Branching Morphogenesis
Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segmen...
Saved in:
Published in | Circulation research Vol. 103; no. 8; pp. 784 - 795 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
American Heart Association, Inc
10.10.2008
Lippincott |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systemseither endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality—an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-β in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system. |
---|---|
AbstractList | Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systems: either endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality--an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-beta in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system.Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systems: either endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality--an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-beta in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system. Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systems: either endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality--an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-beta in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system. Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systems: either endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality—an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-β in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system. Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systemseither endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality—an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-β in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system. |
Author | Simons, Michael Horowitz, Arie |
AuthorAffiliation | From the Angiogenesis Research Center and Section of Cardiology (A.H.), Dartmouth Medical School, Lebanon, NH; and Section of Cardiovascular Medicine (M.S.), Department of Internal Medicine, Yale University School of Medicine, New Haven, Conn |
AuthorAffiliation_xml | – name: From the Angiogenesis Research Center and Section of Cardiology (A.H.), Dartmouth Medical School, Lebanon, NH; and Section of Cardiovascular Medicine (M.S.), Department of Internal Medicine, Yale University School of Medicine, New Haven, Conn |
Author_xml | – sequence: 1 givenname: Arie surname: Horowitz fullname: Horowitz, Arie organization: From the Angiogenesis Research Center and Section of Cardiology (A.H.), Dartmouth Medical School, Lebanon, NH; and Section of Cardiovascular Medicine (M.S.), Department of Internal Medicine, Yale University School of Medicine, New Haven, Conn – sequence: 2 givenname: Michael surname: Simons fullname: Simons, Michael |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20758544$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18845818$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1r20AQxZfi0Dhpzz219JLc5M7sl1b05Jp8GBIKaXJeVqtZW60subsyIf99ZOw4kEuYw8Dwe8O8Nyds1HYtMfYVYYKo8cdsfje7u_gzvZ5OEMwEzbY-sDEqLjOpchyxMQAUWS4EHLOTlP4CoBS8-MiO0RipBn7MvvyKrvXLul18v-3ietktqKVUp0_sKLgm0ed9P2UPlxf3s-vs5vfVfDa9ybwSXGd5brgRggLwUJhcmUpUiqtSVsZzqQsMpQ5IpLHShSkNOY1ofCDNeekhiFN2vtu7jt3_DaXerurkqWlcS90mWV1oaQrQA_htD27KFVV2HeuVi0_2xcoAnO0Bl7xrwtZXnQ4ch-E6JeXA_dxxPnYpRQrW173r667to6sbi2C3AdvXgIeRsbuAB7V6oz4c8o5O7nSPXdNTTP-azSNFuyTX9Es7PAoEIM84gEFAgGw70uIZ4WeMBg |
CODEN | CIRUAL |
CitedBy_id | crossref_primary_10_1038_nrm2797 crossref_primary_10_1186_2045_8118_10_11 crossref_primary_10_1038_s41467_021_27135_5 crossref_primary_10_1371_journal_pone_0036925 crossref_primary_10_1038_emboj_2012_176 crossref_primary_10_1186_2045_3701_3_25 crossref_primary_10_1007_s11538_009_9471_1 crossref_primary_10_1038_s41467_017_00551_2 crossref_primary_10_1016_j_ydbio_2010_12_045 crossref_primary_10_1371_journal_pone_0179385 crossref_primary_10_4161_cam_3_3_8291 crossref_primary_10_1227_01_NEU_0000367634_89384_4B crossref_primary_10_1161_CIRCRESAHA_116_302953 crossref_primary_10_1016_j_placenta_2011_06_015 crossref_primary_10_1021_acs_chemmater_5b01947 crossref_primary_10_1007_s10539_022_09870_1 crossref_primary_10_1016_j_mam_2017_01_001 crossref_primary_10_1186_s40478_022_01361_4 crossref_primary_10_1111_j_1749_6632_2009_05035_x crossref_primary_10_4161_biom_24926 crossref_primary_10_1017_S1431927611012682 crossref_primary_10_1128_MCB_00038_09 crossref_primary_10_3390_ijms25136868 crossref_primary_10_1007_s10456_008_9125_1 crossref_primary_10_1073_pnas_1114781109 crossref_primary_10_1242_jcs_045799 crossref_primary_10_4199_C00011ED1V01Y201004DEB002 crossref_primary_10_1124_pr_110_003293 crossref_primary_10_1016_j_actbio_2013_06_002 crossref_primary_10_1096_fj_201601285R crossref_primary_10_1016_j_mvr_2019_103935 crossref_primary_10_2217_17460751_4_1_65 crossref_primary_10_1016_j_ajpath_2021_08_017 crossref_primary_10_1074_jbc_M111_303222 crossref_primary_10_1038_s41401_024_01262_3 crossref_primary_10_1507_endocrj_EJ18_0537 crossref_primary_10_1155_2013_628962 crossref_primary_10_1146_annurev_bioeng_071811_150043 crossref_primary_10_1152_physiol_00029_2008 crossref_primary_10_1038_s42003_019_0400_z crossref_primary_10_12717_DR_2016_20_2_171 crossref_primary_10_1152_ajpheart_00125_2009 crossref_primary_10_1152_physiolgenomics_90411_2008 crossref_primary_10_1002_cbin_11963 crossref_primary_10_1371_journal_pone_0029000 crossref_primary_10_1016_j_devcel_2009_01_013 crossref_primary_10_1016_j_mod_2009_11_004 crossref_primary_10_1016_j_bbadis_2012_02_003 crossref_primary_10_1182_blood_2008_12_196451 crossref_primary_10_1371_journal_pone_0017660 crossref_primary_10_1016_j_ydbio_2014_06_016 crossref_primary_10_1093_cvr_cvy002 crossref_primary_10_1371_journal_pgen_1002866 crossref_primary_10_1371_journal_pone_0060798 crossref_primary_10_1186_1465_9921_11_162 crossref_primary_10_1371_journal_pone_0013450 crossref_primary_10_1007_s10555_014_9497_1 crossref_primary_10_7554_eLife_38137 crossref_primary_10_1038_srep20345 crossref_primary_10_1242_dev_062323 crossref_primary_10_3389_fcell_2021_671402 crossref_primary_10_1093_icb_icp017 crossref_primary_10_1093_stcltm_szac063 crossref_primary_10_1242_jcs_122333 crossref_primary_10_4061_2010_298747 crossref_primary_10_3390_biom10060905 crossref_primary_10_1242_dev_053173 crossref_primary_10_1016_j_biomaterials_2015_06_028 crossref_primary_10_1016_j_ydbio_2017_10_017 crossref_primary_10_1124_mol_109_055848 crossref_primary_10_1164_rccm_200907_1063OC crossref_primary_10_1016_j_biomaterials_2022_121785 crossref_primary_10_1021_mp300318q crossref_primary_10_1016_j_ajpath_2019_08_009 crossref_primary_10_1083_jcb_200903137 crossref_primary_10_1152_ajprenal_00148_2010 crossref_primary_10_1186_s12864_015_1966_6 crossref_primary_10_1098_rstb_2019_0386 crossref_primary_10_1007_s12035_011_8167_3 crossref_primary_10_1088_1478_3975_11_1_016003 crossref_primary_10_1074_jbc_M109_030882 crossref_primary_10_1182_blood_2010_11_316752 crossref_primary_10_1038_s41556_021_00676_z crossref_primary_10_1111_bph_14036 crossref_primary_10_1182_blood_2011_07_370635 crossref_primary_10_1182_blood_2012_01_403642 crossref_primary_10_1016_j_ceb_2010_07_016 crossref_primary_10_1016_j_devcel_2009_07_011 crossref_primary_10_3389_fcell_2020_620667 crossref_primary_10_1080_17435390_2018_1530393 crossref_primary_10_1016_j_jbc_2023_105034 crossref_primary_10_1126_scisignal_2000304 crossref_primary_10_1002_dvdy_23771 crossref_primary_10_1016_j_ydbio_2018_12_001 crossref_primary_10_1016_j_devcel_2011_07_006 crossref_primary_10_1007_s00018_013_1478_y crossref_primary_10_1093_cvr_cvw248 crossref_primary_10_1126_sciadv_adn5405 crossref_primary_10_1182_blood_2009_11_252692 |
Cites_doi | 10.1242/dev.109.1.29 10.1038/nature05571 10.1016/S0925-4773(01)00508-1 10.1006/dbio.1997.8745 10.1016/j.cardiores.2004.09.018 10.1161/atvb.20.5.1250 10.1016/S1097-2765(00)80151-3 10.1111/j.1471-4159.2008.05472.x 10.1111/j.1432-0436.2006.00106.x 10.1182/blood-2003-07-2315 10.1016/S0092-8674(00)80919-8 10.1016/S1534-5807(02)00171-5 10.1016/S0960-9822(02)01044-8 10.1016/j.jtbi.2007.09.015 10.1016/j.devcel.2008.01.020 10.1016/S1055-8586(98)70011-3 10.1101/SQB.1997.062.01.029 10.1016/j.ydbio.2008.02.035 10.1016/j.cytogfr.2005.01.004 10.1016/j.yexcr.2005.11.012 10.1016/0092-8674(94)90580-0 10.1038/370386a0 10.1016/j.devcel.2004.11.008 10.1091/mbc.e06-01-0002 10.1161/res.87.3.207 10.1101/gad.6.9.1668 10.1016/S0925-4773(03)00108-4 10.1101/gad.432007 10.1016/S0960-9822(99)80094-3 10.1016/j.devcel.2004.12.004 10.1002/j.1460-2075.1994.tb06631.x 10.1083/jcb.200709114 10.1158/0008-5472.CAN-05-1208 10.1016/j.ydbio.2008.02.010 10.1101/gad.12.20.3156 10.1073/pnas.0611177104 10.1038/nature04829 10.1038/367380a0 10.1242/dev.128.23.4747 10.1073/pnas.0506886103 10.1016/S0896-6273(00)80514-0 10.1152/ajpcell.00386.2006 10.1016/j.tcb.2005.11.004 10.1016/j.ydbio.2004.07.022 10.1002/1097-4652(200009)184:3<373::AID-JCP12>3.0.CO;2-I 10.1161/CIRCRESAHA.108.181388 10.1242/dev.014498 10.1016/S0092-8674(00)81652-9 10.1006/dbio.2001.0399 10.1101/gad.10.22.2912 10.1002/dvdy.21201 10.1016/j.devcel.2004.06.008 10.1073/pnas.0408318102 10.1016/S0092-8674(00)81803-6 10.1016/j.ydbio.2007.09.015 10.1242/dev.127.12.2695 10.1016/j.devcel.2006.03.012 10.1073/pnas.0605317103 10.1016/j.ydbio.2004.03.025 10.1242/dev.126.20.4455 10.1111/j.1471-4159.2004.02930.x 10.1172/JCI0214362 10.1038/sj.onc.1204921 10.1038/nature05577 10.1016/S0925-4773(99)00124-0 10.1016/j.modgep.2004.05.004 10.1083/jcb.152.6.1247 10.1016/S1534-5807(02)00410-0 10.1073/pnas.0611206104 10.1002/dvdy.20048 10.1242/dev.013623 10.1111/j.0021-8782.2004.00285.x 10.1242/dev.128.19.3675 10.1152/physrev.00028.2006 10.1006/dbio.1998.8994 10.1242/dev.01570 10.1182/blood-2007-08-108597 10.1101/gad.5.4.697 10.1101/gad.1387206 10.1126/science.284.5420.1635 10.1534/genetics.107.073890 10.1016/j.mod.2007.12.003 10.1128/MCB.24.9.3769-3781.2004 10.1016/j.devcel.2004.11.002 10.1006/bbrc.2000.3721 10.1016/S0070-2153(05)71002-4 10.1006/exer.2000.0892 10.1242/dev.00520 10.1242/dev.125.22.4379 10.1242/dev.122.5.1395 10.1242/dev.124.1.53 10.1083/jcb.115.4.1091 10.1126/science.8009224 10.1242/dev.124.13.2659 10.1038/ng1295-415 10.1038/nrm2009 10.1002/1097-0061(200012)17:4<294::AID-YEA54>3.0.CO;2-5 10.1046/j.1365-2443.2001.00441.x 10.1038/nature04923 10.1016/j.ydbio.2008.01.038 10.1242/dev.127.3.483 10.1523/JNEUROSCI.15-07-04738.1995 10.1242/dev.126.3.547 10.1007/s10456-007-9065-1 10.1038/nrg1969 10.1128/MCB.25.21.9661-9673.2005 10.1038/5096 10.1242/dev.122.11.3627 10.1016/j.modgep.2004.10.001 10.1242/dev.02310 10.1242/dev.01251 10.1242/dev.129.4.973 10.1152/ajplung.00372.2001 10.1074/jbc.M503915200 10.1111/j.1365-2443.2007.01066.x 10.1242/dev.02255 10.1016/j.ydbio.2003.08.016 10.1016/j.cub.2004.05.020 |
ContentType | Journal Article |
Copyright | 2008 American Heart Association, Inc. 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 American Heart Association, Inc. – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/CIRCRESAHA.108.181818 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4571 |
EndPage | 795 |
ExternalDocumentID | 18845818 20758544 10_1161_CIRCRESAHA_108_181818 00003012-200810100-00006 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL053793 – fundername: NHLBI NIH HHS grantid: R01 HL67960 – fundername: NHLBI NIH HHS grantid: HL084619 – fundername: NHLBI NIH HHS grantid: R01 HL070247 – fundername: NHLBI NIH HHS grantid: HL062289 – fundername: NHLBI NIH HHS grantid: R01 HL062289 |
GroupedDBID | --- -~X .-D .3C .55 .Z2 01R 0R~ 18M 1J1 29B 2WC 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AARTV AASOK AAXQO ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACNWC ACPRK ACWDW ACWRI ACXNZ ACZKN ADBBV ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFDTB AFFNX AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW ALKUP ALMA_UNASSIGNED_HOLDINGS AMJPA AMNEI BAWUL BOYCO BQLVK C1A C45 CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EJD EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GX1 H0~ H13 HZ~ H~9 IKREB IKYAY IN~ J5H JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OB2 OCUKA OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQQKQ RAH RLZ S4R S4S T8P TEORI TR2 UPT V2I VVN W3M W8F WH7 WOQ WOW X3V X3W X7M YFH YOC ZFV ZZMQN AAYXX ADGHP CITATION .GJ 1CY 41~ AAQKA AASCR ABASU ABVCZ ABZZY ACLDA ACXJB ADFPA AFBFQ AKCTQ AKULP ALMTX AMKUR AOHHW AOQMC BS7 BYPQX EEVPB ERAAH GNXGY GQDEL HLJTE IPNFZ IQODW JF9 JG8 MVM N~M ODA OWU OWV OWX OWZ P-K R58 RIG TSPGW XXN XYM ZGI CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c5326-7782833ef02f98758d3d525b4d8c24691fb6f1ee61d698b8ea6118cfe622bc0f3 |
ISSN | 0009-7330 1524-4571 |
IngestDate | Thu Jul 10 22:00:06 EDT 2025 Mon Jul 21 06:06:04 EDT 2025 Mon Jul 21 09:15:28 EDT 2025 Tue Jul 01 01:24:39 EDT 2025 Thu Apr 24 23:07:54 EDT 2025 Fri May 16 03:47:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Respiratory tract Morphogenesis Branching Vertebrata Mammalia tubulogenesis ureteric system vascular system Circulatory system tracheal system Respiratory system Trachea |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5326-7782833ef02f98758d3d525b4d8c24691fb6f1ee61d698b8ea6118cfe622bc0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.108.181818 |
PMID | 18845818 |
PQID | 69648906 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_69648906 pubmed_primary_18845818 pascalfrancis_primary_20758544 crossref_citationtrail_10_1161_CIRCRESAHA_108_181818 crossref_primary_10_1161_CIRCRESAHA_108_181818 wolterskluwer_health_00003012-200810100-00006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-October-10 |
PublicationDateYYYYMMDD | 2008-10-10 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-October-10 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation research |
PublicationTitleAlternate | Circ Res |
PublicationYear | 2008 |
Publisher | American Heart Association, Inc Lippincott |
Publisher_xml | – name: American Heart Association, Inc – name: Lippincott |
References | e_1_3_3_96_2 e_1_3_3_50_2 e_1_3_3_117_2 e_1_3_3_16_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_58_2 e_1_3_3_35_2 e_1_3_3_92_2 e_1_3_3_113_2 e_1_3_3_54_2 e_1_3_3_31_2 e_1_3_3_73_2 e_1_3_3_61_2 e_1_3_3_88_2 e_1_3_3_5_2 e_1_3_3_105_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_109_2 e_1_3_3_23_2 e_1_3_3_69_2 e_1_3_3_120_2 e_1_3_3_46_2 e_1_3_3_80_2 e_1_3_3_1_2 e_1_3_3_65_2 e_1_3_3_42_2 e_1_3_3_84_2 e_1_3_3_101_2 e_1_3_3_76_2 e_1_3_3_99_2 e_1_3_3_116_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_91_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_95_2 e_1_3_3_112_2 e_1_3_3_60_2 e_1_3_3_87_2 e_1_3_3_8_2 e_1_3_3_104_2 e_1_3_3_49_2 e_1_3_3_108_2 (e_1_3_3_77_2) 2002; 43 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 e_1_3_3_100_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_98_2 e_1_3_3_79_2 e_1_3_3_115_2 e_1_3_3_119_2 e_1_3_3_18_2 e_1_3_3_37_2 e_1_3_3_90_2 e_1_3_3_14_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_94_2 e_1_3_3_111_2 e_1_3_3_10_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_86_2 e_1_3_3_107_2 e_1_3_3_7_2 e_1_3_3_29_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_82_2 e_1_3_3_103_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_97_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_118_2 e_1_3_3_17_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_110_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_93_2 e_1_3_3_114_2 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_89_2 e_1_3_3_6_2 e_1_3_3_106_2 e_1_3_3_28_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_102_2 19179661 - Circ Res. 2009 Jan 30;104(2):e21 |
References_xml | – ident: e_1_3_3_41_2 doi: 10.1242/dev.109.1.29 – ident: e_1_3_3_82_2 doi: 10.1038/nature05571 – ident: e_1_3_3_39_2 doi: 10.1016/S0925-4773(01)00508-1 – ident: e_1_3_3_65_2 doi: 10.1006/dbio.1997.8745 – ident: e_1_3_3_96_2 doi: 10.1016/j.cardiores.2004.09.018 – ident: e_1_3_3_104_2 doi: 10.1161/atvb.20.5.1250 – ident: e_1_3_3_10_2 doi: 10.1016/S1097-2765(00)80151-3 – ident: e_1_3_3_1_2 – ident: e_1_3_3_115_2 doi: 10.1111/j.1471-4159.2008.05472.x – ident: e_1_3_3_55_2 doi: 10.1111/j.1432-0436.2006.00106.x – ident: e_1_3_3_102_2 doi: 10.1182/blood-2003-07-2315 – ident: e_1_3_3_13_2 doi: 10.1016/S0092-8674(00)80919-8 – ident: e_1_3_3_7_2 doi: 10.1016/S1534-5807(02)00171-5 – ident: e_1_3_3_91_2 doi: 10.1016/S0960-9822(02)01044-8 – ident: e_1_3_3_84_2 doi: 10.1016/j.jtbi.2007.09.015 – ident: e_1_3_3_22_2 doi: 10.1016/j.devcel.2008.01.020 – ident: e_1_3_3_60_2 doi: 10.1016/S1055-8586(98)70011-3 – ident: e_1_3_3_8_2 doi: 10.1101/SQB.1997.062.01.029 – ident: e_1_3_3_34_2 doi: 10.1016/j.ydbio.2008.02.035 – ident: e_1_3_3_120_2 doi: 10.1016/j.cytogfr.2005.01.004 – ident: e_1_3_3_101_2 doi: 10.1016/j.yexcr.2005.11.012 – ident: e_1_3_3_17_2 doi: 10.1016/0092-8674(94)90580-0 – ident: e_1_3_3_16_2 doi: 10.1038/370386a0 – ident: e_1_3_3_56_2 doi: 10.1016/j.devcel.2004.11.008 – ident: e_1_3_3_118_2 doi: 10.1091/mbc.e06-01-0002 – ident: e_1_3_3_105_2 doi: 10.1161/res.87.3.207 – ident: e_1_3_3_5_2 doi: 10.1101/gad.6.9.1668 – ident: e_1_3_3_74_2 doi: 10.1016/S0925-4773(03)00108-4 – ident: e_1_3_3_113_2 doi: 10.1101/gad.432007 – volume: 43 start-page: 3500 year: 2002 ident: e_1_3_3_77_2 publication-title: Invest Ophthalmol Vis Sci – ident: e_1_3_3_36_2 doi: 10.1016/S0960-9822(99)80094-3 – ident: e_1_3_3_47_2 doi: 10.1016/j.devcel.2004.12.004 – ident: e_1_3_3_37_2 doi: 10.1002/j.1460-2075.1994.tb06631.x – ident: e_1_3_3_103_2 doi: 10.1083/jcb.200709114 – ident: e_1_3_3_79_2 doi: 10.1158/0008-5472.CAN-05-1208 – ident: e_1_3_3_67_2 doi: 10.1016/j.ydbio.2008.02.010 – ident: e_1_3_3_32_2 doi: 10.1101/gad.12.20.3156 – ident: e_1_3_3_83_2 doi: 10.1073/pnas.0611177104 – ident: e_1_3_3_20_2 doi: 10.1038/nature04829 – ident: e_1_3_3_61_2 doi: 10.1038/367380a0 – ident: e_1_3_3_70_2 doi: 10.1242/dev.128.23.4747 – ident: e_1_3_3_90_2 doi: 10.1073/pnas.0506886103 – ident: e_1_3_3_59_2 doi: 10.1016/S0896-6273(00)80514-0 – ident: e_1_3_3_23_2 doi: 10.1152/ajpcell.00386.2006 – ident: e_1_3_3_18_2 doi: 10.1016/j.tcb.2005.11.004 – ident: e_1_3_3_58_2 doi: 10.1016/j.ydbio.2004.07.022 – ident: e_1_3_3_109_2 doi: 10.1002/1097-4652(200009)184:3<373::AID-JCP12>3.0.CO;2-I – ident: e_1_3_3_119_2 doi: 10.1161/CIRCRESAHA.108.181388 – ident: e_1_3_3_2_2 doi: 10.1242/dev.014498 – ident: e_1_3_3_21_2 doi: 10.1016/S0092-8674(00)81652-9 – ident: e_1_3_3_46_2 doi: 10.1006/dbio.2001.0399 – ident: e_1_3_3_14_2 doi: 10.1101/gad.10.22.2912 – ident: e_1_3_3_106_2 doi: 10.1002/dvdy.21201 – ident: e_1_3_3_94_2 doi: 10.1016/j.devcel.2004.06.008 – ident: e_1_3_3_95_2 doi: 10.1073/pnas.0408318102 – ident: e_1_3_3_15_2 doi: 10.1016/S0092-8674(00)81803-6 – ident: e_1_3_3_6_2 doi: 10.1016/j.ydbio.2007.09.015 – ident: e_1_3_3_38_2 doi: 10.1242/dev.127.12.2695 – ident: e_1_3_3_107_2 doi: 10.1016/j.devcel.2006.03.012 – ident: e_1_3_3_110_2 doi: 10.1073/pnas.0605317103 – ident: e_1_3_3_54_2 doi: 10.1016/j.ydbio.2004.03.025 – ident: e_1_3_3_25_2 doi: 10.1242/dev.126.20.4455 – ident: e_1_3_3_117_2 doi: 10.1111/j.1471-4159.2004.02930.x – ident: e_1_3_3_80_2 doi: 10.1172/JCI0214362 – ident: e_1_3_3_116_2 doi: 10.1038/sj.onc.1204921 – ident: e_1_3_3_98_2 doi: 10.1038/nature05577 – ident: e_1_3_3_49_2 doi: 10.1016/S0925-4773(99)00124-0 – ident: e_1_3_3_81_2 doi: 10.1016/j.modgep.2004.05.004 – ident: e_1_3_3_111_2 doi: 10.1083/jcb.152.6.1247 – ident: e_1_3_3_52_2 doi: 10.1016/S1534-5807(02)00410-0 – ident: e_1_3_3_78_2 doi: 10.1073/pnas.0611206104 – ident: e_1_3_3_93_2 doi: 10.1002/dvdy.20048 – ident: e_1_3_3_97_2 doi: 10.1242/dev.013623 – ident: e_1_3_3_57_2 doi: 10.1111/j.0021-8782.2004.00285.x – ident: e_1_3_3_99_2 doi: 10.1242/dev.128.19.3675 – ident: e_1_3_3_26_2 doi: 10.1152/physrev.00028.2006 – ident: e_1_3_3_29_2 doi: 10.1006/dbio.1998.8994 – ident: e_1_3_3_30_2 doi: 10.1242/dev.01570 – ident: e_1_3_3_100_2 doi: 10.1182/blood-2007-08-108597 – ident: e_1_3_3_4_2 doi: 10.1101/gad.5.4.697 – ident: e_1_3_3_62_2 doi: 10.1101/gad.1387206 – ident: e_1_3_3_33_2 doi: 10.1126/science.284.5420.1635 – ident: e_1_3_3_12_2 doi: 10.1534/genetics.107.073890 – ident: e_1_3_3_72_2 doi: 10.1016/j.mod.2007.12.003 – ident: e_1_3_3_11_2 doi: 10.1128/MCB.24.9.3769-3781.2004 – ident: e_1_3_3_50_2 doi: 10.1016/j.devcel.2004.11.002 – ident: e_1_3_3_68_2 doi: 10.1006/bbrc.2000.3721 – ident: e_1_3_3_85_2 doi: 10.1016/S0070-2153(05)71002-4 – ident: e_1_3_3_108_2 doi: 10.1006/exer.2000.0892 – ident: e_1_3_3_66_2 doi: 10.1242/dev.00520 – ident: e_1_3_3_9_2 doi: 10.1242/dev.125.22.4379 – ident: e_1_3_3_3_2 doi: 10.1242/dev.122.5.1395 – ident: e_1_3_3_28_2 doi: 10.1242/dev.124.1.53 – ident: e_1_3_3_42_2 doi: 10.1083/jcb.115.4.1091 – ident: e_1_3_3_44_2 doi: 10.1126/science.8009224 – ident: e_1_3_3_45_2 doi: 10.1242/dev.124.13.2659 – ident: e_1_3_3_43_2 doi: 10.1038/ng1295-415 – ident: e_1_3_3_24_2 doi: 10.1038/nrm2009 – ident: e_1_3_3_89_2 doi: 10.1002/1097-0061(200012)17:4<294::AID-YEA54>3.0.CO;2-5 – ident: e_1_3_3_53_2 doi: 10.1046/j.1365-2443.2001.00441.x – ident: e_1_3_3_87_2 doi: 10.1038/nature04923 – ident: e_1_3_3_88_2 doi: 10.1016/j.ydbio.2008.01.038 – ident: e_1_3_3_31_2 doi: 10.1242/dev.127.3.483 – ident: e_1_3_3_76_2 doi: 10.1523/JNEUROSCI.15-07-04738.1995 – ident: e_1_3_3_69_2 doi: 10.1242/dev.126.3.547 – ident: e_1_3_3_75_2 doi: 10.1007/s10456-007-9065-1 – ident: e_1_3_3_48_2 doi: 10.1038/nrg1969 – ident: e_1_3_3_63_2 doi: 10.1128/MCB.25.21.9661-9673.2005 – ident: e_1_3_3_27_2 doi: 10.1038/5096 – ident: e_1_3_3_64_2 doi: 10.1242/dev.122.11.3627 – ident: e_1_3_3_73_2 doi: 10.1016/j.modgep.2004.10.001 – ident: e_1_3_3_40_2 doi: 10.1242/dev.02310 – ident: e_1_3_3_71_2 doi: 10.1242/dev.01251 – ident: e_1_3_3_86_2 doi: 10.1242/dev.129.4.973 – ident: e_1_3_3_35_2 doi: 10.1152/ajplung.00372.2001 – ident: e_1_3_3_112_2 doi: 10.1074/jbc.M503915200 – ident: e_1_3_3_114_2 doi: 10.1111/j.1365-2443.2007.01066.x – ident: e_1_3_3_19_2 doi: 10.1242/dev.02255 – ident: e_1_3_3_92_2 doi: 10.1016/j.ydbio.2003.08.016 – ident: e_1_3_3_51_2 doi: 10.1016/j.cub.2004.05.020 – reference: 19179661 - Circ Res. 2009 Jan 30;104(2):e21 |
SSID | ssj0014329 |
Score | 2.3205838 |
SecondaryResourceType | review_article |
Snippet | Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of... |
SourceID | proquest pubmed pascalfrancis crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 784 |
SubjectTerms | Animals Biological and medical sciences Blood Vessels - embryology Blood Vessels - metabolism Body Patterning Cell Differentiation Cell Proliferation Drosophila melanogaster Fundamental and applied biological sciences. Psychology Humans Intracellular Signaling Peptides and Proteins - metabolism Lung - embryology Lung - metabolism Mice Morphogenesis Neovascularization, Physiologic Retinal Vessels - embryology Signal Transduction Trachea - embryology Trachea - metabolism Ureter - embryology Ureter - metabolism Vertebrates: cardiovascular system Zebrafish |
Title | Branching Morphogenesis |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-200810100-00006 https://www.ncbi.nlm.nih.gov/pubmed/18845818 https://www.proquest.com/docview/69648906 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZdC2Mwxn523o8uD3srzmxZkqXHLGxNC91D10LejGVLJWyNQ5JS6F-_O0lxnDVj3V5MsCML7pOPO-nu-wj5KLJSMa5pbPFol-k8j0suTSyFKZlWTGlXjHn6TYwu2MmYj9cao667ZKn71e3WvpL_QRXuAa7YJfsPyLYvhRvwG_CFKyAM13th_BlVMdwW0lUD9mou0XFNFt2AcziZV0Gh6zAQ-7QbwKMGcvCJE3Q9HMwnLcTfAb-wC90pql9tDTie1lAkaoI7oyxm3IuctP4uyTrAyo73yr1a212vKtCrDo_PhrAqBqMBFib2ITSQ3nV2LD27cqZOpWQ8PP2Nznr16AHZoxDZo-jE0bityoHojarQaAWzfto6JxK9hrdsRBOPZ-UCFrb1iiTbUgb4z02DVQiLH64JoRNKnD8lT0IO0Bt4QJ-RHTN9Th6ehiqHF2S_xbW3getLcvH1y_lwFAcBi7jiEBZD5gL5bJYZm1CrIDGUdVZzyjWrZUWZUKnVwqbGiLQWSmppSgH5XmWNoFRXic1ekd1pMzWvSS9LjWWMl5TWGcs50vjleCQrDZeSKx0RtjJEUQV2dxQZ-Vm4LE-kxdqUSApbeFNGpN8Om3l6k78NONiwcjuKJph5MhaRDyuzF-Cp8PipnJrmelEIJZhUiYjIvkdjPWNAMyLxBjyF7wXGAgnM3Cl-_EhI58kQEvHmj296Sx6tP4h3ZHc5vzbvIXpc6gO33n4BNaRl4g |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Branching+morphogenesis&rft.jtitle=Circulation+research&rft.au=Horowitz%2C+Arie&rft.au=Simons%2C+Michael&rft.date=2008-10-10&rft.eissn=1524-4571&rft.volume=103&rft.issue=8&rft.spage=784&rft_id=info:doi/10.1161%2FCIRCRESAHA.108.181818&rft_id=info%3Apmid%2F18845818&rft.externalDocID=18845818 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon |