Localized Fisher discriminant analysis based complex chemical process monitoring

Complex chemical process is often corrupted with various types of faults and the fault‐free training data may not be available to build the normal operation model. Therefore, the supervised monitoring methods such as principal component analysis (PCA), partial least squares (PLS), and independent co...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 57; no. 7; pp. 1817 - 1828
Main Author Yu, Jie
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2011
Wiley
American Institute of Chemical Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Complex chemical process is often corrupted with various types of faults and the fault‐free training data may not be available to build the normal operation model. Therefore, the supervised monitoring methods such as principal component analysis (PCA), partial least squares (PLS), and independent component analysis (ICA) are not applicable in such situations. On the other hand, the traditional unsupervised algorithms like Fisher discriminant analysis (FDA) may not take into account the multimodality within the abnormal data and thus their capability of fault detection and classification can be significantly degraded. In this study, a novel localized Fisher discriminant analysis (LFDA) based process monitoring approach is proposed to monitor the processes containing multiple types of steady‐state or dynamic faults. The stationary testing and Gaussian mixture model are integrated with LFDA to remove any nonstationarity and isolate the normal and multiple faulty clusters during the preprocessing steps. Then the localized between‐class and within‐class scatter mattress are computed for the generalized eigenvalue decomposition to extract the localized Fisher discriminant directions that can not only separate the normal and faulty data with maximized margin but also preserve the multimodality within the multiple faulty clusters. In this way, different types of process faults can be well classified using the discriminant function index. The proposed LFDA monitoring approach is applied to the Tennessee Eastman process and compared with the traditional FDA method. The monitoring results in three different test scenarios demonstrate the superiority of the LFDA approach in detecting and classifying multiple types of faults with high accuracy and sensitivity. © 2010 American Institute of Chemical Engineers AIChE J, 2011
AbstractList Complex chemical process is often corrupted with various types of faults and the fault-free training data may not be available to build the normal operation model. Therefore, the supervised monitoring methods such as principal component analysis (PCA), partial least squares (PLS), and independent component analysis (ICA) are not applicable in such situations. On the other hand, the traditional unsupervised algorithms like Fisher discriminant analysis (FDA) may not take into account the multimodality within the abnormal data and thus their capability of fault detection and classification can be significantly degraded. In this study, a novel localized Fisher discriminant analysis (LFDA) based process monitoring approach is proposed to monitor the processes containing multiple types of steady-state or dynamic faults. The stationary testing and Gaussian mixture model are integrated with LFDA to remove any nonstationarity and isolate the normal and multiple faulty clusters during the preprocessing steps. Then the localized between-class and within-class scatter mattress are computed for the generalized eigenvalue decomposition to extract the localized Fisher discriminant directions that can not only separate the normal and faulty data with maximized margin but also preserve the multimodality within the multiple faulty clusters. In this way, different types of process faults can be well classified using the discriminant function index. The proposed LFDA monitoring approach is applied to the Tennessee Eastman process and compared with the traditional FDA method. The monitoring results in three different test scenarios demonstrate the superiority of the LFDA approach in detecting and classifying multiple types of faults with high accuracy and sensitivity.
Complex chemical process is often corrupted with various types of faults and the fault‐free training data may not be available to build the normal operation model. Therefore, the supervised monitoring methods such as principal component analysis (PCA), partial least squares (PLS), and independent component analysis (ICA) are not applicable in such situations. On the other hand, the traditional unsupervised algorithms like Fisher discriminant analysis (FDA) may not take into account the multimodality within the abnormal data and thus their capability of fault detection and classification can be significantly degraded. In this study, a novel localized Fisher discriminant analysis (LFDA) based process monitoring approach is proposed to monitor the processes containing multiple types of steady‐state or dynamic faults. The stationary testing and Gaussian mixture model are integrated with LFDA to remove any nonstationarity and isolate the normal and multiple faulty clusters during the preprocessing steps. Then the localized between‐class and within‐class scatter mattress are computed for the generalized eigenvalue decomposition to extract the localized Fisher discriminant directions that can not only separate the normal and faulty data with maximized margin but also preserve the multimodality within the multiple faulty clusters. In this way, different types of process faults can be well classified using the discriminant function index. The proposed LFDA monitoring approach is applied to the Tennessee Eastman process and compared with the traditional FDA method. The monitoring results in three different test scenarios demonstrate the superiority of the LFDA approach in detecting and classifying multiple types of faults with high accuracy and sensitivity. © 2010 American Institute of Chemical Engineers AIChE J, 2011
Complex chemical process is often corrupted with various types of faults and the fault-free training data may not be available to build the normal operation model. Therefore, the supervised monitoring methods such as principal component analysis (PCA), partial least squares (PLS), and independent component analysis (ICA) are not applicable in such situations. On the other hand, the traditional unsupervised algorithms like Fisher discriminant analysis (FDA) may not take into account the multimodality within the abnormal data and thus their capability of fault detection and classification can be significantly degraded. In this study, a novel localized Fisher discriminant analysis (LFDA) based process monitoring approach is proposed to monitor the processes containing multiple types of steady-state or dynamic faults. The stationary testing and Gaussian mixture model are integrated with LFDA to remove any nonstationarity and isolate the normal and multiple faulty clusters during the preprocessing steps. Then the localized between-class and within-class scatter mattress are computed for the generalized eigenvalue decomposition to extract the localized Fisher discriminant directions that can not only separate the normal and faulty data with maximized margin but also preserve the multimodality within the multiple faulty clusters. In this way, different types of process faults can be well classified using the discriminant function index. The proposed LFDA monitoring approach is applied to the Tennessee Eastman process and compared with the traditional FDA method. The monitoring results in three different test scenarios demonstrate the superiority of the LFDA approach in detecting and classifying multiple types of faults with high accuracy and sensitivity. [PUBLICATION ABSTRACT]
Author Yu, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Yu
  fullname: Yu, Jie
  email: j.yu@shell.com
  organization: Dept. of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24335724$$DView record in Pascal Francis
BookMark eNp90V1LHDEUBuAgFlxtL_wHQ0G0F6P5mEwml7rUrWXpBxV6Gc5kMho7k6w5s9Ttr2_atV4I9SokPG84vGef7IYYHCGHjJ4ySvkZeHvKuNB8h8yYrFQpNZW7ZEYpZWV-YHtkH_Eu37hq-Ix8WUYLg__luuLS461LRefRJj_6AGEqIMCwQY9FC5iJjeNqcA-FvXWjz7lilaJ1iMUYg59i8uHmNXnVw4DuzeN5QK4v31_PP5TLz4ur-fmytFJwXuqmrzpo-rqzWjUVMNFzVlPbtFTTSkoqFdddq5RrqO5b2VZQCwClWddSkOKAHG-_zRPcrx1OZsxzu2GA4OIajaaKKcZlk-XJi5LVikldMyYyffuM3sV1yhWgaZSiXOaGMzp6RIC5gj5BsB7NKncGaWN4JUSevcru3dbZFBGT658Io-bPrkzelfm7q2zPnlnrJ5h8DFMCP7yU-OkHt_n_1-b8av4vUW4THif38JSA9MPUSihpvn9amI8Xks-rxTfzVfwGse60uA
CODEN AICEAC
CitedBy_id crossref_primary_10_1016_j_conengprac_2012_11_013
crossref_primary_10_1155_2014_487582
crossref_primary_10_1016_j_patcog_2011_08_021
crossref_primary_10_1016_j_ces_2012_07_018
crossref_primary_10_1016_j_jprocont_2020_06_001
crossref_primary_10_1016_j_asoc_2022_109295
crossref_primary_10_1016_j_psep_2013_11_003
crossref_primary_10_1021_acs_iecr_9b02391
crossref_primary_10_3390_en15093198
crossref_primary_10_1021_acs_iecr_7b02419
crossref_primary_10_1002_cjce_24149
crossref_primary_10_1002_aic_14119
crossref_primary_10_1007_s00530_014_0413_x
crossref_primary_10_1016_j_jfranklin_2014_12_002
crossref_primary_10_1089_ees_2017_0454
crossref_primary_10_1021_acs_iecr_8b05847
crossref_primary_10_1109_TASE_2015_2417882
crossref_primary_10_1002_aic_13816
crossref_primary_10_1016_j_psep_2021_09_032
crossref_primary_10_1021_ie3020186
crossref_primary_10_1155_2013_707953
crossref_primary_10_5194_gmd_10_3391_2017
crossref_primary_10_1016_j_ces_2013_01_058
crossref_primary_10_1016_j_chemolab_2014_03_002
crossref_primary_10_1016_j_jprocont_2020_01_004
crossref_primary_10_3182_20120710_4_SG_2026_00086
crossref_primary_10_3182_20131218_3_IN_2045_00017
crossref_primary_10_1016_j_compchemeng_2016_04_011
crossref_primary_10_1016_j_cjche_2015_09_007
crossref_primary_10_1155_2015_984768
crossref_primary_10_1109_TIE_2014_2308133
crossref_primary_10_1021_acs_iecr_9b01325
crossref_primary_10_1109_TCST_2021_3074427
crossref_primary_10_1016_j_chemolab_2014_08_008
crossref_primary_10_1016_j_ces_2011_10_011
crossref_primary_10_1016_j_compchemeng_2020_107023
crossref_primary_10_1016_j_isatra_2021_04_042
crossref_primary_10_1016_j_patcog_2012_07_002
crossref_primary_10_1002_aic_12794
crossref_primary_10_1016_j_chemolab_2015_08_012
crossref_primary_10_1016_j_conengprac_2013_04_007
crossref_primary_10_1021_ie400418c
crossref_primary_10_1016_j_jprocont_2020_05_015
crossref_primary_10_1155_2015_467195
crossref_primary_10_1109_ACCESS_2020_2995399
crossref_primary_10_1016_j_chemolab_2016_07_014
crossref_primary_10_1021_acs_iecr_8b03009
crossref_primary_10_1021_acs_iecr_7b00027
crossref_primary_10_1109_TII_2019_2901931
crossref_primary_10_1021_ie302042c
crossref_primary_10_1002_aic_14051
crossref_primary_10_1016_j_neucom_2018_01_028
crossref_primary_10_1021_acs_iecr_5b03446
crossref_primary_10_1007_s00521_021_06575_6
crossref_primary_10_1016_j_petrol_2020_107723
crossref_primary_10_1016_j_engappai_2012_09_003
crossref_primary_10_1109_ACCESS_2018_2795535
crossref_primary_10_3390_app12073388
crossref_primary_10_1016_j_chemolab_2013_02_001
crossref_primary_10_1021_acs_iecr_7b00156
crossref_primary_10_3390_act13110440
crossref_primary_10_3390_machines11121066
crossref_primary_10_4304_jsw_9_2_287_292
crossref_primary_10_1021_acs_iecr_2c03137
crossref_primary_10_1021_ie400544q
crossref_primary_10_1016_j_engappai_2012_02_015
crossref_primary_10_1002_cem_2978
crossref_primary_10_1007_s00521_022_08017_3
crossref_primary_10_1021_ie301002h
crossref_primary_10_1016_j_compchemeng_2012_03_004
crossref_primary_10_1252_jcej_17we011
crossref_primary_10_1016_j_chemolab_2012_04_008
crossref_primary_10_1016_j_compchemeng_2013_05_019
crossref_primary_10_1016_j_engappai_2024_108872
crossref_primary_10_1155_2020_5281512
crossref_primary_10_1021_acs_iecr_5b02266
crossref_primary_10_1007_s00521_020_05171_4
crossref_primary_10_1016_j_chemolab_2017_06_010
crossref_primary_10_3390_pr5030035
crossref_primary_10_1016_j_jprocont_2015_12_005
crossref_primary_10_1016_j_cjche_2014_10_006
crossref_primary_10_1080_00224065_2019_1569954
crossref_primary_10_1021_acs_iecr_1c01271
crossref_primary_10_1016_j_jprocont_2012_02_012
crossref_primary_10_1021_ie1017282
crossref_primary_10_1002_cjce_21881
crossref_primary_10_1021_acs_iecr_7b00057
crossref_primary_10_1109_ACCESS_2017_2756872
crossref_primary_10_1109_ACCESS_2020_3003095
crossref_primary_10_1002_aic_14261
crossref_primary_10_1016_j_conengprac_2013_08_016
crossref_primary_10_3390_pr12071382
crossref_primary_10_1007_s11042_018_6887_3
crossref_primary_10_1021_acs_iecr_9b04112
crossref_primary_10_1002_aic_14013
crossref_primary_10_1016_j_jprocont_2021_03_001
crossref_primary_10_1007_s13369_018_3072_y
crossref_primary_10_1016_j_compchemeng_2018_06_017
crossref_primary_10_1016_j_chemolab_2022_104624
crossref_primary_10_1021_ie3026345
crossref_primary_10_1007_s00170_018_2674_6
crossref_primary_10_1109_TCST_2012_2217966
crossref_primary_10_1109_TNNLS_2019_2920903
Cites_doi 10.1016/j.jprocont.2005.12.002
10.1002/aic.10024
10.1002/aic.10325
10.1016/0967-0661(95)00014-L
10.1002/aic.690400809
10.1016/j.compchemeng.2003.09.031
10.1016/S0098-1354(97)00262-7
10.1021/ie049582+
10.1021/ie0497893
10.1002/cjce.5450690105
10.1162/089976603321780317
10.1016/j.compchemeng.2008.08.008
10.1016/S0169-7439(99)00061-1
10.1002/aic.10978
10.1016/0098-1354(93)80018-I
10.1002/cem.800
10.1016/j.compchemeng.2003.10.002
10.1016/j.jprocont.2003.09.004
10.1021/ie060544v
10.1021/ie900479g
10.1002/aic.690490414
10.1016/S0967-0661(02)00096-5
10.1016/0959-1524(96)00031-5
10.1002/aic.11515
10.1109/34.990138
10.1016/0098-1354(94)00043-N
10.1016/0959-1524(96)00009-1
10.1021/ie980577d
10.1002/aic.690400509
ContentType Journal Article
Copyright Copyright © 2010 American Institute of Chemical Engineers (AIChE)
2015 INIST-CNRS
Copyright American Institute of Chemical Engineers Jul 2011
Copyright_xml – notice: Copyright © 2010 American Institute of Chemical Engineers (AIChE)
– notice: 2015 INIST-CNRS
– notice: Copyright American Institute of Chemical Engineers Jul 2011
DBID BSCLL
AAYXX
CITATION
IQODW
7ST
7U5
8FD
C1K
L7M
SOI
7QH
7UA
F1W
H95
L.G
DOI 10.1002/aic.12392
DatabaseName Istex
CrossRef
Pascal-Francis
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
Aqualine
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Solid State and Superconductivity Abstracts
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1547-5905
EndPage 1828
ExternalDocumentID 2399997091
24335724
10_1002_aic_12392
AIC12392
ark_67375_WNG_JB52C4GS_Q
Genre article
Feature
GeographicLocations USA, Tennessee
GeographicLocations_xml – name: USA, Tennessee
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAIHA
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABJIA
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEUYN
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
PHGZM
PHGZT
PQGLB
AAYXX
CITATION
IQODW
7ST
7U5
8FD
C1K
L7M
SOI
7QH
7UA
F1W
H95
L.G
ID FETCH-LOGICAL-c5322-98f4da8f6dc9784a13f2160c8b09045505729db77e809fb5b4a63aa791db0a53
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Jul 11 12:13:28 EDT 2025
Fri Jul 11 02:28:39 EDT 2025
Fri Jul 25 10:59:07 EDT 2025
Mon Jul 21 09:17:35 EDT 2025
Tue Jul 01 01:40:28 EDT 2025
Thu Apr 24 22:50:23 EDT 2025
Wed Aug 20 07:27:23 EDT 2025
Wed Oct 30 09:54:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords chemical process monitoring
localized Fisher discriminant analysis
Sensitivity analysis
Independent component analysis
Extract
stationarity testing
Algorithm
Modeling
Steady state
Gaussian mixture model
fault detection and classification
Surveillance
Tennessee Eastman process
Failure detection
Partial least squares
Principal component analysis
Language English
License http://doi.wiley.com/10.1002/tdm_license_1
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5322-98f4da8f6dc9784a13f2160c8b09045505729db77e809fb5b4a63aa791db0a53
Notes ArticleID:AIC12392
istex:E4E2121A9BACE63470114392D496DD3A7B8106B9
ark:/67375/WNG-JB52C4GS-Q
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 877025002
PQPubID 7879
PageCount 12
ParticipantIDs proquest_miscellaneous_907171258
proquest_miscellaneous_1671596113
proquest_journals_877025002
pascalfrancis_primary_24335724
crossref_primary_10_1002_aic_12392
crossref_citationtrail_10_1002_aic_12392
wiley_primary_10_1002_aic_12392_AIC12392
istex_primary_ark_67375_WNG_JB52C4GS_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
American Institute of Chemical Engineers
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: American Institute of Chemical Engineers
References Choi SW, Park JH, Lee IB. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput Chem Eng. 2004; 28: 1377-1387.
Lee JM, Yoo CK, Lee IB. Statistical process monitoring with independent component analysis. J Proc Cont. 2004; 14: 467-485.
Bendat JS, Piersol AG. Random Data: Analysis and Measurement Procedures. New York, NY: Wiley, 1986.
Wise B, Gallagher N. The process chemometrics approach to process monitoring and fault detection. J Proc Cont. 1996; 6: 329-348.
Beaver S, Palazoglu A, Romagnoli JA. Cluster analysis for autocorrelated and cyclic chemical process data. Ind Eng Chem Res. 2007; 46: 3610-3622.
Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003; 15: 1373-1396.
MacGregor JF, Jaeckle C, Kiparissides C, Koutoudi M. Process monitoring and diagnosis by multiblock PLS methods. AIChE J. 1994; 40: 826-838.
Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J Mach Learn Res. 2007; 8: 1027-1061.
Ricker NL. Decentralized control of the Tennessee Eastman challenge process. J Proc Cont. 1996; 6: 205-221.
Chen J, Liu J. Mixture principal component analysis models for process monitoring. Ind Eng Chem Res. 1999; 38: 1478-1488.
Yélamos I, Escudero G, Graells M, Puigjaner L. Performance assessment of a novel fault diagnosis system based on support vector machines. Comput Chem Eng. 2009; 33: 244-255.
Albazzaz H, Wang XZ. Statistical process control charts for batch operations based on independent component analysis. Ind Eng Chem Res. 2004; 43: 6731-6741.
Yu J, Qin SJ. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008; 54: 1811-1829.
Qin SJ. Recursive PLS algorithms for adaptive data modeling. Comput Chem Eng. 1998; 22: 503-514.
Wang X, Kruger U, Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processess. Control Eng Pract. 2003; 11: 613-632.
Lee JM, Qin SJ, Lee IB. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006; 52: 3501-3514.
Yu J, Qin SJ. Multiway Gaussian mixture model based multiphase batch process monitoring. Ind Eng Chem Res. 2009; 48: 8585-8594.
Zhao SJ, Zhang J, Xu YM. Performance monitoring of processes with multiple operating modes through multiple PLS models. J Proc Cont. 2006; 16: 763-772.
He QP, Qin SJ, Wang J. A new fault diagnosis method using fault directions in Fisher discriminant analysis. AIChE J. 2005; 51: 555-571.
Chiang L, Russell E, Braatz R. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom Intell Lab Syst. 2000; 50: 243-252.
Duda RO, Hart PE, Stork DG. Pattern Classification 2nd ed. New York, NY: Wiley, 2001.
Kresta JV, MacGregor JF, Marlin TE. Multivariate statistical monitoring of processes operating performance. Can J Chem Eng. 1991; 69: 35-47.
Lu N, Gao F, Wang F. Sub-PCA modeling and on-line monitoring strategy for batch processes. AIChE J. 2004; 50: 255-259.
Downs JJ, Vogel EF. Plant-wide industrial process control problem. Comput Chem Eng. 1993; 17: 245-255.
Zhao SJ, Zhang J, Xu YM. Monitoring of processes with multiple operating modes through multiple principal component analysis models. Ind Eng Chem Res. 2004; 43: 7025-7035.
Qin SJ. Statistical process monitoring: basics and beyond. J Chemom. 2003; 17: 480-502.
MacGregor JF, Kourti T. Statistical process control of multivariate processes. Control Eng Pract. 1995; 3: 403-414.
Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE J. 2003; 49: 969-976.
Chiang L, Kotanchek M, Kordon A. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput Chem Eng. 2004; 28: 1389-1401.
Nomikos P, MacGregor JF. Monitoring of batch processes using multiway principal component analysis. AIChE J. 1994; 40: 1361-1375.
Figueiredo MAF, Jain AK. Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal. Mach. Intell. 2002; 24: 381-396.
Ricker NL. Optimal steady-state operation of the Tennessee Eastman challenge process. Comput Chem Eng. 1995; 19: 949-959.
2004; 43
2006; 52
2004; 28
2006; 16
2000; 50
2003; 15
2003; 17
2008; 54
2005
2004
1995; 19
1995; 3
1994; 40
1998; 22
2009; 48
2003; 11
2009; 33
2004; 50
1991; 69
1993; 17
2001
2000
2004; 14
1999; 38
2002; 24
2005; 51
2007; 8
1986
2003; 49
1977; 52
2007; 46
1996; 6
Albazzaz (10.1002/aic.12392-BIB14|cit14) 2004; 43
Belkin (10.1002/aic.12392-BIB30|cit30) 2003; 15
Chiang (10.1002/aic.12392-BIB23|cit23) 2004; 28
Lee (10.1002/aic.12392-BIB13|cit13) 2004; 14
Zelnik-Manor (10.1002/aic.12392-BIB31|cit31) 2005
Zhao (10.1002/aic.12392-BIB19|cit19) 2006; 16
Yélamos (10.1002/aic.12392-BIB24|cit24) 2009; 33
Qin (10.1002/aic.12392-BIB3|cit3) 1998; 22
Beaver (10.1002/aic.12392-BIB22|cit22) 2007; 46
Lee (10.1002/aic.12392-BIB15|cit15) 2006; 52
Yu (10.1002/aic.12392-BIB17|cit17) 2008; 54
Wang (10.1002/aic.12392-BIB11|cit11) 2003; 11
MacGregor (10.1002/aic.12392-BIB1|cit1) 1994; 40
Kano (10.1002/aic.12392-BIB12|cit12) 2003; 49
Duda (10.1002/aic.12392-BIB25|cit25) 2001
Ricker (10.1002/aic.12392-BIB37|cit37) 1995; 19
Chiang (10.1002/aic.12392-BIB10|cit10) 2000; 50
Figueiredo (10.1002/aic.12392-BIB33|cit33) 2002; 24
Downs (10.1002/aic.12392-BIB35|cit35) 1993; 17
He (10.1002/aic.12392-BIB26|cit26) 2005; 51
Nomikos (10.1002/aic.12392-BIB8|cit8) 1994; 40
Chiang (10.1002/aic.12392-BIB4|cit4) 2001
Russell (10.1002/aic.12392-BIB6|cit6) 2000
Bendat (10.1002/aic.12392-BIB32|cit32) 1986
Choi (10.1002/aic.12392-BIB16|cit16) 2004; 28
Yu (10.1002/aic.12392-BIB34|cit34) 2009; 48
Sugiyama (10.1002/aic.12392-BIB28|cit28) 2007; 8
Ricker (10.1002/aic.12392-BIB36|cit36) 1996; 6
Qin (10.1002/aic.12392-BIB7|cit7) 2003; 17
Kresta (10.1002/aic.12392-BIB5|cit5) 1991; 69
Lu (10.1002/aic.12392-BIB21|cit21) 2004; 50
Wise (10.1002/aic.12392-BIB9|cit9) 1996; 6
MacGregor (10.1002/aic.12392-BIB2|cit2) 1995; 3
Chen (10.1002/aic.12392-BIB20|cit20) 1999; 38
Wold (10.1002/aic.12392-BIB27|cit27) 1977; 52
He (10.1002/aic.12392-BIB29|cit29) 2004
Zhao (10.1002/aic.12392-BIB18|cit18) 2004; 43
References_xml – reference: Yu J, Qin SJ. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008; 54: 1811-1829.
– reference: Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J Mach Learn Res. 2007; 8: 1027-1061.
– reference: Kresta JV, MacGregor JF, Marlin TE. Multivariate statistical monitoring of processes operating performance. Can J Chem Eng. 1991; 69: 35-47.
– reference: He QP, Qin SJ, Wang J. A new fault diagnosis method using fault directions in Fisher discriminant analysis. AIChE J. 2005; 51: 555-571.
– reference: Wang X, Kruger U, Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processess. Control Eng Pract. 2003; 11: 613-632.
– reference: Figueiredo MAF, Jain AK. Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal. Mach. Intell. 2002; 24: 381-396.
– reference: Zhao SJ, Zhang J, Xu YM. Performance monitoring of processes with multiple operating modes through multiple PLS models. J Proc Cont. 2006; 16: 763-772.
– reference: Lee JM, Yoo CK, Lee IB. Statistical process monitoring with independent component analysis. J Proc Cont. 2004; 14: 467-485.
– reference: Duda RO, Hart PE, Stork DG. Pattern Classification 2nd ed. New York, NY: Wiley, 2001.
– reference: Yu J, Qin SJ. Multiway Gaussian mixture model based multiphase batch process monitoring. Ind Eng Chem Res. 2009; 48: 8585-8594.
– reference: Beaver S, Palazoglu A, Romagnoli JA. Cluster analysis for autocorrelated and cyclic chemical process data. Ind Eng Chem Res. 2007; 46: 3610-3622.
– reference: Choi SW, Park JH, Lee IB. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput Chem Eng. 2004; 28: 1377-1387.
– reference: Lu N, Gao F, Wang F. Sub-PCA modeling and on-line monitoring strategy for batch processes. AIChE J. 2004; 50: 255-259.
– reference: Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003; 15: 1373-1396.
– reference: Downs JJ, Vogel EF. Plant-wide industrial process control problem. Comput Chem Eng. 1993; 17: 245-255.
– reference: Wise B, Gallagher N. The process chemometrics approach to process monitoring and fault detection. J Proc Cont. 1996; 6: 329-348.
– reference: Chiang L, Kotanchek M, Kordon A. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput Chem Eng. 2004; 28: 1389-1401.
– reference: Ricker NL. Optimal steady-state operation of the Tennessee Eastman challenge process. Comput Chem Eng. 1995; 19: 949-959.
– reference: Ricker NL. Decentralized control of the Tennessee Eastman challenge process. J Proc Cont. 1996; 6: 205-221.
– reference: MacGregor JF, Kourti T. Statistical process control of multivariate processes. Control Eng Pract. 1995; 3: 403-414.
– reference: Qin SJ. Recursive PLS algorithms for adaptive data modeling. Comput Chem Eng. 1998; 22: 503-514.
– reference: Zhao SJ, Zhang J, Xu YM. Monitoring of processes with multiple operating modes through multiple principal component analysis models. Ind Eng Chem Res. 2004; 43: 7025-7035.
– reference: Qin SJ. Statistical process monitoring: basics and beyond. J Chemom. 2003; 17: 480-502.
– reference: Nomikos P, MacGregor JF. Monitoring of batch processes using multiway principal component analysis. AIChE J. 1994; 40: 1361-1375.
– reference: Yélamos I, Escudero G, Graells M, Puigjaner L. Performance assessment of a novel fault diagnosis system based on support vector machines. Comput Chem Eng. 2009; 33: 244-255.
– reference: Chen J, Liu J. Mixture principal component analysis models for process monitoring. Ind Eng Chem Res. 1999; 38: 1478-1488.
– reference: Chiang L, Russell E, Braatz R. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom Intell Lab Syst. 2000; 50: 243-252.
– reference: Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE J. 2003; 49: 969-976.
– reference: Albazzaz H, Wang XZ. Statistical process control charts for batch operations based on independent component analysis. Ind Eng Chem Res. 2004; 43: 6731-6741.
– reference: MacGregor JF, Jaeckle C, Kiparissides C, Koutoudi M. Process monitoring and diagnosis by multiblock PLS methods. AIChE J. 1994; 40: 826-838.
– reference: Bendat JS, Piersol AG. Random Data: Analysis and Measurement Procedures. New York, NY: Wiley, 1986.
– reference: Lee JM, Qin SJ, Lee IB. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006; 52: 3501-3514.
– volume: 38
  start-page: 1478
  year: 1999
  end-page: 1488
  article-title: Mixture principal component analysis models for process monitoring
  publication-title: Ind Eng Chem Res.
– volume: 40
  start-page: 826
  year: 1994
  end-page: 838
  article-title: Process monitoring and diagnosis by multiblock PLS methods
  publication-title: AIChE J.
– volume: 28
  start-page: 1377
  year: 2004
  end-page: 1387
  article-title: Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
  publication-title: Comput Chem Eng.
– volume: 19
  start-page: 949
  year: 1995
  end-page: 959
  article-title: Optimal steady‐state operation of the Tennessee Eastman challenge process
  publication-title: Comput Chem Eng.
– volume: 49
  start-page: 969
  year: 2003
  end-page: 976
  article-title: Monitoring independent components for fault detection
  publication-title: AIChE J.
– year: 2005
– volume: 28
  start-page: 1389
  year: 2004
  end-page: 1401
  article-title: Fault diagnosis based on Fisher discriminant analysis and support vector machines
  publication-title: Comput Chem Eng.
– year: 2001
– volume: 11
  start-page: 613
  year: 2003
  end-page: 632
  article-title: Recursive partial least squares algorithms for monitoring complex industrial processess
  publication-title: Control Eng Pract.
– volume: 17
  start-page: 480
  year: 2003
  end-page: 502
  article-title: Statistical process monitoring: basics and beyond
  publication-title: J Chemom.
– volume: 43
  start-page: 7025
  year: 2004
  end-page: 7035
  article-title: Monitoring of processes with multiple operating modes through multiple principal component analysis models
  publication-title: Ind Eng Chem Res.
– volume: 48
  start-page: 8585
  year: 2009
  end-page: 8594
  article-title: Multiway Gaussian mixture model based multiphase batch process monitoring
  publication-title: Ind Eng Chem Res.
– volume: 15
  start-page: 1373
  year: 2003
  end-page: 1396
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput.
– year: 2000
– volume: 33
  start-page: 244
  year: 2009
  end-page: 255
  article-title: Performance assessment of a novel fault diagnosis system based on support vector machines
  publication-title: Comput Chem Eng.
– volume: 54
  start-page: 1811
  year: 2008
  end-page: 1829
  article-title: Multimode process monitoring with Bayesian inference‐based finite Gaussian mixture models
  publication-title: AIChE J.
– volume: 22
  start-page: 503
  year: 1998
  end-page: 514
  article-title: Recursive PLS algorithms for adaptive data modeling
  publication-title: Comput Chem Eng.
– volume: 40
  start-page: 1361
  year: 1994
  end-page: 1375
  article-title: Monitoring of batch processes using multiway principal component analysis
  publication-title: AIChE J.
– volume: 52
  start-page: 3501
  year: 2006
  end-page: 3514
  article-title: Fault detection and diagnosis based on modified independent component analysis
  publication-title: AIChE J.
– volume: 50
  start-page: 255
  year: 2004
  end-page: 259
  article-title: Sub‐PCA modeling and on‐line monitoring strategy for batch processes
  publication-title: AIChE J.
– year: 1986
– volume: 8
  start-page: 1027
  year: 2007
  end-page: 1061
  article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
  publication-title: J Mach Learn Res.
– volume: 46
  start-page: 3610
  year: 2007
  end-page: 3622
  article-title: Cluster analysis for autocorrelated and cyclic chemical process data
  publication-title: Ind Eng Chem Res.
– volume: 14
  start-page: 467
  year: 2004
  end-page: 485
  article-title: Statistical process monitoring with independent component analysis
  publication-title: J Proc Cont.
– volume: 52
  year: 1977
– volume: 43
  start-page: 6731
  year: 2004
  end-page: 6741
  article-title: Statistical process control charts for batch operations based on independent component analysis
  publication-title: Ind Eng Chem Res.
– volume: 51
  start-page: 555
  year: 2005
  end-page: 571
  article-title: A new fault diagnosis method using fault directions in Fisher discriminant analysis
  publication-title: AIChE J.
– volume: 69
  start-page: 35
  year: 1991
  end-page: 47
  article-title: Multivariate statistical monitoring of processes operating performance
  publication-title: Can J Chem Eng.
– year: 2004
– volume: 6
  start-page: 205
  year: 1996
  end-page: 221
  article-title: Decentralized control of the Tennessee Eastman challenge process
  publication-title: J Proc Cont.
– volume: 6
  start-page: 329
  year: 1996
  end-page: 348
  article-title: The process chemometrics approach to process monitoring and fault detection
  publication-title: J Proc Cont.
– volume: 3
  start-page: 403
  year: 1995
  end-page: 414
  article-title: Statistical process control of multivariate processes
  publication-title: Control Eng Pract.
– volume: 24
  start-page: 381
  year: 2002
  end-page: 396
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
– volume: 16
  start-page: 763
  year: 2006
  end-page: 772
  article-title: Performance monitoring of processes with multiple operating modes through multiple PLS models
  publication-title: J Proc Cont.
– volume: 50
  start-page: 243
  year: 2000
  end-page: 252
  article-title: Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
  publication-title: Chemom Intell Lab Syst.
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  article-title: Plant‐wide industrial process control problem
  publication-title: Comput Chem Eng.
– volume: 16
  start-page: 763
  year: 2006
  ident: 10.1002/aic.12392-BIB19|cit19
  article-title: Performance monitoring of processes with multiple operating modes through multiple PLS models
  publication-title: J Proc Cont.
  doi: 10.1016/j.jprocont.2005.12.002
– volume: 50
  start-page: 255
  year: 2004
  ident: 10.1002/aic.12392-BIB21|cit21
  article-title: Sub-PCA modeling and on-line monitoring strategy for batch processes
  publication-title: AIChE J.
  doi: 10.1002/aic.10024
– volume: 51
  start-page: 555
  year: 2005
  ident: 10.1002/aic.12392-BIB26|cit26
  article-title: A new fault diagnosis method using fault directions in Fisher discriminant analysis
  publication-title: AIChE J.
  doi: 10.1002/aic.10325
– volume: 3
  start-page: 403
  year: 1995
  ident: 10.1002/aic.12392-BIB2|cit2
  article-title: Statistical process control of multivariate processes
  publication-title: Control Eng Pract.
  doi: 10.1016/0967-0661(95)00014-L
– volume: 40
  start-page: 1361
  year: 1994
  ident: 10.1002/aic.12392-BIB8|cit8
  article-title: Monitoring of batch processes using multiway principal component analysis
  publication-title: AIChE J.
  doi: 10.1002/aic.690400809
– volume: 28
  start-page: 1377
  year: 2004
  ident: 10.1002/aic.12392-BIB16|cit16
  article-title: Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
  publication-title: Comput Chem Eng.
  doi: 10.1016/j.compchemeng.2003.09.031
– volume: 22
  start-page: 503
  year: 1998
  ident: 10.1002/aic.12392-BIB3|cit3
  article-title: Recursive PLS algorithms for adaptive data modeling
  publication-title: Comput Chem Eng.
  doi: 10.1016/S0098-1354(97)00262-7
– volume: 43
  start-page: 6731
  year: 2004
  ident: 10.1002/aic.12392-BIB14|cit14
  article-title: Statistical process control charts for batch operations based on independent component analysis
  publication-title: Ind Eng Chem Res.
  doi: 10.1021/ie049582+
– volume: 43
  start-page: 7025
  year: 2004
  ident: 10.1002/aic.12392-BIB18|cit18
  article-title: Monitoring of processes with multiple operating modes through multiple principal component analysis models
  publication-title: Ind Eng Chem Res.
  doi: 10.1021/ie0497893
– volume: 69
  start-page: 35
  year: 1991
  ident: 10.1002/aic.12392-BIB5|cit5
  article-title: Multivariate statistical monitoring of processes operating performance
  publication-title: Can J Chem Eng.
  doi: 10.1002/cjce.5450690105
– volume: 15
  start-page: 1373
  year: 2003
  ident: 10.1002/aic.12392-BIB30|cit30
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput.
  doi: 10.1162/089976603321780317
– volume: 33
  start-page: 244
  year: 2009
  ident: 10.1002/aic.12392-BIB24|cit24
  article-title: Performance assessment of a novel fault diagnosis system based on support vector machines
  publication-title: Comput Chem Eng.
  doi: 10.1016/j.compchemeng.2008.08.008
– volume: 50
  start-page: 243
  year: 2000
  ident: 10.1002/aic.12392-BIB10|cit10
  article-title: Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
  publication-title: Chemom Intell Lab Syst.
  doi: 10.1016/S0169-7439(99)00061-1
– volume: 52
  start-page: 3501
  year: 2006
  ident: 10.1002/aic.12392-BIB15|cit15
  article-title: Fault detection and diagnosis based on modified independent component analysis
  publication-title: AIChE J.
  doi: 10.1002/aic.10978
– volume-title: Advances in Neural Information Processing Systems 16
  year: 2004
  ident: 10.1002/aic.12392-BIB29|cit29
– volume: 17
  start-page: 245
  year: 1993
  ident: 10.1002/aic.12392-BIB35|cit35
  article-title: Plant-wide industrial process control problem
  publication-title: Comput Chem Eng.
  doi: 10.1016/0098-1354(93)80018-I
– volume: 52
  volume-title: Chemometrics Theory and Application, American Chemical Society Symposium Series
  year: 1977
  ident: 10.1002/aic.12392-BIB27|cit27
– volume: 17
  start-page: 480
  year: 2003
  ident: 10.1002/aic.12392-BIB7|cit7
  article-title: Statistical process monitoring: basics and beyond
  publication-title: J Chemom.
  doi: 10.1002/cem.800
– volume: 28
  start-page: 1389
  year: 2004
  ident: 10.1002/aic.12392-BIB23|cit23
  article-title: Fault diagnosis based on Fisher discriminant analysis and support vector machines
  publication-title: Comput Chem Eng.
  doi: 10.1016/j.compchemeng.2003.10.002
– volume: 14
  start-page: 467
  year: 2004
  ident: 10.1002/aic.12392-BIB13|cit13
  article-title: Statistical process monitoring with independent component analysis
  publication-title: J Proc Cont.
  doi: 10.1016/j.jprocont.2003.09.004
– volume-title: Random Data: Analysis and Measurement Procedures
  year: 1986
  ident: 10.1002/aic.12392-BIB32|cit32
– volume-title: Advances in Industrial Control
  year: 2000
  ident: 10.1002/aic.12392-BIB6|cit6
– volume: 46
  start-page: 3610
  year: 2007
  ident: 10.1002/aic.12392-BIB22|cit22
  article-title: Cluster analysis for autocorrelated and cyclic chemical process data
  publication-title: Ind Eng Chem Res.
  doi: 10.1021/ie060544v
– volume: 8
  start-page: 1027
  year: 2007
  ident: 10.1002/aic.12392-BIB28|cit28
  article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
  publication-title: J Mach Learn Res.
– volume: 48
  start-page: 8585
  year: 2009
  ident: 10.1002/aic.12392-BIB34|cit34
  article-title: Multiway Gaussian mixture model based multiphase batch process monitoring
  publication-title: Ind Eng Chem Res.
  doi: 10.1021/ie900479g
– volume: 49
  start-page: 969
  year: 2003
  ident: 10.1002/aic.12392-BIB12|cit12
  article-title: Monitoring independent components for fault detection
  publication-title: AIChE J.
  doi: 10.1002/aic.690490414
– volume: 11
  start-page: 613
  year: 2003
  ident: 10.1002/aic.12392-BIB11|cit11
  article-title: Recursive partial least squares algorithms for monitoring complex industrial processess
  publication-title: Control Eng Pract.
  doi: 10.1016/S0967-0661(02)00096-5
– volume: 6
  start-page: 205
  year: 1996
  ident: 10.1002/aic.12392-BIB36|cit36
  article-title: Decentralized control of the Tennessee Eastman challenge process
  publication-title: J Proc Cont.
  doi: 10.1016/0959-1524(96)00031-5
– volume: 54
  start-page: 1811
  year: 2008
  ident: 10.1002/aic.12392-BIB17|cit17
  article-title: Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
  publication-title: AIChE J.
  doi: 10.1002/aic.11515
– volume-title: Pattern Classification
  year: 2001
  ident: 10.1002/aic.12392-BIB25|cit25
– volume: 24
  start-page: 381
  year: 2002
  ident: 10.1002/aic.12392-BIB33|cit33
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
  doi: 10.1109/34.990138
– volume: 19
  start-page: 949
  year: 1995
  ident: 10.1002/aic.12392-BIB37|cit37
  article-title: Optimal steady-state operation of the Tennessee Eastman challenge process
  publication-title: Comput Chem Eng.
  doi: 10.1016/0098-1354(94)00043-N
– volume-title: Advances in Neural Information Processing Systems 17
  year: 2005
  ident: 10.1002/aic.12392-BIB31|cit31
– volume: 6
  start-page: 329
  year: 1996
  ident: 10.1002/aic.12392-BIB9|cit9
  article-title: The process chemometrics approach to process monitoring and fault detection
  publication-title: J Proc Cont.
  doi: 10.1016/0959-1524(96)00009-1
– volume-title: Advanced Textbooks in Control and Signal Processing
  year: 2001
  ident: 10.1002/aic.12392-BIB4|cit4
– volume: 38
  start-page: 1478
  year: 1999
  ident: 10.1002/aic.12392-BIB20|cit20
  article-title: Mixture principal component analysis models for process monitoring
  publication-title: Ind Eng Chem Res.
  doi: 10.1021/ie980577d
– volume: 40
  start-page: 826
  year: 1994
  ident: 10.1002/aic.12392-BIB1|cit1
  article-title: Process monitoring and diagnosis by multiblock PLS methods
  publication-title: AIChE J.
  doi: 10.1002/aic.690400509
SSID ssj0012782
Score 2.3777556
Snippet Complex chemical process is often corrupted with various types of faults and the fault‐free training data may not be available to build the normal operation...
Complex chemical process is often corrupted with various types of faults and the fault-free training data may not be available to build the normal operation...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1817
SubjectTerms Algorithms
Applied sciences
Chemical engineering
chemical process monitoring
Classification
Clusters
Construction
Discriminant analysis
Exact sciences and technology
fault detection and classification
Faults
Gaussian mixture model
localized Fisher discriminant analysis
Mathematical models
Monitoring
Monitoring methods
Monitoring systems
Normal distribution
Preserves
Principal components analysis
Safety
stationarity testing
Tennessee Eastman process
Title Localized Fisher discriminant analysis based complex chemical process monitoring
URI https://api.istex.fr/ark:/67375/WNG-JB52C4GS-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.12392
https://www.proquest.com/docview/877025002
https://www.proquest.com/docview/1671596113
https://www.proquest.com/docview/907171258
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9jvuiD32K3OaKI-NK7tE2aBJ_mxW0OHX5M3IMQkjSFMdeN3Xth7K_3nKStu-JAfCv0pG1yzkl-Jz35HUJeAmrggIJ13gbHcm6Zz5UAx-Ols0F7CyaA-x0fD-q9b3z_SBytkDfDWZjEDzFuuKFnxPkaHdy62dZv0lB77Ccw7WqcfzFXCwHRl5E6qiilSkzhEC4DTCgGViFWbo0tl9aiWzisl5gbaWcwPG2qa7EEPK_D17j-7NwjP4YvT2knJ5PF3E381R-kjv_Ztfvkbo9L6XYypAdkJXQPyZ1rbIWPyKcPuO4dX4WGpoLpFI_0prJg3Zzant6E4sLY0JirHi6p7xkJ6Hk6kkBP4yyCj3xMDnfeHU738r4gQ-4FBq1atbyxqq0bD8Ent0XVlkXNvHJMMx5jnVI3TsqgmG6dcNzWlQV9F41jVlRPyGp31oWnhMrKh6pVQoQ2cNZo57wMwtUQ3jhrrcjI60Ezxvdk5Vgz46dJNMulgTEycYwy8mIUPU8MHX8TehXVO0rYixNMaZPCfD_YNftvRTnlu1_N54xsLul_bFDyqoLu8YysDwZhenefGSUlYkkG73k-3gU_xZ8vtgtni5kpagnIsS6KKiP0BhmNwTUgTgXdj_Zxc4fM9vtpvFj7d9F1cjvtiGOy8QZZnV8swjOAVHO3GX3nFwr3G_Y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QE48EaEQjEIIS7ZOomdxBKXstBuy3bFY1F7QZbtOFLVNq26u1LVX8_YTkIXUQlxi5RxkrFn7G-c8TcAbxA1METBIq6tpjFT1MQlR8djqVZWGIUm4PY79if56AfbO-SHK_C-OwsT-CH6DTfnGX6-dg7uNqQ3f7OGqiMzwHlX4AS85ip6O-b8j9968qgkLcrAFY4BMwKFpOMVoulm33RpNVpzHXvpsiPVDDuoDpUtlqDndQDrV6Dte_Cz-_aQeHI8WMz1wFz9Qev4v8rdh7stNCVbwZYewIptHsKda4SFj-DL2C19R1e2IqFmOnGnekNlsGZOVMtwQtzaWBGfrm4viWlJCch5OJVATv1E4h75GKbbn6bDUdzWZIgNd3GrKGtWqbLOK4PxJ1NJVqdJTk2pqaDMhzupqHRR2JKKWnPNVJ4pHPKk0lTx7AmsNmeNfQqkyIzN6pJzW1tGK6G1KSzXOUY4WinFI3jXDY00LV-5K5txIgPTciqxj6Tvowhe96LngaTjb0Jv_fj2Euri2GW1FVweTHbk3geeDtnOd_k1go0lA-gbpCzLUD0WwXpnEbL1-Jksi8LBSYrvedXfRVd1_19UY88WM5nkBYLHPEmyCMgNMsLF1wg6S1TfG8jNCsmt3aG_ePbvoi_h1mi6P5bj3cnndbgdNshd7vFzWJ1fLOwLRFhzveEd6Re0ziAS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrYTgAOUlQqE1CCEu2eZhx4k4tVu2D8qqQBE9IFm2Y0tVIV11d6Wqv56xnaRdRCXELVLGSWbssb9xxt8AvEHUQBEFV7E1KompTHRcMnQ8milpKi1xCLj9jk_jYu8bPThhJ0vwvjsLE_gh-g035xl-vnYOPqnt5jVpqDzVA5x2K5x_V2iRVK5uw86XnjsqzXgZqMIxXkackHa0Qkm22TddWIxWnF0vXXKknKJ9bChssYA8b-JXvwCNHsCP7tND3snZYD5TA331B6vjf-q2CvdbYEq2wkh6CEumeQT3btAVPoajQ7fwnV6ZmoSK6cSd6Q11wZoZkS2_CXErY018srq5JLqlJCCTcCaB_PLTiHvkEzgefTge7sVtRYZYMxe1VqWltSxtUWuMPqlMc5ulRaJLhfanPtjJqlpxbsqksoopKotcYoentUoky5_CcnPemGdAeK5NbkvGjDU0qSulNDdMFRjfKCkli-Bd1zNCt2zlrmjGTxF4ljOBNhLeRhG87kUngaLjb0Jvfff2EvLizOW0cSa-j3fFwTbLhnT3q_gcwfpC__cNMprnqB6NYK0bEKL196koOXdgMsH3vOrvoqO6vy-yMefzqUgLjtCxSNM8AnKLTOWia4ScJarvx8ftComt_aG_eP7vohtw52hnJA73xx_X4G7YHXeJxy9geXYxNy8RXs3Uunej3z_wHsE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localized+Fisher+discriminant+analysis+based+complex+chemical+process+monitoring&rft.jtitle=AIChE+journal&rft.au=Yu%2C+Jie&rft.date=2011-07-01&rft.issn=0001-1541&rft.volume=57&rft.issue=7&rft.spage=1817&rft.epage=1817&rft_id=info:doi/10.1002%2Faic.12392&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon