lomoth, L. Hammarström and S. Ott (2010) High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chemistry A European Journal 16, 60-63. Badura, A., B. Esper, K. Ataka, C. Grunwald, C. Woll, J. Kuhlmann, J. Heberle and M. Rögner (2006) Light-driven water splitting for (bio-)hydrogen production: Photosystem 2 as the central part of a bioelectrochemical device. Photochem. Photobiol. 82, 1385-1390. Geletii, Y. V., B. Botar, P. Koegerler, D. A. Hillesheim, D. G. Musaev and C. L. Hill (2008) An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew. Chem. Int. Ed. 47, 3896-3899. Fontecilla-Camps, J. C., A. Volbeda, C. Cavazza and Y. Nicolet (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273-4303. Aratani, N., D. Kim and A. Osuka (2009) Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Acc. Chem. Res. 42, 1922-1934. Du, P. W., K. Knowles and R. Eisenberg (2008) A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J. Am. Chem. Soc. 130, 12576-12577. Tard, C. and C. J. Pickett (2009) Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 109, 2245-2274. Blakemore, J. D., N. D. Schley, G. W. Olack, C. D. Incarvito, G. W. Brudvig and R. H. Crabtree (2011) Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors. Chem. Sci. 2, 94-98. Campagna, S., F. Puntoriero, F. Nastasi, G. 2010; 12 1998; 280 2007; 107 2010; 16 2010; 17 1987; 109 1983; 7 1999; 283 2008; 33 1995; 373 1985; 24 2011; 473 2000; 18 2010; 114 2007; 9 1988; 84 2000; 122 2008; 20 2008; 112 2010; 5 2003; 42 1998; 282 2004; 43 2004; 303 2011; 2 2007; 280 2010; 39 2007; 281 1984; 106 2009; 694 2006; 110 2011; 4 2011; 3 2008; 363 2011; 133 1989; 52 2010; 49 2010; 46 2006; 45 2005; 127 2008; 47 2008; 41 2001; 34 2009; 109 2008; 252 2008; 130 2009; 106 2006; 71 2004; 126 2009; 42 1981; 103 1982; 11 2008; 9 2011; 10 2011; 12 2000; 298 1985; 64 1996; 101 2009; 48 1985; 68 2001; 172 1997; 97 2003; 6 1996; 25 2008; 61 2007; 26 1979; 62 2009; 326 1982; 79 2007; 129 2011 2010 2009 2009; 253 2008 2010; 122 2006 2008; 10 2005 2008; 11 1985; 107 2002 2009; 131 1999; 7 2005; 44 2001; 127 2009; 28 2011; 2011 2006; 82 1997; 126 2011; 50 2010; 132 2010; 254 2009; 8 2011; 47 2009; 3 2009; 2 2009; 38 2007; 46 e_1_2_7_108_2 e_1_2_7_3_2 e_1_2_7_127_2 e_1_2_7_104_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_123_2 e_1_2_7_83_2 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_142_2 e_1_2_7_146_2 e_1_2_7_116_2 e_1_2_7_90_2 e_1_2_7_112_2 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_150_2 e_1_2_7_37_2 e_1_2_7_131_2 e_1_2_7_135_2 e_1_2_7_139_2 e_1_2_7_4_2 e_1_2_7_105_2 e_1_2_7_128_2 e_1_2_7_8_2 e_1_2_7_101_2 e_1_2_7_124_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_120_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_2 e_1_2_7_29_2 e_1_2_7_147_2 e_1_2_7_109_2 e_1_2_7_117_2 e_1_2_7_113_2 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_151_2 e_1_2_7_59_2 e_1_2_7_132_2 Hawecker J. (e_1_2_7_86_2) 1983; 7 e_1_2_7_136_2 e_1_2_7_5_2 e_1_2_7_129_2 e_1_2_7_106_2 e_1_2_7_9_2 e_1_2_7_125_2 e_1_2_7_102_2 e_1_2_7_17_2 e_1_2_7_121_2 e_1_2_7_81_2 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_140_2 Kocking R. K. (e_1_2_7_143_2) 2011; 3 e_1_2_7_28_2 e_1_2_7_144_2 e_1_2_7_148_2 e_1_2_7_118_2 e_1_2_7_114_2 e_1_2_7_110_2 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_152_2 e_1_2_7_39_2 e_1_2_7_133_2 e_1_2_7_137_2 e_1_2_7_107_2 e_1_2_7_2_2 e_1_2_7_103_2 e_1_2_7_126_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_122_2 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_10_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_141_2 e_1_2_7_27_2 e_1_2_7_145_2 e_1_2_7_149_2 e_1_2_7_119_2 e_1_2_7_115_2 e_1_2_7_111_2 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_99_2 e_1_2_7_130_2 e_1_2_7_38_2 e_1_2_7_134_2 e_1_2_7_138_2 Photochem Photobiol. 2011 Nov-Dec;87(6):1478 |
References_xml | – reference: Fontecilla-Camps, J. C., A. Volbeda, C. Cavazza and Y. Nicolet (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273-4303. – reference: Gao, W., J. Liu, W. Jiang, M. Wang, L. Weng, B. Akermark and L. Sun (2008) An azadithiolate bridged Fe2S2 complex as active site model of FeFe-hydrogenase covalently linked to a Re(CO)3(bpy)(py) photosensitizer aiming for light-driven hydrogen production. C. R. Chim. 11, 915-921. – reference: Hu, X. L., B. M. Cossairt, B. S. Brunschwig, N. S. Lewis and J. C. Peters (2005) Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes. Chem. Commun., 4723-4725. – reference: Lakadamyali, F. and E. Reisner (2011) Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle. Chem. Commun. 47, 1695-1697. – reference: Jones, A. K., E. Sillery, S. P. J. Albracht and F. A. Armstrong (2002) Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem. Commun., 866-867. – reference: Fihri, A., V. Artero, A. Pereira and M. Fontecave (2008) Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Trans., 5567-5569. – reference: Na, Y., J. Pan, M. Wang and L. Sun (2007) Intermolecular electron transfer from photogenerated Ru(bpy)32+ to [2Fe2S] model complexes of the iron-only hydrogenase active site. Inorg. Chem. 46, 3813-3815. – reference: Gao, W., J. Sun, T. Akermark, M. Li, L. Eriksson, L. Sun and B. Akermark (2010) Attachment of a hydrogen-bonding carboxylate side chain to an [FeFe]-hydrogenase model complex: Influence on the catalytic mechanism. Chem. Eur. J. 16, 2537-2546. – reference: Badura, A., B. Esper, K. Ataka, C. Grunwald, C. Woll, J. Kuhlmann, J. Heberle and M. Rögner (2006) Light-driven water splitting for (bio-)hydrogen production: Photosystem 2 as the central part of a bioelectrochemical device. Photochem. Photobiol. 82, 1385-1390. – reference: Asakura, N., T. Hiraishi, T. Kamachi and I. Okura (2001) Photoinduced hydrogen evolution with cytochrom c3-viologen-ruthenium(II) triad complex and hydrogenase. J. Mol. Catal. A: Chem. 172, 1-7. – reference: Reisner, E., D. J. Powell, C. Cavazza, J. C. Fontecilla-Camps and F. A. Armstrong (2009) Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131, 18467-18477. – reference: Xu, Y., A. Fischer, L. Duan, L. Tong, E. Gabrielsson, B. Åkermark and L. Sun (2010) Chemical and light-driven oxidation of water catalyzed by an efficient dinuclear ruthenium complex. Angew. Chem. Int. Ed. 122, 8934-8937. – reference: Huang, Z., Z. Luo, Y. V. Geletii, J. W. Vickers, Q. Yin, D. Wu, Y. Hou, Y. Ding, J. Song, D. G. Musaev, C. L. Hill and T. Lian (2011) Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation. J. Am. Chem. Soc. 133, 2068-2071. – reference: Tseng, H. W., R. Zong, J. T. Muckerman and R. Thummel (2008) Mononuclear ruthenium(II) complexes that catalyze water oxidation. Inorg. Chem. 47, 11763-11773. – reference: Kirch, M., J. M. Lehn and J. P. Sauvage (1979) Hydrogen generation by visible-light irradiation of aqueous solutions of metal-complexes-approach to the photochemical conversion and storage of solar energy. Helv. Chim. Acta 62, 1345-1384. – reference: Inoue, Y. (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10 -related electronic configurations. Energy Environ. Sci. 2, 364-386. – reference: Dismukes, G. C., R. Brimblecombe, G. A. N. Felton, R. S. Pryadun, J. E. Sheats, L. Spiccia and G. F. Swiegers (2009) Development of bioinspired Mn4O4 cubane water oxidation catalysts: Lessons from photosynthesis. Acc. Chem. Res. 42, 1935-1943. – reference: Geletii, Y. V., Z. Q. Huang, Y. Hou, D. G. Musaev, T. Q. Lian and C. L. Hill (2009) Homogeneous light-driven water oxidation catalyzed by a tetraruthenium complex with all inorganic ligands. J. Am. Chem. Soc. 131, 7522-7523. – reference: Sartorel, A., M. Carraro, G. Scorrano, R. De Zorzi, S. Geremia, N. D. McDaniel, S. Bernhard and M. Bonchio (2008) Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [γ-SiW10O36]8−: A totally inorganic oxygen-evolving catalyst. J. Am. Chem. Soc. 130, 5006-5007. – reference: Dempsey, J. L., B. S. Brunschwig, J. R. Winkler and H. B. Gray (2009) Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995-2004. – reference: Wang, X., S. B. Goeb, Z. Ji, N. A. Pogulaichenko and F. N. Castellano (2011) Homogeneous photocatalytic hydrogen production using π-conjugated platinum(II) arylacetylide sensitizers. Inorg. Chem. 50, 705-707. – reference: Durr, H. and S. Bossmann (2001) Ruthenium polypyridine complexes. On the route to biomimetic assemblies as models for the photosynthetic reaction center. Acc. Chem. Res. 34, 905-917. – reference: Pavlishchuk, V. V. and A. W. Addison (2000) Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorg. Chim. Acta 298, 97-102. – reference: Ekström, J., M. Abrahamsson, C. Olson, J. Bergquist, F. B. Kaynak, L. Erikssin, L. Sun, H.-C. Becker, B. Akermark, L. Hammarström and S. Ott (2006) Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model. Dalton Trans., 4599-4606. – reference: Geletii, Y. V., B. Botar, P. Koegerler, D. A. Hillesheim, D. G. Musaev and C. L. Hill (2008) An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew. Chem. Int. Ed. 47, 3896-3899. – reference: Yagi, M. and K. Narita (2004) Catalytic O2 evolution from water induced by adsorption of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ complex onto clay compounds. J. Am. Chem. Soc. 126, 8084-8085. – reference: Aratani, N., D. Kim and A. Osuka (2009) Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Acc. Chem. Res. 42, 1922-1934. – reference: Na, Y., M. Wang, J. Pan, P. Zhang, B. Akermark and L. Sun (2008) Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes. Inorg. Chem. 47, 2805-2810. – reference: Li, C., M. Wang, J. X. Pan, P. Zhang, R. Zhang and L. C. Sun (2009) Photochemical hydrogen production catalyzed by polypyridyl ruthenium-cobaloxime heterobinuclear complexes with different bridges. J. Organomet. Chem. 694, 2814-2819. – reference: Harriman, A. and J. P. Sauvage (1996) Strategy for constructing photosynthetic models: Porphyrin-containing modules assembled around transition metals. Chem. Soc. Rev. 25, 41. – reference: Flamigni, L., A. Barbieri, C. Sabatini, B. Ventura and F. Barigelletti (2007) Photochemistry and photophysics of coordination compounds: Iridium. Top. Curr. Chem. 281, 143-203. – reference: Brimblecombe, R., A. Koo, G. C. Dismukes, G. F. Swiegers and L. Spiccia (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J. Am. Chem. Soc. 132, 2892-2894. – reference: Jasimuddin, S., T. Yamada, K. Fukuju, J. Otsuki and K. Sakai (2010) Photocatalytic hydrogen production from water in self-assembled supramolecular iridium-cobalt systems. Chem. Commun., 8466-8468. – reference: Probst, B., A. Rodenberg, M. Guttentag, P. Hamm and R. Alberto (2010) A highly stable rhenium-cobalt system for photocatalytic H2 production: Unraveling the performance-limiting steps. Inorg. Chem. 49, 6453-6460. – reference: Wolpher, H., M. Borgström, L. Hammarström, J. Bergquist, V. Sundström, S. Styring, L. Sun and B. Akermark (2003) Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer. Inorg. Chem. Commun. 6, 989-991. – reference: Lazarides, T., T. McCormick, P. W. Du, G. G. Luo, B. Lindley and R. Eisenberg (2009) Making hydrogen from water using a homogeneous system without noble metals. J. Am. Chem. Soc. 131, 9192-9194. – reference: Flamigni, L., J. P. Collin and J. P. Sauvage (2008) Iridium terpyridine complexes as functional assembling units in arrays for the conversion of light energy. Acc. Chem. Res. 41, 857-871. – reference: Zhang, P., M. Wang, J. Dong, X. Li, F. Wang, L. Wu and L. Sun (2010) Photocatalytic hydrogen production from water by noble-metal-free molecular catalyst systems containing Rose Bengal and the cobaloximes of BFx-bridged oxime ligands. J. Phys. Chem. C. 114, 15868-15874. – reference: Comte, P., M. K. Nazeeruddin, F. P. Rotzinger, A. J. Franck and M. Gratzel (1989) Artificial analogues of the oxygen-evolving complex in photosynthesis: The oxo-bridged ruthenium dimer L2(H2O)RuIII-O-RuIII(H2O)L2, L = 2,2′-bipyridyl-4,4′-dicarboxylate. J. Mol. Catal. 52, 63-84. – reference: Kanan, M. W., Y. Surendranath and D. G. Nocera (2009) Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 38, 109-114. – reference: Duan, L., Y. Xu, L. Tong and L. Sun (2011) CeIV- and light-driven water oxidation by [Ru(terpy)(pic)3]2+ analogues: Catalytic and mechanistic studies. ChemSusChem. 4, 238-244. – reference: Melis, A., L. P. Zhang, M. Forestier, M. L. Ghirardi and M. Seibert (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122, 127-135. – reference: McConnell, I., G. Li and G. W. Brudvig (2010) Energy conversion in natural and artificial photosynthesis. Chem. Biol. 17, 434-447. – reference: Ott, S., M. Borgström, M. Kritikos, R. Lomoth, J. Bergquist, B. Akermark, L. Hammarström and L. Sun (2004) Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer: Synthesis and photophysical properties. Inorg. Chem. 43, 4683-4692. – reference: Kocking, R. K., R. Brimblecombe, L.-Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey and L. Spiccia (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat. Chem. 3, 461-466. – reference: Fihri, A., V. Artero, M. Razavet, C. Baffert, W. Leibl and M. Fontecave (2008) Cobaloxime-based photocatalytic devices for hydrogen production. Angew. Chem. Int. Ed. 47, 564-567. – reference: Blakemore, J. D., N. D. Schley, G. W. Olack, C. D. Incarvito, G. W. Brudvig and R. H. Crabtree (2011) Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors. Chem. Sci. 2, 94-98. – reference: Campagna, S., F. Puntoriero, F. Nastasi, G. Bergamini and V. Balzani (2007) Photochemistry and photophysics of coordination compounds: Ruthenium. Top. Curr. Chem. 280, 117-214. – reference: Hasobe, T. (2010) Supramolecular nanoarchitectures for light energy conversion. Phys. Chem. Chem. Phys. 12, 44-57. – reference: Okura, I., M. Takeuchi, S. Kusunoki and S. Aono (1982) Photoreduction of cytochrome c3 and hydrogen evolution with hydrogenase. Chem. Lett. 11, 187-188. – reference: Umena, Y., K. Kawakami, J.-R. Shen and N. Kamiya (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 473, 55-60. – reference: Badura, A., D. Guschin, B. Esper, T. Kothe, S. Neugebauer, W. Schuhmann and M. Rögner (2008) Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. Electroanalysis 20, 1043-1047. – reference: Poulsen, A. K., A. Rompel and C. J. McKenzie (2005) Water oxidation catalyzed by a dinuclear Mn complex: A functional model for the oxygen-evolving center of photosystem II. Angew. Chem. Int. Ed. 44, 6916-6920. – reference: Borgarello, E., J. Kiwi, E. Pelizetti, M. Visca and M. Gratzel (1981) Sustained water cleavage by visible light. J. Am. Chem. Soc. 103, 6324-6329. – reference: Capon, J. F., F. Gloaguen, F. Y. Petillon, P. Schollhammer and J. Talarmin (2009) Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases. Coord. Chem. Rev. 253, 1476-1494. – reference: Krishnan, C. V., B. S. Brunschwig, C. Creutz and N. Sutin (1985) Homogeneous catalysis of the photoreduction of water .6. mediation by polypyridine complexes of ruthenium(II) and cobalt(II) in alkaline media. J. Am. Chem. Soc. 107, 2005-2015. – reference: Probst, B., M. Guttentag, A. Rodenberg, P. Hamm and R. Alberto (2011) Photocatalytic H2 production from water with rhenium and cobalt complexes. Inorg. Chem. 50, 3404-3412. – reference: Duan, L., Y. Xu, M. Gorlov, L. Tong, S. Andersson and L. Sun (2010) Chemical and photochemical water oxidation catalyzed by mononuclear ruthenium complexes with a negatively charge tridentate ligand. Chemistry A European Journal 16, 4659-4668. – reference: Reisner, E., J. C. Fontecilla-Camps and F. A. Armstrong (2009) Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Commun., 550-552. – reference: Juris, A., V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky (1988) Ru(II) polypyridine complexes-photophysics, photochemistry, electrochemistry, and chemi-luminescence. Coord. Chem. Rev. 84, 85-277. – reference: Cui, H., M. Wang, L. Duan and L. Sun (2008) Preparation, characterization and electrochemistry of an iron-only hydrogenase active site model covalently linked to a ruthenium tris(bipyridine) photosensitizer. J. Coord. Chem. 61, 1856-1861. – reference: McCormick, T. M., B. D. Calitree, A. Orchard, N. D. Kraut, F. V. Bright, M. R. Detty and R. Eisenberg (2010) Reductive side of water splitting in artificial photosynthesis: New homogeneous photosystems of great activity and mechanistic insight. J. Am. Chem. Soc. 132, 15480-15483. – reference: Chan, S. F., M. Chou, C. Creutz, T. Matsubara and N. Sutin (1981) Mechanism of the formation of dihydrogen from the photoinduced reactions of poly(pyridine)ruthenium(II) and poly(pyridine)rhodium(III) complexes. J. Am. Chem. Soc. 103, 369-379. – reference: Stripp, S. T. and T. Happe (2009) How algae produce hydrogen-news from the photosynthetic hydrogenase. Dalton Trans., 9960-9969. – reference: Baffert, C., V. Artero and M. Fontecave (2007) Cobaloximes as functional models for hydrogenases. 2. proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. Inorg. Chem. 46, 1817-1824. – reference: Ott, S., M. Kritikos, B. Akermark and L. Sun (2003) Synthesis and structure of a biomimetic model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer. Angew. Chem. Int. Ed. 42, 3285-3288. – reference: Concepcion, J. J., J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton and T. J. Meyer (2009) Making oxygen with ruthenium complexes. Acc. Chem. Res. 42, 1954-1965. – reference: Du, P. W., K. Knowles and R. Eisenberg (2008) A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J. Am. Chem. Soc. 130, 12576-12577. – reference: Tard, C. and C. J. Pickett (2009) Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 109, 2245-2274. – reference: Pantani, O., E. Anxolabehere-Mallart, A. Aukauloo and P. Millet (2007) Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochem. Commun. 9, 54-58. – reference: Narita, K., T. Kuwaraba, K. Sone, K. Shimizu and M. Yagi (2006) Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ and clay compounds. J. Phys. Chem. B 110, 23107-23114. – reference: Hiraishi, T., T. Kamachi and I. Okura (1996) Kinetic studies of electron transfer on photoinduced hydrogen evolution with hydrogenase. J. Photochem. Photobiol., A 101, 45-47. – reference: Song, L.-C., M.-Y. Tang, F.-H. Su and Q.-M. Hu (2006) A biomimetic model for the active site of iron-only hydrogenases covalently bonded to a porphyrin photosensitizer. Angew. Chem. Int. Ed. 45, 1130-1133. – reference: Morris, A. J., G. J. Meyer and E. Fujita (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 42, 1983-1994. – reference: Reisner, E. (2011) Solar hydrogen evolution with hydrogenases: From natural to hybrid systems. Eur. J. Inorg. Chem. 2011, 1005-1016. – reference: Gong, L., J. Wang, H. Li, L. Wang, J. Zhao and Z. Zhu (2011) Acriflavine-cobaloxime-triethanolamine homogeneous photocatalytic system for water splitting and the multiple effects of cobaloxime and triethanolamine. Catal. Commun. 12, 1099-1103. – reference: Ihara, M., H. Nishihara, K.-S. Yoon, O. Lenz, B. Friedrich, H. Nakamoto, K. Kojima, D. Honma, T. Kamachi and I. Okura (2006) Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochem. Photobiol. 82, 676-682. – reference: Limburg, J., J. S. Vrettos, L. M. Liable-Sands, A. L. Rheingold, R. H. Crabtree and G. W. Brudvig (1999) A functional model for O-O bond formation by the O2-evolving complex in photosystem II. Science 283, 1524-1527. – reference: Wenger, O. S. (2009) Long-range electron transfer in artificial systems with d(6) and d(8) metal photosensitizers. Coord. Chem. Rev. 253, 1439-1457. – reference: Krassen, H., A. Schwarze, B. Friedrich, K. Ataka, O. Lenz and J. Heberle (2009) Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. Acs Nano 3, 4055-4061. – reference: Amao, Y., T. Hiraishi and I. Okura (1997) Photoinduced hydrogen evolution using water soluble viologen-linked trisulfonatophenylporphyrins (TPPSCnV) with hydrogenase. J. Mol. Catal. A: Chem. 126, 21-26. – reference: Duan, L., Y. Xu, P. Zhang, M. Wang and L. Sun (2010) Visible light-driven water oxidation by a molecular ruthenium catalyst in homogeneous system. Inorg. Chem. 49, 209-215. – reference: Zhang, P., M. Wang, Y. Na, X. Li, Y. Jiang and L. Sun (2010) Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Trans. 39, 1204-1206. – reference: Tran, P. D., A. Le Goff, J. Heidkamp, B. Jousselme, N. Guillet, S. Palacin, H. Dau, M. Fontecave and V. Artero (2011) Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: Carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew. Chem. Int. Ed. 50, 1371-1374. – reference: Najafpour, M. M., T. Ehrenberg, M. Wiechen and P. Kurz (2010) Calcium manganese(III) oxides (CaMn2O4·xH2O) as biomimetic oxygen-evolving catalysts. Angew. Chem. Int. Ed. 49, 2233-2237. – reference: Cady, C. W., R. H. Crabtree and G. W. Brudvig (2008) Functional models for the oxygen-evolving complex of photosystem II. Coord. Chem. Rev. 252, 444-455. – reference: Roeser, S., P. Farr, F. Bozoglian, M. Martinez-Belmonte, J. Benet-Buchholz and A. Llobet (2011) Chemical, electrochemical, and photochemical catalytic oxidation of water to dioxygen with mononuclear ruthenium complexes. ChemSusChem. 4, 197-207. – reference: Xu, Y., L. Duan, L. Tong, B. Akermark and L. Sun (2010) Visible light-driven water oxidation catalyzed by a highly efficient dinuclear ruthenium complex. Chem. Commun. 46, 6506-6508. – reference: Peters, J. W., W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt (1998) X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853-1858. – reference: Rutherford, A. W. and A. Boussac (2004) Water photolysis in biology. Science 303, 1782-1784. – reference: Wang, W.-G., F. Wang, H.-Y. Wang, G. Si, C.-H. Tung and L.-Z. Wu (2010) Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution. Chemistry an Asian Journal 5, 1796-1803. – reference: Yagi, M., M. Toda, S. Yamada and H. Yamazaki (2010) An artificial model of photosynthetic photosystem II: Visible-light-derived O2 production from water by a di-μ-oxo-bridged manganese dimer as an oxygen evolving center. Chem. Commun. 46, 8594-8596. – reference: Song, L.-C., M.-Y. Tang, S.-Z. Mei, J.-H. Huang and Q.-M. Hu (2007) The active site for iron-only hydrogenases coordinatively bonded to a metalloporphyrin photosensitizer. Organometallics 26, 1575-1577. – reference: Ghirardi, M. L., J. P. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum and A. Melis (2000) Microalgae: A green source of renewable H2. Trends Biotechnol. 18, 506-511. – reference: Albinsson, B. and J. Martensson (2008) Long-range electron and excitation energy transfer in donor-bridge-acceptor systems. J. Photochem. Photobiol., C 9, 138-155. – reference: Creutz, C. and N. Sutin (1985) Photogeneration and reactions of cobalt(I) complexes. Coord. Chem. Rev. 64, 321-341. – reference: Krishnan, C. V. and N. Sutin (1981) Homogeneous catalysis of the photo-reduction of water by visible-light .2. Mediation by a tris(2,2′-bipyridine)ruthenium(II)-cobalt(II) bipyridine system. J. Am. Chem. Soc. 103, 2141-2142. – reference: Lubner, C. E., R. Grimme, D. A. Bryant and J. H. Golbeck (2010) Wiring photosystem I for direct solar hydrogen production. Biochemistry 49, 404-414. – reference: Song, L. C., L. X. Wang, M. Y. Tang, C. G. Li, H. B. Song and Q. M. Hu (2009) Synthesis, structure, and photoinduced catalysis of [FeFe]-hydrogenase active site models covalently linked to a porphyrin or metalloporphyrin moiety. Organometallics 28, 3834-3841. – reference: Barber, J. (2009) Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 38, 185-196. – reference: Wasielewski, M. R. (2009) Self-assembly strategies for integrating light-harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910-1921. – reference: Schneider, J., P. Du, P. Jarosz, T. Lazarides, X. Wang, W. W. Brennessel and R. Eisenberg (2009) Cyclometalated 6-phenyl-2,22-bipyridyl (CNN) platinum(II) acetylide complexes: Structure, electrochemistry, photophysics, and oxidative and reductive-quenching studies. Inorg. Chem. 48, 4306-4316. – reference: Fukuzumi, S. (2008) Development of bioinspired artificial photosynthetic systems. Phys. Chem. Chem. Phys. 10, 2283-2297. – reference: Sivula, K., F. Le Formal and M. Gratzel (2011) Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4, 432-449. – reference: Le Goff, A., V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Metaye, A. Fihri, S. Palacin and M. Fontecave (2009) From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384-1387. – reference: Besson, C., Z. Huang, Y. V. Geletii, S. Lense, K. I. Hardcastle, D. G. Musaev, T. Lian, A. Proust and C. L. Hill (2010) Cs9[(γ-PW10O36)2Ru4O5(OH)(H2O)4], a new all-inorganic, soluble catalyst for the efficient visible-light-driven oxidation of water. Chem. Commun. 46, 2784-2786. – reference: Gust, D., T. A. Moore and A. L. Moore (2001) Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34, 40-48. – reference: Li, X. Q., M. Wang, S. P. Zhang, J. X. Pan, Y. Na, J. H. Liu, B. Akermark and L. C. Sun (2008) Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: Photo-induced electron transfer and hydrogen generation. J. Phys. Chem. B 112, 8198-8202. – reference: Rotzinger, F. P., S. Munavalli, P. Comte, J. K. Hurst, M. Gratzel, F.-J. Pern and A. J. Franck (1987) A molecular water-oxidation catalyst derived from ruthenium diaqua bis(2,2′-bipyridyl-5,5′-dicarboxylic acid). J. Am.Chem. Soc. 109, 6619-6626. – reference: Brudvig, G. W. (2008) Water oxidation chemistry of photosystem II. Philosophical Transactions of the Royal Society B-Biological Sciences 363, 1211-1219. – reference: Youngblood, W. J., S.-H. A. Lee, K. Maeda and T. E. Mallouk (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 42, 1966-1973. – reference: Du, P. W., J. Schneider, G. G. Luo, W. W. Brennessel and R. Eisenberg (2009) Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorg. Chem. 48, 4952-4962. – reference: Ruttinger, W. and G. C. Dismukes (1997) Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Chem. Rev. 97, 1-24. – reference: Maeda, K., M. Higashi, D. L. Lu, R. Abe and K. Domen (2010) Efficient non-sacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 5858-5868. – reference: Lehn, J. M. and R. Ziessel (1982) Photochemical generation of carbon-monoxide and hydrogen by reduction of carbon-dioxide and water under visible-light irradiation. Proc. Natl Acad. Sci. USA 79, 701-704. – reference: Hu, X., B. S. Brunschwig and J. C. Peters (2007) Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 129, 8988-8998. – reference: Artero, V., M. Chavarot-Kerlidou and M. Fontecave (2011) Splitting water with cobalt. Angew. Chem. Int. Ed. doi: 10.1002/anie.201007987. – reference: Durrant, J. R., S. A. Haque and E. Palomares (2006) Photochemical energy conversion: From molecular dyads to solar cells. Chem. Commun., 3279-3289. – reference: Schwartz, L., P. S. Singh, L. Eriksson, R. Lomoth and S. Ott (2008) Tuning the electronic properties of Fe2(μ-arenedithiolate)(CO)6−n(PMe3)n (n = 0, 2) complexes related to the [Fe-Fe]-hydrogenase active site. C. R. Chim. 11, 875-889. – reference: Xu, Y. H., T. Akermark, V. Gyollai, D. P. Zou, L. Eriksson, L. L. Duan, R. Zhang, B. Akermark and L. Sun (2009) A new dinuclear ruthenium complex as an efficient water oxidation catalyst. Inorg. Chem. 48, 2717-2719. – reference: Volbeda, A., M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey and J. C. Fontecilla-Camps (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580-587. – reference: Nicolet, Y., C. Piras, P. Legrand, C. E. Hatchikian and J. C. Fontecilla-Camps (1999) Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center. Struct. Fold. Des. 7, 13-23. – reference: Sala, X., I. Romero, M. Rodriguez, L. Escriche and A. Llobet (2009) Molecular catalysts that oxidize water to dioxygen. Angew. Chem. Int. Ed. 48, 2842-2852. – reference: Yagi, M., A. Syouji, S. Yamada, M. Komi, H. Yamazaki and S. Tajima (2009) Molecular catalysts for water oxidation toward artificial photosynthesis. Photochem. Photobiol. Sci. 8, 139-147. – reference: Kluwer, A. M., R. Kapre, F. Hartl, M. Lutz, A. L. Spek, A. M. Brouwer, P. W. N. M. van Leeuwen and J. N. H. Reek (2009) Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution. Proc. Natl Acad. Sci. USA 106, 10460-10465. – reference: Creutz, C., H. A. Schwarz and N. Sutin (1984) Homogeneous catalysis of the photoreduction of water by visible-light .5. Free-radical route to formation of the metal hydride complex hydridoaquobis(2,2′-bipyridine)cobalt(III). J. Am. Chem. Soc. 106, 3036-3037. – reference: La Ganga, G., F. Nastasi, S. Campagna and F. Puntoriero (2009) Photoinduced water oxidation sensitized by a tetranuclear Ru(II) dendrimer. Dalton Trans., 9997-9999. – reference: Romain, S., L. Vigara and A. Llobet (2009) Oxygen-oxygen bond formation pathways promoted by ruthenium complexes. Acc. Chem. Res. 42, 1944-1953. – reference: Okura, I. (1985) Hydrogenase and its application for photoinduced hydrogen evolution. Coord. Chem. Rev. 68, 53-99. – reference: Schwarz, H. A., C. Creutz and N. Sutin (1985) Homogeneous catalysis of the photoreduction of water by visible-light .4. Cobalt(I) polypyridine complexes-redox and substitution kinetics and thermodynamics in the aqueous 2,2′-bipyridine and 4,4′-dimethyl-2,2′-bipyridine series studied by the pulse-radiolysis technique. Inorg. Chem. 24, 433-439. – reference: Hou, Y., B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Sett, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Norskov and I. Chorkendorff (2011) Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434-438. – reference: Streich, D., Y. Astuti, M. Orlandi, L. Schwartz, R. Lomoth, L. Hammarström and S. Ott (2010) High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chemistry A European Journal 16, 60-63. – reference: Goldsmith, J. I., W. R. Hudson, M. S. Lowry, T. H. Anderson and S. Bernhard (2005) Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J. Am. Chem. Soc. 127, 7502-7510. – reference: Wasielewski, M. R. (2006) Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. J. Org. Chem. 71, 5051-5066. – reference: Li, L., L. L. Duan, Y. H. Xu, M. Gorlov, A. Hagfeldt and L. Sun (2010) A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. Chem. Commun. 46, 7307-7309. – reference: Melis, A. and T. Happe (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol. 127, 740-748. – reference: Razavet, M., V. Artero and M. Fontecave (2005) Proton electroreduction catalyzed by cobaloximes: Functional models for hydrogenases. Inorg. Chem. 44, 4786-4795. – reference: Khaselev, O. and J. A. Turner (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425-427. – reference: Losse, S., J. G. Vos and S. Rau (2010) Catalytic hydrogen production at cobalt centres. Coord. Chem. Rev. 254, 2492-2504. – reference: Jacques, P.-A., V. Artero, J. Pécaut and M. Fontecave (2009) Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages. Proc. Natl Acad. Sci. USA 106, 20627-20632. – reference: Zhang, P., M. Wang, C. Li, X. Li, J. Dong and L. Sun (2010) Photochemical H2 production with noble-metal-free molecular devices comprising a porphyrin photosensitizer and a cobaloxime catalyst. Chem. Commun. 46, 8806-8809. – reference: Dau, H. and I. Zaharieva (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861-1870. – reference: Benniston, A. C. and A. Harriman (2008) Artificial photosynthesis. Mater. Today 11, 26-34. – reference: Lubner, C. E., P. Khorzer, P. J. N. Silva, K. A. Vincent, T. Happe, D. A. Bryant and J. H. Golbeck (2010) Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry 49, 10264-10266. – reference: Hawecker, J., J. M. Lehn and R. Ziessel (1983) Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes. New J. Chem. 7, 271-277. – reference: Barber, J. and J. W. Murray (2008) The structure of the Mn4Ca2+ cluster of photosystem II and its protein environment as revealed by X-ray crystallography. Phil. Trans. R. Soc. B 363, 1129-1138. – reference: Probst, B., C. Kolano, P. Hamm and R. Alberto (2009) An efficient homogeneous intermolecular rhenium-based photocatalytic system for the production of H2. Inorg. Chem. 48, 1836-1843. – reference: Gust, D., D. Kramer, A. Moore, T. A. Moore and W. Vermaas (2008) Engineered and artificial photosynthesis: Human ingenuity enters the game. MRS Bull. 33, 383-387. – year: 2011 – volume: 103 start-page: 369 year: 1981 end-page: 379 article-title: Mechanism of the formation of dihydrogen from the photoinduced reactions of poly(pyridine)ruthenium(II) and poly(pyridine)rhodium(III) complexes publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 2842 year: 2009 end-page: 2852 article-title: Molecular catalysts that oxidize water to dioxygen publication-title: Angew. Chem. Int. Ed. – start-page: 4599 year: 2006 end-page: 4606 article-title: Bio‐inspired, side‐on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model publication-title: Dalton Trans. – volume: 126 start-page: 21 year: 1997 end-page: 26 article-title: Photoinduced hydrogen evolution using water soluble viologen‐linked trisulfonatophenylporphyrins (TPPSC V) with hydrogenase publication-title: J. Mol. Catal. A: Chem. – volume: 47 start-page: 2805 year: 2008 end-page: 2810 article-title: Visible light‐driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe S] complexes publication-title: Inorg. Chem. – volume: 46 start-page: 1817 year: 2007 end-page: 1824 article-title: Cobaloximes as functional models for hydrogenases. 2. proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media publication-title: Inorg. Chem. – volume: 109 start-page: 2245 year: 2009 end-page: 2274 article-title: Structural and functional analogues of the active sites of the [Fe]‐, [NiFe]‐, and [FeFe]‐hydrogenases publication-title: Chem. Rev. – volume: 46 start-page: 8594 year: 2010 end-page: 8596 article-title: An artificial model of photosynthetic photosystem II: Visible‐light‐derived O production from water by a di‐μ‐oxo‐bridged manganese dimer as an oxygen evolving center publication-title: Chem. Commun. – volume: 132 start-page: 2892 year: 2010 end-page: 2894 article-title: Solar driven water oxidation by a bioinspired manganese molecular catalyst publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 432 year: 2011 end-page: 449 article-title: Solar water splitting: Progress using hematite (α‐Fe O ) photoelectrodes publication-title: Chemsuschem – volume: 253 start-page: 1476 year: 2009 end-page: 1494 article-title: Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]‐hydrogenases publication-title: Coord. Chem. Rev. – volume: 42 start-page: 3285 year: 2003 end-page: 3288 article-title: Synthesis and structure of a biomimetic model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 197 year: 2011 end-page: 207 article-title: Chemical, electrochemical, and photochemical catalytic oxidation of water to dioxygen with mononuclear ruthenium complexes publication-title: ChemSusChem. – volume: 42 start-page: 1910 year: 2009 end-page: 1921 article-title: Self‐assembly strategies for integrating light‐harvesting and charge separation in artificial photosynthetic systems publication-title: Acc. Chem. Res. – volume: 11 start-page: 26 year: 2008 end-page: 34 article-title: Artificial photosynthesis publication-title: Mater. Today – volume: 42 start-page: 1922 year: 2009 end-page: 1934 article-title: Discrete cyclic porphyrin arrays as artificial light‐harvesting antenna publication-title: Acc. Chem. Res. – volume: 694 start-page: 2814 year: 2009 end-page: 2819 article-title: Photochemical hydrogen production catalyzed by polypyridyl ruthenium‐cobaloxime heterobinuclear complexes with different bridges publication-title: J. Organomet. Chem. – volume: 49 start-page: 2233 year: 2010 end-page: 2237 article-title: Calcium manganese(III) oxides (CaMn O ·xH O) as biomimetic oxygen‐evolving catalysts publication-title: Angew. Chem. Int. Ed. – volume: 132 start-page: 15480 year: 2010 end-page: 15483 article-title: Reductive side of water splitting in artificial photosynthesis: New homogeneous photosystems of great activity and mechanistic insight publication-title: J. Am. Chem. Soc. – volume: 107 start-page: 2005 year: 1985 end-page: 2015 article-title: Homogeneous catalysis of the photoreduction of water .6. mediation by polypyridine complexes of ruthenium(II) and cobalt(II) in alkaline media publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 6453 year: 2010 end-page: 6460 article-title: A highly stable rhenium‐cobalt system for photocatalytic H production: Unraveling the performance‐limiting steps publication-title: Inorg. Chem. – volume: 10 start-page: 434 year: 2011 end-page: 438 article-title: Bioinspired molecular co‐catalysts bonded to a silicon photocathode for solar hydrogen evolution publication-title: Nat. Mater. – volume: 131 start-page: 18467 year: 2009 end-page: 18477 article-title: Visible light‐driven H production by hydrogenases attached to dye‐sensitized TiO nanoparticles publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 94 year: 2011 end-page: 98 article-title: Anodic deposition of a robust iridium‐based water‐oxidation catalyst from organometallic precursors publication-title: Chem. Sci. – volume: 106 start-page: 20627 year: 2009 end-page: 20632 article-title: Cobalt and nickel diimine‐dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages publication-title: Proc. Natl Acad. Sci. USA – volume: 34 start-page: 40 year: 2001 end-page: 48 article-title: Mimicking photosynthetic solar energy transduction publication-title: Acc. Chem. Res. – volume: 106 start-page: 3036 year: 1984 end-page: 3037 article-title: Homogeneous catalysis of the photoreduction of water by visible‐light .5. Free‐radical route to formation of the metal hydride complex hydridoaquobis(2,2′‐bipyridine)cobalt(III) publication-title: J. Am. Chem. Soc. – volume: 303 start-page: 1782 year: 2004 end-page: 1784 article-title: Water photolysis in biology publication-title: Science – volume: 11 start-page: 187 year: 1982 end-page: 188 article-title: Photoreduction of cytochrome and hydrogen evolution with hydrogenase publication-title: Chem. Lett. – volume: 79 start-page: 701 year: 1982 end-page: 704 article-title: Photochemical generation of carbon‐monoxide and hydrogen by reduction of carbon‐dioxide and water under visible‐light irradiation publication-title: Proc. Natl Acad. Sci. USA – volume: 298 start-page: 97 year: 2000 end-page: 102 article-title: Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C publication-title: Inorg. Chim. Acta – volume: 4 start-page: 238 year: 2011 end-page: 244 article-title: Ce ‐ and light‐driven water oxidation by [Ru(terpy)(pic) ] analogues: Catalytic and mechanistic studies publication-title: ChemSusChem. – volume: 130 start-page: 5006 year: 2008 end-page: 5007 article-title: Polyoxometalate embedding of a tetraruthenium(IV)‐oxo‐core by template‐directed metalation of [γ‐SiW O ] : A totally inorganic oxygen‐evolving catalyst publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 185 year: 2009 end-page: 196 article-title: Photosynthetic energy conversion: Natural and artificial publication-title: Chem. Soc. Rev. – volume: 33 start-page: 383 year: 2008 end-page: 387 article-title: Engineered and artificial photosynthesis: Human ingenuity enters the game publication-title: MRS Bull. – volume: 282 start-page: 1853 year: 1998 end-page: 1858 article-title: X‐ray crystal structure of the Fe‐only hydrogenase (Cpl) from to 1.8 angstrom resolution publication-title: Science – volume: 41 start-page: 857 year: 2008 end-page: 871 article-title: Iridium terpyridine complexes as functional assembling units in arrays for the conversion of light energy publication-title: Acc. Chem. Res. – volume: 46 start-page: 3813 year: 2007 end-page: 3815 article-title: Intermolecular electron transfer from photogenerated Ru(bpy) to [2Fe S] model complexes of the iron‐only hydrogenase active site publication-title: Inorg. Chem. – volume: 82 start-page: 676 year: 2006 end-page: 682 article-title: Light‐driven hydrogen production by a hybrid complex of a [NiFe]‐hydrogenase and the cyanobacterial photosystem I publication-title: Photochem. Photobiol. – year: 2011 article-title: Splitting water with cobalt publication-title: Angew. Chem. Int. Ed. – volume: 109 start-page: 6619 year: 1987 end-page: 6626 article-title: A molecular water‐oxidation catalyst derived from ruthenium diaqua bis(2,2′‐bipyridyl‐5,5′‐dicarboxylic acid) publication-title: J. Am.Chem. Soc. – volume: 48 start-page: 2717 year: 2009 end-page: 2719 article-title: A new dinuclear ruthenium complex as an efficient water oxidation catalyst publication-title: Inorg. Chem. – volume: 2011 start-page: 1005 year: 2011 end-page: 1016 article-title: Solar hydrogen evolution with hydrogenases: From natural to hybrid systems publication-title: Eur. J. Inorg. Chem. – volume: 62 start-page: 1345 year: 1979 end-page: 1384 article-title: Hydrogen generation by visible‐light irradiation of aqueous solutions of metal‐complexes—approach to the photochemical conversion and storage of solar energy publication-title: Helv. Chim. Acta – volume: 130 start-page: 12576 year: 2008 end-page: 12577 article-title: A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 434 year: 2010 end-page: 447 article-title: Energy conversion in natural and artificial photosynthesis publication-title: Chem. Biol. – volume: 107 start-page: 4273 year: 2007 end-page: 4303 article-title: Structure/function relationships of [NiFe]‐ and [FeFe]‐hydrogenases publication-title: Chem. Rev. – volume: 131 start-page: 9192 year: 2009 end-page: 9194 article-title: Making hydrogen from water using a homogeneous system without noble metals publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 15868 year: 2010 end-page: 15874 article-title: Photocatalytic hydrogen production from water by noble‐metal‐free molecular catalyst systems containing Rose Bengal and the cobaloximes of BFx‐bridged oxime ligands publication-title: J. Phys. Chem. C. – volume: 46 start-page: 2784 year: 2010 end-page: 2786 article-title: Cs [(γ‐PW O ) Ru O (OH)(H O) ], a new all‐inorganic, soluble catalyst for the efficient visible‐light‐driven oxidation of water publication-title: Chem. Commun. – volume: 48 start-page: 1836 year: 2009 end-page: 1843 article-title: An efficient homogeneous intermolecular rhenium‐based photocatalytic system for the production of H publication-title: Inorg. Chem. – volume: 71 start-page: 5051 year: 2006 end-page: 5066 article-title: Energy, charge, and spin transport in molecules and self‐assembled nanostructures inspired by photosynthesis publication-title: J. Org. Chem. – volume: 129 start-page: 8988 year: 2007 end-page: 8998 article-title: Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 63 year: 1989 end-page: 84 article-title: Artificial analogues of the oxygen‐evolving complex in photosynthesis: The oxo‐bridged ruthenium dimer L (H O)Ru ‐O‐Ru (H O)L , = 2,2′‐bipyridyl‐4,4′‐dicarboxylate publication-title: J. Mol. Catal. – volume: 44 start-page: 4786 year: 2005 end-page: 4795 article-title: Proton electroreduction catalyzed by cobaloximes: Functional models for hydrogenases publication-title: Inorg. Chem. – start-page: 3279 year: 2006 end-page: 3289 article-title: Photochemical energy conversion: From molecular dyads to solar cells publication-title: Chem. Commun. – volume: 47 start-page: 11763 year: 2008 end-page: 11773 article-title: Mononuclear ruthenium(II) complexes that catalyze water oxidation publication-title: Inorg. Chem. – volume: 122 start-page: 8934 year: 2010 end-page: 8937 article-title: Chemical and light‐driven oxidation of water catalyzed by an efficient dinuclear ruthenium complex publication-title: Angew. Chem. Int. Ed. – volume: 25 start-page: 41 year: 1996 article-title: Strategy for constructing photosynthetic models: Porphyrin‐containing modules assembled around transition metals publication-title: Chem. Soc. Rev. – volume: 7 start-page: 271 year: 1983 end-page: 277 article-title: Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes publication-title: New J. Chem. – volume: 9 start-page: 138 year: 2008 end-page: 155 article-title: Long‐range electron and excitation energy transfer in donor‐bridge‐acceptor systems publication-title: J. Photochem. Photobiol., C – start-page: 8466 year: 2010 end-page: 8468 article-title: Photocatalytic hydrogen production from water in self‐assembled supramolecular iridium–cobalt systems publication-title: Chem. Commun. – volume: 46 start-page: 6506 year: 2010 end-page: 6508 article-title: Visible light‐driven water oxidation catalyzed by a highly efficient dinuclear ruthenium complex publication-title: Chem. Commun. – volume: 373 start-page: 580 year: 1995 end-page: 587 article-title: Crystal structure of the nickel‐iron hydrogenase from publication-title: Nature – volume: 131 start-page: 7522 year: 2009 end-page: 7523 article-title: Homogeneous light‐driven water oxidation catalyzed by a tetraruthenium complex with all inorganic ligands publication-title: J. Am. Chem. Soc. – volume: 281 start-page: 143 year: 2007 end-page: 203 article-title: Photochemistry and photophysics of coordination compounds: Iridium publication-title: Top. Curr. Chem. – volume: 9 start-page: 54 year: 2007 end-page: 58 article-title: Electroactivity of cobalt and nickel glyoximes with regard to the electro‐reduction of protons into molecular hydrogen in acidic media publication-title: Electrochem. Commun. – start-page: 9997 year: 2009 end-page: 9999 article-title: Photoinduced water oxidation sensitized by a tetranuclear Ru(II) dendrimer publication-title: Dalton Trans. – volume: 18 start-page: 506 year: 2000 end-page: 511 article-title: Microalgae: A green source of renewable H publication-title: Trends Biotechnol. – volume: 7 start-page: 13 year: 1999 end-page: 23 article-title: iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center publication-title: Struct. Fold. Des. – volume: 42 start-page: 1954 year: 2009 end-page: 1965 article-title: Making oxygen with ruthenium complexes publication-title: Acc. Chem. Res. – volume: 49 start-page: 10264 year: 2010 end-page: 10266 article-title: Wiring an [FeFe]‐hydrogenase with photosystem I for light‐induced hydrogen production publication-title: Biochemistry – volume: 34 start-page: 905 year: 2001 end-page: 917 article-title: Ruthenium polypyridine complexes. On the route to biomimetic assemblies as models for the photosynthetic reaction center publication-title: Acc. Chem. Res. – volume: 12 start-page: 44 year: 2010 end-page: 57 article-title: Supramolecular nanoarchitectures for light energy conversion publication-title: Phys. Chem. Chem. Phys. – volume: 44 start-page: 6916 year: 2005 end-page: 6920 article-title: Water oxidation catalyzed by a dinuclear Mn complex: A functional model for the oxygen‐evolving center of photosystem II publication-title: Angew. Chem. Int. Ed. – volume: 20 start-page: 1043 year: 2008 end-page: 1047 article-title: Photo‐induced electron transfer between photosystem 2 cross‐linked redox hydrogels publication-title: Electroanalysis – year: 2009 – volume: 48 start-page: 4952 year: 2009 end-page: 4962 article-title: Visible light‐driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts publication-title: Inorg. Chem. – volume: 103 start-page: 6324 year: 1981 end-page: 6329 article-title: Sustained water cleavage by visible light publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 8198 year: 2008 end-page: 8202 article-title: Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active‐site model: Photo‐induced electron transfer and hydrogen generation publication-title: J. Phys. Chem. B – volume: 11 start-page: 915 year: 2008 end-page: 921 article-title: An azadithiolate bridged Fe S complex as active site model of FeFe‐hydrogenase covalently linked to a Re(CO) (bpy)(py) photosensitizer aiming for light‐driven hydrogen production publication-title: C. R. Chim. – volume: 122 start-page: 127 year: 2000 end-page: 135 article-title: Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga publication-title: Plant Physiol. – volume: 45 start-page: 1130 year: 2006 end-page: 1133 article-title: A biomimetic model for the active site of iron‐only hydrogenases covalently bonded to a porphyrin photosensitizer publication-title: Angew. Chem. Int. Ed. – volume: 127 start-page: 740 year: 2001 end-page: 748 article-title: Hydrogen production. Green algae as a source of energy publication-title: Plant Physiol. – volume: 50 start-page: 3404 year: 2011 end-page: 3412 article-title: Photocatalytic H production from water with rhenium and cobalt complexes publication-title: Inorg. Chem. – volume: 5 start-page: 1796 year: 2010 end-page: 1803 article-title: Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution publication-title: Chemistry an Asian Journal – volume: 473 start-page: 55 year: 2011 end-page: 60 article-title: Crystal structure of oxygen‐evolving photosystem II at a resolution of 1.9Å publication-title: Nature – volume: 16 start-page: 4659 year: 2010 end-page: 4668 article-title: Chemical and photochemical water oxidation catalyzed by mononuclear ruthenium complexes with a negatively charge tridentate ligand publication-title: Chemistry A European Journal – volume: 42 start-page: 1935 year: 2009 end-page: 1943 article-title: Development of bioinspired Mn O cubane water oxidation catalysts: Lessons from photosynthesis publication-title: Acc. Chem. Res. – start-page: 550 year: 2009 end-page: 552 article-title: Catalytic electrochemistry of a [NiFeSe]‐hydrogenase on TiO and demonstration of its suitability for visible‐light driven H production publication-title: Chem. Commun. – volume: 283 start-page: 1524 year: 1999 end-page: 1527 article-title: A functional model for O‐O bond formation by the O ‐evolving complex in photosystem II publication-title: Science – volume: 47 start-page: 1695 year: 2011 end-page: 1697 article-title: Photocatalytic H evolution from neutral water with a molecular cobalt catalyst on a dye‐sensitised TiO nanoparticle publication-title: Chem. Commun. – volume: 16 start-page: 2537 year: 2010 end-page: 2546 article-title: Attachment of a hydrogen‐bonding carboxylate side chain to an [FeFe]‐hydrogenase model complex: Influence on the catalytic mechanism publication-title: Chem. Eur. J. – volume: 48 start-page: 4306 year: 2009 end-page: 4316 article-title: Cyclometalated 6‐phenyl‐2,22‐bipyridyl (CNN) platinum(II) acetylide complexes: Structure, electrochemistry, photophysics, and oxidative and reductive‐quenching studies publication-title: Inorg. Chem. – start-page: 9960 year: 2009 end-page: 9969 article-title: How algae produce hydrogen—news from the photosynthetic hydrogenase publication-title: Dalton Trans. – volume: 6 start-page: 989 year: 2003 end-page: 991 article-title: Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris‐bipyridine photosensitizer publication-title: Inorg. Chem. Commun. – volume: 28 start-page: 3834 year: 2009 end-page: 3841 article-title: Synthesis, structure, and photoinduced catalysis of [FeFe]‐hydrogenase active site models covalently linked to a porphyrin or metalloporphyrin moiety publication-title: Organometallics – volume: 101 start-page: 45 year: 1996 end-page: 47 article-title: Kinetic studies of electron transfer on photoinduced hydrogen evolution with hydrogenase publication-title: J. Photochem. Photobiol., A – volume: 42 start-page: 1966 year: 2009 end-page: 1973 article-title: Visible light water splitting using dye‐sensitized oxide semiconductors publication-title: Acc. Chem. Res. – volume: 126 start-page: 8084 year: 2004 end-page: 8085 article-title: Catalytic O evolution from water induced by adsorption of [(OH )(terpy)Mn(μ‐O) Mn(terpy)(OH )] complex onto clay compounds publication-title: J. Am. Chem. Soc. – start-page: 866 year: 2002 end-page: 867 article-title: Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst publication-title: Chem. Commun. – volume: 172 start-page: 1 year: 2001 end-page: 7 article-title: Photoinduced hydrogen evolution with cytochrom ‐viologen‐ruthenium(II) triad complex and hydrogenase publication-title: J. Mol. Catal. A: Chem. – volume: 46 start-page: 7307 year: 2010 end-page: 7309 article-title: A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye‐sensitized nanostructured TiO publication-title: Chem. Commun. – volume: 12 start-page: 1099 year: 2011 end-page: 1103 article-title: Acriflavine‐cobaloxime‐triethanolamine homogeneous photocatalytic system for water splitting and the multiple effects of cobaloxime and triethanolamine publication-title: Catal. Commun. – volume: 106 start-page: 10460 year: 2009 end-page: 10465 article-title: Self‐assembled biomimetic [2Fe S]‐hydrogenase‐based photocatalyst for molecular hydrogen evolution publication-title: Proc. Natl Acad. Sci. USA – start-page: 4723 year: 2005 end-page: 4725 article-title: Electrocatalytic hydrogen evolution by cobalt difluoroboryl‐diglyoximate complexes publication-title: Chem. Commun. – volume: 82 start-page: 1385 year: 2006 end-page: 1390 article-title: Light‐driven water splitting for (bio‐)hydrogen production: Photosystem 2 as the central part of a bioelectrochemical device publication-title: Photochem. Photobiol. – volume: 280 start-page: 425 year: 1998 end-page: 427 article-title: A monolithic photovoltaic‐photoelectrochemical device for hydrogen production water splitting publication-title: Science – volume: 326 start-page: 1384 year: 2009 end-page: 1387 article-title: From hydrogenases to noble metal‐free catalytic nanomaterials for H production and uptake publication-title: Science – volume: 252 start-page: 444 year: 2008 end-page: 455 article-title: Functional models for the oxygen‐evolving complex of photosystem II publication-title: Coord. Chem. Rev. – volume: 61 start-page: 1856 year: 2008 end-page: 1861 article-title: Preparation, characterization and electrochemistry of an iron‐only hydrogenase active site model covalently linked to a ruthenium tris(bipyridine) photosensitizer publication-title: J. Coord. Chem. – volume: 24 start-page: 433 year: 1985 end-page: 439 article-title: Homogeneous catalysis of the photoreduction of water by visible‐light .4. Cobalt(I) polypyridine complexes—redox and substitution kinetics and thermodynamics in the aqueous 2,2′‐bipyridine and 4,4′‐dimethyl‐2,2′‐bipyridine series studied by the pulse‐radiolysis technique publication-title: Inorg. Chem. – volume: 2 start-page: 364 year: 2009 end-page: 386 article-title: Photocatalytic water splitting by RuO ‐loaded metal oxides and nitrides with d ‐ and d ‐related electronic configurations publication-title: Energy Environ. Sci. – volume: 38 start-page: 109 year: 2009 end-page: 114 article-title: Cobalt–phosphate oxygen‐evolving compound publication-title: Chem. Soc. Rev. – volume: 42 start-page: 1995 year: 2009 end-page: 2004 article-title: Hydrogen evolution catalyzed by cobaloximes publication-title: Acc. Chem. Res. – volume: 127 start-page: 7502 year: 2005 end-page: 7510 article-title: Discovery and high‐throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production publication-title: J. Am. Chem. Soc. – volume: 68 start-page: 53 year: 1985 end-page: 99 article-title: Hydrogenase and its application for photoinduced hydrogen evolution publication-title: Coord. Chem. Rev. – volume: 26 start-page: 1575 year: 2007 end-page: 1577 article-title: The active site for iron‐only hydrogenases coordinatively bonded to a metalloporphyrin photosensitizer publication-title: Organometallics – volume: 49 start-page: 404 year: 2010 end-page: 414 article-title: Wiring photosystem I for direct solar hydrogen production publication-title: Biochemistry – volume: 42 start-page: 1983 year: 2009 end-page: 1994 article-title: Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels publication-title: Acc. Chem. Res. – volume: 97 start-page: 1 year: 1997 end-page: 24 article-title: Synthetic water‐oxidation catalysts for artificial photosynthetic water oxidation publication-title: Chem. Rev. – volume: 42 start-page: 1944 year: 2009 end-page: 1953 article-title: Oxygen–oxygen bond formation pathways promoted by ruthenium complexes publication-title: Acc. Chem. Res. – volume: 50 start-page: 1371 year: 2011 end-page: 1374 article-title: Noncovalent modification of carbon nanotubes with pyrene‐functionalized nickel complexes: Carbon monoxide tolerant catalysts for hydrogen evolution and uptake publication-title: Angew. Chem. Int. Ed. – volume: 363 start-page: 1129 year: 2008 end-page: 1138 article-title: The structure of the Mn Ca cluster of photosystem II and its protein environment as revealed by X‐ray crystallography publication-title: Phil. Trans. R. Soc. B – volume: 103 start-page: 2141 year: 1981 end-page: 2142 article-title: Homogeneous catalysis of the photo‐reduction of water by visible‐light .2. Mediation by a tris(2,2′‐bipyridine)ruthenium(II)‐cobalt(II) bipyridine system publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 139 year: 2009 end-page: 147 article-title: Molecular catalysts for water oxidation toward artificial photosynthesis publication-title: Photochem. Photobiol. Sci. – volume: 132 start-page: 5858 year: 2010 end-page: 5868 article-title: Efficient non‐sacrificial water splitting through two‐step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst publication-title: J. Am. Chem. Soc. – volume: 253 start-page: 1439 year: 2009 end-page: 1457 article-title: Long‐range electron transfer in artificial systems with d(6) and d(8) metal photosensitizers publication-title: Coord. Chem. Rev. – volume: 39 start-page: 1204 year: 2010 end-page: 1206 article-title: Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe S ] catalyst with high turnover numbers publication-title: Dalton Trans. – volume: 16 start-page: 60 year: 2010 end-page: 63 article-title: High‐turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]‐hydrogenase active site publication-title: Chemistry A European Journal – start-page: 5567 year: 2008 end-page: 5569 article-title: Efficient H ‐producing photocatalytic systems based on cyclometalated iridium‐ and tricarbonylrhenium‐diimine photosensitizers and cobaloxime catalysts publication-title: Dalton Trans. – volume: 84 start-page: 85 year: 1988 end-page: 277 article-title: Ru(II) polypyridine complexes—photophysics, photochemistry, electrochemistry, and chemi‐luminescence publication-title: Coord. Chem. Rev. – volume: 280 start-page: 117 year: 2007 end-page: 214 article-title: Photochemistry and photophysics of coordination compounds: Ruthenium publication-title: Top. Curr. Chem. – volume: 47 start-page: 564 year: 2008 end-page: 567 article-title: Cobaloxime‐based photocatalytic devices for hydrogen production publication-title: Angew. Chem. Int. Ed. – volume: 43 start-page: 4683 year: 2004 end-page: 4692 article-title: Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer: Synthesis and photophysical properties publication-title: Inorg. Chem. – volume: 363 start-page: 1211 year: 2008 end-page: 1219 article-title: Water oxidation chemistry of photosystem II publication-title: Philosophical Transactions of the Royal Society B-Biological Sciences – volume: 42 start-page: 1861 year: 2009 end-page: 1870 article-title: Principles, efficiency, and blueprint character of solar‐energy conversion in photosynthetic water oxidation publication-title: Acc. Chem. Res. – volume: 133 start-page: 2068 year: 2011 end-page: 2071 article-title: Efficient light‐driven carbon‐free cobalt‐based molecular catalyst for water oxidation publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 321 year: 1985 end-page: 341 article-title: Photogeneration and reactions of cobalt(I) complexes publication-title: Coord. Chem. Rev. – volume: 49 start-page: 209 year: 2010 end-page: 215 article-title: Visible light‐driven water oxidation by a molecular ruthenium catalyst in homogeneous system publication-title: Inorg. Chem. – volume: 10 start-page: 2283 year: 2008 end-page: 2297 article-title: Development of bioinspired artificial photosynthetic systems publication-title: Phys. Chem. Chem. Phys. – volume: 47 start-page: 3896 year: 2008 end-page: 3899 article-title: An all‐inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 461 year: 2011 end-page: 466 article-title: Water‐oxidation catalysis by manganese in a geochemical‐like cycle publication-title: Nat. Chem. – volume: 254 start-page: 2492 year: 2010 end-page: 2504 article-title: Catalytic hydrogen production at cobalt centres publication-title: Coord. Chem. Rev. – volume: 110 start-page: 23107 year: 2006 end-page: 23114 article-title: Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH )(terpy)Mn(μ‐O) Mn(terpy)(OH )] and clay compounds publication-title: J. Phys. Chem. B – volume: 11 start-page: 875 year: 2008 end-page: 889 article-title: Tuning the electronic properties of Fe (μ‐arenedithiolate)(CO) (PMe ) ( = 0, 2) complexes related to the [Fe–Fe]‐hydrogenase active site publication-title: C. R. Chim. – volume: 3 start-page: 4055 year: 2009 end-page: 4061 article-title: Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]‐hydrogenase publication-title: Acs Nano – volume: 50 start-page: 705 year: 2011 end-page: 707 article-title: Homogeneous photocatalytic hydrogen production using π‐conjugated platinum(II) arylacetylide sensitizers publication-title: Inorg. Chem. – volume: 46 start-page: 8806 year: 2010 end-page: 8809 article-title: Photochemical H production with noble‐metal‐free molecular devices comprising a porphyrin photosensitizer and a cobaloxime catalyst publication-title: Chem. Commun. – ident: e_1_2_7_33_2 doi: 10.1016/S0969-2126(99)80005-7 – ident: e_1_2_7_110_2 doi: 10.1098/rstb.2007.2217 – ident: e_1_2_7_113_2 doi: 10.1562/2006-07-14-RC-969 – ident: e_1_2_7_80_2 doi: 10.1016/j.crci.2008.04.001 – ident: e_1_2_7_20_2 doi: 10.1021/jo060225d – ident: e_1_2_7_112_2 doi: 10.1038/nature09913 – ident: e_1_2_7_130_2 doi: 10.1039/b926064a – ident: e_1_2_7_149_2 doi: 10.1002/anie.201005427 – ident: e_1_2_7_45_2 doi: 10.1039/b817371k – ident: e_1_2_7_109_2 doi: 10.1098/rstb.2007.2208 – ident: e_1_2_7_36_2 doi: 10.1246/cl.1982.187 – volume: 3 start-page: 461 year: 2011 ident: e_1_2_7_143_2 article-title: Water‐oxidation catalysis by manganese in a geochemical‐like cycle publication-title: Nat. Chem. doi: 10.1038/nchem.1049 – ident: e_1_2_7_95_2 doi: 10.1021/om900141x – ident: e_1_2_7_107_2 doi: 10.1021/ar900240w – ident: e_1_2_7_93_2 doi: 10.1021/ja00392a022 – ident: e_1_2_7_101_2 doi: 10.1021/ja00293a035 – ident: e_1_2_7_13_2 doi: 10.1039/b801198m – ident: e_1_2_7_104_2 doi: 10.1021/ja00322a051 – ident: e_1_2_7_67_2 doi: 10.1021/jp106512a – ident: e_1_2_7_11_2 doi: 10.1557/mrs2008.78 – ident: e_1_2_7_124_2 doi: 10.1039/c0cc01828g – ident: e_1_2_7_122_2 doi: 10.1021/ic8014817 – ident: e_1_2_7_135_2 doi: 10.1021/cr950201z – ident: e_1_2_7_78_2 doi: 10.1002/chem.200902278 – ident: e_1_2_7_54_2 doi: 10.1021/ja00398a066 – ident: e_1_2_7_7_2 doi: 10.1021/cr050195z – ident: e_1_2_7_111_2 doi: 10.1021/ar900225y – ident: e_1_2_7_46_2 doi: 10.1021/ja907923r – ident: e_1_2_7_103_2 doi: 10.1016/0010-8545(85)80058-8 – ident: e_1_2_7_5_2 doi: 10.1039/b916246a – ident: e_1_2_7_89_2 doi: 10.1073/pnas.0907775106 – ident: e_1_2_7_88_2 doi: 10.1016/j.catcom.2011.03.024 – ident: e_1_2_7_97_2 doi: 10.1002/asia.201000087 – ident: e_1_2_7_151_2 doi: 10.1021/ic801947v – ident: e_1_2_7_140_2 doi: 10.1021/jp063679n – ident: e_1_2_7_72_2 doi: 10.1002/anie.200503602 – ident: e_1_2_7_3_2 doi: 10.1104/pp.122.1.127 – ident: e_1_2_7_133_2 doi: 10.1016/j.ccr.2007.06.002 – ident: e_1_2_7_25_2 doi: 10.1021/ar9002398 – ident: e_1_2_7_147_2 doi: 10.1021/ja00411a010 – ident: e_1_2_7_57_2 doi: 10.1039/b923159p – ident: e_1_2_7_62_2 doi: 10.1021/ic101731j – ident: e_1_2_7_125_2 doi: 10.1039/c0sc00418a – ident: e_1_2_7_92_2 doi: 10.1073/pnas.79.2.701 – ident: e_1_2_7_129_2 doi: 10.1021/ja077837f – ident: e_1_2_7_59_2 doi: 10.1021/ja804650g – ident: e_1_2_7_49_2 doi: 10.1016/j.ccr.2010.06.004 – ident: e_1_2_7_30_2 doi: 10.1038/nmat3008 – ident: e_1_2_7_35_2 doi: 10.1002/ejic.201000986 – ident: e_1_2_7_38_2 doi: 10.1016/S1381-1169(97)00098-8 – ident: e_1_2_7_43_2 doi: 10.1021/bi901704v – ident: e_1_2_7_61_2 doi: 10.1021/ic900389z – ident: e_1_2_7_63_2 doi: 10.1021/ic100036v – ident: e_1_2_7_139_2 doi: 10.1021/ja039780c – ident: e_1_2_7_42_2 doi: 10.1021/nn900748j – ident: e_1_2_7_84_2 doi: 10.1021/ja067876b – ident: e_1_2_7_22_2 doi: 10.1039/b910564f – ident: e_1_2_7_65_2 doi: 10.1021/ic102317u – ident: e_1_2_7_128_2 doi: 10.1021/ja901373m – ident: e_1_2_7_85_2 doi: 10.1016/j.elecom.2006.08.036 – ident: e_1_2_7_121_2 doi: 10.1021/ic9017486 – ident: e_1_2_7_18_2 doi: 10.1021/ar700282n – ident: e_1_2_7_87_2 doi: 10.1021/ja1057357 – ident: e_1_2_7_56_2 doi: 10.1021/ja0427101 – ident: e_1_2_7_79_2 doi: 10.1002/chem.200902489 – ident: e_1_2_7_70_2 doi: 10.1021/ic0303385 – ident: e_1_2_7_24_2 doi: 10.1021/ar9001679 – ident: e_1_2_7_137_2 doi: 10.1002/anie.200502114 – ident: e_1_2_7_12_2 doi: 10.1021/ar9801301 – ident: e_1_2_7_23_2 doi: 10.1039/b601785c – ident: e_1_2_7_100_2 doi: 10.1039/c0cc02486d – ident: e_1_2_7_32_2 doi: 10.1126/science.282.5395.1853 – ident: e_1_2_7_34_2 doi: 10.1039/b201337a – ident: e_1_2_7_117_2 doi: 10.1021/ic802052u – ident: e_1_2_7_91_2 doi: 10.1002/hlca.19790620449 – ident: e_1_2_7_31_2 doi: 10.1038/373580a0 – ident: e_1_2_7_81_2 doi: 10.1021/ic050167z – ident: e_1_2_7_127_2 doi: 10.1002/anie.200705652 – ident: e_1_2_7_51_2 doi: 10.1002/anie.201007987 – ident: e_1_2_7_134_2 doi: 10.1039/b811098k – ident: e_1_2_7_98_2 doi: 10.1016/j.jorganchem.2009.04.041 – ident: e_1_2_7_138_2 doi: 10.1021/ar900249x – ident: e_1_2_7_44_2 doi: 10.1021/bi1016167 – ident: e_1_2_7_29_2 doi: 10.1002/anie.200906745 – ident: e_1_2_7_66_2 doi: 10.1021/ja903044n – ident: e_1_2_7_132_2 doi: 10.1021/ja109681d – ident: e_1_2_7_131_2 doi: 10.1039/b907257h – ident: e_1_2_7_39_2 doi: 10.1016/S1010-6030(96)04436-X – ident: e_1_2_7_58_2 doi: 10.1039/b812605b – ident: e_1_2_7_64_2 doi: 10.1021/ic8013255 – ident: e_1_2_7_102_2 doi: 10.1021/ic00197a036 – ident: e_1_2_7_27_2 doi: 10.1002/cssc.201000416 – ident: e_1_2_7_99_2 doi: 10.1039/c0cc03154b – ident: e_1_2_7_126_2 doi: 10.1002/cssc.201000358 – ident: e_1_2_7_28_2 doi: 10.1039/b802885k – ident: e_1_2_7_106_2 doi: 10.1002/anie.200802659 – ident: e_1_2_7_4_2 doi: 10.1016/S0167-7799(00)01511-0 – ident: e_1_2_7_136_2 doi: 10.1126/science.283.5407.1524 – ident: e_1_2_7_17_2 doi: 10.1039/cs9962500041 – ident: e_1_2_7_19_2 doi: 10.1021/ar9901220 – ident: e_1_2_7_114_2 doi: 10.1002/elan.200804191 – ident: e_1_2_7_150_2 doi: 10.1007/128_2007_131 – ident: e_1_2_7_16_2 doi: 10.1016/j.jphotochemrev.2008.01.002 – ident: e_1_2_7_14_2 doi: 10.1021/ar9001697 – ident: e_1_2_7_21_2 doi: 10.1021/ar9001735 – ident: e_1_2_7_48_2 doi: 10.1021/cr800542q – ident: e_1_2_7_37_2 doi: 10.1016/0010-8545(85)80030-8 – ident: e_1_2_7_108_2 doi: 10.1021/ar9001526 – ident: e_1_2_7_123_2 doi: 10.1002/cssc.201000313 – ident: e_1_2_7_146_2 doi: 10.1126/science.280.5362.425 – ident: e_1_2_7_71_2 doi: 10.1039/b606659c – ident: e_1_2_7_142_2 doi: 10.1021/ja910055a – ident: e_1_2_7_10_2 doi: 10.1016/S1369-7021(08)70250-5 – ident: e_1_2_7_152_2 doi: 10.1016/S0020-1693(99)00407-7 – ident: e_1_2_7_74_2 doi: 10.1080/00958970701767002 – ident: e_1_2_7_41_2 doi: 10.1562/2006-01-16-RA-778 – ident: e_1_2_7_105_2 doi: 10.1039/c0cc04658b – ident: e_1_2_7_96_2 doi: 10.1073/pnas.0809666106 – ident: e_1_2_7_145_2 doi: 10.1021/ja1009025 – ident: e_1_2_7_50_2 doi: 10.1021/ar900253e – ident: e_1_2_7_2_2 doi: 10.1126/science.1096767 – ident: e_1_2_7_53_2 doi: 10.1007/128_2007_133 – ident: e_1_2_7_8_2 doi: 10.1016/j.chembiol.2010.05.005 – ident: e_1_2_7_60_2 doi: 10.1021/ic900389z – ident: e_1_2_7_40_2 doi: 10.1016/S1381-1169(01)00159-5 – ident: e_1_2_7_15_2 doi: 10.1016/j.ccr.2008.10.010 – ident: e_1_2_7_82_2 doi: 10.1021/ic061625m – ident: e_1_2_7_141_2 doi: 10.1039/c0cc03114c – ident: e_1_2_7_94_2 doi: 10.1021/jp710498v – ident: e_1_2_7_77_2 doi: 10.1021/ic702010w – ident: e_1_2_7_55_2 doi: 10.1002/anie.200702953 – ident: e_1_2_7_69_2 doi: 10.1016/S1387-7003(03)00140-0 – ident: e_1_2_7_73_2 doi: 10.1021/om070133u – ident: e_1_2_7_52_2 doi: 10.1016/0010-8545(88)80032-8 – ident: e_1_2_7_118_2 doi: 10.1002/anie.201004278 – ident: e_1_2_7_144_2 – ident: e_1_2_7_115_2 doi: 10.1021/ja00256a010 – ident: e_1_2_7_76_2 doi: 10.1021/ic070234k – ident: e_1_2_7_90_2 – ident: e_1_2_7_26_2 doi: 10.1039/b816677n – ident: e_1_2_7_68_2 doi: 10.1002/anie.200351192 – ident: e_1_2_7_6_2 doi: 10.1104/pp.010498 – ident: e_1_2_7_75_2 doi: 10.1016/j.crci.2008.03.004 – ident: e_1_2_7_47_2 doi: 10.1016/j.ccr.2008.10.020 – ident: e_1_2_7_83_2 doi: 10.1039/b509188h – ident: e_1_2_7_116_2 doi: 10.1016/0304-5102(89)80082-3 – ident: e_1_2_7_120_2 doi: 10.1039/c0cc01250e – ident: e_1_2_7_148_2 doi: 10.1126/science.1179773 – volume: 7 start-page: 271 year: 1983 ident: e_1_2_7_86_2 article-title: Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes publication-title: New J. Chem. – ident: e_1_2_7_119_2 doi: 10.1002/chem.200902603 – ident: e_1_2_7_9_2 doi: 10.1039/B802262N – reference: - Photochem Photobiol. 2011 Nov-Dec;87(6):1478 |
SSID | ssj0014971 |
Score | 2.4788601 |
Snippet | Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light‐to‐chemical... Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light-to-chemical... |
SourceID | hal proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 946 |
SubjectTerms | Catalysts Cells Chemical Sciences Coordination chemistry Hydrogen production Photochemistry Photosynthesis Signal transduction Solar energy Water |
Title | Artificial Photosynthesis: From Molecular Catalysts for Light-driven Water Splitting to Photoelectrochemical Cells |
URI | https://api.istex.fr/ark:/67375/WNG-LKDQLMPK-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1751-1097.2011.00966.x https://www.ncbi.nlm.nih.gov/pubmed/21740444 https://www.proquest.com/docview/928915319 https://www.proquest.com/docview/887504323 https://hal.science/hal-01063100 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CIS4vXAqMMEAWQrylSmK7SXibCqVi7VQu0_ZmOXaioXYJSlK08sRP4DfyS_CJk4hOe5gQb1FiJ7JzbH_n-PN3AF6FnvIyzpgbaspcJn3lxto4rlxx7aeB8lKNoYH54Wh6xD6c8JOW_4RnYaw-RB9ww5HRzNc4wGVSbQ_ykCMdKw5bJU6DxkdDxJNI3UJ89KlXkjJ-QGiT51HfxbOYF0g9l71oa6W6foo8yRvY9eeXgdFtbNssTpN7sOyaZTkpy-G6TobqxwXFx__T7vtwt8WwZN8a3QO4luYDuGmzWm4GcHvcJZEbwK15u3f_EGosb_UqyOK0qItqkxv0WX2t3pBJWZyReZepl4wxprSp6ooYSE1mGD_4_fOXLnFmJscGHZfkswHPDWWb1IV9XZvQR7UKCGScrlbVIziavPsynrptzgdXcYMkXamkxtRJHlNBGGjp-ynVcegFWcxlFKmEZ1zHsc5GscQHkeZRlNDMV2GcURrQx7CTF3n6BEhqoKnBP9QYY8IyFkmaBAllkQqYMcBEORB2_1eoVhAd83KsxF-Okelqu0mPXS2arhbnDvh9zW9WFOQKdV4aE-qLo6r3dH8m8B665bjP8t134HVjYX0xWS6ReRdycXz4XswO3n6czRcHwhTc60xQtJNOJWLjPPs4pzpA-qfmf-MWkMzTYl0Js6SgZF1AHdi1htt_Cn1TFA90gDfmd-WWicV0YS6e_mO9Pbhj4_TI23sGO3W5Tp8boFcnL5oh_AeZHUJs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFL2CTTBe-ChjhPFhIcRbqiSOm4S3qVAKTasCm7Y3K7ETDa1rUJOilSd-Ar-RX8K9cRrRaQ8T4i1K7ER2ru1zr6_PAXgVOMrJhe_bgea-7SeusiONjqtQQruZp5xMU2hgPOkNj_yPJ-KkkQOiszCGH6INuNHIqOdrGuAUkN4c5YGgfKwoaKg4EY73uggot0ngu_avPrdcUugJBEY-j7s2nca8lNZz1Zs21qqbp5QpuU2df3EVHN1Et_XyNLgHs3XDTFbKWXdZpV314xLn439q-X2428BYdmDs7gHcyOYduGWELVcd2OmvdeQ6cHvcbN8_hIrKG8oKNj0tqqJczRGAll_LN2ywKM7ZeC3Wy_oUVlqVVckQVbOYQgi_f_7SC5qc2TEC5AX7gvi5ztpmVWFe12j6qIYEgfWz2azchaPBu8P-0G5kH2wlEEzaiUo0qSc5vvICTyeum3EdBY6XRyIJQ5WKXOgo0nkvSuhBqEUYpjx3VRDlnHv8EWzNi3n2GFiG6BQhEEd7TP3cDxOeein3Q-X5aIOpsiBY_2CpGk50kuaYyb98I-xqs09PXS3rrpYXFrhtzW-GF-QadV6iDbXFidh7eBBLukeeOW21fHcteF2bWFssWZxR8l0g5PHkvYxHbz_F4-lIYsH9tQ3KZt4pZYT-s0vTqgWsfYr_m3aBknlWLEuJqwqx1nncgj1jue2nyD0l_kALRG1_126ZnA6nePHkH-u9gJ3h4TiW8YfJaB_umLA9pfE9ha1qscyeIe6r0uf1eP4DtsdGhw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgE4MXLgVGGBcLId5SJbHdJLxNLaXQi8pl2t6sxE401K6ZkhStPPET-I38Es6Jk4hOe5gQb1FiJ7Lz2f7O8fF3CHntO8pJBee2rxm3eeQqO9RguAoltJt4ykk0ugams97oiH88ESd1_BOehTH6EK3DDUdGNV_jAD_X6fYg9wWGY4V-rcQJbLzXBT65y3tOgAgffG6lpMAQ8E32PObaeBjzUlTPVW_aWqpunmKg5C72_cVVbHSb3Far0_AeWTTtMkEpi-66jLvqxyXJx__T8Pvkbk1i6aFB3QNyI1l1yC2T1nLTIbf7TRa5Dtmb1pv3D0mJ5Y1gBZ2fZmVWbFZAP4tvxVs6zLMzOm1S9dI-OpU2RVlQ4NR0gg6E3z9_6RynZnoM9DinX4A9VzHbtMzM6-qMPqqWQKD9ZLksHpGj4buv_ZFdJ32wlQAqaUcq0pg7yeHK8z0duW7CdOg7XhqKKAhULFKhw1CnvTDCB4EWQRCz1FV-mDLmscdkZ5WtkieEJsBNgQAxQGPMUx5ELPZixgPlcUBgrCziN_9XqloRHRNzLOVflhF0tdmlx66WVVfLC4u4bc1zowpyjTqvAEJtcZT1Hh1OJN5Duxw3Wr67FnlTIawtFuULDL3zhTyevZeT8eDTZDofSyh40EBQ1rNOIUOwnl2cVC1C26fwv3EPKFol2bqQsKagZp3HLLJvgNt-Co1TVA-0iKjgd-2WyfloDhdP_7HeS7I3Hwzl5MNsfEDuGJ89xvA9Iztlvk6eA-kr4xfVaP4DtzxFPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Photosynthesis%3A+From+Molecular+Catalysts+for+Light%E2%80%90driven+Water+Splitting+to+Photoelectrochemical+Cells&rft.jtitle=Photochemistry+and+photobiology&rft.au=Andreiadis%2C+Eugen+S.&rft.au=Chavarot%E2%80%90Kerlidou%2C+Murielle&rft.au=Fontecave%2C+Marc&rft.au=Artero%2C+Vincent&rft.date=2011-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0031-8655&rft.eissn=1751-1097&rft.volume=87&rft.issue=5&rft.spage=946&rft.epage=964&rft_id=info:doi/10.1111%2Fj.1751-1097.2011.00966.x&rft.externalDBID=10.1111%252Fj.1751-1097.2011.00966.x&rft.externalDocID=PHP966 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8655&client=summon |