Artificial Photosynthesis: From Molecular Catalysts for Light-driven Water Splitting to Photoelectrochemical Cells

Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light‐to‐chemical energetic transduction. This field of research, called “artificial photosynthesis,” is currently the subject of intense interest, driven by the...

Full description

Saved in:
Bibliographic Details
Published inPhotochemistry and photobiology Vol. 87; no. 5; pp. 946 - 964
Main Authors Andreiadis, Eugen S., Chavarot-Kerlidou, Murielle, Fontecave, Marc, Artero, Vincent
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2011
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light‐to‐chemical energetic transduction. This field of research, called “artificial photosynthesis,” is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon‐free fuel hydrogen through the light‐driven water splitting. In this review, we highlight the recent achievements on light‐driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices. This review surveys the recent achievements in the field of artificial photosynthesis and light‐driven water splitting. Homogeneous photocatalytic H2‐ and O2‐evolving systems (bioconstructs as well as synthetic molecules) are presented, with a specific focus on those containing noble‐metal‐free catalytic centres. Openings regarding the development of a fully molecular‐based technological device for water splitting are discussed.
AbstractList Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light-to-chemical energetic transduction. This field of research, called "artificial photosynthesis," is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon-free fuel hydrogen through the light-driven water splitting. In this review, we highlight the recent achievements on light-driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices.Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light-to-chemical energetic transduction. This field of research, called "artificial photosynthesis," is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon-free fuel hydrogen through the light-driven water splitting. In this review, we highlight the recent achievements on light-driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices.
Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light‐to‐chemical energetic transduction. This field of research, called “artificial photosynthesis,” is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon‐free fuel hydrogen through the light‐driven water splitting. In this review, we highlight the recent achievements on light‐driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices.
Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light-to-chemical energetic transduction. This field of research, called "artificial photosynthesis," is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon-free fuel hydrogen through the light-driven water splitting. In this review, we highlight the recent achievements on light-driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices. [PUBLICATION ABSTRACT]
Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light‐to‐chemical energetic transduction. This field of research, called “artificial photosynthesis,” is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon‐free fuel hydrogen through the light‐driven water splitting. In this review, we highlight the recent achievements on light‐driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices. This review surveys the recent achievements in the field of artificial photosynthesis and light‐driven water splitting. Homogeneous photocatalytic H2‐ and O2‐evolving systems (bioconstructs as well as synthetic molecules) are presented, with a specific focus on those containing noble‐metal‐free catalytic centres. Openings regarding the development of a fully molecular‐based technological device for water splitting are discussed.
Author Artero, Vincent
Andreiadis, Eugen S.
Fontecave, Marc
Chavarot-Kerlidou, Murielle
Author_xml – sequence: 1
  givenname: Eugen S.
  surname: Andreiadis
  fullname: Andreiadis, Eugen S.
  organization: Laboratoire de Chimie et Biologie des Métaux, UMR 5249, Université Grenoble 1 - CNRS - CEA, DSV/iRTSV K', Grenoble, France
– sequence: 2
  givenname: Murielle
  surname: Chavarot-Kerlidou
  fullname: Chavarot-Kerlidou, Murielle
  email: murielle.chavarot-kerlidou@cea.fr
  organization: Laboratoire de Chimie et Biologie des Métaux, UMR 5249, Université Grenoble 1 - CNRS - CEA, DSV/iRTSV K', Grenoble, France
– sequence: 3
  givenname: Marc
  surname: Fontecave
  fullname: Fontecave, Marc
  email: murielle.chavarot-kerlidou@cea.fr
  organization: Laboratoire de Chimie et Biologie des Métaux, UMR 5249, Université Grenoble 1 - CNRS - CEA, DSV/iRTSV K', Grenoble, France
– sequence: 4
  givenname: Vincent
  surname: Artero
  fullname: Artero, Vincent
  organization: Laboratoire de Chimie et Biologie des Métaux, UMR 5249, Université Grenoble 1 - CNRS - CEA, DSV/iRTSV K', Grenoble, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21740444$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01063100$$DView record in HAL
BookMark eNqNkVFv0zAUhS00xLrBX0ARL4iHBN84TmKEkKrCVrQMigDt0XIdZ3Vx42K7o_33OGT0YU_zi617v3Ou7XOGTnrbK4QSwBnE9XadQUUhBcyqLMcAGcasLLP9EzQ5Nk7QBGMCaV1SeorOvF9jDAWr4Bk6zaEqcFEUE-SmLuhOSy1MsljZYP2hDyvltX-XXDi7Sa6tUXJnhEtmIghz8MEnnXVJo29XIW2dvlN9ciOCcsn3rdEh6P42CXY0U1EbnJUrtdEyTpgpY_xz9LQTxqsX9_s5-nnx6cdsnjZfLz_Ppk0qKcnLVEjR5lBUuJB5lbcCQJGWVTjvGBV1LZe0oy1jbVcyMTTqltb1knQgK9YRkpNz9Gb0XQnDt05vhDtwKzSfTxs-1DDgkgDGdxDZ1yO7dfb3TvnAN9rLeFvRK7vzvK4riotoGslXD8i13bk-PoSzvGZACbAIvbyHdsuNao_T__97BOoRkM5671R3RADzIWK-5kOSfEiSDxHzfxHzfZR-eCCVOoigbR-c0OYxBu9Hgz_aqMOjB_PFfBEPUZ6Ocu2D2h_lwv3iZUUqym--XPLm6uO35npxxYH8BY1mzls
CODEN PHCBAP
CitedBy_id crossref_primary_10_1021_jacs_7b02142
crossref_primary_10_1039_D1CP03114G
crossref_primary_10_1039_C8CS00897C
crossref_primary_10_1002_cssc_201501002
crossref_primary_10_1142_S1088424615500339
crossref_primary_10_1002_ange_201907247
crossref_primary_10_2516_ogst_2015034
crossref_primary_10_1021_jacs_2c10033
crossref_primary_10_1021_acs_jctc_5b00968
crossref_primary_10_1002_chem_201804999
crossref_primary_10_1016_j_checat_2021_09_008
crossref_primary_10_1098_rsfs_2014_0083
crossref_primary_10_1039_D1SC06335A
crossref_primary_10_1002_chem_201403872
crossref_primary_10_1016_j_jphotobiol_2015_04_004
crossref_primary_10_1039_C5SC04863J
crossref_primary_10_1002_celc_201402133
crossref_primary_10_1039_C6DT01221C
crossref_primary_10_1016_j_ccr_2019_213079
crossref_primary_10_1039_C6FD00204H
crossref_primary_10_1002_chem_201204385
crossref_primary_10_1021_acs_jctc_7b00474
crossref_primary_10_1021_acsomega_4c00217
crossref_primary_10_1021_acs_jpcc_8b00301
crossref_primary_10_1016_j_jphotobiol_2015_04_010
crossref_primary_10_1039_c2dt30403a
crossref_primary_10_1016_j_ccr_2023_215522
crossref_primary_10_1039_C3CS60375J
crossref_primary_10_1007_s10847_019_00889_8
crossref_primary_10_1186_s43170_022_00117_3
crossref_primary_10_1039_D1SC06608K
crossref_primary_10_1007_s11120_019_00648_3
crossref_primary_10_1039_C6DT03044K
crossref_primary_10_1002_anie_201106293
crossref_primary_10_1039_C7EE00751E
crossref_primary_10_1149_2162_8777_aba1ff
crossref_primary_10_1002_adma_201902069
crossref_primary_10_1002_ejic_201300683
crossref_primary_10_1021_acs_jpcc_9b09453
crossref_primary_10_1021_jp4010554
crossref_primary_10_1016_j_cap_2013_05_013
crossref_primary_10_1021_cm303595s
crossref_primary_10_1039_D2SC03258A
crossref_primary_10_1016_j_jcat_2015_02_020
crossref_primary_10_1021_acs_jpca_7b11470
crossref_primary_10_1016_j_poly_2017_12_002
crossref_primary_10_1021_cr300459q
crossref_primary_10_1039_D2SE01119K
crossref_primary_10_1039_C7EE03115G
crossref_primary_10_1002_ange_201409442
crossref_primary_10_1016_j_ijhydene_2014_04_164
crossref_primary_10_1021_jo500031g
crossref_primary_10_1002_ejic_202000026
crossref_primary_10_1016_j_ccr_2012_07_010
crossref_primary_10_1021_acs_inorgchem_3c01841
crossref_primary_10_1016_j_surfin_2023_102632
crossref_primary_10_1016_j_ccr_2021_214375
crossref_primary_10_1039_c3ee40352a
crossref_primary_10_1002_solr_202000111
crossref_primary_10_1002_solr_202000474
crossref_primary_10_1002_ange_201607018
crossref_primary_10_1039_C7SE00428A
crossref_primary_10_3389_fchem_2022_868373
crossref_primary_10_1039_C7TA04045H
crossref_primary_10_1021_acs_jpca_7b04670
crossref_primary_10_1039_C5CY00365B
crossref_primary_10_1016_j_jphotochem_2017_08_028
crossref_primary_10_1039_D2CC00339B
crossref_primary_10_1021_acscatal_6b03278
crossref_primary_10_1007_s11244_016_0547_5
crossref_primary_10_1016_j_jphotochemrev_2012_08_001
crossref_primary_10_1134_S0036023624601600
crossref_primary_10_1016_j_dyepig_2018_11_029
crossref_primary_10_1016_j_crci_2012_11_006
crossref_primary_10_3389_fchem_2019_00405
crossref_primary_10_1038_s41598_021_82395_x
crossref_primary_10_3390_molecules27123770
crossref_primary_10_1021_acs_inorgchem_1c01279
crossref_primary_10_1039_C7NR04299J
crossref_primary_10_1002_anie_202203955
crossref_primary_10_1002_ejic_201900652
crossref_primary_10_1016_j_ijhydene_2021_05_054
crossref_primary_10_1039_C5CP05326A
crossref_primary_10_1002_anie_201607018
crossref_primary_10_1002_celc_201600190
crossref_primary_10_1016_j_ccr_2021_214390
crossref_primary_10_1021_jacs_8b00599
crossref_primary_10_1039_C9DT03144H
crossref_primary_10_1039_D2TC01640K
crossref_primary_10_3390_catal9010012
crossref_primary_10_1002_ange_201205915
crossref_primary_10_2138_am_2020_7112
crossref_primary_10_1016_j_ccr_2015_03_014
crossref_primary_10_1063_5_0092864
crossref_primary_10_1002_asia_201500723
crossref_primary_10_1039_C7CC08013A
crossref_primary_10_1016_j_ccr_2012_02_016
crossref_primary_10_1021_acs_accounts_5b00058
crossref_primary_10_1002_cssc_201600422
crossref_primary_10_1016_j_ica_2020_119950
crossref_primary_10_1039_c3cy00475a
crossref_primary_10_1002_advs_201700684
crossref_primary_10_1021_jp2100717
crossref_primary_10_1002_chem_201404480
crossref_primary_10_1002_chem_201801698
crossref_primary_10_1002_anie_201205915
crossref_primary_10_1007_s43630_021_00099_7
crossref_primary_10_1007_s11244_023_01799_3
crossref_primary_10_1002_celc_201600506
crossref_primary_10_1039_c3cp54240h
crossref_primary_10_1016_j_jinorgbio_2021_111384
crossref_primary_10_1016_j_ccr_2012_02_004
crossref_primary_10_1021_jp309148u
crossref_primary_10_1021_acsami_3c11592
crossref_primary_10_1021_acs_jpcc_8b03317
crossref_primary_10_1002_ange_202306287
crossref_primary_10_1002_cctc_201901686
crossref_primary_10_1039_C6SC00386A
crossref_primary_10_1021_acscatal_7b00326
crossref_primary_10_1038_s41557_021_00860_6
crossref_primary_10_1021_acscatal_4c00336
crossref_primary_10_1021_acsaem_4c00912
crossref_primary_10_1039_C4DT03730H
crossref_primary_10_1016_j_ccr_2014_12_004
crossref_primary_10_1016_j_ijhydene_2018_03_097
crossref_primary_10_1039_C6DT01705C
crossref_primary_10_1002_hlca_201800036
crossref_primary_10_1039_C8SE00155C
crossref_primary_10_1002_anie_201409442
crossref_primary_10_1039_C9CP00335E
crossref_primary_10_1039_C4CP00453A
crossref_primary_10_1039_C4RA01413H
crossref_primary_10_1039_C7SC01276D
crossref_primary_10_1007_s11172_024_4445_x
crossref_primary_10_1016_j_ccr_2015_02_002
crossref_primary_10_1021_cs400141t
crossref_primary_10_1039_c3ta10728k
crossref_primary_10_1146_annurev_physchem_040513_103742
crossref_primary_10_1016_j_ccr_2012_08_008
crossref_primary_10_1039_c3ra00157a
crossref_primary_10_1021_acs_inorgchem_8b03549
crossref_primary_10_1021_ic502591a
crossref_primary_10_1039_C5NR08953K
crossref_primary_10_1002_ange_201407319
crossref_primary_10_1002_ange_202203955
crossref_primary_10_1021_acscatal_2c05033
crossref_primary_10_1021_acs_inorgchem_5b01536
crossref_primary_10_1007_s11801_014_4055_1
crossref_primary_10_1039_C7CP01588G
crossref_primary_10_1021_acsenergylett_9b01683
crossref_primary_10_1002_cssc_202001428
crossref_primary_10_1002_ange_202305639
crossref_primary_10_1021_acs_jpcc_0c02556
crossref_primary_10_1039_C6CP00911E
crossref_primary_10_3390_nano10122341
crossref_primary_10_1016_j_mencom_2020_07_013
crossref_primary_10_1038_ncomms13169
crossref_primary_10_1039_C7SC01277B
crossref_primary_10_1039_C4CC08423C
crossref_primary_10_1002_smll_201503077
crossref_primary_10_1002_cssc_201100661
crossref_primary_10_1002_cssc_201701511
crossref_primary_10_1039_C7SC04348A
crossref_primary_10_1039_C6EE00629A
crossref_primary_10_3389_fchem_2014_00036
crossref_primary_10_1002_asia_201402303
crossref_primary_10_1021_acs_inorgchem_9b00042
crossref_primary_10_1039_C4CP02997F
crossref_primary_10_1021_acscatal_3c06216
crossref_primary_10_1021_acsnano_5b05579
crossref_primary_10_1021_acsami_6b13438
crossref_primary_10_1016_j_ijhydene_2021_08_016
crossref_primary_10_3390_catal12080919
crossref_primary_10_1002_cctc_201600186
crossref_primary_10_1039_c3cy00536d
crossref_primary_10_1021_acs_jpca_5b01737
crossref_primary_10_1016_j_rser_2016_04_016
crossref_primary_10_1021_acs_jpcc_9b03621
crossref_primary_10_1039_D1CS00577D
crossref_primary_10_1002_ange_201106293
crossref_primary_10_1039_C4SC02196G
crossref_primary_10_1016_j_jphotochemrev_2015_08_001
crossref_primary_10_1039_C4GC01707B
crossref_primary_10_1002_chem_201703989
crossref_primary_10_1039_D0DT01195A
crossref_primary_10_1021_ic302629q
crossref_primary_10_3390_molecules23102693
crossref_primary_10_1016_j_cej_2023_143329
crossref_primary_10_1021_acs_jpclett_7b01911
crossref_primary_10_1039_C4CY01112K
crossref_primary_10_1002_cctc_201600772
crossref_primary_10_1007_s10593_021_02983_7
crossref_primary_10_1021_acs_jpclett_0c02009
crossref_primary_10_1002_ejic_201402669
crossref_primary_10_1039_C5TA02565F
crossref_primary_10_1002_ange_201303671
crossref_primary_10_1002_anie_202305639
crossref_primary_10_1039_D4SE00423J
crossref_primary_10_1016_j_materresbull_2015_06_045
crossref_primary_10_1002_asia_201800487
crossref_primary_10_1002_cphc_201300122
crossref_primary_10_1073_pnas_1212254109
crossref_primary_10_1016_j_jiec_2019_01_004
crossref_primary_10_1021_acs_inorgchem_9b01838
crossref_primary_10_1002_anie_202306287
crossref_primary_10_1002_cphc_201300383
crossref_primary_10_1021_cs4006925
crossref_primary_10_1039_D0SC06429G
crossref_primary_10_5402_2012_964936
crossref_primary_10_1021_ja410592d
crossref_primary_10_1039_C2CS35247H
crossref_primary_10_1021_acsnano_7b07841
crossref_primary_10_1039_C9SE00597H
crossref_primary_10_1021_acsami_7b12168
crossref_primary_10_1038_ncomms3695
crossref_primary_10_1021_acssuschemeng_9b00305
crossref_primary_10_1021_cs4011716
crossref_primary_10_1039_C6CS00369A
crossref_primary_10_1016_j_crci_2015_11_026
crossref_primary_10_1021_acs_jpca_7b05255
crossref_primary_10_1021_ja311310k
crossref_primary_10_1038_nenergy_2015_21
crossref_primary_10_1002_nadc_201390093
crossref_primary_10_1016_j_ccr_2017_10_016
crossref_primary_10_1002_anie_201303671
crossref_primary_10_1021_acscatal_6b03087
crossref_primary_10_1039_C8SC03058H
crossref_primary_10_1002_anie_201407319
crossref_primary_10_1039_C9SE00320G
crossref_primary_10_1039_D4CC03301A
crossref_primary_10_1039_D4DT01077A
crossref_primary_10_1002_cssc_201402381
crossref_primary_10_1016_j_ijhydene_2021_02_005
crossref_primary_10_1039_C7RA03190D
crossref_primary_10_1021_jacs_4c02808
crossref_primary_10_1021_ic502431x
crossref_primary_10_1016_j_jphotochemrev_2024_100680
crossref_primary_10_1021_acs_jpcc_1c05827
crossref_primary_10_1039_D3SE00295K
crossref_primary_10_1002_celc_202300620
crossref_primary_10_4019_bjscc_71_18
crossref_primary_10_1021_acs_inorgchem_3c02648
crossref_primary_10_1039_C5TA03910J
crossref_primary_10_1021_acs_jpca_6b05957
crossref_primary_10_1007_s11426_014_5293_6
crossref_primary_10_1021_acs_inorgchem_7b03273
crossref_primary_10_1039_C2CS35334B
crossref_primary_10_1002_anie_201907247
crossref_primary_10_1002_ejic_201301573
crossref_primary_10_1016_j_jphotochemrev_2017_12_006
crossref_primary_10_1039_D0CS01336F
crossref_primary_10_1039_D3DT00121K
crossref_primary_10_1002_cctc_202301100
crossref_primary_10_1039_c3pp50446h
crossref_primary_10_1039_D1CS01144H
Cites_doi 10.1016/S0969-2126(99)80005-7
10.1098/rstb.2007.2217
10.1562/2006-07-14-RC-969
10.1016/j.crci.2008.04.001
10.1021/jo060225d
10.1038/nature09913
10.1039/b926064a
10.1002/anie.201005427
10.1039/b817371k
10.1098/rstb.2007.2208
10.1246/cl.1982.187
10.1038/nchem.1049
10.1021/om900141x
10.1021/ar900240w
10.1021/ja00392a022
10.1021/ja00293a035
10.1039/b801198m
10.1021/ja00322a051
10.1021/jp106512a
10.1557/mrs2008.78
10.1039/c0cc01828g
10.1021/ic8014817
10.1021/cr950201z
10.1002/chem.200902278
10.1021/ja00398a066
10.1021/cr050195z
10.1021/ar900225y
10.1021/ja907923r
10.1016/0010-8545(85)80058-8
10.1039/b916246a
10.1073/pnas.0907775106
10.1016/j.catcom.2011.03.024
10.1002/asia.201000087
10.1021/ic801947v
10.1021/jp063679n
10.1002/anie.200503602
10.1104/pp.122.1.127
10.1016/j.ccr.2007.06.002
10.1021/ar9002398
10.1021/ja00411a010
10.1039/b923159p
10.1021/ic101731j
10.1039/c0sc00418a
10.1073/pnas.79.2.701
10.1021/ja077837f
10.1021/ja804650g
10.1016/j.ccr.2010.06.004
10.1038/nmat3008
10.1002/ejic.201000986
10.1016/S1381-1169(97)00098-8
10.1021/bi901704v
10.1021/ic900389z
10.1021/ic100036v
10.1021/ja039780c
10.1021/nn900748j
10.1021/ja067876b
10.1039/b910564f
10.1021/ic102317u
10.1021/ja901373m
10.1016/j.elecom.2006.08.036
10.1021/ic9017486
10.1021/ar700282n
10.1021/ja1057357
10.1021/ja0427101
10.1002/chem.200902489
10.1021/ic0303385
10.1021/ar9001679
10.1002/anie.200502114
10.1021/ar9801301
10.1039/b601785c
10.1039/c0cc02486d
10.1126/science.282.5395.1853
10.1039/b201337a
10.1021/ic802052u
10.1002/hlca.19790620449
10.1038/373580a0
10.1021/ic050167z
10.1002/anie.200705652
10.1002/anie.201007987
10.1039/b811098k
10.1016/j.jorganchem.2009.04.041
10.1021/ar900249x
10.1021/bi1016167
10.1002/anie.200906745
10.1021/ja903044n
10.1021/ja109681d
10.1039/b907257h
10.1016/S1010-6030(96)04436-X
10.1039/b812605b
10.1021/ic8013255
10.1021/ic00197a036
10.1002/cssc.201000416
10.1039/c0cc03154b
10.1002/cssc.201000358
10.1039/b802885k
10.1002/anie.200802659
10.1016/S0167-7799(00)01511-0
10.1126/science.283.5407.1524
10.1039/cs9962500041
10.1021/ar9901220
10.1002/elan.200804191
10.1007/128_2007_131
10.1016/j.jphotochemrev.2008.01.002
10.1021/ar9001697
10.1021/ar9001735
10.1021/cr800542q
10.1016/0010-8545(85)80030-8
10.1021/ar9001526
10.1002/cssc.201000313
10.1126/science.280.5362.425
10.1039/b606659c
10.1021/ja910055a
10.1016/S1369-7021(08)70250-5
10.1016/S0020-1693(99)00407-7
10.1080/00958970701767002
10.1562/2006-01-16-RA-778
10.1039/c0cc04658b
10.1073/pnas.0809666106
10.1021/ja1009025
10.1021/ar900253e
10.1126/science.1096767
10.1007/128_2007_133
10.1016/j.chembiol.2010.05.005
10.1016/S1381-1169(01)00159-5
10.1016/j.ccr.2008.10.010
10.1021/ic061625m
10.1039/c0cc03114c
10.1021/jp710498v
10.1021/ic702010w
10.1002/anie.200702953
10.1016/S1387-7003(03)00140-0
10.1021/om070133u
10.1016/0010-8545(88)80032-8
10.1002/anie.201004278
10.1021/ja00256a010
10.1021/ic070234k
10.1039/b816677n
10.1002/anie.200351192
10.1104/pp.010498
10.1016/j.crci.2008.03.004
10.1016/j.ccr.2008.10.020
10.1039/b509188h
10.1016/0304-5102(89)80082-3
10.1039/c0cc01250e
10.1126/science.1179773
10.1002/chem.200902603
10.1039/B802262N
ContentType Journal Article
Copyright 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology
2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
Copyright Blackwell Publishing Ltd. Sep/Oct 2011
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology
– notice: 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
– notice: Copyright Blackwell Publishing Ltd. Sep/Oct 2011
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
NPM
4T-
7TM
7U7
8FD
C1K
FR3
K9.
NAPCQ
P64
RC3
7X8
1XC
DOI 10.1111/j.1751-1097.2011.00966.x
DatabaseName Istex
CrossRef
PubMed
Docstoc
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Docstoc
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Nursing & Allied Health Premium


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1751-1097
0031-8655
EndPage 964
ExternalDocumentID oai_HAL_hal_01063100v1
2612668481
21740444
10_1111_j_1751_1097_2011_00966_x
PHP966
ark_67375_WNG_LKDQLMPK_1
Genre reviewArticle
Journal Article
GroupedDBID ---
-JH
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
3O-
3SF
3V.
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
7RV
7X2
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
88I
8AF
8AO
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AEUQT
AEUYR
AFBPY
AFFIJ
AFFPM
AFGKR
AFKRA
AFNWH
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BLYAC
BMNLL
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
C1A
CAG
CCPQU
COF
CS3
D-E
D-F
DC7
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
ESX
EX3
F00
F01
F04
F5P
FEDTE
FYUFA
FZ0
G-S
G.N
GNUQQ
GODZA
H.T
H.X
H13
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZ~
H~9
IH2
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M0L
M1P
M2P
M2Q
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NAPCQ
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQ0
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
Q5J
QB0
R.K
RBO
RIG
RIWAO
RJQFR
ROL
RWL
RX1
S0X
SAMSI
SJN
SUPJJ
TAE
UB1
UKHRP
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XOL
YNT
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEUYN
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
PJZUB
PPXIY
PQGLB
4T-
7TM
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
1XC
ID FETCH-LOGICAL-c5326-acad214704c272da11e3d9702f95a88cb5f5d99df69a3d978d588b3f1c79f3323
IEDL.DBID DR2
ISSN 0031-8655
1751-1097
IngestDate Wed Aug 13 07:44:59 EDT 2025
Thu Jul 10 18:47:52 EDT 2025
Wed Aug 13 08:30:51 EDT 2025
Mon Jul 21 05:39:56 EDT 2025
Tue Jul 01 02:14:33 EDT 2025
Thu Apr 24 23:04:19 EDT 2025
Wed Jan 22 16:35:20 EST 2025
Wed Oct 30 09:55:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5326-acad214704c272da11e3d9702f95a88cb5f5d99df69a3d978d588b3f1c79f3323
Notes istex:5ABC3A10CCDC58A10A3EDA672550FBC93CDBE58E
ark:/67375/WNG-LKDQLMPK-1
ArticleID:PHP966
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6148-8471
0000-0002-8016-4747
0000-0003-2709-3772
0000-0002-0617-5616
PMID 21740444
PQID 928915319
PQPubID 30729
PageCount 19
ParticipantIDs hal_primary_oai_HAL_hal_01063100v1
proquest_miscellaneous_887504323
proquest_journals_928915319
pubmed_primary_21740444
crossref_primary_10_1111_j_1751_1097_2011_00966_x
crossref_citationtrail_10_1111_j_1751_1097_2011_00966_x
wiley_primary_10_1111_j_1751_1097_2011_00966_x_PHP966
istex_primary_ark_67375_WNG_LKDQLMPK_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September/October 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September/October 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
– name: Lawrence
PublicationTitle Photochemistry and photobiology
PublicationTitleAlternate Photochem Photobiol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References Kanan, M. W., Y. Surendranath and D. G. Nocera (2009) Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 38, 109-114.
Durr, H. and S. Bossmann (2001) Ruthenium polypyridine complexes. On the route to biomimetic assemblies as models for the photosynthetic reaction center. Acc. Chem. Res. 34, 905-917.
Capon, J. F., F. Gloaguen, F. Y. Petillon, P. Schollhammer and J. Talarmin (2009) Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases. Coord. Chem. Rev. 253, 1476-1494.
Probst, B., C. Kolano, P. Hamm and R. Alberto (2009) An efficient homogeneous intermolecular rhenium-based photocatalytic system for the production of H2. Inorg. Chem. 48, 1836-1843.
Hu, X., B. S. Brunschwig and J. C. Peters (2007) Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 129, 8988-8998.
Yagi, M., A. Syouji, S. Yamada, M. Komi, H. Yamazaki and S. Tajima (2009) Molecular catalysts for water oxidation toward artificial photosynthesis. Photochem. Photobiol. Sci. 8, 139-147.
Dempsey, J. L., B. S. Brunschwig, J. R. Winkler and H. B. Gray (2009) Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995-2004.
Duan, L., Y. Xu, P. Zhang, M. Wang and L. Sun (2010) Visible light-driven water oxidation by a molecular ruthenium catalyst in homogeneous system. Inorg. Chem. 49, 209-215.
Romain, S., L. Vigara and A. Llobet (2009) Oxygen-oxygen bond formation pathways promoted by ruthenium complexes. Acc. Chem. Res. 42, 1944-1953.
Na, Y., J. Pan, M. Wang and L. Sun (2007) Intermolecular electron transfer from photogenerated Ru(bpy)32+ to [2Fe2S] model complexes of the iron-only hydrogenase active site. Inorg. Chem. 46, 3813-3815.
Fukuzumi, S. (2008) Development of bioinspired artificial photosynthetic systems. Phys. Chem. Chem. Phys. 10, 2283-2297.
Baffert, C., V. Artero and M. Fontecave (2007) Cobaloximes as functional models for hydrogenases. 2. proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. Inorg. Chem. 46, 1817-1824.
Gong, L., J. Wang, H. Li, L. Wang, J. Zhao and Z. Zhu (2011) Acriflavine-cobaloxime-triethanolamine homogeneous photocatalytic system for water splitting and the multiple effects of cobaloxime and triethanolamine. Catal. Commun. 12, 1099-1103.
Okura, I., M. Takeuchi, S. Kusunoki and S. Aono (1982) Photoreduction of cytochrome c3 and hydrogen evolution with hydrogenase. Chem. Lett. 11, 187-188.
Asakura, N., T. Hiraishi, T. Kamachi and I. Okura (2001) Photoinduced hydrogen evolution with cytochrom c3-viologen-ruthenium(II) triad complex and hydrogenase. J. Mol. Catal. A: Chem. 172, 1-7.
Barber, J. and J. W. Murray (2008) The structure of the Mn4Ca2+ cluster of photosystem II and its protein environment as revealed by X-ray crystallography. Phil. Trans. R. Soc. B 363, 1129-1138.
Krishnan, C. V., B. S. Brunschwig, C. Creutz and N. Sutin (1985) Homogeneous catalysis of the photoreduction of water .6. mediation by polypyridine complexes of ruthenium(II) and cobalt(II) in alkaline media. J. Am. Chem. Soc. 107, 2005-2015.
Inoue, Y. (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10 -related electronic configurations. Energy Environ. Sci. 2, 364-386.
Reisner, E., D. J. Powell, C. Cavazza, J. C. Fontecilla-Camps and F. A. Armstrong (2009) Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131, 18467-18477.
Maeda, K., M. Higashi, D. L. Lu, R. Abe and K. Domen (2010) Efficient non-sacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 5858-5868.
Probst, B., M. Guttentag, A. Rodenberg, P. Hamm and R. Alberto (2011) Photocatalytic H2 production from water with rhenium and cobalt complexes. Inorg. Chem. 50, 3404-3412.
Ekström, J., M. Abrahamsson, C. Olson, J. Bergquist, F. B. Kaynak, L. Erikssin, L. Sun, H.-C. Becker, B. Akermark, L. Hammarström and S. Ott (2006) Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model. Dalton Trans., 4599-4606.
Borgarello, E., J. Kiwi, E. Pelizetti, M. Visca and M. Gratzel (1981) Sustained water cleavage by visible light. J. Am. Chem. Soc. 103, 6324-6329.
Fihri, A., V. Artero, A. Pereira and M. Fontecave (2008) Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Trans., 5567-5569.
Juris, A., V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky (1988) Ru(II) polypyridine complexes-photophysics, photochemistry, electrochemistry, and chemi-luminescence. Coord. Chem. Rev. 84, 85-277.
Fihri, A., V. Artero, M. Razavet, C. Baffert, W. Leibl and M. Fontecave (2008) Cobaloxime-based photocatalytic devices for hydrogen production. Angew. Chem. Int. Ed. 47, 564-567.
Na, Y., M. Wang, J. Pan, P. Zhang, B. Akermark and L. Sun (2008) Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes. Inorg. Chem. 47, 2805-2810.
Roeser, S., P. Farr, F. Bozoglian, M. Martinez-Belmonte, J. Benet-Buchholz and A. Llobet (2011) Chemical, electrochemical, and photochemical catalytic oxidation of water to dioxygen with mononuclear ruthenium complexes. ChemSusChem. 4, 197-207.
Amao, Y., T. Hiraishi and I. Okura (1997) Photoinduced hydrogen evolution using water soluble viologen-linked trisulfonatophenylporphyrins (TPPSCnV) with hydrogenase. J. Mol. Catal. A: Chem. 126, 21-26.
Schwartz, L., P. S. Singh, L. Eriksson, R. Lomoth and S. Ott (2008) Tuning the electronic properties of Fe2(μ-arenedithiolate)(CO)6−n(PMe3)n (n = 0, 2) complexes related to the [Fe-Fe]-hydrogenase active site. C. R. Chim. 11, 875-889.
Jasimuddin, S., T. Yamada, K. Fukuju, J. Otsuki and K. Sakai (2010) Photocatalytic hydrogen production from water in self-assembled supramolecular iridium-cobalt systems. Chem. Commun., 8466-8468.
Brimblecombe, R., A. Koo, G. C. Dismukes, G. F. Swiegers and L. Spiccia (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J. Am. Chem. Soc. 132, 2892-2894.
McCormick, T. M., B. D. Calitree, A. Orchard, N. D. Kraut, F. V. Bright, M. R. Detty and R. Eisenberg (2010) Reductive side of water splitting in artificial photosynthesis: New homogeneous photosystems of great activity and mechanistic insight. J. Am. Chem. Soc. 132, 15480-15483.
Concepcion, J. J., J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton and T. J. Meyer (2009) Making oxygen with ruthenium complexes. Acc. Chem. Res. 42, 1954-1965.
Hou, Y., B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Sett, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Norskov and I. Chorkendorff (2011) Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434-438.
Gust, D., T. A. Moore and A. L. Moore (2001) Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34, 40-48.
Melis, A. and T. Happe (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol. 127, 740-748.
Dau, H. and I. Zaharieva (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861-1870.
Le Goff, A., V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Metaye, A. Fihri, S. Palacin and M. Fontecave (2009) From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384-1387.
Sivula, K., F. Le Formal and M. Gratzel (2011) Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4, 432-449.
Ghirardi, M. L., J. P. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum and A. Melis (2000) Microalgae: A green source of renewable H2. Trends Biotechnol. 18, 506-511.
Peters, J. W., W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt (1998) X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853-1858.
Streich, D., Y. Astuti, M. Orlandi, L. Schwartz, R. Lomoth, L. Hammarström and S. Ott (2010) High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chemistry A European Journal 16, 60-63.
Badura, A., B. Esper, K. Ataka, C. Grunwald, C. Woll, J. Kuhlmann, J. Heberle and M. Rögner (2006) Light-driven water splitting for (bio-)hydrogen production: Photosystem 2 as the central part of a bioelectrochemical device. Photochem. Photobiol. 82, 1385-1390.
Geletii, Y. V., B. Botar, P. Koegerler, D. A. Hillesheim, D. G. Musaev and C. L. Hill (2008) An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew. Chem. Int. Ed. 47, 3896-3899.
Fontecilla-Camps, J. C., A. Volbeda, C. Cavazza and Y. Nicolet (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273-4303.
Aratani, N., D. Kim and A. Osuka (2009) Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Acc. Chem. Res. 42, 1922-1934.
Du, P. W., K. Knowles and R. Eisenberg (2008) A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J. Am. Chem. Soc. 130, 12576-12577.
Tard, C. and C. J. Pickett (2009) Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 109, 2245-2274.
Blakemore, J. D., N. D. Schley, G. W. Olack, C. D. Incarvito, G. W. Brudvig and R. H. Crabtree (2011) Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors. Chem. Sci. 2, 94-98.
Campagna, S., F. Puntoriero, F. Nastasi, G.
2010; 12
1998; 280
2007; 107
2010; 16
2010; 17
1987; 109
1983; 7
1999; 283
2008; 33
1995; 373
1985; 24
2011; 473
2000; 18
2010; 114
2007; 9
1988; 84
2000; 122
2008; 20
2008; 112
2010; 5
2003; 42
1998; 282
2004; 43
2004; 303
2011; 2
2007; 280
2010; 39
2007; 281
1984; 106
2009; 694
2006; 110
2011; 4
2011; 3
2008; 363
2011; 133
1989; 52
2010; 49
2010; 46
2006; 45
2005; 127
2008; 47
2008; 41
2001; 34
2009; 109
2008; 252
2008; 130
2009; 106
2006; 71
2004; 126
2009; 42
1981; 103
1982; 11
2008; 9
2011; 10
2011; 12
2000; 298
1985; 64
1996; 101
2009; 48
1985; 68
2001; 172
1997; 97
2003; 6
1996; 25
2008; 61
2007; 26
1979; 62
2009; 326
1982; 79
2007; 129
2011
2010
2009
2009; 253
2008
2010; 122
2006
2008; 10
2005
2008; 11
1985; 107
2002
2009; 131
1999; 7
2005; 44
2001; 127
2009; 28
2011; 2011
2006; 82
1997; 126
2011; 50
2010; 132
2010; 254
2009; 8
2011; 47
2009; 3
2009; 2
2009; 38
2007; 46
e_1_2_7_108_2
e_1_2_7_3_2
e_1_2_7_127_2
e_1_2_7_104_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_123_2
e_1_2_7_83_2
e_1_2_7_100_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_142_2
e_1_2_7_146_2
e_1_2_7_116_2
e_1_2_7_90_2
e_1_2_7_112_2
e_1_2_7_71_2
e_1_2_7_94_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_98_2
e_1_2_7_23_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_150_2
e_1_2_7_37_2
e_1_2_7_131_2
e_1_2_7_135_2
e_1_2_7_139_2
e_1_2_7_4_2
e_1_2_7_105_2
e_1_2_7_128_2
e_1_2_7_8_2
e_1_2_7_101_2
e_1_2_7_124_2
e_1_2_7_82_2
e_1_2_7_16_2
e_1_2_7_120_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_12_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_48_2
e_1_2_7_29_2
e_1_2_7_147_2
e_1_2_7_109_2
e_1_2_7_117_2
e_1_2_7_113_2
e_1_2_7_93_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_32_2
e_1_2_7_74_2
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_151_2
e_1_2_7_59_2
e_1_2_7_132_2
Hawecker J. (e_1_2_7_86_2) 1983; 7
e_1_2_7_136_2
e_1_2_7_5_2
e_1_2_7_129_2
e_1_2_7_106_2
e_1_2_7_9_2
e_1_2_7_125_2
e_1_2_7_102_2
e_1_2_7_17_2
e_1_2_7_121_2
e_1_2_7_81_2
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_43_2
e_1_2_7_85_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_89_2
e_1_2_7_140_2
Kocking R. K. (e_1_2_7_143_2) 2011; 3
e_1_2_7_28_2
e_1_2_7_144_2
e_1_2_7_148_2
e_1_2_7_118_2
e_1_2_7_114_2
e_1_2_7_110_2
e_1_2_7_50_2
e_1_2_7_92_2
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_96_2
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_152_2
e_1_2_7_39_2
e_1_2_7_133_2
e_1_2_7_137_2
e_1_2_7_107_2
e_1_2_7_2_2
e_1_2_7_103_2
e_1_2_7_126_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_122_2
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
e_1_2_7_10_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_88_2
e_1_2_7_141_2
e_1_2_7_27_2
e_1_2_7_145_2
e_1_2_7_149_2
e_1_2_7_119_2
e_1_2_7_115_2
e_1_2_7_111_2
e_1_2_7_72_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_95_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_99_2
e_1_2_7_130_2
e_1_2_7_38_2
e_1_2_7_134_2
e_1_2_7_138_2
Photochem Photobiol. 2011 Nov-Dec;87(6):1478
References_xml – reference: Fontecilla-Camps, J. C., A. Volbeda, C. Cavazza and Y. Nicolet (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273-4303.
– reference: Gao, W., J. Liu, W. Jiang, M. Wang, L. Weng, B. Akermark and L. Sun (2008) An azadithiolate bridged Fe2S2 complex as active site model of FeFe-hydrogenase covalently linked to a Re(CO)3(bpy)(py) photosensitizer aiming for light-driven hydrogen production. C. R. Chim. 11, 915-921.
– reference: Hu, X. L., B. M. Cossairt, B. S. Brunschwig, N. S. Lewis and J. C. Peters (2005) Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes. Chem. Commun., 4723-4725.
– reference: Lakadamyali, F. and E. Reisner (2011) Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle. Chem. Commun. 47, 1695-1697.
– reference: Jones, A. K., E. Sillery, S. P. J. Albracht and F. A. Armstrong (2002) Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem. Commun., 866-867.
– reference: Fihri, A., V. Artero, A. Pereira and M. Fontecave (2008) Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Trans., 5567-5569.
– reference: Na, Y., J. Pan, M. Wang and L. Sun (2007) Intermolecular electron transfer from photogenerated Ru(bpy)32+ to [2Fe2S] model complexes of the iron-only hydrogenase active site. Inorg. Chem. 46, 3813-3815.
– reference: Gao, W., J. Sun, T. Akermark, M. Li, L. Eriksson, L. Sun and B. Akermark (2010) Attachment of a hydrogen-bonding carboxylate side chain to an [FeFe]-hydrogenase model complex: Influence on the catalytic mechanism. Chem. Eur. J. 16, 2537-2546.
– reference: Badura, A., B. Esper, K. Ataka, C. Grunwald, C. Woll, J. Kuhlmann, J. Heberle and M. Rögner (2006) Light-driven water splitting for (bio-)hydrogen production: Photosystem 2 as the central part of a bioelectrochemical device. Photochem. Photobiol. 82, 1385-1390.
– reference: Asakura, N., T. Hiraishi, T. Kamachi and I. Okura (2001) Photoinduced hydrogen evolution with cytochrom c3-viologen-ruthenium(II) triad complex and hydrogenase. J. Mol. Catal. A: Chem. 172, 1-7.
– reference: Reisner, E., D. J. Powell, C. Cavazza, J. C. Fontecilla-Camps and F. A. Armstrong (2009) Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131, 18467-18477.
– reference: Xu, Y., A. Fischer, L. Duan, L. Tong, E. Gabrielsson, B. Åkermark and L. Sun (2010) Chemical and light-driven oxidation of water catalyzed by an efficient dinuclear ruthenium complex. Angew. Chem. Int. Ed. 122, 8934-8937.
– reference: Huang, Z., Z. Luo, Y. V. Geletii, J. W. Vickers, Q. Yin, D. Wu, Y. Hou, Y. Ding, J. Song, D. G. Musaev, C. L. Hill and T. Lian (2011) Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation. J. Am. Chem. Soc. 133, 2068-2071.
– reference: Tseng, H. W., R. Zong, J. T. Muckerman and R. Thummel (2008) Mononuclear ruthenium(II) complexes that catalyze water oxidation. Inorg. Chem. 47, 11763-11773.
– reference: Kirch, M., J. M. Lehn and J. P. Sauvage (1979) Hydrogen generation by visible-light irradiation of aqueous solutions of metal-complexes-approach to the photochemical conversion and storage of solar energy. Helv. Chim. Acta 62, 1345-1384.
– reference: Inoue, Y. (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10 -related electronic configurations. Energy Environ. Sci. 2, 364-386.
– reference: Dismukes, G. C., R. Brimblecombe, G. A. N. Felton, R. S. Pryadun, J. E. Sheats, L. Spiccia and G. F. Swiegers (2009) Development of bioinspired Mn4O4 cubane water oxidation catalysts: Lessons from photosynthesis. Acc. Chem. Res. 42, 1935-1943.
– reference: Geletii, Y. V., Z. Q. Huang, Y. Hou, D. G. Musaev, T. Q. Lian and C. L. Hill (2009) Homogeneous light-driven water oxidation catalyzed by a tetraruthenium complex with all inorganic ligands. J. Am. Chem. Soc. 131, 7522-7523.
– reference: Sartorel, A., M. Carraro, G. Scorrano, R. De Zorzi, S. Geremia, N. D. McDaniel, S. Bernhard and M. Bonchio (2008) Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [γ-SiW10O36]8−: A totally inorganic oxygen-evolving catalyst. J. Am. Chem. Soc. 130, 5006-5007.
– reference: Dempsey, J. L., B. S. Brunschwig, J. R. Winkler and H. B. Gray (2009) Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995-2004.
– reference: Wang, X., S. B. Goeb, Z. Ji, N. A. Pogulaichenko and F. N. Castellano (2011) Homogeneous photocatalytic hydrogen production using π-conjugated platinum(II) arylacetylide sensitizers. Inorg. Chem. 50, 705-707.
– reference: Durr, H. and S. Bossmann (2001) Ruthenium polypyridine complexes. On the route to biomimetic assemblies as models for the photosynthetic reaction center. Acc. Chem. Res. 34, 905-917.
– reference: Pavlishchuk, V. V. and A. W. Addison (2000) Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorg. Chim. Acta 298, 97-102.
– reference: Ekström, J., M. Abrahamsson, C. Olson, J. Bergquist, F. B. Kaynak, L. Erikssin, L. Sun, H.-C. Becker, B. Akermark, L. Hammarström and S. Ott (2006) Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model. Dalton Trans., 4599-4606.
– reference: Geletii, Y. V., B. Botar, P. Koegerler, D. A. Hillesheim, D. G. Musaev and C. L. Hill (2008) An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew. Chem. Int. Ed. 47, 3896-3899.
– reference: Yagi, M. and K. Narita (2004) Catalytic O2 evolution from water induced by adsorption of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ complex onto clay compounds. J. Am. Chem. Soc. 126, 8084-8085.
– reference: Aratani, N., D. Kim and A. Osuka (2009) Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Acc. Chem. Res. 42, 1922-1934.
– reference: Na, Y., M. Wang, J. Pan, P. Zhang, B. Akermark and L. Sun (2008) Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes. Inorg. Chem. 47, 2805-2810.
– reference: Li, C., M. Wang, J. X. Pan, P. Zhang, R. Zhang and L. C. Sun (2009) Photochemical hydrogen production catalyzed by polypyridyl ruthenium-cobaloxime heterobinuclear complexes with different bridges. J. Organomet. Chem. 694, 2814-2819.
– reference: Harriman, A. and J. P. Sauvage (1996) Strategy for constructing photosynthetic models: Porphyrin-containing modules assembled around transition metals. Chem. Soc. Rev. 25, 41.
– reference: Flamigni, L., A. Barbieri, C. Sabatini, B. Ventura and F. Barigelletti (2007) Photochemistry and photophysics of coordination compounds: Iridium. Top. Curr. Chem. 281, 143-203.
– reference: Brimblecombe, R., A. Koo, G. C. Dismukes, G. F. Swiegers and L. Spiccia (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J. Am. Chem. Soc. 132, 2892-2894.
– reference: Jasimuddin, S., T. Yamada, K. Fukuju, J. Otsuki and K. Sakai (2010) Photocatalytic hydrogen production from water in self-assembled supramolecular iridium-cobalt systems. Chem. Commun., 8466-8468.
– reference: Probst, B., A. Rodenberg, M. Guttentag, P. Hamm and R. Alberto (2010) A highly stable rhenium-cobalt system for photocatalytic H2 production: Unraveling the performance-limiting steps. Inorg. Chem. 49, 6453-6460.
– reference: Wolpher, H., M. Borgström, L. Hammarström, J. Bergquist, V. Sundström, S. Styring, L. Sun and B. Akermark (2003) Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer. Inorg. Chem. Commun. 6, 989-991.
– reference: Lazarides, T., T. McCormick, P. W. Du, G. G. Luo, B. Lindley and R. Eisenberg (2009) Making hydrogen from water using a homogeneous system without noble metals. J. Am. Chem. Soc. 131, 9192-9194.
– reference: Flamigni, L., J. P. Collin and J. P. Sauvage (2008) Iridium terpyridine complexes as functional assembling units in arrays for the conversion of light energy. Acc. Chem. Res. 41, 857-871.
– reference: Zhang, P., M. Wang, J. Dong, X. Li, F. Wang, L. Wu and L. Sun (2010) Photocatalytic hydrogen production from water by noble-metal-free molecular catalyst systems containing Rose Bengal and the cobaloximes of BFx-bridged oxime ligands. J. Phys. Chem. C. 114, 15868-15874.
– reference: Comte, P., M. K. Nazeeruddin, F. P. Rotzinger, A. J. Franck and M. Gratzel (1989) Artificial analogues of the oxygen-evolving complex in photosynthesis: The oxo-bridged ruthenium dimer L2(H2O)RuIII-O-RuIII(H2O)L2, L = 2,2′-bipyridyl-4,4′-dicarboxylate. J. Mol. Catal. 52, 63-84.
– reference: Kanan, M. W., Y. Surendranath and D. G. Nocera (2009) Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 38, 109-114.
– reference: Duan, L., Y. Xu, L. Tong and L. Sun (2011) CeIV- and light-driven water oxidation by [Ru(terpy)(pic)3]2+ analogues: Catalytic and mechanistic studies. ChemSusChem. 4, 238-244.
– reference: Melis, A., L. P. Zhang, M. Forestier, M. L. Ghirardi and M. Seibert (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122, 127-135.
– reference: McConnell, I., G. Li and G. W. Brudvig (2010) Energy conversion in natural and artificial photosynthesis. Chem. Biol. 17, 434-447.
– reference: Ott, S., M. Borgström, M. Kritikos, R. Lomoth, J. Bergquist, B. Akermark, L. Hammarström and L. Sun (2004) Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer: Synthesis and photophysical properties. Inorg. Chem. 43, 4683-4692.
– reference: Kocking, R. K., R. Brimblecombe, L.-Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey and L. Spiccia (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat. Chem. 3, 461-466.
– reference: Fihri, A., V. Artero, M. Razavet, C. Baffert, W. Leibl and M. Fontecave (2008) Cobaloxime-based photocatalytic devices for hydrogen production. Angew. Chem. Int. Ed. 47, 564-567.
– reference: Blakemore, J. D., N. D. Schley, G. W. Olack, C. D. Incarvito, G. W. Brudvig and R. H. Crabtree (2011) Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors. Chem. Sci. 2, 94-98.
– reference: Campagna, S., F. Puntoriero, F. Nastasi, G. Bergamini and V. Balzani (2007) Photochemistry and photophysics of coordination compounds: Ruthenium. Top. Curr. Chem. 280, 117-214.
– reference: Hasobe, T. (2010) Supramolecular nanoarchitectures for light energy conversion. Phys. Chem. Chem. Phys. 12, 44-57.
– reference: Okura, I., M. Takeuchi, S. Kusunoki and S. Aono (1982) Photoreduction of cytochrome c3 and hydrogen evolution with hydrogenase. Chem. Lett. 11, 187-188.
– reference: Umena, Y., K. Kawakami, J.-R. Shen and N. Kamiya (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 473, 55-60.
– reference: Badura, A., D. Guschin, B. Esper, T. Kothe, S. Neugebauer, W. Schuhmann and M. Rögner (2008) Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. Electroanalysis 20, 1043-1047.
– reference: Poulsen, A. K., A. Rompel and C. J. McKenzie (2005) Water oxidation catalyzed by a dinuclear Mn complex: A functional model for the oxygen-evolving center of photosystem II. Angew. Chem. Int. Ed. 44, 6916-6920.
– reference: Borgarello, E., J. Kiwi, E. Pelizetti, M. Visca and M. Gratzel (1981) Sustained water cleavage by visible light. J. Am. Chem. Soc. 103, 6324-6329.
– reference: Capon, J. F., F. Gloaguen, F. Y. Petillon, P. Schollhammer and J. Talarmin (2009) Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases. Coord. Chem. Rev. 253, 1476-1494.
– reference: Krishnan, C. V., B. S. Brunschwig, C. Creutz and N. Sutin (1985) Homogeneous catalysis of the photoreduction of water .6. mediation by polypyridine complexes of ruthenium(II) and cobalt(II) in alkaline media. J. Am. Chem. Soc. 107, 2005-2015.
– reference: Probst, B., M. Guttentag, A. Rodenberg, P. Hamm and R. Alberto (2011) Photocatalytic H2 production from water with rhenium and cobalt complexes. Inorg. Chem. 50, 3404-3412.
– reference: Duan, L., Y. Xu, M. Gorlov, L. Tong, S. Andersson and L. Sun (2010) Chemical and photochemical water oxidation catalyzed by mononuclear ruthenium complexes with a negatively charge tridentate ligand. Chemistry A European Journal 16, 4659-4668.
– reference: Reisner, E., J. C. Fontecilla-Camps and F. A. Armstrong (2009) Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Commun., 550-552.
– reference: Juris, A., V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky (1988) Ru(II) polypyridine complexes-photophysics, photochemistry, electrochemistry, and chemi-luminescence. Coord. Chem. Rev. 84, 85-277.
– reference: Cui, H., M. Wang, L. Duan and L. Sun (2008) Preparation, characterization and electrochemistry of an iron-only hydrogenase active site model covalently linked to a ruthenium tris(bipyridine) photosensitizer. J. Coord. Chem. 61, 1856-1861.
– reference: McCormick, T. M., B. D. Calitree, A. Orchard, N. D. Kraut, F. V. Bright, M. R. Detty and R. Eisenberg (2010) Reductive side of water splitting in artificial photosynthesis: New homogeneous photosystems of great activity and mechanistic insight. J. Am. Chem. Soc. 132, 15480-15483.
– reference: Chan, S. F., M. Chou, C. Creutz, T. Matsubara and N. Sutin (1981) Mechanism of the formation of dihydrogen from the photoinduced reactions of poly(pyridine)ruthenium(II) and poly(pyridine)rhodium(III) complexes. J. Am. Chem. Soc. 103, 369-379.
– reference: Stripp, S. T. and T. Happe (2009) How algae produce hydrogen-news from the photosynthetic hydrogenase. Dalton Trans., 9960-9969.
– reference: Baffert, C., V. Artero and M. Fontecave (2007) Cobaloximes as functional models for hydrogenases. 2. proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. Inorg. Chem. 46, 1817-1824.
– reference: Ott, S., M. Kritikos, B. Akermark and L. Sun (2003) Synthesis and structure of a biomimetic model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer. Angew. Chem. Int. Ed. 42, 3285-3288.
– reference: Concepcion, J. J., J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton and T. J. Meyer (2009) Making oxygen with ruthenium complexes. Acc. Chem. Res. 42, 1954-1965.
– reference: Du, P. W., K. Knowles and R. Eisenberg (2008) A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J. Am. Chem. Soc. 130, 12576-12577.
– reference: Tard, C. and C. J. Pickett (2009) Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 109, 2245-2274.
– reference: Pantani, O., E. Anxolabehere-Mallart, A. Aukauloo and P. Millet (2007) Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochem. Commun. 9, 54-58.
– reference: Narita, K., T. Kuwaraba, K. Sone, K. Shimizu and M. Yagi (2006) Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ and clay compounds. J. Phys. Chem. B 110, 23107-23114.
– reference: Hiraishi, T., T. Kamachi and I. Okura (1996) Kinetic studies of electron transfer on photoinduced hydrogen evolution with hydrogenase. J. Photochem. Photobiol., A 101, 45-47.
– reference: Song, L.-C., M.-Y. Tang, F.-H. Su and Q.-M. Hu (2006) A biomimetic model for the active site of iron-only hydrogenases covalently bonded to a porphyrin photosensitizer. Angew. Chem. Int. Ed. 45, 1130-1133.
– reference: Morris, A. J., G. J. Meyer and E. Fujita (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 42, 1983-1994.
– reference: Reisner, E. (2011) Solar hydrogen evolution with hydrogenases: From natural to hybrid systems. Eur. J. Inorg. Chem. 2011, 1005-1016.
– reference: Gong, L., J. Wang, H. Li, L. Wang, J. Zhao and Z. Zhu (2011) Acriflavine-cobaloxime-triethanolamine homogeneous photocatalytic system for water splitting and the multiple effects of cobaloxime and triethanolamine. Catal. Commun. 12, 1099-1103.
– reference: Ihara, M., H. Nishihara, K.-S. Yoon, O. Lenz, B. Friedrich, H. Nakamoto, K. Kojima, D. Honma, T. Kamachi and I. Okura (2006) Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochem. Photobiol. 82, 676-682.
– reference: Limburg, J., J. S. Vrettos, L. M. Liable-Sands, A. L. Rheingold, R. H. Crabtree and G. W. Brudvig (1999) A functional model for O-O bond formation by the O2-evolving complex in photosystem II. Science 283, 1524-1527.
– reference: Wenger, O. S. (2009) Long-range electron transfer in artificial systems with d(6) and d(8) metal photosensitizers. Coord. Chem. Rev. 253, 1439-1457.
– reference: Krassen, H., A. Schwarze, B. Friedrich, K. Ataka, O. Lenz and J. Heberle (2009) Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. Acs Nano 3, 4055-4061.
– reference: Amao, Y., T. Hiraishi and I. Okura (1997) Photoinduced hydrogen evolution using water soluble viologen-linked trisulfonatophenylporphyrins (TPPSCnV) with hydrogenase. J. Mol. Catal. A: Chem. 126, 21-26.
– reference: Duan, L., Y. Xu, P. Zhang, M. Wang and L. Sun (2010) Visible light-driven water oxidation by a molecular ruthenium catalyst in homogeneous system. Inorg. Chem. 49, 209-215.
– reference: Zhang, P., M. Wang, Y. Na, X. Li, Y. Jiang and L. Sun (2010) Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Trans. 39, 1204-1206.
– reference: Tran, P. D., A. Le Goff, J. Heidkamp, B. Jousselme, N. Guillet, S. Palacin, H. Dau, M. Fontecave and V. Artero (2011) Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: Carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew. Chem. Int. Ed. 50, 1371-1374.
– reference: Najafpour, M. M., T. Ehrenberg, M. Wiechen and P. Kurz (2010) Calcium manganese(III) oxides (CaMn2O4·xH2O) as biomimetic oxygen-evolving catalysts. Angew. Chem. Int. Ed. 49, 2233-2237.
– reference: Cady, C. W., R. H. Crabtree and G. W. Brudvig (2008) Functional models for the oxygen-evolving complex of photosystem II. Coord. Chem. Rev. 252, 444-455.
– reference: Roeser, S., P. Farr, F. Bozoglian, M. Martinez-Belmonte, J. Benet-Buchholz and A. Llobet (2011) Chemical, electrochemical, and photochemical catalytic oxidation of water to dioxygen with mononuclear ruthenium complexes. ChemSusChem. 4, 197-207.
– reference: Xu, Y., L. Duan, L. Tong, B. Akermark and L. Sun (2010) Visible light-driven water oxidation catalyzed by a highly efficient dinuclear ruthenium complex. Chem. Commun. 46, 6506-6508.
– reference: Peters, J. W., W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt (1998) X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853-1858.
– reference: Rutherford, A. W. and A. Boussac (2004) Water photolysis in biology. Science 303, 1782-1784.
– reference: Wang, W.-G., F. Wang, H.-Y. Wang, G. Si, C.-H. Tung and L.-Z. Wu (2010) Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution. Chemistry an Asian Journal 5, 1796-1803.
– reference: Yagi, M., M. Toda, S. Yamada and H. Yamazaki (2010) An artificial model of photosynthetic photosystem II: Visible-light-derived O2 production from water by a di-μ-oxo-bridged manganese dimer as an oxygen evolving center. Chem. Commun. 46, 8594-8596.
– reference: Song, L.-C., M.-Y. Tang, S.-Z. Mei, J.-H. Huang and Q.-M. Hu (2007) The active site for iron-only hydrogenases coordinatively bonded to a metalloporphyrin photosensitizer. Organometallics 26, 1575-1577.
– reference: Ghirardi, M. L., J. P. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum and A. Melis (2000) Microalgae: A green source of renewable H2. Trends Biotechnol. 18, 506-511.
– reference: Albinsson, B. and J. Martensson (2008) Long-range electron and excitation energy transfer in donor-bridge-acceptor systems. J. Photochem. Photobiol., C 9, 138-155.
– reference: Creutz, C. and N. Sutin (1985) Photogeneration and reactions of cobalt(I) complexes. Coord. Chem. Rev. 64, 321-341.
– reference: Krishnan, C. V. and N. Sutin (1981) Homogeneous catalysis of the photo-reduction of water by visible-light .2. Mediation by a tris(2,2′-bipyridine)ruthenium(II)-cobalt(II) bipyridine system. J. Am. Chem. Soc. 103, 2141-2142.
– reference: Lubner, C. E., R. Grimme, D. A. Bryant and J. H. Golbeck (2010) Wiring photosystem I for direct solar hydrogen production. Biochemistry 49, 404-414.
– reference: Song, L. C., L. X. Wang, M. Y. Tang, C. G. Li, H. B. Song and Q. M. Hu (2009) Synthesis, structure, and photoinduced catalysis of [FeFe]-hydrogenase active site models covalently linked to a porphyrin or metalloporphyrin moiety. Organometallics 28, 3834-3841.
– reference: Barber, J. (2009) Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 38, 185-196.
– reference: Wasielewski, M. R. (2009) Self-assembly strategies for integrating light-harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910-1921.
– reference: Schneider, J., P. Du, P. Jarosz, T. Lazarides, X. Wang, W. W. Brennessel and R. Eisenberg (2009) Cyclometalated 6-phenyl-2,22-bipyridyl (CNN) platinum(II) acetylide complexes: Structure, electrochemistry, photophysics, and oxidative and reductive-quenching studies. Inorg. Chem. 48, 4306-4316.
– reference: Fukuzumi, S. (2008) Development of bioinspired artificial photosynthetic systems. Phys. Chem. Chem. Phys. 10, 2283-2297.
– reference: Sivula, K., F. Le Formal and M. Gratzel (2011) Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4, 432-449.
– reference: Le Goff, A., V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Metaye, A. Fihri, S. Palacin and M. Fontecave (2009) From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384-1387.
– reference: Besson, C., Z. Huang, Y. V. Geletii, S. Lense, K. I. Hardcastle, D. G. Musaev, T. Lian, A. Proust and C. L. Hill (2010) Cs9[(γ-PW10O36)2Ru4O5(OH)(H2O)4], a new all-inorganic, soluble catalyst for the efficient visible-light-driven oxidation of water. Chem. Commun. 46, 2784-2786.
– reference: Gust, D., T. A. Moore and A. L. Moore (2001) Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34, 40-48.
– reference: Li, X. Q., M. Wang, S. P. Zhang, J. X. Pan, Y. Na, J. H. Liu, B. Akermark and L. C. Sun (2008) Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: Photo-induced electron transfer and hydrogen generation. J. Phys. Chem. B 112, 8198-8202.
– reference: Rotzinger, F. P., S. Munavalli, P. Comte, J. K. Hurst, M. Gratzel, F.-J. Pern and A. J. Franck (1987) A molecular water-oxidation catalyst derived from ruthenium diaqua bis(2,2′-bipyridyl-5,5′-dicarboxylic acid). J. Am.Chem. Soc. 109, 6619-6626.
– reference: Brudvig, G. W. (2008) Water oxidation chemistry of photosystem II. Philosophical Transactions of the Royal Society B-Biological Sciences 363, 1211-1219.
– reference: Youngblood, W. J., S.-H. A. Lee, K. Maeda and T. E. Mallouk (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 42, 1966-1973.
– reference: Du, P. W., J. Schneider, G. G. Luo, W. W. Brennessel and R. Eisenberg (2009) Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorg. Chem. 48, 4952-4962.
– reference: Ruttinger, W. and G. C. Dismukes (1997) Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Chem. Rev. 97, 1-24.
– reference: Maeda, K., M. Higashi, D. L. Lu, R. Abe and K. Domen (2010) Efficient non-sacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 5858-5868.
– reference: Lehn, J. M. and R. Ziessel (1982) Photochemical generation of carbon-monoxide and hydrogen by reduction of carbon-dioxide and water under visible-light irradiation. Proc. Natl Acad. Sci. USA 79, 701-704.
– reference: Hu, X., B. S. Brunschwig and J. C. Peters (2007) Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 129, 8988-8998.
– reference: Artero, V., M. Chavarot-Kerlidou and M. Fontecave (2011) Splitting water with cobalt. Angew. Chem. Int. Ed. doi: 10.1002/anie.201007987.
– reference: Durrant, J. R., S. A. Haque and E. Palomares (2006) Photochemical energy conversion: From molecular dyads to solar cells. Chem. Commun., 3279-3289.
– reference: Schwartz, L., P. S. Singh, L. Eriksson, R. Lomoth and S. Ott (2008) Tuning the electronic properties of Fe2(μ-arenedithiolate)(CO)6−n(PMe3)n (n = 0, 2) complexes related to the [Fe-Fe]-hydrogenase active site. C. R. Chim. 11, 875-889.
– reference: Xu, Y. H., T. Akermark, V. Gyollai, D. P. Zou, L. Eriksson, L. L. Duan, R. Zhang, B. Akermark and L. Sun (2009) A new dinuclear ruthenium complex as an efficient water oxidation catalyst. Inorg. Chem. 48, 2717-2719.
– reference: Volbeda, A., M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey and J. C. Fontecilla-Camps (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580-587.
– reference: Nicolet, Y., C. Piras, P. Legrand, C. E. Hatchikian and J. C. Fontecilla-Camps (1999) Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center. Struct. Fold. Des. 7, 13-23.
– reference: Sala, X., I. Romero, M. Rodriguez, L. Escriche and A. Llobet (2009) Molecular catalysts that oxidize water to dioxygen. Angew. Chem. Int. Ed. 48, 2842-2852.
– reference: Yagi, M., A. Syouji, S. Yamada, M. Komi, H. Yamazaki and S. Tajima (2009) Molecular catalysts for water oxidation toward artificial photosynthesis. Photochem. Photobiol. Sci. 8, 139-147.
– reference: Kluwer, A. M., R. Kapre, F. Hartl, M. Lutz, A. L. Spek, A. M. Brouwer, P. W. N. M. van Leeuwen and J. N. H. Reek (2009) Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution. Proc. Natl Acad. Sci. USA 106, 10460-10465.
– reference: Creutz, C., H. A. Schwarz and N. Sutin (1984) Homogeneous catalysis of the photoreduction of water by visible-light .5. Free-radical route to formation of the metal hydride complex hydridoaquobis(2,2′-bipyridine)cobalt(III). J. Am. Chem. Soc. 106, 3036-3037.
– reference: La Ganga, G., F. Nastasi, S. Campagna and F. Puntoriero (2009) Photoinduced water oxidation sensitized by a tetranuclear Ru(II) dendrimer. Dalton Trans., 9997-9999.
– reference: Romain, S., L. Vigara and A. Llobet (2009) Oxygen-oxygen bond formation pathways promoted by ruthenium complexes. Acc. Chem. Res. 42, 1944-1953.
– reference: Okura, I. (1985) Hydrogenase and its application for photoinduced hydrogen evolution. Coord. Chem. Rev. 68, 53-99.
– reference: Schwarz, H. A., C. Creutz and N. Sutin (1985) Homogeneous catalysis of the photoreduction of water by visible-light .4. Cobalt(I) polypyridine complexes-redox and substitution kinetics and thermodynamics in the aqueous 2,2′-bipyridine and 4,4′-dimethyl-2,2′-bipyridine series studied by the pulse-radiolysis technique. Inorg. Chem. 24, 433-439.
– reference: Hou, Y., B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Sett, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Norskov and I. Chorkendorff (2011) Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434-438.
– reference: Streich, D., Y. Astuti, M. Orlandi, L. Schwartz, R. Lomoth, L. Hammarström and S. Ott (2010) High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chemistry A European Journal 16, 60-63.
– reference: Goldsmith, J. I., W. R. Hudson, M. S. Lowry, T. H. Anderson and S. Bernhard (2005) Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J. Am. Chem. Soc. 127, 7502-7510.
– reference: Wasielewski, M. R. (2006) Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. J. Org. Chem. 71, 5051-5066.
– reference: Li, L., L. L. Duan, Y. H. Xu, M. Gorlov, A. Hagfeldt and L. Sun (2010) A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. Chem. Commun. 46, 7307-7309.
– reference: Melis, A. and T. Happe (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol. 127, 740-748.
– reference: Razavet, M., V. Artero and M. Fontecave (2005) Proton electroreduction catalyzed by cobaloximes: Functional models for hydrogenases. Inorg. Chem. 44, 4786-4795.
– reference: Khaselev, O. and J. A. Turner (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425-427.
– reference: Losse, S., J. G. Vos and S. Rau (2010) Catalytic hydrogen production at cobalt centres. Coord. Chem. Rev. 254, 2492-2504.
– reference: Jacques, P.-A., V. Artero, J. Pécaut and M. Fontecave (2009) Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages. Proc. Natl Acad. Sci. USA 106, 20627-20632.
– reference: Zhang, P., M. Wang, C. Li, X. Li, J. Dong and L. Sun (2010) Photochemical H2 production with noble-metal-free molecular devices comprising a porphyrin photosensitizer and a cobaloxime catalyst. Chem. Commun. 46, 8806-8809.
– reference: Dau, H. and I. Zaharieva (2009) Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861-1870.
– reference: Benniston, A. C. and A. Harriman (2008) Artificial photosynthesis. Mater. Today 11, 26-34.
– reference: Lubner, C. E., P. Khorzer, P. J. N. Silva, K. A. Vincent, T. Happe, D. A. Bryant and J. H. Golbeck (2010) Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry 49, 10264-10266.
– reference: Hawecker, J., J. M. Lehn and R. Ziessel (1983) Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes. New J. Chem. 7, 271-277.
– reference: Barber, J. and J. W. Murray (2008) The structure of the Mn4Ca2+ cluster of photosystem II and its protein environment as revealed by X-ray crystallography. Phil. Trans. R. Soc. B 363, 1129-1138.
– reference: Probst, B., C. Kolano, P. Hamm and R. Alberto (2009) An efficient homogeneous intermolecular rhenium-based photocatalytic system for the production of H2. Inorg. Chem. 48, 1836-1843.
– reference: Gust, D., D. Kramer, A. Moore, T. A. Moore and W. Vermaas (2008) Engineered and artificial photosynthesis: Human ingenuity enters the game. MRS Bull. 33, 383-387.
– year: 2011
– volume: 103
  start-page: 369
  year: 1981
  end-page: 379
  article-title: Mechanism of the formation of dihydrogen from the photoinduced reactions of poly(pyridine)ruthenium(II) and poly(pyridine)rhodium(III) complexes
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 2842
  year: 2009
  end-page: 2852
  article-title: Molecular catalysts that oxidize water to dioxygen
  publication-title: Angew. Chem. Int. Ed.
– start-page: 4599
  year: 2006
  end-page: 4606
  article-title: Bio‐inspired, side‐on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model
  publication-title: Dalton Trans.
– volume: 126
  start-page: 21
  year: 1997
  end-page: 26
  article-title: Photoinduced hydrogen evolution using water soluble viologen‐linked trisulfonatophenylporphyrins (TPPSC V) with hydrogenase
  publication-title: J. Mol. Catal. A: Chem.
– volume: 47
  start-page: 2805
  year: 2008
  end-page: 2810
  article-title: Visible light‐driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe S] complexes
  publication-title: Inorg. Chem.
– volume: 46
  start-page: 1817
  year: 2007
  end-page: 1824
  article-title: Cobaloximes as functional models for hydrogenases. 2. proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media
  publication-title: Inorg. Chem.
– volume: 109
  start-page: 2245
  year: 2009
  end-page: 2274
  article-title: Structural and functional analogues of the active sites of the [Fe]‐, [NiFe]‐, and [FeFe]‐hydrogenases
  publication-title: Chem. Rev.
– volume: 46
  start-page: 8594
  year: 2010
  end-page: 8596
  article-title: An artificial model of photosynthetic photosystem II: Visible‐light‐derived O production from water by a di‐μ‐oxo‐bridged manganese dimer as an oxygen evolving center
  publication-title: Chem. Commun.
– volume: 132
  start-page: 2892
  year: 2010
  end-page: 2894
  article-title: Solar driven water oxidation by a bioinspired manganese molecular catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 432
  year: 2011
  end-page: 449
  article-title: Solar water splitting: Progress using hematite (α‐Fe O ) photoelectrodes
  publication-title: Chemsuschem
– volume: 253
  start-page: 1476
  year: 2009
  end-page: 1494
  article-title: Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]‐hydrogenases
  publication-title: Coord. Chem. Rev.
– volume: 42
  start-page: 3285
  year: 2003
  end-page: 3288
  article-title: Synthesis and structure of a biomimetic model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 197
  year: 2011
  end-page: 207
  article-title: Chemical, electrochemical, and photochemical catalytic oxidation of water to dioxygen with mononuclear ruthenium complexes
  publication-title: ChemSusChem.
– volume: 42
  start-page: 1910
  year: 2009
  end-page: 1921
  article-title: Self‐assembly strategies for integrating light‐harvesting and charge separation in artificial photosynthetic systems
  publication-title: Acc. Chem. Res.
– volume: 11
  start-page: 26
  year: 2008
  end-page: 34
  article-title: Artificial photosynthesis
  publication-title: Mater. Today
– volume: 42
  start-page: 1922
  year: 2009
  end-page: 1934
  article-title: Discrete cyclic porphyrin arrays as artificial light‐harvesting antenna
  publication-title: Acc. Chem. Res.
– volume: 694
  start-page: 2814
  year: 2009
  end-page: 2819
  article-title: Photochemical hydrogen production catalyzed by polypyridyl ruthenium‐cobaloxime heterobinuclear complexes with different bridges
  publication-title: J. Organomet. Chem.
– volume: 49
  start-page: 2233
  year: 2010
  end-page: 2237
  article-title: Calcium manganese(III) oxides (CaMn O ·xH O) as biomimetic oxygen‐evolving catalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 132
  start-page: 15480
  year: 2010
  end-page: 15483
  article-title: Reductive side of water splitting in artificial photosynthesis: New homogeneous photosystems of great activity and mechanistic insight
  publication-title: J. Am. Chem. Soc.
– volume: 107
  start-page: 2005
  year: 1985
  end-page: 2015
  article-title: Homogeneous catalysis of the photoreduction of water .6. mediation by polypyridine complexes of ruthenium(II) and cobalt(II) in alkaline media
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 6453
  year: 2010
  end-page: 6460
  article-title: A highly stable rhenium‐cobalt system for photocatalytic H production: Unraveling the performance‐limiting steps
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 434
  year: 2011
  end-page: 438
  article-title: Bioinspired molecular co‐catalysts bonded to a silicon photocathode for solar hydrogen evolution
  publication-title: Nat. Mater.
– volume: 131
  start-page: 18467
  year: 2009
  end-page: 18477
  article-title: Visible light‐driven H production by hydrogenases attached to dye‐sensitized TiO nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 94
  year: 2011
  end-page: 98
  article-title: Anodic deposition of a robust iridium‐based water‐oxidation catalyst from organometallic precursors
  publication-title: Chem. Sci.
– volume: 106
  start-page: 20627
  year: 2009
  end-page: 20632
  article-title: Cobalt and nickel diimine‐dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 34
  start-page: 40
  year: 2001
  end-page: 48
  article-title: Mimicking photosynthetic solar energy transduction
  publication-title: Acc. Chem. Res.
– volume: 106
  start-page: 3036
  year: 1984
  end-page: 3037
  article-title: Homogeneous catalysis of the photoreduction of water by visible‐light .5. Free‐radical route to formation of the metal hydride complex hydridoaquobis(2,2′‐bipyridine)cobalt(III)
  publication-title: J. Am. Chem. Soc.
– volume: 303
  start-page: 1782
  year: 2004
  end-page: 1784
  article-title: Water photolysis in biology
  publication-title: Science
– volume: 11
  start-page: 187
  year: 1982
  end-page: 188
  article-title: Photoreduction of cytochrome and hydrogen evolution with hydrogenase
  publication-title: Chem. Lett.
– volume: 79
  start-page: 701
  year: 1982
  end-page: 704
  article-title: Photochemical generation of carbon‐monoxide and hydrogen by reduction of carbon‐dioxide and water under visible‐light irradiation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 298
  start-page: 97
  year: 2000
  end-page: 102
  article-title: Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C
  publication-title: Inorg. Chim. Acta
– volume: 4
  start-page: 238
  year: 2011
  end-page: 244
  article-title: Ce ‐ and light‐driven water oxidation by [Ru(terpy)(pic) ] analogues: Catalytic and mechanistic studies
  publication-title: ChemSusChem.
– volume: 130
  start-page: 5006
  year: 2008
  end-page: 5007
  article-title: Polyoxometalate embedding of a tetraruthenium(IV)‐oxo‐core by template‐directed metalation of [γ‐SiW O ] : A totally inorganic oxygen‐evolving catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 185
  year: 2009
  end-page: 196
  article-title: Photosynthetic energy conversion: Natural and artificial
  publication-title: Chem. Soc. Rev.
– volume: 33
  start-page: 383
  year: 2008
  end-page: 387
  article-title: Engineered and artificial photosynthesis: Human ingenuity enters the game
  publication-title: MRS Bull.
– volume: 282
  start-page: 1853
  year: 1998
  end-page: 1858
  article-title: X‐ray crystal structure of the Fe‐only hydrogenase (Cpl) from to 1.8 angstrom resolution
  publication-title: Science
– volume: 41
  start-page: 857
  year: 2008
  end-page: 871
  article-title: Iridium terpyridine complexes as functional assembling units in arrays for the conversion of light energy
  publication-title: Acc. Chem. Res.
– volume: 46
  start-page: 3813
  year: 2007
  end-page: 3815
  article-title: Intermolecular electron transfer from photogenerated Ru(bpy) to [2Fe S] model complexes of the iron‐only hydrogenase active site
  publication-title: Inorg. Chem.
– volume: 82
  start-page: 676
  year: 2006
  end-page: 682
  article-title: Light‐driven hydrogen production by a hybrid complex of a [NiFe]‐hydrogenase and the cyanobacterial photosystem I
  publication-title: Photochem. Photobiol.
– year: 2011
  article-title: Splitting water with cobalt
  publication-title: Angew. Chem. Int. Ed.
– volume: 109
  start-page: 6619
  year: 1987
  end-page: 6626
  article-title: A molecular water‐oxidation catalyst derived from ruthenium diaqua bis(2,2′‐bipyridyl‐5,5′‐dicarboxylic acid)
  publication-title: J. Am.Chem. Soc.
– volume: 48
  start-page: 2717
  year: 2009
  end-page: 2719
  article-title: A new dinuclear ruthenium complex as an efficient water oxidation catalyst
  publication-title: Inorg. Chem.
– volume: 2011
  start-page: 1005
  year: 2011
  end-page: 1016
  article-title: Solar hydrogen evolution with hydrogenases: From natural to hybrid systems
  publication-title: Eur. J. Inorg. Chem.
– volume: 62
  start-page: 1345
  year: 1979
  end-page: 1384
  article-title: Hydrogen generation by visible‐light irradiation of aqueous solutions of metal‐complexes—approach to the photochemical conversion and storage of solar energy
  publication-title: Helv. Chim. Acta
– volume: 130
  start-page: 12576
  year: 2008
  end-page: 12577
  article-title: A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 434
  year: 2010
  end-page: 447
  article-title: Energy conversion in natural and artificial photosynthesis
  publication-title: Chem. Biol.
– volume: 107
  start-page: 4273
  year: 2007
  end-page: 4303
  article-title: Structure/function relationships of [NiFe]‐ and [FeFe]‐hydrogenases
  publication-title: Chem. Rev.
– volume: 131
  start-page: 9192
  year: 2009
  end-page: 9194
  article-title: Making hydrogen from water using a homogeneous system without noble metals
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 15868
  year: 2010
  end-page: 15874
  article-title: Photocatalytic hydrogen production from water by noble‐metal‐free molecular catalyst systems containing Rose Bengal and the cobaloximes of BFx‐bridged oxime ligands
  publication-title: J. Phys. Chem. C.
– volume: 46
  start-page: 2784
  year: 2010
  end-page: 2786
  article-title: Cs [(γ‐PW O ) Ru O (OH)(H O) ], a new all‐inorganic, soluble catalyst for the efficient visible‐light‐driven oxidation of water
  publication-title: Chem. Commun.
– volume: 48
  start-page: 1836
  year: 2009
  end-page: 1843
  article-title: An efficient homogeneous intermolecular rhenium‐based photocatalytic system for the production of H
  publication-title: Inorg. Chem.
– volume: 71
  start-page: 5051
  year: 2006
  end-page: 5066
  article-title: Energy, charge, and spin transport in molecules and self‐assembled nanostructures inspired by photosynthesis
  publication-title: J. Org. Chem.
– volume: 129
  start-page: 8988
  year: 2007
  end-page: 8998
  article-title: Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 63
  year: 1989
  end-page: 84
  article-title: Artificial analogues of the oxygen‐evolving complex in photosynthesis: The oxo‐bridged ruthenium dimer L (H O)Ru ‐O‐Ru (H O)L ,  = 2,2′‐bipyridyl‐4,4′‐dicarboxylate
  publication-title: J. Mol. Catal.
– volume: 44
  start-page: 4786
  year: 2005
  end-page: 4795
  article-title: Proton electroreduction catalyzed by cobaloximes: Functional models for hydrogenases
  publication-title: Inorg. Chem.
– start-page: 3279
  year: 2006
  end-page: 3289
  article-title: Photochemical energy conversion: From molecular dyads to solar cells
  publication-title: Chem. Commun.
– volume: 47
  start-page: 11763
  year: 2008
  end-page: 11773
  article-title: Mononuclear ruthenium(II) complexes that catalyze water oxidation
  publication-title: Inorg. Chem.
– volume: 122
  start-page: 8934
  year: 2010
  end-page: 8937
  article-title: Chemical and light‐driven oxidation of water catalyzed by an efficient dinuclear ruthenium complex
  publication-title: Angew. Chem. Int. Ed.
– volume: 25
  start-page: 41
  year: 1996
  article-title: Strategy for constructing photosynthetic models: Porphyrin‐containing modules assembled around transition metals
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 271
  year: 1983
  end-page: 277
  article-title: Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes
  publication-title: New J. Chem.
– volume: 9
  start-page: 138
  year: 2008
  end-page: 155
  article-title: Long‐range electron and excitation energy transfer in donor‐bridge‐acceptor systems
  publication-title: J. Photochem. Photobiol., C
– start-page: 8466
  year: 2010
  end-page: 8468
  article-title: Photocatalytic hydrogen production from water in self‐assembled supramolecular iridium–cobalt systems
  publication-title: Chem. Commun.
– volume: 46
  start-page: 6506
  year: 2010
  end-page: 6508
  article-title: Visible light‐driven water oxidation catalyzed by a highly efficient dinuclear ruthenium complex
  publication-title: Chem. Commun.
– volume: 373
  start-page: 580
  year: 1995
  end-page: 587
  article-title: Crystal structure of the nickel‐iron hydrogenase from
  publication-title: Nature
– volume: 131
  start-page: 7522
  year: 2009
  end-page: 7523
  article-title: Homogeneous light‐driven water oxidation catalyzed by a tetraruthenium complex with all inorganic ligands
  publication-title: J. Am. Chem. Soc.
– volume: 281
  start-page: 143
  year: 2007
  end-page: 203
  article-title: Photochemistry and photophysics of coordination compounds: Iridium
  publication-title: Top. Curr. Chem.
– volume: 9
  start-page: 54
  year: 2007
  end-page: 58
  article-title: Electroactivity of cobalt and nickel glyoximes with regard to the electro‐reduction of protons into molecular hydrogen in acidic media
  publication-title: Electrochem. Commun.
– start-page: 9997
  year: 2009
  end-page: 9999
  article-title: Photoinduced water oxidation sensitized by a tetranuclear Ru(II) dendrimer
  publication-title: Dalton Trans.
– volume: 18
  start-page: 506
  year: 2000
  end-page: 511
  article-title: Microalgae: A green source of renewable H
  publication-title: Trends Biotechnol.
– volume: 7
  start-page: 13
  year: 1999
  end-page: 23
  article-title: iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center
  publication-title: Struct. Fold. Des.
– volume: 42
  start-page: 1954
  year: 2009
  end-page: 1965
  article-title: Making oxygen with ruthenium complexes
  publication-title: Acc. Chem. Res.
– volume: 49
  start-page: 10264
  year: 2010
  end-page: 10266
  article-title: Wiring an [FeFe]‐hydrogenase with photosystem I for light‐induced hydrogen production
  publication-title: Biochemistry
– volume: 34
  start-page: 905
  year: 2001
  end-page: 917
  article-title: Ruthenium polypyridine complexes. On the route to biomimetic assemblies as models for the photosynthetic reaction center
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: 44
  year: 2010
  end-page: 57
  article-title: Supramolecular nanoarchitectures for light energy conversion
  publication-title: Phys. Chem. Chem. Phys.
– volume: 44
  start-page: 6916
  year: 2005
  end-page: 6920
  article-title: Water oxidation catalyzed by a dinuclear Mn complex: A functional model for the oxygen‐evolving center of photosystem II
  publication-title: Angew. Chem. Int. Ed.
– volume: 20
  start-page: 1043
  year: 2008
  end-page: 1047
  article-title: Photo‐induced electron transfer between photosystem 2 cross‐linked redox hydrogels
  publication-title: Electroanalysis
– year: 2009
– volume: 48
  start-page: 4952
  year: 2009
  end-page: 4962
  article-title: Visible light‐driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts
  publication-title: Inorg. Chem.
– volume: 103
  start-page: 6324
  year: 1981
  end-page: 6329
  article-title: Sustained water cleavage by visible light
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 8198
  year: 2008
  end-page: 8202
  article-title: Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active‐site model: Photo‐induced electron transfer and hydrogen generation
  publication-title: J. Phys. Chem. B
– volume: 11
  start-page: 915
  year: 2008
  end-page: 921
  article-title: An azadithiolate bridged Fe S complex as active site model of FeFe‐hydrogenase covalently linked to a Re(CO) (bpy)(py) photosensitizer aiming for light‐driven hydrogen production
  publication-title: C. R. Chim.
– volume: 122
  start-page: 127
  year: 2000
  end-page: 135
  article-title: Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga
  publication-title: Plant Physiol.
– volume: 45
  start-page: 1130
  year: 2006
  end-page: 1133
  article-title: A biomimetic model for the active site of iron‐only hydrogenases covalently bonded to a porphyrin photosensitizer
  publication-title: Angew. Chem. Int. Ed.
– volume: 127
  start-page: 740
  year: 2001
  end-page: 748
  article-title: Hydrogen production. Green algae as a source of energy
  publication-title: Plant Physiol.
– volume: 50
  start-page: 3404
  year: 2011
  end-page: 3412
  article-title: Photocatalytic H production from water with rhenium and cobalt complexes
  publication-title: Inorg. Chem.
– volume: 5
  start-page: 1796
  year: 2010
  end-page: 1803
  article-title: Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution
  publication-title: Chemistry an Asian Journal
– volume: 473
  start-page: 55
  year: 2011
  end-page: 60
  article-title: Crystal structure of oxygen‐evolving photosystem II at a resolution of 1.9Å
  publication-title: Nature
– volume: 16
  start-page: 4659
  year: 2010
  end-page: 4668
  article-title: Chemical and photochemical water oxidation catalyzed by mononuclear ruthenium complexes with a negatively charge tridentate ligand
  publication-title: Chemistry A European Journal
– volume: 42
  start-page: 1935
  year: 2009
  end-page: 1943
  article-title: Development of bioinspired Mn O cubane water oxidation catalysts: Lessons from photosynthesis
  publication-title: Acc. Chem. Res.
– start-page: 550
  year: 2009
  end-page: 552
  article-title: Catalytic electrochemistry of a [NiFeSe]‐hydrogenase on TiO and demonstration of its suitability for visible‐light driven H production
  publication-title: Chem. Commun.
– volume: 283
  start-page: 1524
  year: 1999
  end-page: 1527
  article-title: A functional model for O‐O bond formation by the O ‐evolving complex in photosystem II
  publication-title: Science
– volume: 47
  start-page: 1695
  year: 2011
  end-page: 1697
  article-title: Photocatalytic H evolution from neutral water with a molecular cobalt catalyst on a dye‐sensitised TiO nanoparticle
  publication-title: Chem. Commun.
– volume: 16
  start-page: 2537
  year: 2010
  end-page: 2546
  article-title: Attachment of a hydrogen‐bonding carboxylate side chain to an [FeFe]‐hydrogenase model complex: Influence on the catalytic mechanism
  publication-title: Chem. Eur. J.
– volume: 48
  start-page: 4306
  year: 2009
  end-page: 4316
  article-title: Cyclometalated 6‐phenyl‐2,22‐bipyridyl (CNN) platinum(II) acetylide complexes: Structure, electrochemistry, photophysics, and oxidative and reductive‐quenching studies
  publication-title: Inorg. Chem.
– start-page: 9960
  year: 2009
  end-page: 9969
  article-title: How algae produce hydrogen—news from the photosynthetic hydrogenase
  publication-title: Dalton Trans.
– volume: 6
  start-page: 989
  year: 2003
  end-page: 991
  article-title: Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris‐bipyridine photosensitizer
  publication-title: Inorg. Chem. Commun.
– volume: 28
  start-page: 3834
  year: 2009
  end-page: 3841
  article-title: Synthesis, structure, and photoinduced catalysis of [FeFe]‐hydrogenase active site models covalently linked to a porphyrin or metalloporphyrin moiety
  publication-title: Organometallics
– volume: 101
  start-page: 45
  year: 1996
  end-page: 47
  article-title: Kinetic studies of electron transfer on photoinduced hydrogen evolution with hydrogenase
  publication-title: J. Photochem. Photobiol., A
– volume: 42
  start-page: 1966
  year: 2009
  end-page: 1973
  article-title: Visible light water splitting using dye‐sensitized oxide semiconductors
  publication-title: Acc. Chem. Res.
– volume: 126
  start-page: 8084
  year: 2004
  end-page: 8085
  article-title: Catalytic O evolution from water induced by adsorption of [(OH )(terpy)Mn(μ‐O) Mn(terpy)(OH )] complex onto clay compounds
  publication-title: J. Am. Chem. Soc.
– start-page: 866
  year: 2002
  end-page: 867
  article-title: Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst
  publication-title: Chem. Commun.
– volume: 172
  start-page: 1
  year: 2001
  end-page: 7
  article-title: Photoinduced hydrogen evolution with cytochrom ‐viologen‐ruthenium(II) triad complex and hydrogenase
  publication-title: J. Mol. Catal. A: Chem.
– volume: 46
  start-page: 7307
  year: 2010
  end-page: 7309
  article-title: A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye‐sensitized nanostructured TiO
  publication-title: Chem. Commun.
– volume: 12
  start-page: 1099
  year: 2011
  end-page: 1103
  article-title: Acriflavine‐cobaloxime‐triethanolamine homogeneous photocatalytic system for water splitting and the multiple effects of cobaloxime and triethanolamine
  publication-title: Catal. Commun.
– volume: 106
  start-page: 10460
  year: 2009
  end-page: 10465
  article-title: Self‐assembled biomimetic [2Fe S]‐hydrogenase‐based photocatalyst for molecular hydrogen evolution
  publication-title: Proc. Natl Acad. Sci. USA
– start-page: 4723
  year: 2005
  end-page: 4725
  article-title: Electrocatalytic hydrogen evolution by cobalt difluoroboryl‐diglyoximate complexes
  publication-title: Chem. Commun.
– volume: 82
  start-page: 1385
  year: 2006
  end-page: 1390
  article-title: Light‐driven water splitting for (bio‐)hydrogen production: Photosystem 2 as the central part of a bioelectrochemical device
  publication-title: Photochem. Photobiol.
– volume: 280
  start-page: 425
  year: 1998
  end-page: 427
  article-title: A monolithic photovoltaic‐photoelectrochemical device for hydrogen production water splitting
  publication-title: Science
– volume: 326
  start-page: 1384
  year: 2009
  end-page: 1387
  article-title: From hydrogenases to noble metal‐free catalytic nanomaterials for H production and uptake
  publication-title: Science
– volume: 252
  start-page: 444
  year: 2008
  end-page: 455
  article-title: Functional models for the oxygen‐evolving complex of photosystem II
  publication-title: Coord. Chem. Rev.
– volume: 61
  start-page: 1856
  year: 2008
  end-page: 1861
  article-title: Preparation, characterization and electrochemistry of an iron‐only hydrogenase active site model covalently linked to a ruthenium tris(bipyridine) photosensitizer
  publication-title: J. Coord. Chem.
– volume: 24
  start-page: 433
  year: 1985
  end-page: 439
  article-title: Homogeneous catalysis of the photoreduction of water by visible‐light .4. Cobalt(I) polypyridine complexes—redox and substitution kinetics and thermodynamics in the aqueous 2,2′‐bipyridine and 4,4′‐dimethyl‐2,2′‐bipyridine series studied by the pulse‐radiolysis technique
  publication-title: Inorg. Chem.
– volume: 2
  start-page: 364
  year: 2009
  end-page: 386
  article-title: Photocatalytic water splitting by RuO ‐loaded metal oxides and nitrides with d ‐ and d ‐related electronic configurations
  publication-title: Energy Environ. Sci.
– volume: 38
  start-page: 109
  year: 2009
  end-page: 114
  article-title: Cobalt–phosphate oxygen‐evolving compound
  publication-title: Chem. Soc. Rev.
– volume: 42
  start-page: 1995
  year: 2009
  end-page: 2004
  article-title: Hydrogen evolution catalyzed by cobaloximes
  publication-title: Acc. Chem. Res.
– volume: 127
  start-page: 7502
  year: 2005
  end-page: 7510
  article-title: Discovery and high‐throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production
  publication-title: J. Am. Chem. Soc.
– volume: 68
  start-page: 53
  year: 1985
  end-page: 99
  article-title: Hydrogenase and its application for photoinduced hydrogen evolution
  publication-title: Coord. Chem. Rev.
– volume: 26
  start-page: 1575
  year: 2007
  end-page: 1577
  article-title: The active site for iron‐only hydrogenases coordinatively bonded to a metalloporphyrin photosensitizer
  publication-title: Organometallics
– volume: 49
  start-page: 404
  year: 2010
  end-page: 414
  article-title: Wiring photosystem I for direct solar hydrogen production
  publication-title: Biochemistry
– volume: 42
  start-page: 1983
  year: 2009
  end-page: 1994
  article-title: Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels
  publication-title: Acc. Chem. Res.
– volume: 97
  start-page: 1
  year: 1997
  end-page: 24
  article-title: Synthetic water‐oxidation catalysts for artificial photosynthetic water oxidation
  publication-title: Chem. Rev.
– volume: 42
  start-page: 1944
  year: 2009
  end-page: 1953
  article-title: Oxygen–oxygen bond formation pathways promoted by ruthenium complexes
  publication-title: Acc. Chem. Res.
– volume: 50
  start-page: 1371
  year: 2011
  end-page: 1374
  article-title: Noncovalent modification of carbon nanotubes with pyrene‐functionalized nickel complexes: Carbon monoxide tolerant catalysts for hydrogen evolution and uptake
  publication-title: Angew. Chem. Int. Ed.
– volume: 363
  start-page: 1129
  year: 2008
  end-page: 1138
  article-title: The structure of the Mn Ca cluster of photosystem II and its protein environment as revealed by X‐ray crystallography
  publication-title: Phil. Trans. R. Soc. B
– volume: 103
  start-page: 2141
  year: 1981
  end-page: 2142
  article-title: Homogeneous catalysis of the photo‐reduction of water by visible‐light .2. Mediation by a tris(2,2′‐bipyridine)ruthenium(II)‐cobalt(II) bipyridine system
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 139
  year: 2009
  end-page: 147
  article-title: Molecular catalysts for water oxidation toward artificial photosynthesis
  publication-title: Photochem. Photobiol. Sci.
– volume: 132
  start-page: 5858
  year: 2010
  end-page: 5868
  article-title: Efficient non‐sacrificial water splitting through two‐step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst
  publication-title: J. Am. Chem. Soc.
– volume: 253
  start-page: 1439
  year: 2009
  end-page: 1457
  article-title: Long‐range electron transfer in artificial systems with d(6) and d(8) metal photosensitizers
  publication-title: Coord. Chem. Rev.
– volume: 39
  start-page: 1204
  year: 2010
  end-page: 1206
  article-title: Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe S ] catalyst with high turnover numbers
  publication-title: Dalton Trans.
– volume: 16
  start-page: 60
  year: 2010
  end-page: 63
  article-title: High‐turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]‐hydrogenase active site
  publication-title: Chemistry A European Journal
– start-page: 5567
  year: 2008
  end-page: 5569
  article-title: Efficient H ‐producing photocatalytic systems based on cyclometalated iridium‐ and tricarbonylrhenium‐diimine photosensitizers and cobaloxime catalysts
  publication-title: Dalton Trans.
– volume: 84
  start-page: 85
  year: 1988
  end-page: 277
  article-title: Ru(II) polypyridine complexes—photophysics, photochemistry, electrochemistry, and chemi‐luminescence
  publication-title: Coord. Chem. Rev.
– volume: 280
  start-page: 117
  year: 2007
  end-page: 214
  article-title: Photochemistry and photophysics of coordination compounds: Ruthenium
  publication-title: Top. Curr. Chem.
– volume: 47
  start-page: 564
  year: 2008
  end-page: 567
  article-title: Cobaloxime‐based photocatalytic devices for hydrogen production
  publication-title: Angew. Chem. Int. Ed.
– volume: 43
  start-page: 4683
  year: 2004
  end-page: 4692
  article-title: Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer: Synthesis and photophysical properties
  publication-title: Inorg. Chem.
– volume: 363
  start-page: 1211
  year: 2008
  end-page: 1219
  article-title: Water oxidation chemistry of photosystem II
  publication-title: Philosophical Transactions of the Royal Society B-Biological Sciences
– volume: 42
  start-page: 1861
  year: 2009
  end-page: 1870
  article-title: Principles, efficiency, and blueprint character of solar‐energy conversion in photosynthetic water oxidation
  publication-title: Acc. Chem. Res.
– volume: 133
  start-page: 2068
  year: 2011
  end-page: 2071
  article-title: Efficient light‐driven carbon‐free cobalt‐based molecular catalyst for water oxidation
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 321
  year: 1985
  end-page: 341
  article-title: Photogeneration and reactions of cobalt(I) complexes
  publication-title: Coord. Chem. Rev.
– volume: 49
  start-page: 209
  year: 2010
  end-page: 215
  article-title: Visible light‐driven water oxidation by a molecular ruthenium catalyst in homogeneous system
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 2283
  year: 2008
  end-page: 2297
  article-title: Development of bioinspired artificial photosynthetic systems
  publication-title: Phys. Chem. Chem. Phys.
– volume: 47
  start-page: 3896
  year: 2008
  end-page: 3899
  article-title: An all‐inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 461
  year: 2011
  end-page: 466
  article-title: Water‐oxidation catalysis by manganese in a geochemical‐like cycle
  publication-title: Nat. Chem.
– volume: 254
  start-page: 2492
  year: 2010
  end-page: 2504
  article-title: Catalytic hydrogen production at cobalt centres
  publication-title: Coord. Chem. Rev.
– volume: 110
  start-page: 23107
  year: 2006
  end-page: 23114
  article-title: Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH )(terpy)Mn(μ‐O) Mn(terpy)(OH )] and clay compounds
  publication-title: J. Phys. Chem. B
– volume: 11
  start-page: 875
  year: 2008
  end-page: 889
  article-title: Tuning the electronic properties of Fe (μ‐arenedithiolate)(CO) (PMe ) (  = 0, 2) complexes related to the [Fe–Fe]‐hydrogenase active site
  publication-title: C. R. Chim.
– volume: 3
  start-page: 4055
  year: 2009
  end-page: 4061
  article-title: Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]‐hydrogenase
  publication-title: Acs Nano
– volume: 50
  start-page: 705
  year: 2011
  end-page: 707
  article-title: Homogeneous photocatalytic hydrogen production using π‐conjugated platinum(II) arylacetylide sensitizers
  publication-title: Inorg. Chem.
– volume: 46
  start-page: 8806
  year: 2010
  end-page: 8809
  article-title: Photochemical H production with noble‐metal‐free molecular devices comprising a porphyrin photosensitizer and a cobaloxime catalyst
  publication-title: Chem. Commun.
– ident: e_1_2_7_33_2
  doi: 10.1016/S0969-2126(99)80005-7
– ident: e_1_2_7_110_2
  doi: 10.1098/rstb.2007.2217
– ident: e_1_2_7_113_2
  doi: 10.1562/2006-07-14-RC-969
– ident: e_1_2_7_80_2
  doi: 10.1016/j.crci.2008.04.001
– ident: e_1_2_7_20_2
  doi: 10.1021/jo060225d
– ident: e_1_2_7_112_2
  doi: 10.1038/nature09913
– ident: e_1_2_7_130_2
  doi: 10.1039/b926064a
– ident: e_1_2_7_149_2
  doi: 10.1002/anie.201005427
– ident: e_1_2_7_45_2
  doi: 10.1039/b817371k
– ident: e_1_2_7_109_2
  doi: 10.1098/rstb.2007.2208
– ident: e_1_2_7_36_2
  doi: 10.1246/cl.1982.187
– volume: 3
  start-page: 461
  year: 2011
  ident: e_1_2_7_143_2
  article-title: Water‐oxidation catalysis by manganese in a geochemical‐like cycle
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1049
– ident: e_1_2_7_95_2
  doi: 10.1021/om900141x
– ident: e_1_2_7_107_2
  doi: 10.1021/ar900240w
– ident: e_1_2_7_93_2
  doi: 10.1021/ja00392a022
– ident: e_1_2_7_101_2
  doi: 10.1021/ja00293a035
– ident: e_1_2_7_13_2
  doi: 10.1039/b801198m
– ident: e_1_2_7_104_2
  doi: 10.1021/ja00322a051
– ident: e_1_2_7_67_2
  doi: 10.1021/jp106512a
– ident: e_1_2_7_11_2
  doi: 10.1557/mrs2008.78
– ident: e_1_2_7_124_2
  doi: 10.1039/c0cc01828g
– ident: e_1_2_7_122_2
  doi: 10.1021/ic8014817
– ident: e_1_2_7_135_2
  doi: 10.1021/cr950201z
– ident: e_1_2_7_78_2
  doi: 10.1002/chem.200902278
– ident: e_1_2_7_54_2
  doi: 10.1021/ja00398a066
– ident: e_1_2_7_7_2
  doi: 10.1021/cr050195z
– ident: e_1_2_7_111_2
  doi: 10.1021/ar900225y
– ident: e_1_2_7_46_2
  doi: 10.1021/ja907923r
– ident: e_1_2_7_103_2
  doi: 10.1016/0010-8545(85)80058-8
– ident: e_1_2_7_5_2
  doi: 10.1039/b916246a
– ident: e_1_2_7_89_2
  doi: 10.1073/pnas.0907775106
– ident: e_1_2_7_88_2
  doi: 10.1016/j.catcom.2011.03.024
– ident: e_1_2_7_97_2
  doi: 10.1002/asia.201000087
– ident: e_1_2_7_151_2
  doi: 10.1021/ic801947v
– ident: e_1_2_7_140_2
  doi: 10.1021/jp063679n
– ident: e_1_2_7_72_2
  doi: 10.1002/anie.200503602
– ident: e_1_2_7_3_2
  doi: 10.1104/pp.122.1.127
– ident: e_1_2_7_133_2
  doi: 10.1016/j.ccr.2007.06.002
– ident: e_1_2_7_25_2
  doi: 10.1021/ar9002398
– ident: e_1_2_7_147_2
  doi: 10.1021/ja00411a010
– ident: e_1_2_7_57_2
  doi: 10.1039/b923159p
– ident: e_1_2_7_62_2
  doi: 10.1021/ic101731j
– ident: e_1_2_7_125_2
  doi: 10.1039/c0sc00418a
– ident: e_1_2_7_92_2
  doi: 10.1073/pnas.79.2.701
– ident: e_1_2_7_129_2
  doi: 10.1021/ja077837f
– ident: e_1_2_7_59_2
  doi: 10.1021/ja804650g
– ident: e_1_2_7_49_2
  doi: 10.1016/j.ccr.2010.06.004
– ident: e_1_2_7_30_2
  doi: 10.1038/nmat3008
– ident: e_1_2_7_35_2
  doi: 10.1002/ejic.201000986
– ident: e_1_2_7_38_2
  doi: 10.1016/S1381-1169(97)00098-8
– ident: e_1_2_7_43_2
  doi: 10.1021/bi901704v
– ident: e_1_2_7_61_2
  doi: 10.1021/ic900389z
– ident: e_1_2_7_63_2
  doi: 10.1021/ic100036v
– ident: e_1_2_7_139_2
  doi: 10.1021/ja039780c
– ident: e_1_2_7_42_2
  doi: 10.1021/nn900748j
– ident: e_1_2_7_84_2
  doi: 10.1021/ja067876b
– ident: e_1_2_7_22_2
  doi: 10.1039/b910564f
– ident: e_1_2_7_65_2
  doi: 10.1021/ic102317u
– ident: e_1_2_7_128_2
  doi: 10.1021/ja901373m
– ident: e_1_2_7_85_2
  doi: 10.1016/j.elecom.2006.08.036
– ident: e_1_2_7_121_2
  doi: 10.1021/ic9017486
– ident: e_1_2_7_18_2
  doi: 10.1021/ar700282n
– ident: e_1_2_7_87_2
  doi: 10.1021/ja1057357
– ident: e_1_2_7_56_2
  doi: 10.1021/ja0427101
– ident: e_1_2_7_79_2
  doi: 10.1002/chem.200902489
– ident: e_1_2_7_70_2
  doi: 10.1021/ic0303385
– ident: e_1_2_7_24_2
  doi: 10.1021/ar9001679
– ident: e_1_2_7_137_2
  doi: 10.1002/anie.200502114
– ident: e_1_2_7_12_2
  doi: 10.1021/ar9801301
– ident: e_1_2_7_23_2
  doi: 10.1039/b601785c
– ident: e_1_2_7_100_2
  doi: 10.1039/c0cc02486d
– ident: e_1_2_7_32_2
  doi: 10.1126/science.282.5395.1853
– ident: e_1_2_7_34_2
  doi: 10.1039/b201337a
– ident: e_1_2_7_117_2
  doi: 10.1021/ic802052u
– ident: e_1_2_7_91_2
  doi: 10.1002/hlca.19790620449
– ident: e_1_2_7_31_2
  doi: 10.1038/373580a0
– ident: e_1_2_7_81_2
  doi: 10.1021/ic050167z
– ident: e_1_2_7_127_2
  doi: 10.1002/anie.200705652
– ident: e_1_2_7_51_2
  doi: 10.1002/anie.201007987
– ident: e_1_2_7_134_2
  doi: 10.1039/b811098k
– ident: e_1_2_7_98_2
  doi: 10.1016/j.jorganchem.2009.04.041
– ident: e_1_2_7_138_2
  doi: 10.1021/ar900249x
– ident: e_1_2_7_44_2
  doi: 10.1021/bi1016167
– ident: e_1_2_7_29_2
  doi: 10.1002/anie.200906745
– ident: e_1_2_7_66_2
  doi: 10.1021/ja903044n
– ident: e_1_2_7_132_2
  doi: 10.1021/ja109681d
– ident: e_1_2_7_131_2
  doi: 10.1039/b907257h
– ident: e_1_2_7_39_2
  doi: 10.1016/S1010-6030(96)04436-X
– ident: e_1_2_7_58_2
  doi: 10.1039/b812605b
– ident: e_1_2_7_64_2
  doi: 10.1021/ic8013255
– ident: e_1_2_7_102_2
  doi: 10.1021/ic00197a036
– ident: e_1_2_7_27_2
  doi: 10.1002/cssc.201000416
– ident: e_1_2_7_99_2
  doi: 10.1039/c0cc03154b
– ident: e_1_2_7_126_2
  doi: 10.1002/cssc.201000358
– ident: e_1_2_7_28_2
  doi: 10.1039/b802885k
– ident: e_1_2_7_106_2
  doi: 10.1002/anie.200802659
– ident: e_1_2_7_4_2
  doi: 10.1016/S0167-7799(00)01511-0
– ident: e_1_2_7_136_2
  doi: 10.1126/science.283.5407.1524
– ident: e_1_2_7_17_2
  doi: 10.1039/cs9962500041
– ident: e_1_2_7_19_2
  doi: 10.1021/ar9901220
– ident: e_1_2_7_114_2
  doi: 10.1002/elan.200804191
– ident: e_1_2_7_150_2
  doi: 10.1007/128_2007_131
– ident: e_1_2_7_16_2
  doi: 10.1016/j.jphotochemrev.2008.01.002
– ident: e_1_2_7_14_2
  doi: 10.1021/ar9001697
– ident: e_1_2_7_21_2
  doi: 10.1021/ar9001735
– ident: e_1_2_7_48_2
  doi: 10.1021/cr800542q
– ident: e_1_2_7_37_2
  doi: 10.1016/0010-8545(85)80030-8
– ident: e_1_2_7_108_2
  doi: 10.1021/ar9001526
– ident: e_1_2_7_123_2
  doi: 10.1002/cssc.201000313
– ident: e_1_2_7_146_2
  doi: 10.1126/science.280.5362.425
– ident: e_1_2_7_71_2
  doi: 10.1039/b606659c
– ident: e_1_2_7_142_2
  doi: 10.1021/ja910055a
– ident: e_1_2_7_10_2
  doi: 10.1016/S1369-7021(08)70250-5
– ident: e_1_2_7_152_2
  doi: 10.1016/S0020-1693(99)00407-7
– ident: e_1_2_7_74_2
  doi: 10.1080/00958970701767002
– ident: e_1_2_7_41_2
  doi: 10.1562/2006-01-16-RA-778
– ident: e_1_2_7_105_2
  doi: 10.1039/c0cc04658b
– ident: e_1_2_7_96_2
  doi: 10.1073/pnas.0809666106
– ident: e_1_2_7_145_2
  doi: 10.1021/ja1009025
– ident: e_1_2_7_50_2
  doi: 10.1021/ar900253e
– ident: e_1_2_7_2_2
  doi: 10.1126/science.1096767
– ident: e_1_2_7_53_2
  doi: 10.1007/128_2007_133
– ident: e_1_2_7_8_2
  doi: 10.1016/j.chembiol.2010.05.005
– ident: e_1_2_7_60_2
  doi: 10.1021/ic900389z
– ident: e_1_2_7_40_2
  doi: 10.1016/S1381-1169(01)00159-5
– ident: e_1_2_7_15_2
  doi: 10.1016/j.ccr.2008.10.010
– ident: e_1_2_7_82_2
  doi: 10.1021/ic061625m
– ident: e_1_2_7_141_2
  doi: 10.1039/c0cc03114c
– ident: e_1_2_7_94_2
  doi: 10.1021/jp710498v
– ident: e_1_2_7_77_2
  doi: 10.1021/ic702010w
– ident: e_1_2_7_55_2
  doi: 10.1002/anie.200702953
– ident: e_1_2_7_69_2
  doi: 10.1016/S1387-7003(03)00140-0
– ident: e_1_2_7_73_2
  doi: 10.1021/om070133u
– ident: e_1_2_7_52_2
  doi: 10.1016/0010-8545(88)80032-8
– ident: e_1_2_7_118_2
  doi: 10.1002/anie.201004278
– ident: e_1_2_7_144_2
– ident: e_1_2_7_115_2
  doi: 10.1021/ja00256a010
– ident: e_1_2_7_76_2
  doi: 10.1021/ic070234k
– ident: e_1_2_7_90_2
– ident: e_1_2_7_26_2
  doi: 10.1039/b816677n
– ident: e_1_2_7_68_2
  doi: 10.1002/anie.200351192
– ident: e_1_2_7_6_2
  doi: 10.1104/pp.010498
– ident: e_1_2_7_75_2
  doi: 10.1016/j.crci.2008.03.004
– ident: e_1_2_7_47_2
  doi: 10.1016/j.ccr.2008.10.020
– ident: e_1_2_7_83_2
  doi: 10.1039/b509188h
– ident: e_1_2_7_116_2
  doi: 10.1016/0304-5102(89)80082-3
– ident: e_1_2_7_120_2
  doi: 10.1039/c0cc01250e
– ident: e_1_2_7_148_2
  doi: 10.1126/science.1179773
– volume: 7
  start-page: 271
  year: 1983
  ident: e_1_2_7_86_2
  article-title: Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes
  publication-title: New J. Chem.
– ident: e_1_2_7_119_2
  doi: 10.1002/chem.200902603
– ident: e_1_2_7_9_2
  doi: 10.1039/B802262N
– reference: - Photochem Photobiol. 2011 Nov-Dec;87(6):1478
SSID ssj0014971
Score 2.4788601
Snippet Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light‐to‐chemical...
Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light-to-chemical...
SourceID hal
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 946
SubjectTerms Catalysts
Cells
Chemical Sciences
Coordination chemistry
Hydrogen production
Photochemistry
Photosynthesis
Signal transduction
Solar energy
Water
Title Artificial Photosynthesis: From Molecular Catalysts for Light-driven Water Splitting to Photoelectrochemical Cells
URI https://api.istex.fr/ark:/67375/WNG-LKDQLMPK-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1751-1097.2011.00966.x
https://www.ncbi.nlm.nih.gov/pubmed/21740444
https://www.proquest.com/docview/928915319
https://www.proquest.com/docview/887504323
https://hal.science/hal-01063100
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CIS4vXAqMMEAWQrylSmK7SXibCqVi7VQu0_ZmOXaioXYJSlK08sRP4DfyS_CJk4hOe5gQb1FiJ7JzbH_n-PN3AF6FnvIyzpgbaspcJn3lxto4rlxx7aeB8lKNoYH54Wh6xD6c8JOW_4RnYaw-RB9ww5HRzNc4wGVSbQ_ykCMdKw5bJU6DxkdDxJNI3UJ89KlXkjJ-QGiT51HfxbOYF0g9l71oa6W6foo8yRvY9eeXgdFtbNssTpN7sOyaZTkpy-G6TobqxwXFx__T7vtwt8WwZN8a3QO4luYDuGmzWm4GcHvcJZEbwK15u3f_EGosb_UqyOK0qItqkxv0WX2t3pBJWZyReZepl4wxprSp6ooYSE1mGD_4_fOXLnFmJscGHZfkswHPDWWb1IV9XZvQR7UKCGScrlbVIziavPsynrptzgdXcYMkXamkxtRJHlNBGGjp-ynVcegFWcxlFKmEZ1zHsc5GscQHkeZRlNDMV2GcURrQx7CTF3n6BEhqoKnBP9QYY8IyFkmaBAllkQqYMcBEORB2_1eoVhAd83KsxF-Okelqu0mPXS2arhbnDvh9zW9WFOQKdV4aE-qLo6r3dH8m8B665bjP8t134HVjYX0xWS6ReRdycXz4XswO3n6czRcHwhTc60xQtJNOJWLjPPs4pzpA-qfmf-MWkMzTYl0Js6SgZF1AHdi1htt_Cn1TFA90gDfmd-WWicV0YS6e_mO9Pbhj4_TI23sGO3W5Tp8boFcnL5oh_AeZHUJs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFL2CTTBe-ChjhPFhIcRbqiSOm4S3qVAKTasCm7Y3K7ETDa1rUJOilSd-Ar-RX8K9cRrRaQ8T4i1K7ER2ru1zr6_PAXgVOMrJhe_bgea-7SeusiONjqtQQruZp5xMU2hgPOkNj_yPJ-KkkQOiszCGH6INuNHIqOdrGuAUkN4c5YGgfKwoaKg4EY73uggot0ngu_avPrdcUugJBEY-j7s2nca8lNZz1Zs21qqbp5QpuU2df3EVHN1Et_XyNLgHs3XDTFbKWXdZpV314xLn439q-X2428BYdmDs7gHcyOYduGWELVcd2OmvdeQ6cHvcbN8_hIrKG8oKNj0tqqJczRGAll_LN2ywKM7ZeC3Wy_oUVlqVVckQVbOYQgi_f_7SC5qc2TEC5AX7gvi5ztpmVWFe12j6qIYEgfWz2azchaPBu8P-0G5kH2wlEEzaiUo0qSc5vvICTyeum3EdBY6XRyIJQ5WKXOgo0nkvSuhBqEUYpjx3VRDlnHv8EWzNi3n2GFiG6BQhEEd7TP3cDxOeein3Q-X5aIOpsiBY_2CpGk50kuaYyb98I-xqs09PXS3rrpYXFrhtzW-GF-QadV6iDbXFidh7eBBLukeeOW21fHcteF2bWFssWZxR8l0g5PHkvYxHbz_F4-lIYsH9tQ3KZt4pZYT-s0vTqgWsfYr_m3aBknlWLEuJqwqx1nncgj1jue2nyD0l_kALRG1_126ZnA6nePHkH-u9gJ3h4TiW8YfJaB_umLA9pfE9ha1qscyeIe6r0uf1eP4DtsdGhw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgE4MXLgVGGBcLId5SJbHdJLxNLaXQi8pl2t6sxE401K6ZkhStPPET-I38Es6Jk4hOe5gQb1FiJ7Lz2f7O8fF3CHntO8pJBee2rxm3eeQqO9RguAoltJt4ykk0ugams97oiH88ESd1_BOehTH6EK3DDUdGNV_jAD_X6fYg9wWGY4V-rcQJbLzXBT65y3tOgAgffG6lpMAQ8E32PObaeBjzUlTPVW_aWqpunmKg5C72_cVVbHSb3Far0_AeWTTtMkEpi-66jLvqxyXJx__T8Pvkbk1i6aFB3QNyI1l1yC2T1nLTIbf7TRa5Dtmb1pv3D0mJ5Y1gBZ2fZmVWbFZAP4tvxVs6zLMzOm1S9dI-OpU2RVlQ4NR0gg6E3z9_6RynZnoM9DinX4A9VzHbtMzM6-qMPqqWQKD9ZLksHpGj4buv_ZFdJ32wlQAqaUcq0pg7yeHK8z0duW7CdOg7XhqKKAhULFKhw1CnvTDCB4EWQRCz1FV-mDLmscdkZ5WtkieEJsBNgQAxQGPMUx5ELPZixgPlcUBgrCziN_9XqloRHRNzLOVflhF0tdmlx66WVVfLC4u4bc1zowpyjTqvAEJtcZT1Hh1OJN5Duxw3Wr67FnlTIawtFuULDL3zhTyevZeT8eDTZDofSyh40EBQ1rNOIUOwnl2cVC1C26fwv3EPKFol2bqQsKagZp3HLLJvgNt-Co1TVA-0iKjgd-2WyfloDhdP_7HeS7I3Hwzl5MNsfEDuGJ89xvA9Iztlvk6eA-kr4xfVaP4DtzxFPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Photosynthesis%3A+From+Molecular+Catalysts+for+Light%E2%80%90driven+Water+Splitting+to+Photoelectrochemical+Cells&rft.jtitle=Photochemistry+and+photobiology&rft.au=Andreiadis%2C+Eugen+S.&rft.au=Chavarot%E2%80%90Kerlidou%2C+Murielle&rft.au=Fontecave%2C+Marc&rft.au=Artero%2C+Vincent&rft.date=2011-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0031-8655&rft.eissn=1751-1097&rft.volume=87&rft.issue=5&rft.spage=946&rft.epage=964&rft_id=info:doi/10.1111%2Fj.1751-1097.2011.00966.x&rft.externalDBID=10.1111%252Fj.1751-1097.2011.00966.x&rft.externalDocID=PHP966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8655&client=summon