Localized Fisher discriminant analysis based complex chemical process monitoring
Complex chemical process is often corrupted with various types of faults and the fault‐free training data may not be available to build the normal operation model. Therefore, the supervised monitoring methods such as principal component analysis (PCA), partial least squares (PLS), and independent co...
Saved in:
Published in | AIChE journal Vol. 57; no. 7; pp. 1817 - 1828 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2011
Wiley American Institute of Chemical Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Complex chemical process is often corrupted with various types of faults and the fault‐free training data may not be available to build the normal operation model. Therefore, the supervised monitoring methods such as principal component analysis (PCA), partial least squares (PLS), and independent component analysis (ICA) are not applicable in such situations. On the other hand, the traditional unsupervised algorithms like Fisher discriminant analysis (FDA) may not take into account the multimodality within the abnormal data and thus their capability of fault detection and classification can be significantly degraded. In this study, a novel localized Fisher discriminant analysis (LFDA) based process monitoring approach is proposed to monitor the processes containing multiple types of steady‐state or dynamic faults. The stationary testing and Gaussian mixture model are integrated with LFDA to remove any nonstationarity and isolate the normal and multiple faulty clusters during the preprocessing steps. Then the localized between‐class and within‐class scatter mattress are computed for the generalized eigenvalue decomposition to extract the localized Fisher discriminant directions that can not only separate the normal and faulty data with maximized margin but also preserve the multimodality within the multiple faulty clusters. In this way, different types of process faults can be well classified using the discriminant function index. The proposed LFDA monitoring approach is applied to the Tennessee Eastman process and compared with the traditional FDA method. The monitoring results in three different test scenarios demonstrate the superiority of the LFDA approach in detecting and classifying multiple types of faults with high accuracy and sensitivity. © 2010 American Institute of Chemical Engineers AIChE J, 2011 |
---|---|
AbstractList | Complex chemical process is often corrupted with various types of faults and the fault-free training data may not be available to build the normal operation model. Therefore, the supervised monitoring methods such as principal component analysis (PCA), partial least squares (PLS), and independent component analysis (ICA) are not applicable in such situations. On the other hand, the traditional unsupervised algorithms like Fisher discriminant analysis (FDA) may not take into account the multimodality within the abnormal data and thus their capability of fault detection and classification can be significantly degraded. In this study, a novel localized Fisher discriminant analysis (LFDA) based process monitoring approach is proposed to monitor the processes containing multiple types of steady-state or dynamic faults. The stationary testing and Gaussian mixture model are integrated with LFDA to remove any nonstationarity and isolate the normal and multiple faulty clusters during the preprocessing steps. Then the localized between-class and within-class scatter mattress are computed for the generalized eigenvalue decomposition to extract the localized Fisher discriminant directions that can not only separate the normal and faulty data with maximized margin but also preserve the multimodality within the multiple faulty clusters. In this way, different types of process faults can be well classified using the discriminant function index. The proposed LFDA monitoring approach is applied to the Tennessee Eastman process and compared with the traditional FDA method. The monitoring results in three different test scenarios demonstrate the superiority of the LFDA approach in detecting and classifying multiple types of faults with high accuracy and sensitivity. Complex chemical process is often corrupted with various types of faults and the fault‐free training data may not be available to build the normal operation model. Therefore, the supervised monitoring methods such as principal component analysis (PCA), partial least squares (PLS), and independent component analysis (ICA) are not applicable in such situations. On the other hand, the traditional unsupervised algorithms like Fisher discriminant analysis (FDA) may not take into account the multimodality within the abnormal data and thus their capability of fault detection and classification can be significantly degraded. In this study, a novel localized Fisher discriminant analysis (LFDA) based process monitoring approach is proposed to monitor the processes containing multiple types of steady‐state or dynamic faults. The stationary testing and Gaussian mixture model are integrated with LFDA to remove any nonstationarity and isolate the normal and multiple faulty clusters during the preprocessing steps. Then the localized between‐class and within‐class scatter mattress are computed for the generalized eigenvalue decomposition to extract the localized Fisher discriminant directions that can not only separate the normal and faulty data with maximized margin but also preserve the multimodality within the multiple faulty clusters. In this way, different types of process faults can be well classified using the discriminant function index. The proposed LFDA monitoring approach is applied to the Tennessee Eastman process and compared with the traditional FDA method. The monitoring results in three different test scenarios demonstrate the superiority of the LFDA approach in detecting and classifying multiple types of faults with high accuracy and sensitivity. © 2010 American Institute of Chemical Engineers AIChE J, 2011 Complex chemical process is often corrupted with various types of faults and the fault-free training data may not be available to build the normal operation model. Therefore, the supervised monitoring methods such as principal component analysis (PCA), partial least squares (PLS), and independent component analysis (ICA) are not applicable in such situations. On the other hand, the traditional unsupervised algorithms like Fisher discriminant analysis (FDA) may not take into account the multimodality within the abnormal data and thus their capability of fault detection and classification can be significantly degraded. In this study, a novel localized Fisher discriminant analysis (LFDA) based process monitoring approach is proposed to monitor the processes containing multiple types of steady-state or dynamic faults. The stationary testing and Gaussian mixture model are integrated with LFDA to remove any nonstationarity and isolate the normal and multiple faulty clusters during the preprocessing steps. Then the localized between-class and within-class scatter mattress are computed for the generalized eigenvalue decomposition to extract the localized Fisher discriminant directions that can not only separate the normal and faulty data with maximized margin but also preserve the multimodality within the multiple faulty clusters. In this way, different types of process faults can be well classified using the discriminant function index. The proposed LFDA monitoring approach is applied to the Tennessee Eastman process and compared with the traditional FDA method. The monitoring results in three different test scenarios demonstrate the superiority of the LFDA approach in detecting and classifying multiple types of faults with high accuracy and sensitivity. [PUBLICATION ABSTRACT] |
Author | Yu, Jie |
Author_xml | – sequence: 1 givenname: Jie surname: Yu fullname: Yu, Jie email: j.yu@shell.com organization: Dept. of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24335724$$DView record in Pascal Francis |
BookMark | eNp90V1LHDEUBuAgFlxtL_wHQ0G0F6P5mEwml7rUrWXpBxV6Gc5kMho7k6w5s9Ttr2_atV4I9SokPG84vGef7IYYHCGHjJ4ySvkZeHvKuNB8h8yYrFQpNZW7ZEYpZWV-YHtkH_Eu37hq-Ix8WUYLg__luuLS461LRefRJj_6AGEqIMCwQY9FC5iJjeNqcA-FvXWjz7lilaJ1iMUYg59i8uHmNXnVw4DuzeN5QK4v31_PP5TLz4ur-fmytFJwXuqmrzpo-rqzWjUVMNFzVlPbtFTTSkoqFdddq5RrqO5b2VZQCwClWddSkOKAHG-_zRPcrx1OZsxzu2GA4OIajaaKKcZlk-XJi5LVikldMyYyffuM3sV1yhWgaZSiXOaGMzp6RIC5gj5BsB7NKncGaWN4JUSevcru3dbZFBGT658Io-bPrkzelfm7q2zPnlnrJ5h8DFMCP7yU-OkHt_n_1-b8av4vUW4THif38JSA9MPUSihpvn9amI8Xks-rxTfzVfwGse60uA |
CODEN | AICEAC |
CitedBy_id | crossref_primary_10_1016_j_conengprac_2012_11_013 crossref_primary_10_1155_2014_487582 crossref_primary_10_1016_j_patcog_2011_08_021 crossref_primary_10_1016_j_ces_2012_07_018 crossref_primary_10_1016_j_jprocont_2020_06_001 crossref_primary_10_1016_j_asoc_2022_109295 crossref_primary_10_1016_j_psep_2013_11_003 crossref_primary_10_1021_acs_iecr_9b02391 crossref_primary_10_3390_en15093198 crossref_primary_10_1021_acs_iecr_7b02419 crossref_primary_10_1002_cjce_24149 crossref_primary_10_1002_aic_14119 crossref_primary_10_1007_s00530_014_0413_x crossref_primary_10_1016_j_jfranklin_2014_12_002 crossref_primary_10_1089_ees_2017_0454 crossref_primary_10_1021_acs_iecr_8b05847 crossref_primary_10_1109_TASE_2015_2417882 crossref_primary_10_1002_aic_13816 crossref_primary_10_1016_j_psep_2021_09_032 crossref_primary_10_1021_ie3020186 crossref_primary_10_1155_2013_707953 crossref_primary_10_5194_gmd_10_3391_2017 crossref_primary_10_1016_j_ces_2013_01_058 crossref_primary_10_1016_j_chemolab_2014_03_002 crossref_primary_10_1016_j_jprocont_2020_01_004 crossref_primary_10_3182_20120710_4_SG_2026_00086 crossref_primary_10_3182_20131218_3_IN_2045_00017 crossref_primary_10_1016_j_compchemeng_2016_04_011 crossref_primary_10_1016_j_cjche_2015_09_007 crossref_primary_10_1155_2015_984768 crossref_primary_10_1109_TIE_2014_2308133 crossref_primary_10_1021_acs_iecr_9b01325 crossref_primary_10_1109_TCST_2021_3074427 crossref_primary_10_1016_j_chemolab_2014_08_008 crossref_primary_10_1016_j_ces_2011_10_011 crossref_primary_10_1016_j_compchemeng_2020_107023 crossref_primary_10_1016_j_isatra_2021_04_042 crossref_primary_10_1016_j_patcog_2012_07_002 crossref_primary_10_1002_aic_12794 crossref_primary_10_1016_j_chemolab_2015_08_012 crossref_primary_10_1016_j_conengprac_2013_04_007 crossref_primary_10_1021_ie400418c crossref_primary_10_1016_j_jprocont_2020_05_015 crossref_primary_10_1155_2015_467195 crossref_primary_10_1109_ACCESS_2020_2995399 crossref_primary_10_1016_j_chemolab_2016_07_014 crossref_primary_10_1021_acs_iecr_8b03009 crossref_primary_10_1021_acs_iecr_7b00027 crossref_primary_10_1109_TII_2019_2901931 crossref_primary_10_1021_ie302042c crossref_primary_10_1002_aic_14051 crossref_primary_10_1016_j_neucom_2018_01_028 crossref_primary_10_1021_acs_iecr_5b03446 crossref_primary_10_1007_s00521_021_06575_6 crossref_primary_10_1016_j_petrol_2020_107723 crossref_primary_10_1016_j_engappai_2012_09_003 crossref_primary_10_1109_ACCESS_2018_2795535 crossref_primary_10_3390_app12073388 crossref_primary_10_1016_j_chemolab_2013_02_001 crossref_primary_10_1021_acs_iecr_7b00156 crossref_primary_10_3390_act13110440 crossref_primary_10_3390_machines11121066 crossref_primary_10_4304_jsw_9_2_287_292 crossref_primary_10_1021_acs_iecr_2c03137 crossref_primary_10_1021_ie400544q crossref_primary_10_1016_j_engappai_2012_02_015 crossref_primary_10_1002_cem_2978 crossref_primary_10_1007_s00521_022_08017_3 crossref_primary_10_1021_ie301002h crossref_primary_10_1016_j_compchemeng_2012_03_004 crossref_primary_10_1252_jcej_17we011 crossref_primary_10_1016_j_chemolab_2012_04_008 crossref_primary_10_1016_j_compchemeng_2013_05_019 crossref_primary_10_1016_j_engappai_2024_108872 crossref_primary_10_1155_2020_5281512 crossref_primary_10_1021_acs_iecr_5b02266 crossref_primary_10_1007_s00521_020_05171_4 crossref_primary_10_1016_j_chemolab_2017_06_010 crossref_primary_10_3390_pr5030035 crossref_primary_10_1016_j_jprocont_2015_12_005 crossref_primary_10_1016_j_cjche_2014_10_006 crossref_primary_10_1080_00224065_2019_1569954 crossref_primary_10_1021_acs_iecr_1c01271 crossref_primary_10_1016_j_jprocont_2012_02_012 crossref_primary_10_1021_ie1017282 crossref_primary_10_1002_cjce_21881 crossref_primary_10_1021_acs_iecr_7b00057 crossref_primary_10_1109_ACCESS_2017_2756872 crossref_primary_10_1109_ACCESS_2020_3003095 crossref_primary_10_1002_aic_14261 crossref_primary_10_1016_j_conengprac_2013_08_016 crossref_primary_10_3390_pr12071382 crossref_primary_10_1007_s11042_018_6887_3 crossref_primary_10_1021_acs_iecr_9b04112 crossref_primary_10_1002_aic_14013 crossref_primary_10_1016_j_jprocont_2021_03_001 crossref_primary_10_1007_s13369_018_3072_y crossref_primary_10_1016_j_compchemeng_2018_06_017 crossref_primary_10_1016_j_chemolab_2022_104624 crossref_primary_10_1021_ie3026345 crossref_primary_10_1007_s00170_018_2674_6 crossref_primary_10_1109_TCST_2012_2217966 crossref_primary_10_1109_TNNLS_2019_2920903 |
Cites_doi | 10.1016/j.jprocont.2005.12.002 10.1002/aic.10024 10.1002/aic.10325 10.1016/0967-0661(95)00014-L 10.1002/aic.690400809 10.1016/j.compchemeng.2003.09.031 10.1016/S0098-1354(97)00262-7 10.1021/ie049582+ 10.1021/ie0497893 10.1002/cjce.5450690105 10.1162/089976603321780317 10.1016/j.compchemeng.2008.08.008 10.1016/S0169-7439(99)00061-1 10.1002/aic.10978 10.1016/0098-1354(93)80018-I 10.1002/cem.800 10.1016/j.compchemeng.2003.10.002 10.1016/j.jprocont.2003.09.004 10.1021/ie060544v 10.1021/ie900479g 10.1002/aic.690490414 10.1016/S0967-0661(02)00096-5 10.1016/0959-1524(96)00031-5 10.1002/aic.11515 10.1109/34.990138 10.1016/0098-1354(94)00043-N 10.1016/0959-1524(96)00009-1 10.1021/ie980577d 10.1002/aic.690400509 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Institute of Chemical Engineers (AIChE) 2015 INIST-CNRS Copyright American Institute of Chemical Engineers Jul 2011 |
Copyright_xml | – notice: Copyright © 2010 American Institute of Chemical Engineers (AIChE) – notice: 2015 INIST-CNRS – notice: Copyright American Institute of Chemical Engineers Jul 2011 |
DBID | BSCLL AAYXX CITATION IQODW 7ST 7U5 8FD C1K L7M SOI 7QH 7UA F1W H95 L.G |
DOI | 10.1002/aic.12392 |
DatabaseName | Istex CrossRef Pascal-Francis Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts Aqualine Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aqualine ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Solid State and Superconductivity Abstracts Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1547-5905 |
EndPage | 1828 |
ExternalDocumentID | 2399997091 24335724 10_1002_aic_12392 AIC12392 ark_67375_WNG_JB52C4GS_Q |
Genre | article Feature |
GeographicLocations | USA, Tennessee |
GeographicLocations_xml | – name: USA, Tennessee |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAIHA AAIKC AAMNW AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ABJIA ACRPL ACYXJ ADMLS ADNMO AEFGJ AEUYN AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ PHGZM PHGZT PQGLB AAYXX CITATION IQODW 7ST 7U5 8FD C1K L7M SOI 7QH 7UA F1W H95 L.G |
ID | FETCH-LOGICAL-c5322-98f4da8f6dc9784a13f2160c8b09045505729db77e809fb5b4a63aa791db0a53 |
IEDL.DBID | DR2 |
ISSN | 0001-1541 |
IngestDate | Fri Jul 11 12:13:28 EDT 2025 Fri Jul 11 02:28:39 EDT 2025 Fri Jul 25 10:59:07 EDT 2025 Mon Jul 21 09:17:35 EDT 2025 Tue Jul 01 01:40:28 EDT 2025 Thu Apr 24 22:50:23 EDT 2025 Wed Aug 20 07:27:23 EDT 2025 Wed Oct 30 09:54:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | chemical process monitoring localized Fisher discriminant analysis Sensitivity analysis Independent component analysis Extract stationarity testing Algorithm Modeling Steady state Gaussian mixture model fault detection and classification Surveillance Tennessee Eastman process Failure detection Partial least squares Principal component analysis |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5322-98f4da8f6dc9784a13f2160c8b09045505729db77e809fb5b4a63aa791db0a53 |
Notes | ArticleID:AIC12392 istex:E4E2121A9BACE63470114392D496DD3A7B8106B9 ark:/67375/WNG-JB52C4GS-Q SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 877025002 |
PQPubID | 7879 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_907171258 proquest_miscellaneous_1671596113 proquest_journals_877025002 pascalfrancis_primary_24335724 crossref_primary_10_1002_aic_12392 crossref_citationtrail_10_1002_aic_12392 wiley_primary_10_1002_aic_12392_AIC12392 istex_primary_ark_67375_WNG_JB52C4GS_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2011 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: July 2011 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: New York |
PublicationTitle | AIChE journal |
PublicationTitleAlternate | AIChE J |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley American Institute of Chemical Engineers |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: American Institute of Chemical Engineers |
References | Choi SW, Park JH, Lee IB. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput Chem Eng. 2004; 28: 1377-1387. Lee JM, Yoo CK, Lee IB. Statistical process monitoring with independent component analysis. J Proc Cont. 2004; 14: 467-485. Bendat JS, Piersol AG. Random Data: Analysis and Measurement Procedures. New York, NY: Wiley, 1986. Wise B, Gallagher N. The process chemometrics approach to process monitoring and fault detection. J Proc Cont. 1996; 6: 329-348. Beaver S, Palazoglu A, Romagnoli JA. Cluster analysis for autocorrelated and cyclic chemical process data. Ind Eng Chem Res. 2007; 46: 3610-3622. Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003; 15: 1373-1396. MacGregor JF, Jaeckle C, Kiparissides C, Koutoudi M. Process monitoring and diagnosis by multiblock PLS methods. AIChE J. 1994; 40: 826-838. Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J Mach Learn Res. 2007; 8: 1027-1061. Ricker NL. Decentralized control of the Tennessee Eastman challenge process. J Proc Cont. 1996; 6: 205-221. Chen J, Liu J. Mixture principal component analysis models for process monitoring. Ind Eng Chem Res. 1999; 38: 1478-1488. Yélamos I, Escudero G, Graells M, Puigjaner L. Performance assessment of a novel fault diagnosis system based on support vector machines. Comput Chem Eng. 2009; 33: 244-255. Albazzaz H, Wang XZ. Statistical process control charts for batch operations based on independent component analysis. Ind Eng Chem Res. 2004; 43: 6731-6741. Yu J, Qin SJ. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008; 54: 1811-1829. Qin SJ. Recursive PLS algorithms for adaptive data modeling. Comput Chem Eng. 1998; 22: 503-514. Wang X, Kruger U, Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processess. Control Eng Pract. 2003; 11: 613-632. Lee JM, Qin SJ, Lee IB. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006; 52: 3501-3514. Yu J, Qin SJ. Multiway Gaussian mixture model based multiphase batch process monitoring. Ind Eng Chem Res. 2009; 48: 8585-8594. Zhao SJ, Zhang J, Xu YM. Performance monitoring of processes with multiple operating modes through multiple PLS models. J Proc Cont. 2006; 16: 763-772. He QP, Qin SJ, Wang J. A new fault diagnosis method using fault directions in Fisher discriminant analysis. AIChE J. 2005; 51: 555-571. Chiang L, Russell E, Braatz R. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom Intell Lab Syst. 2000; 50: 243-252. Duda RO, Hart PE, Stork DG. Pattern Classification 2nd ed. New York, NY: Wiley, 2001. Kresta JV, MacGregor JF, Marlin TE. Multivariate statistical monitoring of processes operating performance. Can J Chem Eng. 1991; 69: 35-47. Lu N, Gao F, Wang F. Sub-PCA modeling and on-line monitoring strategy for batch processes. AIChE J. 2004; 50: 255-259. Downs JJ, Vogel EF. Plant-wide industrial process control problem. Comput Chem Eng. 1993; 17: 245-255. Zhao SJ, Zhang J, Xu YM. Monitoring of processes with multiple operating modes through multiple principal component analysis models. Ind Eng Chem Res. 2004; 43: 7025-7035. Qin SJ. Statistical process monitoring: basics and beyond. J Chemom. 2003; 17: 480-502. MacGregor JF, Kourti T. Statistical process control of multivariate processes. Control Eng Pract. 1995; 3: 403-414. Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE J. 2003; 49: 969-976. Chiang L, Kotanchek M, Kordon A. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput Chem Eng. 2004; 28: 1389-1401. Nomikos P, MacGregor JF. Monitoring of batch processes using multiway principal component analysis. AIChE J. 1994; 40: 1361-1375. Figueiredo MAF, Jain AK. Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal. Mach. Intell. 2002; 24: 381-396. Ricker NL. Optimal steady-state operation of the Tennessee Eastman challenge process. Comput Chem Eng. 1995; 19: 949-959. 2004; 43 2006; 52 2004; 28 2006; 16 2000; 50 2003; 15 2003; 17 2008; 54 2005 2004 1995; 19 1995; 3 1994; 40 1998; 22 2009; 48 2003; 11 2009; 33 2004; 50 1991; 69 1993; 17 2001 2000 2004; 14 1999; 38 2002; 24 2005; 51 2007; 8 1986 2003; 49 1977; 52 2007; 46 1996; 6 Albazzaz (10.1002/aic.12392-BIB14|cit14) 2004; 43 Belkin (10.1002/aic.12392-BIB30|cit30) 2003; 15 Chiang (10.1002/aic.12392-BIB23|cit23) 2004; 28 Lee (10.1002/aic.12392-BIB13|cit13) 2004; 14 Zelnik-Manor (10.1002/aic.12392-BIB31|cit31) 2005 Zhao (10.1002/aic.12392-BIB19|cit19) 2006; 16 Yélamos (10.1002/aic.12392-BIB24|cit24) 2009; 33 Qin (10.1002/aic.12392-BIB3|cit3) 1998; 22 Beaver (10.1002/aic.12392-BIB22|cit22) 2007; 46 Lee (10.1002/aic.12392-BIB15|cit15) 2006; 52 Yu (10.1002/aic.12392-BIB17|cit17) 2008; 54 Wang (10.1002/aic.12392-BIB11|cit11) 2003; 11 MacGregor (10.1002/aic.12392-BIB1|cit1) 1994; 40 Kano (10.1002/aic.12392-BIB12|cit12) 2003; 49 Duda (10.1002/aic.12392-BIB25|cit25) 2001 Ricker (10.1002/aic.12392-BIB37|cit37) 1995; 19 Chiang (10.1002/aic.12392-BIB10|cit10) 2000; 50 Figueiredo (10.1002/aic.12392-BIB33|cit33) 2002; 24 Downs (10.1002/aic.12392-BIB35|cit35) 1993; 17 He (10.1002/aic.12392-BIB26|cit26) 2005; 51 Nomikos (10.1002/aic.12392-BIB8|cit8) 1994; 40 Chiang (10.1002/aic.12392-BIB4|cit4) 2001 Russell (10.1002/aic.12392-BIB6|cit6) 2000 Bendat (10.1002/aic.12392-BIB32|cit32) 1986 Choi (10.1002/aic.12392-BIB16|cit16) 2004; 28 Yu (10.1002/aic.12392-BIB34|cit34) 2009; 48 Sugiyama (10.1002/aic.12392-BIB28|cit28) 2007; 8 Ricker (10.1002/aic.12392-BIB36|cit36) 1996; 6 Qin (10.1002/aic.12392-BIB7|cit7) 2003; 17 Kresta (10.1002/aic.12392-BIB5|cit5) 1991; 69 Lu (10.1002/aic.12392-BIB21|cit21) 2004; 50 Wise (10.1002/aic.12392-BIB9|cit9) 1996; 6 MacGregor (10.1002/aic.12392-BIB2|cit2) 1995; 3 Chen (10.1002/aic.12392-BIB20|cit20) 1999; 38 Wold (10.1002/aic.12392-BIB27|cit27) 1977; 52 He (10.1002/aic.12392-BIB29|cit29) 2004 Zhao (10.1002/aic.12392-BIB18|cit18) 2004; 43 |
References_xml | – reference: Yu J, Qin SJ. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008; 54: 1811-1829. – reference: Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J Mach Learn Res. 2007; 8: 1027-1061. – reference: Kresta JV, MacGregor JF, Marlin TE. Multivariate statistical monitoring of processes operating performance. Can J Chem Eng. 1991; 69: 35-47. – reference: He QP, Qin SJ, Wang J. A new fault diagnosis method using fault directions in Fisher discriminant analysis. AIChE J. 2005; 51: 555-571. – reference: Wang X, Kruger U, Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processess. Control Eng Pract. 2003; 11: 613-632. – reference: Figueiredo MAF, Jain AK. Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal. Mach. Intell. 2002; 24: 381-396. – reference: Zhao SJ, Zhang J, Xu YM. Performance monitoring of processes with multiple operating modes through multiple PLS models. J Proc Cont. 2006; 16: 763-772. – reference: Lee JM, Yoo CK, Lee IB. Statistical process monitoring with independent component analysis. J Proc Cont. 2004; 14: 467-485. – reference: Duda RO, Hart PE, Stork DG. Pattern Classification 2nd ed. New York, NY: Wiley, 2001. – reference: Yu J, Qin SJ. Multiway Gaussian mixture model based multiphase batch process monitoring. Ind Eng Chem Res. 2009; 48: 8585-8594. – reference: Beaver S, Palazoglu A, Romagnoli JA. Cluster analysis for autocorrelated and cyclic chemical process data. Ind Eng Chem Res. 2007; 46: 3610-3622. – reference: Choi SW, Park JH, Lee IB. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput Chem Eng. 2004; 28: 1377-1387. – reference: Lu N, Gao F, Wang F. Sub-PCA modeling and on-line monitoring strategy for batch processes. AIChE J. 2004; 50: 255-259. – reference: Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003; 15: 1373-1396. – reference: Downs JJ, Vogel EF. Plant-wide industrial process control problem. Comput Chem Eng. 1993; 17: 245-255. – reference: Wise B, Gallagher N. The process chemometrics approach to process monitoring and fault detection. J Proc Cont. 1996; 6: 329-348. – reference: Chiang L, Kotanchek M, Kordon A. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput Chem Eng. 2004; 28: 1389-1401. – reference: Ricker NL. Optimal steady-state operation of the Tennessee Eastman challenge process. Comput Chem Eng. 1995; 19: 949-959. – reference: Ricker NL. Decentralized control of the Tennessee Eastman challenge process. J Proc Cont. 1996; 6: 205-221. – reference: MacGregor JF, Kourti T. Statistical process control of multivariate processes. Control Eng Pract. 1995; 3: 403-414. – reference: Qin SJ. Recursive PLS algorithms for adaptive data modeling. Comput Chem Eng. 1998; 22: 503-514. – reference: Zhao SJ, Zhang J, Xu YM. Monitoring of processes with multiple operating modes through multiple principal component analysis models. Ind Eng Chem Res. 2004; 43: 7025-7035. – reference: Qin SJ. Statistical process monitoring: basics and beyond. J Chemom. 2003; 17: 480-502. – reference: Nomikos P, MacGregor JF. Monitoring of batch processes using multiway principal component analysis. AIChE J. 1994; 40: 1361-1375. – reference: Yélamos I, Escudero G, Graells M, Puigjaner L. Performance assessment of a novel fault diagnosis system based on support vector machines. Comput Chem Eng. 2009; 33: 244-255. – reference: Chen J, Liu J. Mixture principal component analysis models for process monitoring. Ind Eng Chem Res. 1999; 38: 1478-1488. – reference: Chiang L, Russell E, Braatz R. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom Intell Lab Syst. 2000; 50: 243-252. – reference: Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE J. 2003; 49: 969-976. – reference: Albazzaz H, Wang XZ. Statistical process control charts for batch operations based on independent component analysis. Ind Eng Chem Res. 2004; 43: 6731-6741. – reference: MacGregor JF, Jaeckle C, Kiparissides C, Koutoudi M. Process monitoring and diagnosis by multiblock PLS methods. AIChE J. 1994; 40: 826-838. – reference: Bendat JS, Piersol AG. Random Data: Analysis and Measurement Procedures. New York, NY: Wiley, 1986. – reference: Lee JM, Qin SJ, Lee IB. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006; 52: 3501-3514. – volume: 38 start-page: 1478 year: 1999 end-page: 1488 article-title: Mixture principal component analysis models for process monitoring publication-title: Ind Eng Chem Res. – volume: 40 start-page: 826 year: 1994 end-page: 838 article-title: Process monitoring and diagnosis by multiblock PLS methods publication-title: AIChE J. – volume: 28 start-page: 1377 year: 2004 end-page: 1387 article-title: Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis publication-title: Comput Chem Eng. – volume: 19 start-page: 949 year: 1995 end-page: 959 article-title: Optimal steady‐state operation of the Tennessee Eastman challenge process publication-title: Comput Chem Eng. – volume: 49 start-page: 969 year: 2003 end-page: 976 article-title: Monitoring independent components for fault detection publication-title: AIChE J. – year: 2005 – volume: 28 start-page: 1389 year: 2004 end-page: 1401 article-title: Fault diagnosis based on Fisher discriminant analysis and support vector machines publication-title: Comput Chem Eng. – year: 2001 – volume: 11 start-page: 613 year: 2003 end-page: 632 article-title: Recursive partial least squares algorithms for monitoring complex industrial processess publication-title: Control Eng Pract. – volume: 17 start-page: 480 year: 2003 end-page: 502 article-title: Statistical process monitoring: basics and beyond publication-title: J Chemom. – volume: 43 start-page: 7025 year: 2004 end-page: 7035 article-title: Monitoring of processes with multiple operating modes through multiple principal component analysis models publication-title: Ind Eng Chem Res. – volume: 48 start-page: 8585 year: 2009 end-page: 8594 article-title: Multiway Gaussian mixture model based multiphase batch process monitoring publication-title: Ind Eng Chem Res. – volume: 15 start-page: 1373 year: 2003 end-page: 1396 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput. – year: 2000 – volume: 33 start-page: 244 year: 2009 end-page: 255 article-title: Performance assessment of a novel fault diagnosis system based on support vector machines publication-title: Comput Chem Eng. – volume: 54 start-page: 1811 year: 2008 end-page: 1829 article-title: Multimode process monitoring with Bayesian inference‐based finite Gaussian mixture models publication-title: AIChE J. – volume: 22 start-page: 503 year: 1998 end-page: 514 article-title: Recursive PLS algorithms for adaptive data modeling publication-title: Comput Chem Eng. – volume: 40 start-page: 1361 year: 1994 end-page: 1375 article-title: Monitoring of batch processes using multiway principal component analysis publication-title: AIChE J. – volume: 52 start-page: 3501 year: 2006 end-page: 3514 article-title: Fault detection and diagnosis based on modified independent component analysis publication-title: AIChE J. – volume: 50 start-page: 255 year: 2004 end-page: 259 article-title: Sub‐PCA modeling and on‐line monitoring strategy for batch processes publication-title: AIChE J. – year: 1986 – volume: 8 start-page: 1027 year: 2007 end-page: 1061 article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis publication-title: J Mach Learn Res. – volume: 46 start-page: 3610 year: 2007 end-page: 3622 article-title: Cluster analysis for autocorrelated and cyclic chemical process data publication-title: Ind Eng Chem Res. – volume: 14 start-page: 467 year: 2004 end-page: 485 article-title: Statistical process monitoring with independent component analysis publication-title: J Proc Cont. – volume: 52 year: 1977 – volume: 43 start-page: 6731 year: 2004 end-page: 6741 article-title: Statistical process control charts for batch operations based on independent component analysis publication-title: Ind Eng Chem Res. – volume: 51 start-page: 555 year: 2005 end-page: 571 article-title: A new fault diagnosis method using fault directions in Fisher discriminant analysis publication-title: AIChE J. – volume: 69 start-page: 35 year: 1991 end-page: 47 article-title: Multivariate statistical monitoring of processes operating performance publication-title: Can J Chem Eng. – year: 2004 – volume: 6 start-page: 205 year: 1996 end-page: 221 article-title: Decentralized control of the Tennessee Eastman challenge process publication-title: J Proc Cont. – volume: 6 start-page: 329 year: 1996 end-page: 348 article-title: The process chemometrics approach to process monitoring and fault detection publication-title: J Proc Cont. – volume: 3 start-page: 403 year: 1995 end-page: 414 article-title: Statistical process control of multivariate processes publication-title: Control Eng Pract. – volume: 24 start-page: 381 year: 2002 end-page: 396 article-title: Unsupervised learning of finite mixture models publication-title: IEEE Trans Pattern Anal. Mach. Intell. – volume: 16 start-page: 763 year: 2006 end-page: 772 article-title: Performance monitoring of processes with multiple operating modes through multiple PLS models publication-title: J Proc Cont. – volume: 50 start-page: 243 year: 2000 end-page: 252 article-title: Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis publication-title: Chemom Intell Lab Syst. – volume: 17 start-page: 245 year: 1993 end-page: 255 article-title: Plant‐wide industrial process control problem publication-title: Comput Chem Eng. – volume: 16 start-page: 763 year: 2006 ident: 10.1002/aic.12392-BIB19|cit19 article-title: Performance monitoring of processes with multiple operating modes through multiple PLS models publication-title: J Proc Cont. doi: 10.1016/j.jprocont.2005.12.002 – volume: 50 start-page: 255 year: 2004 ident: 10.1002/aic.12392-BIB21|cit21 article-title: Sub-PCA modeling and on-line monitoring strategy for batch processes publication-title: AIChE J. doi: 10.1002/aic.10024 – volume: 51 start-page: 555 year: 2005 ident: 10.1002/aic.12392-BIB26|cit26 article-title: A new fault diagnosis method using fault directions in Fisher discriminant analysis publication-title: AIChE J. doi: 10.1002/aic.10325 – volume: 3 start-page: 403 year: 1995 ident: 10.1002/aic.12392-BIB2|cit2 article-title: Statistical process control of multivariate processes publication-title: Control Eng Pract. doi: 10.1016/0967-0661(95)00014-L – volume: 40 start-page: 1361 year: 1994 ident: 10.1002/aic.12392-BIB8|cit8 article-title: Monitoring of batch processes using multiway principal component analysis publication-title: AIChE J. doi: 10.1002/aic.690400809 – volume: 28 start-page: 1377 year: 2004 ident: 10.1002/aic.12392-BIB16|cit16 article-title: Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis publication-title: Comput Chem Eng. doi: 10.1016/j.compchemeng.2003.09.031 – volume: 22 start-page: 503 year: 1998 ident: 10.1002/aic.12392-BIB3|cit3 article-title: Recursive PLS algorithms for adaptive data modeling publication-title: Comput Chem Eng. doi: 10.1016/S0098-1354(97)00262-7 – volume: 43 start-page: 6731 year: 2004 ident: 10.1002/aic.12392-BIB14|cit14 article-title: Statistical process control charts for batch operations based on independent component analysis publication-title: Ind Eng Chem Res. doi: 10.1021/ie049582+ – volume: 43 start-page: 7025 year: 2004 ident: 10.1002/aic.12392-BIB18|cit18 article-title: Monitoring of processes with multiple operating modes through multiple principal component analysis models publication-title: Ind Eng Chem Res. doi: 10.1021/ie0497893 – volume: 69 start-page: 35 year: 1991 ident: 10.1002/aic.12392-BIB5|cit5 article-title: Multivariate statistical monitoring of processes operating performance publication-title: Can J Chem Eng. doi: 10.1002/cjce.5450690105 – volume: 15 start-page: 1373 year: 2003 ident: 10.1002/aic.12392-BIB30|cit30 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput. doi: 10.1162/089976603321780317 – volume: 33 start-page: 244 year: 2009 ident: 10.1002/aic.12392-BIB24|cit24 article-title: Performance assessment of a novel fault diagnosis system based on support vector machines publication-title: Comput Chem Eng. doi: 10.1016/j.compchemeng.2008.08.008 – volume: 50 start-page: 243 year: 2000 ident: 10.1002/aic.12392-BIB10|cit10 article-title: Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis publication-title: Chemom Intell Lab Syst. doi: 10.1016/S0169-7439(99)00061-1 – volume: 52 start-page: 3501 year: 2006 ident: 10.1002/aic.12392-BIB15|cit15 article-title: Fault detection and diagnosis based on modified independent component analysis publication-title: AIChE J. doi: 10.1002/aic.10978 – volume-title: Advances in Neural Information Processing Systems 16 year: 2004 ident: 10.1002/aic.12392-BIB29|cit29 – volume: 17 start-page: 245 year: 1993 ident: 10.1002/aic.12392-BIB35|cit35 article-title: Plant-wide industrial process control problem publication-title: Comput Chem Eng. doi: 10.1016/0098-1354(93)80018-I – volume: 52 volume-title: Chemometrics Theory and Application, American Chemical Society Symposium Series year: 1977 ident: 10.1002/aic.12392-BIB27|cit27 – volume: 17 start-page: 480 year: 2003 ident: 10.1002/aic.12392-BIB7|cit7 article-title: Statistical process monitoring: basics and beyond publication-title: J Chemom. doi: 10.1002/cem.800 – volume: 28 start-page: 1389 year: 2004 ident: 10.1002/aic.12392-BIB23|cit23 article-title: Fault diagnosis based on Fisher discriminant analysis and support vector machines publication-title: Comput Chem Eng. doi: 10.1016/j.compchemeng.2003.10.002 – volume: 14 start-page: 467 year: 2004 ident: 10.1002/aic.12392-BIB13|cit13 article-title: Statistical process monitoring with independent component analysis publication-title: J Proc Cont. doi: 10.1016/j.jprocont.2003.09.004 – volume-title: Random Data: Analysis and Measurement Procedures year: 1986 ident: 10.1002/aic.12392-BIB32|cit32 – volume-title: Advances in Industrial Control year: 2000 ident: 10.1002/aic.12392-BIB6|cit6 – volume: 46 start-page: 3610 year: 2007 ident: 10.1002/aic.12392-BIB22|cit22 article-title: Cluster analysis for autocorrelated and cyclic chemical process data publication-title: Ind Eng Chem Res. doi: 10.1021/ie060544v – volume: 8 start-page: 1027 year: 2007 ident: 10.1002/aic.12392-BIB28|cit28 article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis publication-title: J Mach Learn Res. – volume: 48 start-page: 8585 year: 2009 ident: 10.1002/aic.12392-BIB34|cit34 article-title: Multiway Gaussian mixture model based multiphase batch process monitoring publication-title: Ind Eng Chem Res. doi: 10.1021/ie900479g – volume: 49 start-page: 969 year: 2003 ident: 10.1002/aic.12392-BIB12|cit12 article-title: Monitoring independent components for fault detection publication-title: AIChE J. doi: 10.1002/aic.690490414 – volume: 11 start-page: 613 year: 2003 ident: 10.1002/aic.12392-BIB11|cit11 article-title: Recursive partial least squares algorithms for monitoring complex industrial processess publication-title: Control Eng Pract. doi: 10.1016/S0967-0661(02)00096-5 – volume: 6 start-page: 205 year: 1996 ident: 10.1002/aic.12392-BIB36|cit36 article-title: Decentralized control of the Tennessee Eastman challenge process publication-title: J Proc Cont. doi: 10.1016/0959-1524(96)00031-5 – volume: 54 start-page: 1811 year: 2008 ident: 10.1002/aic.12392-BIB17|cit17 article-title: Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models publication-title: AIChE J. doi: 10.1002/aic.11515 – volume-title: Pattern Classification year: 2001 ident: 10.1002/aic.12392-BIB25|cit25 – volume: 24 start-page: 381 year: 2002 ident: 10.1002/aic.12392-BIB33|cit33 article-title: Unsupervised learning of finite mixture models publication-title: IEEE Trans Pattern Anal. Mach. Intell. doi: 10.1109/34.990138 – volume: 19 start-page: 949 year: 1995 ident: 10.1002/aic.12392-BIB37|cit37 article-title: Optimal steady-state operation of the Tennessee Eastman challenge process publication-title: Comput Chem Eng. doi: 10.1016/0098-1354(94)00043-N – volume-title: Advances in Neural Information Processing Systems 17 year: 2005 ident: 10.1002/aic.12392-BIB31|cit31 – volume: 6 start-page: 329 year: 1996 ident: 10.1002/aic.12392-BIB9|cit9 article-title: The process chemometrics approach to process monitoring and fault detection publication-title: J Proc Cont. doi: 10.1016/0959-1524(96)00009-1 – volume-title: Advanced Textbooks in Control and Signal Processing year: 2001 ident: 10.1002/aic.12392-BIB4|cit4 – volume: 38 start-page: 1478 year: 1999 ident: 10.1002/aic.12392-BIB20|cit20 article-title: Mixture principal component analysis models for process monitoring publication-title: Ind Eng Chem Res. doi: 10.1021/ie980577d – volume: 40 start-page: 826 year: 1994 ident: 10.1002/aic.12392-BIB1|cit1 article-title: Process monitoring and diagnosis by multiblock PLS methods publication-title: AIChE J. doi: 10.1002/aic.690400509 |
SSID | ssj0012782 |
Score | 2.3777556 |
Snippet | Complex chemical process is often corrupted with various types of faults and the fault‐free training data may not be available to build the normal operation... Complex chemical process is often corrupted with various types of faults and the fault-free training data may not be available to build the normal operation... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1817 |
SubjectTerms | Algorithms Applied sciences Chemical engineering chemical process monitoring Classification Clusters Construction Discriminant analysis Exact sciences and technology fault detection and classification Faults Gaussian mixture model localized Fisher discriminant analysis Mathematical models Monitoring Monitoring methods Monitoring systems Normal distribution Preserves Principal components analysis Safety stationarity testing Tennessee Eastman process |
Title | Localized Fisher discriminant analysis based complex chemical process monitoring |
URI | https://api.istex.fr/ark:/67375/WNG-JB52C4GS-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.12392 https://www.proquest.com/docview/877025002 https://www.proquest.com/docview/1671596113 https://www.proquest.com/docview/907171258 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9jvuiD32K3OaKI-NK7tE2aBJ_mxW0OHX5M3IMQkjSFMdeN3Xth7K_3nKStu-JAfCv0pG1yzkl-Jz35HUJeAmrggIJ13gbHcm6Zz5UAx-Ols0F7CyaA-x0fD-q9b3z_SBytkDfDWZjEDzFuuKFnxPkaHdy62dZv0lB77Ccw7WqcfzFXCwHRl5E6qiilSkzhEC4DTCgGViFWbo0tl9aiWzisl5gbaWcwPG2qa7EEPK_D17j-7NwjP4YvT2knJ5PF3E381R-kjv_Ztfvkbo9L6XYypAdkJXQPyZ1rbIWPyKcPuO4dX4WGpoLpFI_0prJg3Zzant6E4sLY0JirHi6p7xkJ6Hk6kkBP4yyCj3xMDnfeHU738r4gQ-4FBq1atbyxqq0bD8Ent0XVlkXNvHJMMx5jnVI3TsqgmG6dcNzWlQV9F41jVlRPyGp31oWnhMrKh6pVQoQ2cNZo57wMwtUQ3jhrrcjI60Ezxvdk5Vgz46dJNMulgTEycYwy8mIUPU8MHX8TehXVO0rYixNMaZPCfD_YNftvRTnlu1_N54xsLul_bFDyqoLu8YysDwZhenefGSUlYkkG73k-3gU_xZ8vtgtni5kpagnIsS6KKiP0BhmNwTUgTgXdj_Zxc4fM9vtpvFj7d9F1cjvtiGOy8QZZnV8swjOAVHO3GX3nFwr3G_Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QE48EaEQjEIIS7ZOomdxBKXstBuy3bFY1F7QZbtOFLVNq26u1LVX8_YTkIXUQlxi5RxkrFn7G-c8TcAbxA1METBIq6tpjFT1MQlR8djqVZWGIUm4PY79if56AfbO-SHK_C-OwsT-CH6DTfnGX6-dg7uNqQ3f7OGqiMzwHlX4AS85ip6O-b8j9968qgkLcrAFY4BMwKFpOMVoulm33RpNVpzHXvpsiPVDDuoDpUtlqDndQDrV6Dte_Cz-_aQeHI8WMz1wFz9Qev4v8rdh7stNCVbwZYewIptHsKda4SFj-DL2C19R1e2IqFmOnGnekNlsGZOVMtwQtzaWBGfrm4viWlJCch5OJVATv1E4h75GKbbn6bDUdzWZIgNd3GrKGtWqbLOK4PxJ1NJVqdJTk2pqaDMhzupqHRR2JKKWnPNVJ4pHPKk0lTx7AmsNmeNfQqkyIzN6pJzW1tGK6G1KSzXOUY4WinFI3jXDY00LV-5K5txIgPTciqxj6Tvowhe96LngaTjb0Jv_fj2Euri2GW1FVweTHbk3geeDtnOd_k1go0lA-gbpCzLUD0WwXpnEbL1-Jksi8LBSYrvedXfRVd1_19UY88WM5nkBYLHPEmyCMgNMsLF1wg6S1TfG8jNCsmt3aG_ePbvoi_h1mi6P5bj3cnndbgdNshd7vFzWJ1fLOwLRFhzveEd6Re0ziAS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrYTgAOUlQqE1CCEu2eZhx4k4tVu2D8qqQBE9IFm2Y0tVIV11d6Wqv56xnaRdRCXELVLGSWbssb9xxt8AvEHUQBEFV7E1KompTHRcMnQ8milpKi1xCLj9jk_jYu8bPThhJ0vwvjsLE_gh-g035xl-vnYOPqnt5jVpqDzVA5x2K5x_V2iRVK5uw86XnjsqzXgZqMIxXkackHa0Qkm22TddWIxWnF0vXXKknKJ9bChssYA8b-JXvwCNHsCP7tND3snZYD5TA331B6vjf-q2CvdbYEq2wkh6CEumeQT3btAVPoajQ7fwnV6ZmoSK6cSd6Q11wZoZkS2_CXErY018srq5JLqlJCCTcCaB_PLTiHvkEzgefTge7sVtRYZYMxe1VqWltSxtUWuMPqlMc5ulRaJLhfanPtjJqlpxbsqksoopKotcYoentUoky5_CcnPemGdAeK5NbkvGjDU0qSulNDdMFRjfKCkli-Bd1zNCt2zlrmjGTxF4ljOBNhLeRhG87kUngaLjb0Jvfff2EvLizOW0cSa-j3fFwTbLhnT3q_gcwfpC__cNMprnqB6NYK0bEKL196koOXdgMsH3vOrvoqO6vy-yMefzqUgLjtCxSNM8AnKLTOWia4ScJarvx8ftComt_aG_eP7vohtw52hnJA73xx_X4G7YHXeJxy9geXYxNy8RXs3Uunej3z_wHsE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localized+Fisher+discriminant+analysis+based+complex+chemical+process+monitoring&rft.jtitle=AIChE+journal&rft.au=Yu%2C+Jie&rft.date=2011-07-01&rft.issn=0001-1541&rft.volume=57&rft.issue=7&rft.spage=1817&rft.epage=1817&rft_id=info:doi/10.1002%2Faic.12392&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |