Branching Morphogenesis

Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segmen...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 103; no. 8; pp. 784 - 795
Main Authors Horowitz, Arie, Simons, Michael
Format Journal Article
LanguageEnglish
Published Hagerstown, MD American Heart Association, Inc 10.10.2008
Lippincott
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systemseither endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality—an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-β in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system.
AbstractList Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systems: either endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality--an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-beta in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system.Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systems: either endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality--an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-beta in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system.
Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systems: either endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality--an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-beta in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system.
Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systems: either endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality—an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-β in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system.
Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systemseither endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality—an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-β in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system.
Author Simons, Michael
Horowitz, Arie
AuthorAffiliation From the Angiogenesis Research Center and Section of Cardiology (A.H.), Dartmouth Medical School, Lebanon, NH; and Section of Cardiovascular Medicine (M.S.), Department of Internal Medicine, Yale University School of Medicine, New Haven, Conn
AuthorAffiliation_xml – name: From the Angiogenesis Research Center and Section of Cardiology (A.H.), Dartmouth Medical School, Lebanon, NH; and Section of Cardiovascular Medicine (M.S.), Department of Internal Medicine, Yale University School of Medicine, New Haven, Conn
Author_xml – sequence: 1
  givenname: Arie
  surname: Horowitz
  fullname: Horowitz, Arie
  organization: From the Angiogenesis Research Center and Section of Cardiology (A.H.), Dartmouth Medical School, Lebanon, NH; and Section of Cardiovascular Medicine (M.S.), Department of Internal Medicine, Yale University School of Medicine, New Haven, Conn
– sequence: 2
  givenname: Michael
  surname: Simons
  fullname: Simons, Michael
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20758544$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18845818$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1r20AQxZfi0Dhpzz219JLc5M7sl1b05Jp8GBIKaXJeVqtZW60subsyIf99ZOw4kEuYw8Dwe8O8Nyds1HYtMfYVYYKo8cdsfje7u_gzvZ5OEMwEzbY-sDEqLjOpchyxMQAUWS4EHLOTlP4CoBS8-MiO0RipBn7MvvyKrvXLul18v-3ietktqKVUp0_sKLgm0ed9P2UPlxf3s-vs5vfVfDa9ybwSXGd5brgRggLwUJhcmUpUiqtSVsZzqQsMpQ5IpLHShSkNOY1ofCDNeekhiFN2vtu7jt3_DaXerurkqWlcS90mWV1oaQrQA_htD27KFVV2HeuVi0_2xcoAnO0Bl7xrwtZXnQ4ch-E6JeXA_dxxPnYpRQrW173r667to6sbi2C3AdvXgIeRsbuAB7V6oz4c8o5O7nSPXdNTTP-azSNFuyTX9Es7PAoEIM84gEFAgGw70uIZ4WeMBg
CODEN CIRUAL
CitedBy_id crossref_primary_10_1038_nrm2797
crossref_primary_10_1186_2045_8118_10_11
crossref_primary_10_1038_s41467_021_27135_5
crossref_primary_10_1371_journal_pone_0036925
crossref_primary_10_1038_emboj_2012_176
crossref_primary_10_1186_2045_3701_3_25
crossref_primary_10_1007_s11538_009_9471_1
crossref_primary_10_1038_s41467_017_00551_2
crossref_primary_10_1016_j_ydbio_2010_12_045
crossref_primary_10_1371_journal_pone_0179385
crossref_primary_10_4161_cam_3_3_8291
crossref_primary_10_1227_01_NEU_0000367634_89384_4B
crossref_primary_10_1161_CIRCRESAHA_116_302953
crossref_primary_10_1016_j_placenta_2011_06_015
crossref_primary_10_1021_acs_chemmater_5b01947
crossref_primary_10_1007_s10539_022_09870_1
crossref_primary_10_1016_j_mam_2017_01_001
crossref_primary_10_1186_s40478_022_01361_4
crossref_primary_10_1111_j_1749_6632_2009_05035_x
crossref_primary_10_4161_biom_24926
crossref_primary_10_1017_S1431927611012682
crossref_primary_10_1128_MCB_00038_09
crossref_primary_10_3390_ijms25136868
crossref_primary_10_1007_s10456_008_9125_1
crossref_primary_10_1073_pnas_1114781109
crossref_primary_10_1242_jcs_045799
crossref_primary_10_4199_C00011ED1V01Y201004DEB002
crossref_primary_10_1124_pr_110_003293
crossref_primary_10_1016_j_actbio_2013_06_002
crossref_primary_10_1096_fj_201601285R
crossref_primary_10_1016_j_mvr_2019_103935
crossref_primary_10_2217_17460751_4_1_65
crossref_primary_10_1016_j_ajpath_2021_08_017
crossref_primary_10_1074_jbc_M111_303222
crossref_primary_10_1038_s41401_024_01262_3
crossref_primary_10_1507_endocrj_EJ18_0537
crossref_primary_10_1155_2013_628962
crossref_primary_10_1146_annurev_bioeng_071811_150043
crossref_primary_10_1152_physiol_00029_2008
crossref_primary_10_1038_s42003_019_0400_z
crossref_primary_10_12717_DR_2016_20_2_171
crossref_primary_10_1152_ajpheart_00125_2009
crossref_primary_10_1152_physiolgenomics_90411_2008
crossref_primary_10_1002_cbin_11963
crossref_primary_10_1371_journal_pone_0029000
crossref_primary_10_1016_j_devcel_2009_01_013
crossref_primary_10_1016_j_mod_2009_11_004
crossref_primary_10_1016_j_bbadis_2012_02_003
crossref_primary_10_1182_blood_2008_12_196451
crossref_primary_10_1371_journal_pone_0017660
crossref_primary_10_1016_j_ydbio_2014_06_016
crossref_primary_10_1093_cvr_cvy002
crossref_primary_10_1371_journal_pgen_1002866
crossref_primary_10_1371_journal_pone_0060798
crossref_primary_10_1186_1465_9921_11_162
crossref_primary_10_1371_journal_pone_0013450
crossref_primary_10_1007_s10555_014_9497_1
crossref_primary_10_7554_eLife_38137
crossref_primary_10_1038_srep20345
crossref_primary_10_1242_dev_062323
crossref_primary_10_3389_fcell_2021_671402
crossref_primary_10_1093_icb_icp017
crossref_primary_10_1093_stcltm_szac063
crossref_primary_10_1242_jcs_122333
crossref_primary_10_4061_2010_298747
crossref_primary_10_3390_biom10060905
crossref_primary_10_1242_dev_053173
crossref_primary_10_1016_j_biomaterials_2015_06_028
crossref_primary_10_1016_j_ydbio_2017_10_017
crossref_primary_10_1124_mol_109_055848
crossref_primary_10_1164_rccm_200907_1063OC
crossref_primary_10_1016_j_biomaterials_2022_121785
crossref_primary_10_1021_mp300318q
crossref_primary_10_1016_j_ajpath_2019_08_009
crossref_primary_10_1083_jcb_200903137
crossref_primary_10_1152_ajprenal_00148_2010
crossref_primary_10_1186_s12864_015_1966_6
crossref_primary_10_1098_rstb_2019_0386
crossref_primary_10_1007_s12035_011_8167_3
crossref_primary_10_1088_1478_3975_11_1_016003
crossref_primary_10_1074_jbc_M109_030882
crossref_primary_10_1182_blood_2010_11_316752
crossref_primary_10_1038_s41556_021_00676_z
crossref_primary_10_1111_bph_14036
crossref_primary_10_1182_blood_2011_07_370635
crossref_primary_10_1182_blood_2012_01_403642
crossref_primary_10_1016_j_ceb_2010_07_016
crossref_primary_10_1016_j_devcel_2009_07_011
crossref_primary_10_3389_fcell_2020_620667
crossref_primary_10_1080_17435390_2018_1530393
crossref_primary_10_1016_j_jbc_2023_105034
crossref_primary_10_1126_scisignal_2000304
crossref_primary_10_1002_dvdy_23771
crossref_primary_10_1016_j_ydbio_2018_12_001
crossref_primary_10_1016_j_devcel_2011_07_006
crossref_primary_10_1007_s00018_013_1478_y
crossref_primary_10_1093_cvr_cvw248
crossref_primary_10_1126_sciadv_adn5405
crossref_primary_10_1182_blood_2009_11_252692
Cites_doi 10.1242/dev.109.1.29
10.1038/nature05571
10.1016/S0925-4773(01)00508-1
10.1006/dbio.1997.8745
10.1016/j.cardiores.2004.09.018
10.1161/atvb.20.5.1250
10.1016/S1097-2765(00)80151-3
10.1111/j.1471-4159.2008.05472.x
10.1111/j.1432-0436.2006.00106.x
10.1182/blood-2003-07-2315
10.1016/S0092-8674(00)80919-8
10.1016/S1534-5807(02)00171-5
10.1016/S0960-9822(02)01044-8
10.1016/j.jtbi.2007.09.015
10.1016/j.devcel.2008.01.020
10.1016/S1055-8586(98)70011-3
10.1101/SQB.1997.062.01.029
10.1016/j.ydbio.2008.02.035
10.1016/j.cytogfr.2005.01.004
10.1016/j.yexcr.2005.11.012
10.1016/0092-8674(94)90580-0
10.1038/370386a0
10.1016/j.devcel.2004.11.008
10.1091/mbc.e06-01-0002
10.1161/res.87.3.207
10.1101/gad.6.9.1668
10.1016/S0925-4773(03)00108-4
10.1101/gad.432007
10.1016/S0960-9822(99)80094-3
10.1016/j.devcel.2004.12.004
10.1002/j.1460-2075.1994.tb06631.x
10.1083/jcb.200709114
10.1158/0008-5472.CAN-05-1208
10.1016/j.ydbio.2008.02.010
10.1101/gad.12.20.3156
10.1073/pnas.0611177104
10.1038/nature04829
10.1038/367380a0
10.1242/dev.128.23.4747
10.1073/pnas.0506886103
10.1016/S0896-6273(00)80514-0
10.1152/ajpcell.00386.2006
10.1016/j.tcb.2005.11.004
10.1016/j.ydbio.2004.07.022
10.1002/1097-4652(200009)184:3<373::AID-JCP12>3.0.CO;2-I
10.1161/CIRCRESAHA.108.181388
10.1242/dev.014498
10.1016/S0092-8674(00)81652-9
10.1006/dbio.2001.0399
10.1101/gad.10.22.2912
10.1002/dvdy.21201
10.1016/j.devcel.2004.06.008
10.1073/pnas.0408318102
10.1016/S0092-8674(00)81803-6
10.1016/j.ydbio.2007.09.015
10.1242/dev.127.12.2695
10.1016/j.devcel.2006.03.012
10.1073/pnas.0605317103
10.1016/j.ydbio.2004.03.025
10.1242/dev.126.20.4455
10.1111/j.1471-4159.2004.02930.x
10.1172/JCI0214362
10.1038/sj.onc.1204921
10.1038/nature05577
10.1016/S0925-4773(99)00124-0
10.1016/j.modgep.2004.05.004
10.1083/jcb.152.6.1247
10.1016/S1534-5807(02)00410-0
10.1073/pnas.0611206104
10.1002/dvdy.20048
10.1242/dev.013623
10.1111/j.0021-8782.2004.00285.x
10.1242/dev.128.19.3675
10.1152/physrev.00028.2006
10.1006/dbio.1998.8994
10.1242/dev.01570
10.1182/blood-2007-08-108597
10.1101/gad.5.4.697
10.1101/gad.1387206
10.1126/science.284.5420.1635
10.1534/genetics.107.073890
10.1016/j.mod.2007.12.003
10.1128/MCB.24.9.3769-3781.2004
10.1016/j.devcel.2004.11.002
10.1006/bbrc.2000.3721
10.1016/S0070-2153(05)71002-4
10.1006/exer.2000.0892
10.1242/dev.00520
10.1242/dev.125.22.4379
10.1242/dev.122.5.1395
10.1242/dev.124.1.53
10.1083/jcb.115.4.1091
10.1126/science.8009224
10.1242/dev.124.13.2659
10.1038/ng1295-415
10.1038/nrm2009
10.1002/1097-0061(200012)17:4<294::AID-YEA54>3.0.CO;2-5
10.1046/j.1365-2443.2001.00441.x
10.1038/nature04923
10.1016/j.ydbio.2008.01.038
10.1242/dev.127.3.483
10.1523/JNEUROSCI.15-07-04738.1995
10.1242/dev.126.3.547
10.1007/s10456-007-9065-1
10.1038/nrg1969
10.1128/MCB.25.21.9661-9673.2005
10.1038/5096
10.1242/dev.122.11.3627
10.1016/j.modgep.2004.10.001
10.1242/dev.02310
10.1242/dev.01251
10.1242/dev.129.4.973
10.1152/ajplung.00372.2001
10.1074/jbc.M503915200
10.1111/j.1365-2443.2007.01066.x
10.1242/dev.02255
10.1016/j.ydbio.2003.08.016
10.1016/j.cub.2004.05.020
ContentType Journal Article
Copyright 2008 American Heart Association, Inc.
2008 INIST-CNRS
Copyright_xml – notice: 2008 American Heart Association, Inc.
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/CIRCRESAHA.108.181818
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4571
EndPage 795
ExternalDocumentID 18845818
20758544
10_1161_CIRCRESAHA_108_181818
00003012-200810100-00006
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL053793
– fundername: NHLBI NIH HHS
  grantid: R01 HL67960
– fundername: NHLBI NIH HHS
  grantid: HL084619
– fundername: NHLBI NIH HHS
  grantid: R01 HL070247
– fundername: NHLBI NIH HHS
  grantid: HL062289
– fundername: NHLBI NIH HHS
  grantid: R01 HL062289
GroupedDBID ---
-~X
.-D
.3C
.55
.Z2
01R
0R~
18M
1J1
29B
2WC
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AARTV
AASOK
AAXQO
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACNWC
ACPRK
ACWDW
ACWRI
ACXNZ
ACZKN
ADBBV
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFDTB
AFFNX
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
ALKUP
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMNEI
BAWUL
BOYCO
BQLVK
C1A
C45
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GX1
H0~
H13
HZ~
H~9
IKREB
IKYAY
IN~
J5H
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OB2
OCUKA
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQQKQ
RAH
RLZ
S4R
S4S
T8P
TEORI
TR2
UPT
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
YFH
YOC
ZFV
ZZMQN
AAYXX
ADGHP
CITATION
.GJ
1CY
41~
AAQKA
AASCR
ABASU
ABVCZ
ABZZY
ACLDA
ACXJB
ADFPA
AFBFQ
AKCTQ
AKULP
ALMTX
AMKUR
AOHHW
AOQMC
BS7
BYPQX
EEVPB
ERAAH
GNXGY
GQDEL
HLJTE
IPNFZ
IQODW
JF9
JG8
MVM
N~M
ODA
OWU
OWV
OWX
OWZ
P-K
R58
RIG
TSPGW
XXN
XYM
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c5326-7782833ef02f98758d3d525b4d8c24691fb6f1ee61d698b8ea6118cfe622bc0f3
ISSN 0009-7330
1524-4571
IngestDate Thu Jul 10 22:00:06 EDT 2025
Mon Jul 21 06:06:04 EDT 2025
Mon Jul 21 09:15:28 EDT 2025
Tue Jul 01 01:24:39 EDT 2025
Thu Apr 24 23:07:54 EDT 2025
Fri May 16 03:47:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Respiratory tract
Morphogenesis
Branching
Vertebrata
Mammalia
tubulogenesis
ureteric system
vascular system
Circulatory system
tracheal system
Respiratory system
Trachea
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5326-7782833ef02f98758d3d525b4d8c24691fb6f1ee61d698b8ea6118cfe622bc0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.108.181818
PMID 18845818
PQID 69648906
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_69648906
pubmed_primary_18845818
pascalfrancis_primary_20758544
crossref_citationtrail_10_1161_CIRCRESAHA_108_181818
crossref_primary_10_1161_CIRCRESAHA_108_181818
wolterskluwer_health_00003012-200810100-00006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-October-10
PublicationDateYYYYMMDD 2008-10-10
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-October-10
  day: 10
PublicationDecade 2000
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation research
PublicationTitleAlternate Circ Res
PublicationYear 2008
Publisher American Heart Association, Inc
Lippincott
Publisher_xml – name: American Heart Association, Inc
– name: Lippincott
References e_1_3_3_96_2
e_1_3_3_50_2
e_1_3_3_117_2
e_1_3_3_16_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_58_2
e_1_3_3_35_2
e_1_3_3_92_2
e_1_3_3_113_2
e_1_3_3_54_2
e_1_3_3_31_2
e_1_3_3_73_2
e_1_3_3_61_2
e_1_3_3_88_2
e_1_3_3_5_2
e_1_3_3_105_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_109_2
e_1_3_3_23_2
e_1_3_3_69_2
e_1_3_3_120_2
e_1_3_3_46_2
e_1_3_3_80_2
e_1_3_3_1_2
e_1_3_3_65_2
e_1_3_3_42_2
e_1_3_3_84_2
e_1_3_3_101_2
e_1_3_3_76_2
e_1_3_3_99_2
e_1_3_3_116_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_91_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_95_2
e_1_3_3_112_2
e_1_3_3_60_2
e_1_3_3_87_2
e_1_3_3_8_2
e_1_3_3_104_2
e_1_3_3_49_2
e_1_3_3_108_2
(e_1_3_3_77_2) 2002; 43
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
e_1_3_3_83_2
e_1_3_3_100_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_98_2
e_1_3_3_79_2
e_1_3_3_115_2
e_1_3_3_119_2
e_1_3_3_18_2
e_1_3_3_37_2
e_1_3_3_90_2
e_1_3_3_14_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_94_2
e_1_3_3_111_2
e_1_3_3_10_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_86_2
e_1_3_3_107_2
e_1_3_3_7_2
e_1_3_3_29_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_82_2
e_1_3_3_103_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_97_2
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_118_2
e_1_3_3_17_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_110_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_93_2
e_1_3_3_114_2
e_1_3_3_62_2
e_1_3_3_85_2
e_1_3_3_89_2
e_1_3_3_6_2
e_1_3_3_106_2
e_1_3_3_28_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_102_2
19179661 - Circ Res. 2009 Jan 30;104(2):e21
References_xml – ident: e_1_3_3_41_2
  doi: 10.1242/dev.109.1.29
– ident: e_1_3_3_82_2
  doi: 10.1038/nature05571
– ident: e_1_3_3_39_2
  doi: 10.1016/S0925-4773(01)00508-1
– ident: e_1_3_3_65_2
  doi: 10.1006/dbio.1997.8745
– ident: e_1_3_3_96_2
  doi: 10.1016/j.cardiores.2004.09.018
– ident: e_1_3_3_104_2
  doi: 10.1161/atvb.20.5.1250
– ident: e_1_3_3_10_2
  doi: 10.1016/S1097-2765(00)80151-3
– ident: e_1_3_3_1_2
– ident: e_1_3_3_115_2
  doi: 10.1111/j.1471-4159.2008.05472.x
– ident: e_1_3_3_55_2
  doi: 10.1111/j.1432-0436.2006.00106.x
– ident: e_1_3_3_102_2
  doi: 10.1182/blood-2003-07-2315
– ident: e_1_3_3_13_2
  doi: 10.1016/S0092-8674(00)80919-8
– ident: e_1_3_3_7_2
  doi: 10.1016/S1534-5807(02)00171-5
– ident: e_1_3_3_91_2
  doi: 10.1016/S0960-9822(02)01044-8
– ident: e_1_3_3_84_2
  doi: 10.1016/j.jtbi.2007.09.015
– ident: e_1_3_3_22_2
  doi: 10.1016/j.devcel.2008.01.020
– ident: e_1_3_3_60_2
  doi: 10.1016/S1055-8586(98)70011-3
– ident: e_1_3_3_8_2
  doi: 10.1101/SQB.1997.062.01.029
– ident: e_1_3_3_34_2
  doi: 10.1016/j.ydbio.2008.02.035
– ident: e_1_3_3_120_2
  doi: 10.1016/j.cytogfr.2005.01.004
– ident: e_1_3_3_101_2
  doi: 10.1016/j.yexcr.2005.11.012
– ident: e_1_3_3_17_2
  doi: 10.1016/0092-8674(94)90580-0
– ident: e_1_3_3_16_2
  doi: 10.1038/370386a0
– ident: e_1_3_3_56_2
  doi: 10.1016/j.devcel.2004.11.008
– ident: e_1_3_3_118_2
  doi: 10.1091/mbc.e06-01-0002
– ident: e_1_3_3_105_2
  doi: 10.1161/res.87.3.207
– ident: e_1_3_3_5_2
  doi: 10.1101/gad.6.9.1668
– ident: e_1_3_3_74_2
  doi: 10.1016/S0925-4773(03)00108-4
– ident: e_1_3_3_113_2
  doi: 10.1101/gad.432007
– volume: 43
  start-page: 3500
  year: 2002
  ident: e_1_3_3_77_2
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_3_3_36_2
  doi: 10.1016/S0960-9822(99)80094-3
– ident: e_1_3_3_47_2
  doi: 10.1016/j.devcel.2004.12.004
– ident: e_1_3_3_37_2
  doi: 10.1002/j.1460-2075.1994.tb06631.x
– ident: e_1_3_3_103_2
  doi: 10.1083/jcb.200709114
– ident: e_1_3_3_79_2
  doi: 10.1158/0008-5472.CAN-05-1208
– ident: e_1_3_3_67_2
  doi: 10.1016/j.ydbio.2008.02.010
– ident: e_1_3_3_32_2
  doi: 10.1101/gad.12.20.3156
– ident: e_1_3_3_83_2
  doi: 10.1073/pnas.0611177104
– ident: e_1_3_3_20_2
  doi: 10.1038/nature04829
– ident: e_1_3_3_61_2
  doi: 10.1038/367380a0
– ident: e_1_3_3_70_2
  doi: 10.1242/dev.128.23.4747
– ident: e_1_3_3_90_2
  doi: 10.1073/pnas.0506886103
– ident: e_1_3_3_59_2
  doi: 10.1016/S0896-6273(00)80514-0
– ident: e_1_3_3_23_2
  doi: 10.1152/ajpcell.00386.2006
– ident: e_1_3_3_18_2
  doi: 10.1016/j.tcb.2005.11.004
– ident: e_1_3_3_58_2
  doi: 10.1016/j.ydbio.2004.07.022
– ident: e_1_3_3_109_2
  doi: 10.1002/1097-4652(200009)184:3<373::AID-JCP12>3.0.CO;2-I
– ident: e_1_3_3_119_2
  doi: 10.1161/CIRCRESAHA.108.181388
– ident: e_1_3_3_2_2
  doi: 10.1242/dev.014498
– ident: e_1_3_3_21_2
  doi: 10.1016/S0092-8674(00)81652-9
– ident: e_1_3_3_46_2
  doi: 10.1006/dbio.2001.0399
– ident: e_1_3_3_14_2
  doi: 10.1101/gad.10.22.2912
– ident: e_1_3_3_106_2
  doi: 10.1002/dvdy.21201
– ident: e_1_3_3_94_2
  doi: 10.1016/j.devcel.2004.06.008
– ident: e_1_3_3_95_2
  doi: 10.1073/pnas.0408318102
– ident: e_1_3_3_15_2
  doi: 10.1016/S0092-8674(00)81803-6
– ident: e_1_3_3_6_2
  doi: 10.1016/j.ydbio.2007.09.015
– ident: e_1_3_3_38_2
  doi: 10.1242/dev.127.12.2695
– ident: e_1_3_3_107_2
  doi: 10.1016/j.devcel.2006.03.012
– ident: e_1_3_3_110_2
  doi: 10.1073/pnas.0605317103
– ident: e_1_3_3_54_2
  doi: 10.1016/j.ydbio.2004.03.025
– ident: e_1_3_3_25_2
  doi: 10.1242/dev.126.20.4455
– ident: e_1_3_3_117_2
  doi: 10.1111/j.1471-4159.2004.02930.x
– ident: e_1_3_3_80_2
  doi: 10.1172/JCI0214362
– ident: e_1_3_3_116_2
  doi: 10.1038/sj.onc.1204921
– ident: e_1_3_3_98_2
  doi: 10.1038/nature05577
– ident: e_1_3_3_49_2
  doi: 10.1016/S0925-4773(99)00124-0
– ident: e_1_3_3_81_2
  doi: 10.1016/j.modgep.2004.05.004
– ident: e_1_3_3_111_2
  doi: 10.1083/jcb.152.6.1247
– ident: e_1_3_3_52_2
  doi: 10.1016/S1534-5807(02)00410-0
– ident: e_1_3_3_78_2
  doi: 10.1073/pnas.0611206104
– ident: e_1_3_3_93_2
  doi: 10.1002/dvdy.20048
– ident: e_1_3_3_97_2
  doi: 10.1242/dev.013623
– ident: e_1_3_3_57_2
  doi: 10.1111/j.0021-8782.2004.00285.x
– ident: e_1_3_3_99_2
  doi: 10.1242/dev.128.19.3675
– ident: e_1_3_3_26_2
  doi: 10.1152/physrev.00028.2006
– ident: e_1_3_3_29_2
  doi: 10.1006/dbio.1998.8994
– ident: e_1_3_3_30_2
  doi: 10.1242/dev.01570
– ident: e_1_3_3_100_2
  doi: 10.1182/blood-2007-08-108597
– ident: e_1_3_3_4_2
  doi: 10.1101/gad.5.4.697
– ident: e_1_3_3_62_2
  doi: 10.1101/gad.1387206
– ident: e_1_3_3_33_2
  doi: 10.1126/science.284.5420.1635
– ident: e_1_3_3_12_2
  doi: 10.1534/genetics.107.073890
– ident: e_1_3_3_72_2
  doi: 10.1016/j.mod.2007.12.003
– ident: e_1_3_3_11_2
  doi: 10.1128/MCB.24.9.3769-3781.2004
– ident: e_1_3_3_50_2
  doi: 10.1016/j.devcel.2004.11.002
– ident: e_1_3_3_68_2
  doi: 10.1006/bbrc.2000.3721
– ident: e_1_3_3_85_2
  doi: 10.1016/S0070-2153(05)71002-4
– ident: e_1_3_3_108_2
  doi: 10.1006/exer.2000.0892
– ident: e_1_3_3_66_2
  doi: 10.1242/dev.00520
– ident: e_1_3_3_9_2
  doi: 10.1242/dev.125.22.4379
– ident: e_1_3_3_3_2
  doi: 10.1242/dev.122.5.1395
– ident: e_1_3_3_28_2
  doi: 10.1242/dev.124.1.53
– ident: e_1_3_3_42_2
  doi: 10.1083/jcb.115.4.1091
– ident: e_1_3_3_44_2
  doi: 10.1126/science.8009224
– ident: e_1_3_3_45_2
  doi: 10.1242/dev.124.13.2659
– ident: e_1_3_3_43_2
  doi: 10.1038/ng1295-415
– ident: e_1_3_3_24_2
  doi: 10.1038/nrm2009
– ident: e_1_3_3_89_2
  doi: 10.1002/1097-0061(200012)17:4<294::AID-YEA54>3.0.CO;2-5
– ident: e_1_3_3_53_2
  doi: 10.1046/j.1365-2443.2001.00441.x
– ident: e_1_3_3_87_2
  doi: 10.1038/nature04923
– ident: e_1_3_3_88_2
  doi: 10.1016/j.ydbio.2008.01.038
– ident: e_1_3_3_31_2
  doi: 10.1242/dev.127.3.483
– ident: e_1_3_3_76_2
  doi: 10.1523/JNEUROSCI.15-07-04738.1995
– ident: e_1_3_3_69_2
  doi: 10.1242/dev.126.3.547
– ident: e_1_3_3_75_2
  doi: 10.1007/s10456-007-9065-1
– ident: e_1_3_3_48_2
  doi: 10.1038/nrg1969
– ident: e_1_3_3_63_2
  doi: 10.1128/MCB.25.21.9661-9673.2005
– ident: e_1_3_3_27_2
  doi: 10.1038/5096
– ident: e_1_3_3_64_2
  doi: 10.1242/dev.122.11.3627
– ident: e_1_3_3_73_2
  doi: 10.1016/j.modgep.2004.10.001
– ident: e_1_3_3_40_2
  doi: 10.1242/dev.02310
– ident: e_1_3_3_71_2
  doi: 10.1242/dev.01251
– ident: e_1_3_3_86_2
  doi: 10.1242/dev.129.4.973
– ident: e_1_3_3_35_2
  doi: 10.1152/ajplung.00372.2001
– ident: e_1_3_3_112_2
  doi: 10.1074/jbc.M503915200
– ident: e_1_3_3_114_2
  doi: 10.1111/j.1365-2443.2007.01066.x
– ident: e_1_3_3_19_2
  doi: 10.1242/dev.02255
– ident: e_1_3_3_92_2
  doi: 10.1016/j.ydbio.2003.08.016
– ident: e_1_3_3_51_2
  doi: 10.1016/j.cub.2004.05.020
– reference: 19179661 - Circ Res. 2009 Jan 30;104(2):e21
SSID ssj0014329
Score 2.3205838
SecondaryResourceType review_article
Snippet Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of...
SourceID proquest
pubmed
pascalfrancis
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 784
SubjectTerms Animals
Biological and medical sciences
Blood Vessels - embryology
Blood Vessels - metabolism
Body Patterning
Cell Differentiation
Cell Proliferation
Drosophila melanogaster
Fundamental and applied biological sciences. Psychology
Humans
Intracellular Signaling Peptides and Proteins - metabolism
Lung - embryology
Lung - metabolism
Mice
Morphogenesis
Neovascularization, Physiologic
Retinal Vessels - embryology
Signal Transduction
Trachea - embryology
Trachea - metabolism
Ureter - embryology
Ureter - metabolism
Vertebrates: cardiovascular system
Zebrafish
Title Branching Morphogenesis
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-200810100-00006
https://www.ncbi.nlm.nih.gov/pubmed/18845818
https://www.proquest.com/docview/69648906
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZdC2Mwxn523o8uD3srzmxZkqXHLGxNC91D10LejGVLJWyNQ5JS6F-_O0lxnDVj3V5MsCML7pOPO-nu-wj5KLJSMa5pbPFol-k8j0suTSyFKZlWTGlXjHn6TYwu2MmYj9cao667ZKn71e3WvpL_QRXuAa7YJfsPyLYvhRvwG_CFKyAM13th_BlVMdwW0lUD9mou0XFNFt2AcziZV0Gh6zAQ-7QbwKMGcvCJE3Q9HMwnLcTfAb-wC90pql9tDTie1lAkaoI7oyxm3IuctP4uyTrAyo73yr1a212vKtCrDo_PhrAqBqMBFib2ITSQ3nV2LD27cqZOpWQ8PP2Nznr16AHZoxDZo-jE0bityoHojarQaAWzfto6JxK9hrdsRBOPZ-UCFrb1iiTbUgb4z02DVQiLH64JoRNKnD8lT0IO0Bt4QJ-RHTN9Th6ehiqHF2S_xbW3getLcvH1y_lwFAcBi7jiEBZD5gL5bJYZm1CrIDGUdVZzyjWrZUWZUKnVwqbGiLQWSmppSgH5XmWNoFRXic1ekd1pMzWvSS9LjWWMl5TWGcs50vjleCQrDZeSKx0RtjJEUQV2dxQZ-Vm4LE-kxdqUSApbeFNGpN8Om3l6k78NONiwcjuKJph5MhaRDyuzF-Cp8PipnJrmelEIJZhUiYjIvkdjPWNAMyLxBjyF7wXGAgnM3Cl-_EhI58kQEvHmj296Sx6tP4h3ZHc5vzbvIXpc6gO33n4BNaRl4g
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Branching+morphogenesis&rft.jtitle=Circulation+research&rft.au=Horowitz%2C+Arie&rft.au=Simons%2C+Michael&rft.date=2008-10-10&rft.eissn=1524-4571&rft.volume=103&rft.issue=8&rft.spage=784&rft_id=info:doi/10.1161%2FCIRCRESAHA.108.181818&rft_id=info%3Apmid%2F18845818&rft.externalDocID=18845818
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon