A Hitchhiker's guide through the bio‐image analysis software universe

Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes....

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 596; no. 19; pp. 2472 - 2485
Main Authors Haase, Robert, Fazeli, Elnaz, Legland, David, Doube, Michael, Culley, Siân, Belevich, Ilya, Jokitalo, Eija, Schorb, Martin, Klemm, Anna, Tischer, Christian
Format Journal Article
LanguageEnglish
Published Wiley 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget. In this review, we provide a Hitchhiker's guide through the bio‐image analysis software universe for expert and non‐expert users.
AbstractList Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget. In this review, we provide a Hitchhiker's guide through the bio‐image analysis software universe for expert and non‐expert users.
Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget.
Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget.Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget.
Author Haase, Robert
Klemm, Anna
Tischer, Christian
Jokitalo, Eija
Fazeli, Elnaz
Culley, Siân
Schorb, Martin
Belevich, Ilya
Legland, David
Doube, Michael
Author_xml – sequence: 1
  givenname: Robert
  orcidid: 0000-0001-5949-2327
  surname: Haase
  fullname: Haase, Robert
  email: robert.haase@tu-dresden.de
  organization: Center for Systems Biology Dresden
– sequence: 2
  givenname: Elnaz
  orcidid: 0000-0002-0770-0777
  surname: Fazeli
  fullname: Fazeli, Elnaz
  organization: University of Helsinki
– sequence: 3
  givenname: David
  orcidid: 0000-0001-7456-4632
  surname: Legland
  fullname: Legland, David
  organization: INRAE, PROBE Research Infrastructure, BIBS Facility
– sequence: 4
  givenname: Michael
  orcidid: 0000-0002-8021-8127
  surname: Doube
  fullname: Doube, Michael
  organization: City University of Hong Kong
– sequence: 5
  givenname: Siân
  orcidid: 0000-0003-2112-0143
  surname: Culley
  fullname: Culley, Siân
  organization: King's College London
– sequence: 6
  givenname: Ilya
  orcidid: 0000-0003-2190-4909
  surname: Belevich
  fullname: Belevich, Ilya
  organization: University of Helsinki
– sequence: 7
  givenname: Eija
  orcidid: 0000-0002-4159-6934
  surname: Jokitalo
  fullname: Jokitalo, Eija
  organization: University of Helsinki
– sequence: 8
  givenname: Martin
  orcidid: 0000-0003-4910-1868
  surname: Schorb
  fullname: Schorb, Martin
  organization: European Molecular Biology Laboratory
– sequence: 9
  givenname: Anna
  orcidid: 0000-0002-3466-1320
  surname: Klemm
  fullname: Klemm, Anna
  organization: Uppsala University
– sequence: 10
  givenname: Christian
  orcidid: 0000-0003-4105-1990
  surname: Tischer
  fullname: Tischer, Christian
  organization: European Molecular Biology Laboratory
BackLink https://hal.inrae.fr/hal-03757709$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-490039$$DView record from Swedish Publication Index
BookMark eNqFkU1P3DAQhq2KCpaPc6-5ARIBO7Zj-7h8bqWVegGuluNMNi4hXuyE1d76E_ob-SVNmgqpPZTTaEbPMzPSu492Wt8CQl8IPicYZxdECppSlstzwhgnn9DsfbKDZhgTlnKh6B7aj_E7HnpJ1C7ao1xSKnM6Q3fzZOE6W9fuCcJxTFa9KyHp6uD7VT1USArn3378dM9mBYlpTbONLibRV93GBEj61r1CiHCIPlemiXD0px6gh9ub-6tFuvx29_VqvkwtpxlJFSesLHhRSoaBy5JlVakqySw1tBBgeQ55WYIVDFiRFURBMSDWZoQpqlRJD9DZtDduYN0Xeh2Gz8JWe-P0tXucax9Wuu81UxhTNeCnE16b5i92MV_qcYap4EJg9UoG9mRi18G_9BA7_eyihaYxLfg-6kwSogSVgn-M5lLlAjM5br2YUBt8jAGq9zcI1mOGekxMj4np3xkOBv_HsK4znfNtF4xr_uPlk7dxDWw_OqNvby6zSfwF6p-umw
CitedBy_id crossref_primary_10_1016_j_ceb_2023_102271
crossref_primary_10_3233_JAD_230347
crossref_primary_10_3390_biomedinformatics2040039
crossref_primary_10_1038_s41467_025_57193_y
crossref_primary_10_1111_jmi_13223
crossref_primary_10_1242_bio_060555
crossref_primary_10_1371_journal_pbio_3002167
crossref_primary_10_1016_j_copbio_2023_103055
crossref_primary_10_1038_s41592_023_01987_9
crossref_primary_10_1016_j_bpj_2023_05_015
crossref_primary_10_1111_jmi_13288
crossref_primary_10_12688_f1000research_143062_1
crossref_primary_10_1093_biolre_ioad182
crossref_primary_10_1091_mbc_E24_05_0214
crossref_primary_10_1002_1873_3468_14498
crossref_primary_10_1016_j_coisb_2022_100433
crossref_primary_10_1093_bioinformatics_btae761
crossref_primary_10_1039_D4DD00104D
crossref_primary_10_3390_ijms26052152
crossref_primary_10_1093_jmicro_dfad059
crossref_primary_10_3390_ijms25084227
crossref_primary_10_1007_s12551_024_01250_1
crossref_primary_10_1242_jcs_263711
crossref_primary_10_1002_aps3_11531
crossref_primary_10_1016_j_eswa_2023_121047
crossref_primary_10_1111_jmi_13192
crossref_primary_10_1038_s41592_023_01919_7
Cites_doi 10.1109/MCSE.2007.55
10.1093/bioinformatics/btu202
10.1371/journal.pbio.1002340
10.3389/fnana.2015.00142
10.1038/s41592-021-01105-7
10.12688/wellcomeopenres.16619.1
10.1371/journal.pbio.2005970
10.1109/83.650848
10.1038/s41598-017-17204-5
10.1038/s41467-021-25812-z
10.1093/bioinformatics/btaa541
10.1038/nmeth.2075
10.3389/fcomp.2021.774396
10.1038/ncomms10980
10.1038/s41592-021-01262-9
10.1242/dev.194589
10.1083/jcb.201004104
10.1371/journal.pone.0038011
10.1038/d41586-021-03628-7
10.1038/nmeth.4605
10.1038/s41592-019-0582-9
10.1093/bioinformatics/btx180
10.1016/j.jsb.2006.05.009
10.1038/s41592-019-0359-1
10.1007/978-3-030-00934-2_30
10.1038/s41467-021-22518-0
10.1038/srep15915
10.1016/j.patter.2020.100040
10.1093/bioinformatics/btab106
10.1038/s41592-019-0627-0
10.1016/j.neuroimage.2010.09.025
10.1038/s41592-020-0938-1
10.1038/nn.2868
10.1038/s41592-021-01087-6
10.1007/978-3-540-78246-9_38
10.21105/joss.02440
10.1093/bioinformatics/btw013
10.1186/s12859-017-1934-z
10.1038/s41592-019-0364-4
10.1186/1746-4811-9-38
10.1038/nmeth.4473
10.1038/s41592-021-01326-w
10.1117/12.935640
10.1088/1361-6463/ab0261
10.1016/j.jsb.2005.07.007
10.1101/2022.01.28.478131
10.1093/bioinformatics/btt276
10.7554/eLife.05864
10.1038/nmeth.2089
10.1002/cyto.a.20022
10.1038/s41592-019-0650-1
10.3389/fcomp.2021.780026
10.25080/Majora-7b98e3ed-013
10.1016/B978-012387582-2/50038-1
10.1016/j.celrep.2020.107523
10.1109/TMI.2009.2035616
10.1038/nmeth.1896
10.48550/arXiv.1811.10980
10.1007/978-3-319-28549-8_3
10.1101/2020.11.19.386565
10.1017/S1551929517001213
10.1038/nmeth.3392
10.1038/s41593-018-0209-y
10.1038/ncomms12471
10.1093/bioinformatics/btq046
10.1038/s41592-019-0501-0
10.1016/j.jsb.2012.09.006
10.12688/f1000research.52531.1
10.1098/rsos.201033
10.1002/prca.201800057
10.1038/s41592-020-01018-x
10.1038/s41592-019-0686-2
10.1093/bioinformatics/btw413
10.1016/j.mri.2012.05.001
10.1016/j.neuroimage.2006.01.015
10.1016/j.ymeth.2016.12.015
10.1016/j.cell.2021.07.017
10.1093/nar/gky379
10.15252/embj.2020105889
10.1093/emboj/20.20.5636
10.1038/s41586-020-2649-2
10.1016/j.ymeth.2016.09.016
10.1038/nmeth.2019
10.1038/s41592-019-0458-z
10.7717/peerj.453
10.2478/s11534-011-0096-2
10.1107/S2059798317007859
10.1109/WACV45572.2020.9093435
10.3389/fcell.2021.739079
10.1093/bioinformatics/bts543
10.1107/S1600577514013939
10.1093/bioinformatics/btp266
10.1101/2021.02.19.431994
10.1371/journal.pbio.3000340
10.48550/arXiv.2110.13951
10.1038/s41592-018-0216-7
10.1038/nmeth.3579
10.1371/journal.pcbi.1008374
10.1038/nmeth.4331
10.1186/1471-2105-9-482
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
2022 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Attribution
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
– notice: 2022 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
– notice: Attribution
DBID 24P
AAYXX
CITATION
7X8
7S9
L.6
1XC
VOOES
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1002/1873-3468.14451
DatabaseName Wiley Online Library Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
Computer Science
EISSN 1873-3468
EndPage 2485
ExternalDocumentID oai_DiVA_org_uu_490039
oai_HAL_hal_03757709v1
10_1002_1873_3468_14451
FEB214451
Genre reviewArticle
GrantInformation_xml – fundername: Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation
  funderid: 2020‐225265
– fundername: Biomedicum Imaging Unit and Electron Microscopy Unit, Helsinki University
– fundername: German Research Foundation (DFG)
– fundername: SciLifeLab, National Microscopy Infrastructure NMI
  funderid: VR‐RFI 2019‐00217
– fundername: Chan‐Zuckerberg Initiative
GroupedDBID ---
--K
-~X
.55
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
29H
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHBH
AAHHS
AAHQN
AAIKJ
AAIPD
AALRI
AAMNL
AANLZ
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABBQC
ABCUV
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABWVN
ABXDB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADEZE
ADIYS
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADQTV
ADUVX
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AGHFR
AGYEJ
AHBTC
AI.
AIACR
AIAGR
AITUG
AITYG
AIURR
AIWBW
AJBDE
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GI5
GX1
HGLYW
HVGLF
HZ~
IHE
IXB
J1W
KBYEO
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R2-
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SFE
SSZ
SUPJJ
SV3
TEORI
TR2
UHB
UNMZH
VH1
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
X7M
Y6R
YK3
ZGI
ZZTAW
~02
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGYGG
AIGII
AKBMS
AKYEP
CITATION
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7S9
L.6
1XC
UMC
VOOES
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c5321-9514db5bd840e58d42fd9f84c3a3b7ec56e6ddec74e4b2b19eb42fcc2149399d3
IEDL.DBID 24P
ISSN 0014-5793
1873-3468
IngestDate Thu Aug 21 06:48:49 EDT 2025
Fri May 09 12:19:05 EDT 2025
Fri Jul 11 18:32:21 EDT 2025
Fri Jul 11 12:41:20 EDT 2025
Thu Apr 24 23:02:25 EDT 2025
Tue Jul 01 02:46:53 EDT 2025
Wed Jan 22 16:23:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords bio-image analysis
software
open-source
Language English
License Attribution
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5321-9514db5bd840e58d42fd9f84c3a3b7ec56e6ddec74e4b2b19eb42fcc2149399d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4159-6934
0000-0002-3466-1320
0000-0002-8021-8127
0000-0003-2112-0143
0000-0001-7456-4632
0000-0001-5949-2327
0000-0003-4910-1868
0000-0003-4105-1990
0000-0002-0770-0777
0000-0003-2190-4909
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.14451
PMID 35833863
PQID 2689670481
PQPubID 23479
PageCount 2485
ParticipantIDs swepub_primary_oai_DiVA_org_uu_490039
hal_primary_oai_HAL_hal_03757709v1
proquest_miscellaneous_2811973875
proquest_miscellaneous_2689670481
crossref_primary_10_1002_1873_3468_14451
crossref_citationtrail_10_1002_1873_3468_14451
wiley_primary_10_1002_1873_3468_14451_FEB214451
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle FEBS letters
PublicationYear 2022
Publisher Wiley
Publisher_xml – name: Wiley
References 2013; 29
2017; 7
2006; 31
2019; 52
2019; 13
2021; 600
2010; 189
2008; 9
2019; 17
2016; 32
2020; 17
2019; 16
2011; 54
2011; 12
2011; 14
2017; 115
2012; 10
2013; 9
2014; 21
2018; 46
2017; 73
2020; 7
2021; 37
2010; 26
2014; 2
2020; 1
2002; 85
2010; 29
2010; Chapter 14
2017; 33
2007; 9
1983
2000; 120
2012; 28
2021; 40
2021; 9
2015; 12
2009; 25
2021; 6
2015; 5
2015; 4
2005; 152
2021; 3
2012
2012; 180
2008
2021; 184
2006
2020; 36
2020; 585
2005
2020; 147
2015; 9
2018; 21
2016; 14
2018; 26
2012; 30
2007; 157
2016; 7
2021; 10
2021; 12
2022; 3
2020; 31
2022
2016; 219
2017; 14
2021
2020
2021; 18
2004; 58
2021; 17
2019
2018
2017
2016
2017; 18
2015
2020; 12265
1998; 7
2014; 30
2012; 7
2018; 16
2018; 15
2012; 9
1996; 116
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
Okuta R (e_1_2_10_111_1) 2017
Wei D (e_1_2_10_132_1) 2020; 12265
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
Edelstein A (e_1_2_10_50_1) 2010; 14
e_1_2_10_64_1
Paszke A (e_1_2_10_94_1) 2019
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
Yoo TS (e_1_2_10_43_1) 2002; 85
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
Adams D (e_1_2_10_5_1) 1983
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_27_1
Kluyver T (e_1_2_10_46_1) 2016
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_20_1
(e_1_2_10_6_1) 2019
e_1_2_10_108_1
Pedregosa F (e_1_2_10_70_1) 2011; 12
e_1_2_10_130_1
Witten IH (e_1_2_10_84_1) 2016
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_81_1
Bradski G (e_1_2_10_63_1) 2000; 120
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 5
  start-page: 15915
  year: 2015
  article-title: SIMcheck: a toolbox for successful super‐resolution structured illumination microscopy
  publication-title: Sci Rep
– volume: 31
  year: 2020
  article-title: CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues
  publication-title: Cell Rep.
– volume: 189
  start-page: 777
  year: 2010
  end-page: 82
  article-title: Metadata matters: access to image data in the real world
  publication-title: J Cell Biol
– year: 2020
  article-title: Interactive design of GPU‐accelerated image data flow graphs and cross‐platform deployment using multi‐lingual code generation
  publication-title: bioRxiv
– start-page: 265
  year: 2018
  end-page: 73
– volume: 3
  year: 2022
  article-title: An open‐source whole slide image registration workflow at cellular precision using Fiji, QuPath and elastix
  publication-title: Front Comput Sci.
– volume: 147
  year: 2020
  article-title: EPySeg: a coding‐free solution for automated segmentation of epithelia using deep learning
  publication-title: Development
– volume: 17
  start-page: 5
  year: 2020
  end-page: 6
  article-title: CLIJ: GPU‐accelerated image processing for everyone
  publication-title: Nat. Methods
– volume: 10
  start-page: 181
  year: 2012
  end-page: 8
  article-title: Gwyddion: an open-source software for SPM data analysis
  publication-title: Centr Eur J Phys
– volume: 30
  start-page: 1323
  year: 2012
  end-page: 41
  article-title: 3D Slicer as an image computing platform for the Quantitative Imaging Network
  publication-title: Magn Reson Imaging
– year: 2019
  article-title: PyTorch: an imperative style, high‐performance deep learning library
  publication-title: arXiv
– volume: 9
  start-page: 38
  year: 2013
  article-title: An online database for plant image analysis software tools
  publication-title: Plant Methods
– volume: 73
  start-page: 469
  year: 2017
  end-page: 77
  article-title: Recent developments in the CCP‐EM software suite
  publication-title: Acta Crystallogr D Struct Biol
– volume: 6
  start-page: 37
  year: 2021
  article-title: BoneJ2 – refactoring established research software
  publication-title: Wellcome Open Res
– volume: 12
  start-page: 1065
  year: 2015
  end-page: 71
  article-title: SR‐Tesseler: a method to segment and quantify localization‐based super‐resolution microscopy data
  publication-title: Nat Methods
– volume: 54
  start-page: 2033
  year: 2011
  end-page: 44
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage
– year: 2022
– volume: 29
  start-page: 1840
  year: 2013
  end-page: 1
  article-title: TANGO: a generic tool for high‐throughput 3D image analysis for studying nuclear organization
  publication-title: Bioinformatics
– volume: 157
  start-page: 38
  year: 2007
  end-page: 46
  article-title: EMAN2: an extensible image processing suite for electron microscopy
  publication-title: J Struct Biol
– volume: 9
  start-page: 142
  year: 2015
  article-title: Crowdsourcing the creation of image segmentation algorithms for connectomics
  publication-title: Front Neuroanat
– year: 2019
– volume: 17
  year: 2019
  article-title: Scientific Community Image Forum: a discussion forum for scientific image software
  publication-title: PLoS Biol
– volume: 25
  start-page: 1984
  year: 2009
  end-page: 6
  article-title: CATMAID: collaborative annotation toolkit for massive amounts of image data
  publication-title: Bioinformatics
– volume: 9
  start-page: 671
  year: 2012
  end-page: 5
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
– volume: 26
  start-page: 979
  year: 2010
  end-page: 81
  article-title: EBImage – an R package for image processing with applications to cellular phenotypes
  publication-title: Bioinformatics
– volume: 184
  start-page: 4819
  year: 2021
  end-page: 4837.e22
  article-title: Whole‐body integration of gene expression and single‐cell morphology
  publication-title: Cell
– volume: 14
  start-page: e1002340
  year: 2016
  article-title: Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets
  publication-title: PLoS Biol
– volume: 180
  start-page: 519
  year: 2012
  end-page: 30
  article-title: RELION: implementation of a Bayesian approach to cryo‐EM structure determination
  publication-title: J Struct Biol
– volume: 37
  start-page: 3079
  issue: 18
  year: 2021
  end-page: 81
  article-title: BigDataProcessor2: a free and open‐source Fiji plugin for inspection and processing of TB sized image data
  publication-title: Bioinformatics
– volume: 219
  start-page: 69
  year: 2016
  end-page: 93
  article-title: Transforms and operators for directional bioimage analysis: a survey
  publication-title: Adv Anat Embryol Cell Biol
– year: 2022
  article-title: TissUUmaps 3: interactive visualization and quality assessment of large‐scale spatial omics data
  publication-title: bioRxiv
– volume: 9
  start-page: 90
  year: 2007
  end-page: 5
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput Sci Eng
– volume: 16
  start-page: 870
  year: 2019
  end-page: 4
  article-title: BigStitcher: reconstructing high‐resolution image datasets of cleared and expanded samples
  publication-title: Nat Methods
– volume: 18
  start-page: 100
  year: 2021
  end-page: 6
  article-title: Cellpose: a generalist algorithm for cellular segmentation
  publication-title: Nat Methods
– volume: 120
  start-page: 122
  year: 2000
  end-page: 5
  article-title: The OpenCV library
  publication-title: Dr Dobb's J Software Tools
– volume: 115
  start-page: 80
  year: 2017
  end-page: 90
  article-title: TrackMate: an open and extensible platform for single‐particle tracking
  publication-title: Methods
– year: 2016
– volume: 116
  start-page: 71
  year: 1996
  end-page: 6
  article-title: Computer visualization of three‐dimensional image data using IMOD
  publication-title: J Struct Biol
– volume: 18
  start-page: 529
  year: 2017
  article-title: ImageJ2: ImageJ for the next generation of scientific image data
  publication-title: BMC Bioinformatics
– volume: 2
  year: 2014
  article-title: scikit‐image: image processing in Python
  publication-title: PeerJ
– volume: 21
  start-page: 1188
  year: 2014
  end-page: 93
  article-title: TomoPy: a framework for the analysis of synchrotron tomographic data
  publication-title: J Synchrotron Radiat
– volume: 10
  start-page: 302
  year: 2021
  article-title: Developing open‐source software for bioimage analysis: opportunities and challenges
  publication-title: F1000Res
– volume: 115
  start-page: 28
  year: 2017
  end-page: 41
  article-title: DeconvolutionLab2: an open‐source software for deconvolution microscopy
  publication-title: Methods
– volume: 13
  year: 2019
  article-title: Cytomine: toward an open and collaborative software platform for digital pathology bridged to molecular investigations
  publication-title: Proteomics Clin Appl
– volume: 1
  year: 2020
  article-title: BIAFLOWS: a collaborative framework to reproducibly deploy and benchmark bioimage analysis workflows
  publication-title: Patterns (N Y)
– volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  article-title: elastix: a toolbox for intensity‐based medical image registration
  publication-title: IEEE Trans Med Imaging
– start-page: 319
  year: 2008
  end-page: 26
– volume: 12
  start-page: 5611
  year: 2021
  article-title: Sub‐diffraction error mapping for localisation microscopy images
  publication-title: Nat Commun
– volume: 32
  start-page: 3532
  year: 2016
  end-page: 4
  article-title: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ
  publication-title: Bioinformatics
– volume: 9
  year: 2021
  article-title: Navigating the light‐sheet image analysis software landscape: concepts for driving cohesion from data acquisition to analysis
  publication-title: Front Cell Dev Biol
– volume: 3
  year: 2021
  article-title: Image processing filters for grids of cells analogous to filters processing grids of pixels
  publication-title: Front Comput Sci
– volume: 16
  year: 2018
  article-title: CellProfiler 3.0: next‐generation image processing for biology
  publication-title: PLoS Biol
– volume: 7
  start-page: 12471
  year: 2016
  article-title: Fast live‐cell conventional fluorophore nanoscopy with ImageJ through super‐resolution radial fluctuations
  publication-title: Nat Commun
– volume: 18
  start-page: 374
  year: 2021
  end-page: 7
  article-title: SNT: a unifying toolbox for quantification of neuronal anatomy
  publication-title: Nat Methods
– volume: 26
  start-page: 12
  year: 2018
  end-page: 7
  article-title: Tutorial on the visualization of volumetric data using tomviz
  publication-title: Micros Today
– volume: 7
  start-page: 27
  year: 1998
  end-page: 41
  article-title: A pyramid approach to subpixel registration based on intensity
  publication-title: IEEE Trans Image Process
– year: 2021
– start-page: 87
  year: 2016
  end-page: 90
– volume: 12
  start-page: 481
  year: 2015
  end-page: 3
  article-title: BigDataViewer: visualization and processing for large image data sets
  publication-title: Nat Methods
– volume: 585
  start-page: 357
  year: 2020
  end-page: 62
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 7
  year: 2020
  article-title: Three‐dimensional segmentation of computed tomography data using: new tools and developments
  publication-title: R Soc Open Sci
– volume: 14
  start-page: 1081
  year: 2011
  end-page: 8
  article-title: High‐accuracy neurite reconstruction for high‐throughput neuroanatomy
  publication-title: Nat Neurosci
– volume: 18
  start-page: 226
  year: 2021
  end-page: 8
  article-title: Pycro‐Manager: open‐source software for customized and reproducible microscope control
  publication-title: Nat Methods
– volume: 46
  start-page: W537
  year: 2018
  end-page: 44
  article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update
  publication-title: Nucleic Acids Res
– volume: Chapter 14
  start-page: Unit14.20
  year: 2010
  article-title: Computer control of microscopes using μManager
  publication-title: Curr Protoc Mol Biol
– volume: 33
  start-page: 2424
  year: 2017
  end-page: 6
  article-title: Trainable Weka segmentation: a machine learning tool for microscopy pixel classification
  publication-title: Bioinformatics
– volume: 21
  start-page: 1281
  year: 2018
  end-page: 9
  article-title: DeepLabCut: markerless pose estimation of user‐defined body parts with deep learning
  publication-title: Nat Neurosci
– volume: 52
  year: 2019
  article-title: NanoJ: a high‐performance open‐source super‐resolution microscopy toolbox
  publication-title: J Phys D Appl Phys
– volume: 9
  start-page: 482
  year: 2008
  article-title: CellProfiler Analyst: data exploration and analysis software for complex image‐based screens
  publication-title: BMC Bioinformatics
– volume: 152
  start-page: 36
  year: 2005
  end-page: 51
  article-title: Automated electron microscope tomography using robust prediction of specimen movements
  publication-title: J Struct Biol
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 30
  article-title: Scikit‐learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume: 16
  start-page: 1199
  year: 2019
  end-page: 200
  article-title: ImJoy: an open‐source computational platform for the deep learning era
  publication-title: Nat Methods
– volume: 7
  start-page: 10980
  year: 2016
  article-title: Open‐source image reconstruction of super‐resolution structured illumination microscopy data in ImageJ
  publication-title: Nat Commun
– year: 2021
  article-title: Squidpy: a scalable framework for spatial single cell analysis
  publication-title: bioRxiv
– volume: 7
  start-page: 16878
  year: 2017
  article-title: QuPath: open source software for digital pathology image analysis
  publication-title: Sci Rep
– volume: 18
  start-page: 1496
  year: 2021
  end-page: 8
  article-title: OME‐NGFF: a next‐generation file format for expanding bioimaging data‐access strategies
  publication-title: Nat Methods
– volume: 14
  start-page: 1141
  year: 2017
  end-page: 52
  article-title: An objective comparison of cell‐tracking algorithms
  publication-title: Nat Methods
– volume: 9
  start-page: 676
  year: 2012
  end-page: 82
  article-title: Fiji: an open‐source platform for biological‐image analysis
  publication-title: Nat Methods
– volume: 18
  start-page: 1192
  year: 2021
  end-page: 5
  article-title: DeepImageJ: a user‐friendly environment to run deep learning models in ImageJ
  publication-title: Nat Methods
– year: 2015
– volume: 16
  start-page: 387
  year: 2019
  end-page: 95
  article-title: Super‐resolution fight club: assessment of 2D and 3D single‐molecule localization microscopy software
  publication-title: Nat Methods
– volume: 17
  start-page: 870
  year: 2020
  end-page: 2
  article-title: SMAP: a modular super‐resolution microscopy analysis platform for SMLM data
  publication-title: Nat Methods
– year: 1983
– volume: 28
  start-page: 3009
  year: 2012
  end-page: 11
  article-title: ImgLib2 – generic image processing in Java
  publication-title: Bioinformatics
– volume: 15
  start-page: 263
  year: 2018
  end-page: 6
  article-title: Quantitative mapping and minimization of super‐resolution optical imaging artifacts
  publication-title: Nat Methods
– volume: 12265
  start-page: 66
  year: 2020
  end-page: 76
  article-title: MitoEM Dataset: large‐scale 3D mitochondria instance segmentation from EM images
  publication-title: Med Image Comput Comput Assist Interv
– volume: 7
  year: 2012
  article-title: TrakEM2 software for neural circuit reconstruction
  publication-title: PLoS One
– volume: 58
  start-page: 167
  year: 2004
  end-page: 76
  article-title: Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images
  publication-title: Cytometry A
– volume: 16
  start-page: 1215
  year: 2019
  end-page: 25
  article-title: Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction
  publication-title: Nat Methods
– volume: 32
  start-page: 1395
  year: 2016
  end-page: 401
  article-title: Collaborative analysis of multi‐gigapixel imaging data using Cytomine
  publication-title: Bioinformatics
– volume: 15
  start-page: 1090
  year: 2018
  end-page: 7
  article-title: Content‐aware image restoration: pushing the limits of fluorescence microscopy
  publication-title: Nat Methods
– volume: 17
  start-page: e1008374
  year: 2021
  article-title: DeepMIB: user‐friendly and open‐source software for training of deep learning network for biological image segmentation
  publication-title: PLoS Comput Biol
– volume: 9
  start-page: 690
  year: 2012
  end-page: 6
  article-title: Icy: an open bioimage informatics platform for extended reproducible research
  publication-title: Nat Methods
– volume: 16
  start-page: 278
  year: 2019
  end-page: 80
  article-title: 3Dscript: animating 3D/4D microscopy data using a natural‐language‐based syntax
  publication-title: Nat Methods
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 28
  article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 12
  start-page: 2276
  year: 2021
  article-title: Democratising deep learning for microscopy with ZeroCostDL4Mic
  publication-title: Nat Commun
– year: 2012
– volume: 40
  year: 2021
  article-title: Reproducible image handling and analysis
  publication-title: EMBO J
– volume: 9
  start-page: 245
  year: 2012
  end-page: 53
  article-title: OMERO: flexible, model‐driven data management for experimental biology
  publication-title: Nat Methods
– year: 2018
  article-title: Noise2Void – learning denoising from single noisy images
  publication-title: arXiv
– volume: 17
  start-page: 261
  year: 2020
  end-page: 72
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat Methods
– volume: 30
  start-page: 2389
  year: 2014
  end-page: 90
  article-title: ThunderSTORM: a comprehensive ImageJ plug‐in for PALM and STORM data analysis and super‐resolution imaging
  publication-title: Bioinformatics
– volume: 85
  start-page: 586
  year: 2002
  end-page: 92
  article-title: Engineering and algorithm design for an image processing Api: a technical report on ITK–the Insight Toolkit
  publication-title: Stud Health Technol Inform
– year: 2021
  article-title: Open microscopy in the life sciences: Quo Vadis?
  publication-title: arXiv.
– volume: 14
  start-page: 691
  year: 2017
  end-page: 4
  article-title: webKnossos: efficient online 3D data annotation for connectomics
  publication-title: Nat Methods
– volume: 16
  start-page: 1226
  year: 2019
  end-page: 32
  article-title: ilastik: interactive machine learning for (bio)image analysis
  publication-title: Nat Methods
– year: 2006
– year: 2020
– volume: 36
  start-page: 4363
  year: 2020
  end-page: 5
  article-title: TissUUmaps: interactive visualization of large‐scale spatial gene expression and tissue morphology data
  publication-title: Bioinformatics
– volume: 4
  year: 2015
  article-title: MorphoGraphX: a platform for quantifying morphogenesis in 4D
  publication-title: Elife
– start-page: 717
  year: 2005
  end-page: 31
– year: 2017
– volume: 6
  start-page: 2440
  year: 2021
  article-title: starfish: scalable pipelines for image‐criptomics
  publication-title: J Open Source Softw
– volume: 600
  start-page: 347
  year: 2021
  end-page: 8
  article-title: Python power‐up: new image tool visualizes complex data
  publication-title: Nature
– ident: e_1_2_10_49_1
  doi: 10.1109/MCSE.2007.55
– ident: e_1_2_10_79_1
  doi: 10.1093/bioinformatics/btu202
– ident: e_1_2_10_52_1
  doi: 10.1371/journal.pbio.1002340
– ident: e_1_2_10_131_1
  doi: 10.3389/fnana.2015.00142
– ident: e_1_2_10_73_1
  doi: 10.1038/s41592-021-01105-7
– ident: e_1_2_10_18_1
  doi: 10.12688/wellcomeopenres.16619.1
– ident: e_1_2_10_23_1
  doi: 10.1371/journal.pbio.2005970
– ident: e_1_2_10_76_1
  doi: 10.1109/83.650848
– ident: e_1_2_10_64_1
  doi: 10.1038/s41598-017-17204-5
– ident: e_1_2_10_124_1
  doi: 10.1038/s41467-021-25812-z
– ident: e_1_2_10_119_1
  doi: 10.1093/bioinformatics/btaa541
– ident: e_1_2_10_88_1
– ident: e_1_2_10_34_1
  doi: 10.1038/nmeth.2075
– ident: e_1_2_10_118_1
  doi: 10.3389/fcomp.2021.774396
– ident: e_1_2_10_30_1
  doi: 10.1038/ncomms10980
– ident: e_1_2_10_95_1
  doi: 10.1038/s41592-021-01262-9
– ident: e_1_2_10_89_1
  doi: 10.1242/dev.194589
– ident: e_1_2_10_16_1
  doi: 10.1083/jcb.201004104
– ident: e_1_2_10_85_1
  doi: 10.1371/journal.pone.0038011
– volume: 12265
  start-page: 66
  year: 2020
  ident: e_1_2_10_132_1
  article-title: MitoEM Dataset: large‐scale 3D mitochondria instance segmentation from EM images
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_10_100_1
  doi: 10.1038/d41586-021-03628-7
– ident: e_1_2_10_122_1
  doi: 10.1038/nmeth.4605
– year: 2019
  ident: e_1_2_10_94_1
  article-title: PyTorch: an imperative style, high‐performance deep learning library
  publication-title: arXiv
– ident: e_1_2_10_4_1
– ident: e_1_2_10_35_1
  doi: 10.1038/s41592-019-0582-9
– ident: e_1_2_10_83_1
  doi: 10.1093/bioinformatics/btx180
– ident: e_1_2_10_59_1
– ident: e_1_2_10_29_1
  doi: 10.1016/j.jsb.2006.05.009
– ident: e_1_2_10_103_1
  doi: 10.1038/s41592-019-0359-1
– ident: e_1_2_10_133_1
– ident: e_1_2_10_77_1
  doi: 10.1007/978-3-030-00934-2_30
– ident: e_1_2_10_96_1
  doi: 10.1038/s41467-021-22518-0
– ident: e_1_2_10_123_1
  doi: 10.1038/srep15915
– ident: e_1_2_10_106_1
  doi: 10.1016/j.patter.2020.100040
– ident: e_1_2_10_107_1
  doi: 10.1093/bioinformatics/btab106
– ident: e_1_2_10_45_1
– ident: e_1_2_10_97_1
  doi: 10.1038/s41592-019-0627-0
– ident: e_1_2_10_13_1
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: e_1_2_10_74_1
  doi: 10.1038/s41592-020-0938-1
– ident: e_1_2_10_48_1
  doi: 10.1038/nn.2868
– volume-title: Proceedings of workshop on machine learning systems (LearningSys) in the thirty‐first annual conference on neural information processing systems (NIPS)
  year: 2017
  ident: e_1_2_10_111_1
– ident: e_1_2_10_51_1
  doi: 10.1038/s41592-021-01087-6
– ident: e_1_2_10_47_1
  doi: 10.1007/978-3-540-78246-9_38
– ident: e_1_2_10_40_1
– volume: 14
  start-page: Unit14.20
  year: 2010
  ident: e_1_2_10_50_1
  article-title: Computer control of microscopes using μManager
  publication-title: Curr Protoc Mol Biol
– ident: e_1_2_10_93_1
– ident: e_1_2_10_65_1
– ident: e_1_2_10_117_1
  doi: 10.21105/joss.02440
– ident: e_1_2_10_105_1
  doi: 10.1093/bioinformatics/btw013
– ident: e_1_2_10_37_1
  doi: 10.1186/s12859-017-1934-z
– ident: e_1_2_10_121_1
  doi: 10.1038/s41592-019-0364-4
– ident: e_1_2_10_7_1
  doi: 10.1186/1746-4811-9-38
– ident: e_1_2_10_68_1
– ident: e_1_2_10_129_1
  doi: 10.1038/nmeth.4473
– ident: e_1_2_10_126_1
  doi: 10.1038/s41592-021-01326-w
– ident: e_1_2_10_17_1
– volume: 85
  start-page: 586
  year: 2002
  ident: e_1_2_10_43_1
  article-title: Engineering and algorithm design for an image processing Api: a technical report on ITK–the Insight Toolkit
  publication-title: Stud Health Technol Inform
– ident: e_1_2_10_26_1
  doi: 10.1117/12.935640
– ident: e_1_2_10_55_1
  doi: 10.1088/1361-6463/ab0261
– ident: e_1_2_10_3_1
– ident: e_1_2_10_72_1
  doi: 10.1016/j.jsb.2005.07.007
– ident: e_1_2_10_120_1
  doi: 10.1101/2022.01.28.478131
– ident: e_1_2_10_11_1
  doi: 10.1093/bioinformatics/btt276
– ident: e_1_2_10_53_1
  doi: 10.7554/eLife.05864
– ident: e_1_2_10_36_1
  doi: 10.1038/nmeth.2089
– ident: e_1_2_10_113_1
– ident: e_1_2_10_57_1
  doi: 10.1002/cyto.a.20022
– ident: e_1_2_10_112_1
  doi: 10.1038/s41592-019-0650-1
– ident: e_1_2_10_102_1
  doi: 10.3389/fcomp.2021.780026
– ident: e_1_2_10_21_1
– ident: e_1_2_10_110_1
  doi: 10.25080/Majora-7b98e3ed-013
– ident: e_1_2_10_60_1
  doi: 10.1016/B978-012387582-2/50038-1
– ident: e_1_2_10_115_1
  doi: 10.1016/j.celrep.2020.107523
– ident: e_1_2_10_28_1
  doi: 10.1109/TMI.2009.2035616
– ident: e_1_2_10_62_1
  doi: 10.1038/nmeth.1896
– ident: e_1_2_10_87_1
  doi: 10.48550/arXiv.1811.10980
– ident: e_1_2_10_127_1
– ident: e_1_2_10_61_1
  doi: 10.1007/978-3-319-28549-8_3
– ident: e_1_2_10_114_1
  doi: 10.1101/2020.11.19.386565
– ident: e_1_2_10_81_1
  doi: 10.1017/S1551929517001213
– ident: e_1_2_10_14_1
  doi: 10.1038/nmeth.3392
– ident: e_1_2_10_90_1
  doi: 10.1038/s41593-018-0209-y
– ident: e_1_2_10_99_1
– ident: e_1_2_10_56_1
  doi: 10.1038/ncomms12471
– ident: e_1_2_10_66_1
  doi: 10.1093/bioinformatics/btq046
– ident: e_1_2_10_15_1
  doi: 10.1038/s41592-019-0501-0
– ident: e_1_2_10_67_1
  doi: 10.1016/j.jsb.2012.09.006
– ident: e_1_2_10_125_1
– ident: e_1_2_10_2_1
  doi: 10.12688/f1000research.52531.1
– ident: e_1_2_10_27_1
  doi: 10.1098/rsos.201033
– ident: e_1_2_10_108_1
  doi: 10.1002/prca.201800057
– ident: e_1_2_10_130_1
– ident: e_1_2_10_22_1
  doi: 10.1038/s41592-020-01018-x
– ident: e_1_2_10_71_1
  doi: 10.1038/s41592-019-0686-2
– ident: e_1_2_10_54_1
  doi: 10.1093/bioinformatics/btw413
– ident: e_1_2_10_10_1
– ident: e_1_2_10_12_1
  doi: 10.1016/j.mri.2012.05.001
– ident: e_1_2_10_44_1
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: e_1_2_10_25_1
  doi: 10.1016/j.ymeth.2016.12.015
– ident: e_1_2_10_32_1
– ident: e_1_2_10_101_1
  doi: 10.1016/j.cell.2021.07.017
– ident: e_1_2_10_104_1
  doi: 10.1093/nar/gky379
– ident: e_1_2_10_38_1
– ident: e_1_2_10_128_1
  doi: 10.15252/embj.2020105889
– ident: e_1_2_10_42_1
  doi: 10.1093/emboj/20.20.5636
– ident: e_1_2_10_58_1
  doi: 10.1038/s41586-020-2649-2
– ident: e_1_2_10_82_1
  doi: 10.1016/j.ymeth.2016.09.016
– ident: e_1_2_10_31_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_10_91_1
  doi: 10.1038/s41592-019-0458-z
– start-page: 87
  volume-title: Positioning and power in academic publishing: players, agents and agendas
  year: 2016
  ident: e_1_2_10_46_1
– ident: e_1_2_10_69_1
  doi: 10.7717/peerj.453
– volume: 120
  start-page: 122
  year: 2000
  ident: e_1_2_10_63_1
  article-title: The OpenCV library
  publication-title: Dr Dobb's J Software Tools
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_10_70_1
  article-title: Scikit‐learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume-title: Data mining: practical machine learning tools and techniques
  year: 2016
  ident: e_1_2_10_84_1
– ident: e_1_2_10_33_1
  doi: 10.2478/s11534-011-0096-2
– volume-title: Bioimage data analysis workflows
  year: 2019
  ident: e_1_2_10_6_1
– ident: e_1_2_10_20_1
  doi: 10.1107/S2059798317007859
– ident: e_1_2_10_78_1
  doi: 10.1109/WACV45572.2020.9093435
– volume-title: The meaning of Liff
  year: 1983
  ident: e_1_2_10_5_1
– ident: e_1_2_10_9_1
  doi: 10.3389/fcell.2021.739079
– ident: e_1_2_10_41_1
  doi: 10.1093/bioinformatics/bts543
– ident: e_1_2_10_80_1
  doi: 10.1107/S1600577514013939
– ident: e_1_2_10_19_1
  doi: 10.1093/bioinformatics/btp266
– ident: e_1_2_10_116_1
  doi: 10.1101/2021.02.19.431994
– ident: e_1_2_10_39_1
  doi: 10.1371/journal.pbio.3000340
– ident: e_1_2_10_92_1
– ident: e_1_2_10_8_1
  doi: 10.48550/arXiv.2110.13951
– ident: e_1_2_10_86_1
  doi: 10.1038/s41592-018-0216-7
– ident: e_1_2_10_75_1
  doi: 10.1038/nmeth.3579
– ident: e_1_2_10_98_1
  doi: 10.1371/journal.pcbi.1008374
– ident: e_1_2_10_109_1
  doi: 10.1038/nmeth.4331
– ident: e_1_2_10_24_1
  doi: 10.1186/1471-2105-9-482
SSID ssj0001819
Score 2.524879
SecondaryResourceType review_article
Snippet Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from...
SourceID swepub
hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2472
SubjectTerms Bioengineering
bioimaging
Bioinformatics
bio‐image analysis
Computer Science
computer software
Computerized Image Processing
Datoriserad bildbehandling
Imaging
Life Sciences
microscopy
Numerical Analysis
open‐source
software
Title A Hitchhiker's guide through the bio‐image analysis software universe
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.14451
https://www.proquest.com/docview/2689670481
https://www.proquest.com/docview/2811973875
https://hal.inrae.fr/hal-03757709
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-490039
Volume 596
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKKwQXRFsQS6EyFX-XsLu283dMS5cVBYQQBW6WHU_aCJqtdptWvfUR-ox9EmacZGGRKOIUKxo70Yw9nrFnvmHsqbImDV1RBMrgDFZWyMAqgECACK0ihHEPkvT-QzTeV2-_hV00IeXCNPgQ8wM3WhleX9MCN3bW_wUaOkxiGUgVJXQ_SUnUK5RgS_D5Qn2cK2PcwBoLeKiCEOdih-4zEP0_BljYmG4cUljk7zZngyO6aML6PWh0l91pjUeeNdJeZUtQrbH1rELH-eicP-c-nNOfk6-xm9td69ZOV9Rtnb3J-LhEQR2W32H6YsYP6tIBb4v14BO4LSdXF5flEeoZblrEEj5DZX1mpsDrJo4D7rH90e7nnXHQ1lII8lBSFAYaRs6G1qFDB2HilChcWiQql0baGPIwggg1XR4rQIHZYQoWSfJcoAeFNoyT99lyNangAeOpBJsMhHVGpgQ3hkPnibPODp0tnDQ99qpjpM5boHGqd_FDNxDJQhPnNXFee8732Mt5h-MGY-PvpFsomTkVYWOPs3ea3lEx3zgepKdI9KQTnEb20g2IqWBSz7SIkjSKCSLnGpqEblYl-nE99qyR-sL3XpdfMj2ZHui61orOgdMe6_tJ8a-f16PdbeFbD_-7xwa7LSjxwocRPmLLJ9MaHqM5dGI3_YTfZCvZ3qevez8Bqa3_eA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKK1QuiLYgtjzqIl6XsLu28zqmj22AbcWhRb1ZcTxpI9os2m1A3PgJ_EZ-CTNOsu0iAeIUKxo70Yw9nhmPv2HsuTJZ7Nui8FSGM1gZIT2jADwBwjeKEMYdSNLhUZCeqHen_umNuzANPsQ84EYrw-lrWuAUkO5fo4YOo1B6UgURHVDSLeoVFYiQFqdQH-baGHewxgQeKs_HydjB-wxE_7cBFnamW-eUF3nT6GyARBdtWLcJje6xu631yJNG3GtsCap1tpFU6DlffuMvucvndIHydXZ7p2ut7nZV3TbYQcLTEiV1Xn6C6asZP6tLC7yt1oNP4Kac_Pz-o7xERcOzFrKEz1Bbf82mwOsmkQPus5PR_vFu6rXFFLzcl5SGgZaRNb6x6NGBH1klChsXkcplJk0IuR9AgKouDxWgxMwwBoMkeS7QhUIjxsoHbLmaVPCQ8ViCiQbC2EzGhDeGQ-eRNdYMrSmszHrsTcdInbdI41Tw4kI3GMlCE-c1cV47zvfY63mHzw3Ixp9Jn6Fk5lQEjp0mY03vqJpvGA7iL0i03QlOI3vpCCSrYFLPtAiiOAgJI-cvNBEdrUp05HrsRSP1he_tlR8TPZme6brWigLBcY_13aT418_r0f6OcK3N_-6xxVbT48OxHr89ev-I3RF0C8PlFD5my1fTGp6gbXRlnrrJ_wtztgFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEY8LghbE8jSI1yXsru28juljWaBUPVDUmxXHkzaCZqvdBsSNn8Bv5Jcw4yQLiwSIU6xo7EQz9njGM_4G4LG2eRq6sgx0TjNYW6kCqxEDiTK0mhHGPUjS271oeqBfH4Z9NiHfhWnxIZYHbrwyvL7mBX7qyuFP0NBxEqtA6Sjh-CRfor7gQ34M7qz3l8qYNrDWAh7rIKS52KP7jOTwtwFWNqbzx5wW-avN2eKIrpqwfg-aXIOrnfEoslba1-Ec1uuwkdXkOJ98EU-FT-f05-TrcHGzb13e6ou6bcDLTEwrEtRx9QHnzxbiqKkciq5YDz1R2Gr2_eu36oT0jMg7xBKxIGX9OZ-jaNo8DrwBB5Odd1vToKulEBSh4iwMMoycDa0jhw7DxGlZurRMdKFyZWMswggj0nRFrJEEZscpWiIpCkkeFNkwTt2EtXpW4y0QqUKbjKR1uUoZboyGLhJnnR07WzqVD-BFz0hTdEDjXO_io2khkqVhzhvmvPGcH8DzZYfTFmPjz6SPSDJLKsbGnma7ht9xMd84HqWfiOhhLzhD7OUISF7jrFkYGSVpFDNEzl9oEo6sKvLjBvCklfrK97ar95mZzY9M0xjN58DpAIZ-Uvzr581kZ1P61u3_7vEALu1vT8zuq703d-CK5DsYPqPwLqydzRu8R5bRmb3v5_4P6UgAgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hitchhiker%27s+guide+through+the+bio%E2%80%90image+analysis+software+universe&rft.jtitle=FEBS+letters&rft.au=Haase%2C+Robert&rft.au=Fazeli%2C+Elnaz&rft.au=Legland%2C+David&rft.au=Doube%2C+Michael&rft.date=2022-10-01&rft.pub=Wiley&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=596&rft.issue=19&rft.spage=2472&rft.epage=2485&rft_id=info:doi/10.1002%2F1873-3468.14451&rft_id=info%3Apmid%2F35833863&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03757709v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon