A Hitchhiker's guide through the bio‐image analysis software universe
Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes....
Saved in:
Published in | FEBS letters Vol. 596; no. 19; pp. 2472 - 2485 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget.
In this review, we provide a Hitchhiker's guide through the bio‐image analysis software universe for expert and non‐expert users. |
---|---|
AbstractList | Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget.
In this review, we provide a Hitchhiker's guide through the bio‐image analysis software universe for expert and non‐expert users. Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget. Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget.Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget. |
Author | Haase, Robert Klemm, Anna Tischer, Christian Jokitalo, Eija Fazeli, Elnaz Culley, Siân Schorb, Martin Belevich, Ilya Legland, David Doube, Michael |
Author_xml | – sequence: 1 givenname: Robert orcidid: 0000-0001-5949-2327 surname: Haase fullname: Haase, Robert email: robert.haase@tu-dresden.de organization: Center for Systems Biology Dresden – sequence: 2 givenname: Elnaz orcidid: 0000-0002-0770-0777 surname: Fazeli fullname: Fazeli, Elnaz organization: University of Helsinki – sequence: 3 givenname: David orcidid: 0000-0001-7456-4632 surname: Legland fullname: Legland, David organization: INRAE, PROBE Research Infrastructure, BIBS Facility – sequence: 4 givenname: Michael orcidid: 0000-0002-8021-8127 surname: Doube fullname: Doube, Michael organization: City University of Hong Kong – sequence: 5 givenname: Siân orcidid: 0000-0003-2112-0143 surname: Culley fullname: Culley, Siân organization: King's College London – sequence: 6 givenname: Ilya orcidid: 0000-0003-2190-4909 surname: Belevich fullname: Belevich, Ilya organization: University of Helsinki – sequence: 7 givenname: Eija orcidid: 0000-0002-4159-6934 surname: Jokitalo fullname: Jokitalo, Eija organization: University of Helsinki – sequence: 8 givenname: Martin orcidid: 0000-0003-4910-1868 surname: Schorb fullname: Schorb, Martin organization: European Molecular Biology Laboratory – sequence: 9 givenname: Anna orcidid: 0000-0002-3466-1320 surname: Klemm fullname: Klemm, Anna organization: Uppsala University – sequence: 10 givenname: Christian orcidid: 0000-0003-4105-1990 surname: Tischer fullname: Tischer, Christian organization: European Molecular Biology Laboratory |
BackLink | https://hal.inrae.fr/hal-03757709$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-490039$$DView record from Swedish Publication Index |
BookMark | eNqFkU1P3DAQhq2KCpaPc6-5ARIBO7Zj-7h8bqWVegGuluNMNi4hXuyE1d76E_ob-SVNmgqpPZTTaEbPMzPSu492Wt8CQl8IPicYZxdECppSlstzwhgnn9DsfbKDZhgTlnKh6B7aj_E7HnpJ1C7ao1xSKnM6Q3fzZOE6W9fuCcJxTFa9KyHp6uD7VT1USArn3378dM9mBYlpTbONLibRV93GBEj61r1CiHCIPlemiXD0px6gh9ub-6tFuvx29_VqvkwtpxlJFSesLHhRSoaBy5JlVakqySw1tBBgeQ55WYIVDFiRFURBMSDWZoQpqlRJD9DZtDduYN0Xeh2Gz8JWe-P0tXucax9Wuu81UxhTNeCnE16b5i92MV_qcYap4EJg9UoG9mRi18G_9BA7_eyihaYxLfg-6kwSogSVgn-M5lLlAjM5br2YUBt8jAGq9zcI1mOGekxMj4np3xkOBv_HsK4znfNtF4xr_uPlk7dxDWw_OqNvby6zSfwF6p-umw |
CitedBy_id | crossref_primary_10_1016_j_ceb_2023_102271 crossref_primary_10_3233_JAD_230347 crossref_primary_10_3390_biomedinformatics2040039 crossref_primary_10_1038_s41467_025_57193_y crossref_primary_10_1111_jmi_13223 crossref_primary_10_1242_bio_060555 crossref_primary_10_1371_journal_pbio_3002167 crossref_primary_10_1016_j_copbio_2023_103055 crossref_primary_10_1038_s41592_023_01987_9 crossref_primary_10_1016_j_bpj_2023_05_015 crossref_primary_10_1111_jmi_13288 crossref_primary_10_12688_f1000research_143062_1 crossref_primary_10_1093_biolre_ioad182 crossref_primary_10_1091_mbc_E24_05_0214 crossref_primary_10_1002_1873_3468_14498 crossref_primary_10_1016_j_coisb_2022_100433 crossref_primary_10_1093_bioinformatics_btae761 crossref_primary_10_1039_D4DD00104D crossref_primary_10_3390_ijms26052152 crossref_primary_10_1093_jmicro_dfad059 crossref_primary_10_3390_ijms25084227 crossref_primary_10_1007_s12551_024_01250_1 crossref_primary_10_1242_jcs_263711 crossref_primary_10_1002_aps3_11531 crossref_primary_10_1016_j_eswa_2023_121047 crossref_primary_10_1111_jmi_13192 crossref_primary_10_1038_s41592_023_01919_7 |
Cites_doi | 10.1109/MCSE.2007.55 10.1093/bioinformatics/btu202 10.1371/journal.pbio.1002340 10.3389/fnana.2015.00142 10.1038/s41592-021-01105-7 10.12688/wellcomeopenres.16619.1 10.1371/journal.pbio.2005970 10.1109/83.650848 10.1038/s41598-017-17204-5 10.1038/s41467-021-25812-z 10.1093/bioinformatics/btaa541 10.1038/nmeth.2075 10.3389/fcomp.2021.774396 10.1038/ncomms10980 10.1038/s41592-021-01262-9 10.1242/dev.194589 10.1083/jcb.201004104 10.1371/journal.pone.0038011 10.1038/d41586-021-03628-7 10.1038/nmeth.4605 10.1038/s41592-019-0582-9 10.1093/bioinformatics/btx180 10.1016/j.jsb.2006.05.009 10.1038/s41592-019-0359-1 10.1007/978-3-030-00934-2_30 10.1038/s41467-021-22518-0 10.1038/srep15915 10.1016/j.patter.2020.100040 10.1093/bioinformatics/btab106 10.1038/s41592-019-0627-0 10.1016/j.neuroimage.2010.09.025 10.1038/s41592-020-0938-1 10.1038/nn.2868 10.1038/s41592-021-01087-6 10.1007/978-3-540-78246-9_38 10.21105/joss.02440 10.1093/bioinformatics/btw013 10.1186/s12859-017-1934-z 10.1038/s41592-019-0364-4 10.1186/1746-4811-9-38 10.1038/nmeth.4473 10.1038/s41592-021-01326-w 10.1117/12.935640 10.1088/1361-6463/ab0261 10.1016/j.jsb.2005.07.007 10.1101/2022.01.28.478131 10.1093/bioinformatics/btt276 10.7554/eLife.05864 10.1038/nmeth.2089 10.1002/cyto.a.20022 10.1038/s41592-019-0650-1 10.3389/fcomp.2021.780026 10.25080/Majora-7b98e3ed-013 10.1016/B978-012387582-2/50038-1 10.1016/j.celrep.2020.107523 10.1109/TMI.2009.2035616 10.1038/nmeth.1896 10.48550/arXiv.1811.10980 10.1007/978-3-319-28549-8_3 10.1101/2020.11.19.386565 10.1017/S1551929517001213 10.1038/nmeth.3392 10.1038/s41593-018-0209-y 10.1038/ncomms12471 10.1093/bioinformatics/btq046 10.1038/s41592-019-0501-0 10.1016/j.jsb.2012.09.006 10.12688/f1000research.52531.1 10.1098/rsos.201033 10.1002/prca.201800057 10.1038/s41592-020-01018-x 10.1038/s41592-019-0686-2 10.1093/bioinformatics/btw413 10.1016/j.mri.2012.05.001 10.1016/j.neuroimage.2006.01.015 10.1016/j.ymeth.2016.12.015 10.1016/j.cell.2021.07.017 10.1093/nar/gky379 10.15252/embj.2020105889 10.1093/emboj/20.20.5636 10.1038/s41586-020-2649-2 10.1016/j.ymeth.2016.09.016 10.1038/nmeth.2019 10.1038/s41592-019-0458-z 10.7717/peerj.453 10.2478/s11534-011-0096-2 10.1107/S2059798317007859 10.1109/WACV45572.2020.9093435 10.3389/fcell.2021.739079 10.1093/bioinformatics/bts543 10.1107/S1600577514013939 10.1093/bioinformatics/btp266 10.1101/2021.02.19.431994 10.1371/journal.pbio.3000340 10.48550/arXiv.2110.13951 10.1038/s41592-018-0216-7 10.1038/nmeth.3579 10.1371/journal.pcbi.1008374 10.1038/nmeth.4331 10.1186/1471-2105-9-482 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. 2022 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. Attribution |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. – notice: 2022 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. – notice: Attribution |
DBID | 24P AAYXX CITATION 7X8 7S9 L.6 1XC VOOES ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1002/1873-3468.14451 |
DatabaseName | Wiley Online Library Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology Computer Science |
EISSN | 1873-3468 |
EndPage | 2485 |
ExternalDocumentID | oai_DiVA_org_uu_490039 oai_HAL_hal_03757709v1 10_1002_1873_3468_14451 FEB214451 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation funderid: 2020‐225265 – fundername: Biomedicum Imaging Unit and Electron Microscopy Unit, Helsinki University – fundername: German Research Foundation (DFG) – fundername: SciLifeLab, National Microscopy Infrastructure NMI funderid: VR‐RFI 2019‐00217 – fundername: Chan‐Zuckerberg Initiative |
GroupedDBID | --- --K -~X .55 .~1 0R~ 0SF 1B1 1OC 1~. 1~5 24P 29H 2WC 33P 4.4 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDW AAESR AAFTH AAHBH AAHHS AAHQN AAIKJ AAIPD AALRI AAMNL AANLZ AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABBQC ABCUV ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABQWH ABVKL ABWVN ABXDB ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIUM ACMXC ACNCT ACPOU ACRPL ACXBN ACXQS ADBBV ADBTR ADEOM ADEZE ADIYS ADKYN ADMGS ADMUD ADNMO ADOZA ADQTV ADUVX ADVLN ADXAS ADZMN ADZOD AEEZP AEFWE AEGXH AEKER AENEX AEQDE AEQOU AEUYR AEXQZ AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AGHFR AGYEJ AHBTC AI. AIACR AIAGR AITUG AITYG AIURR AIWBW AJBDE AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMRAJ AMYDB AZFZN AZVAB BAWUL BFHJK BMXJE C45 CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FUBAC G-Q GBLVA GI5 GX1 HGLYW HVGLF HZ~ IHE IXB J1W KBYEO L7B LATKE LEEKS LITHE LOXES LUTES LX3 LYRES M41 MEWTI MO0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N9A NCXOZ O-L O9- OK1 OVD OZT P-8 P-9 P2P P2W PC. Q38 R2- R9- RIG RNS ROL RPZ SCC SDF SDG SDP SEL SES SEW SFE SSZ SUPJJ SV3 TEORI TR2 UHB UNMZH VH1 WBKPD WH7 WIH WIJ WIK WIN WOHZO WXSBR X7M Y6R YK3 ZGI ZZTAW ~02 AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AEYWJ AFPUW AGHNM AGQPQ AGYGG AIGII AKBMS AKYEP CITATION 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7S9 L.6 1XC UMC VOOES ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
ID | FETCH-LOGICAL-c5321-9514db5bd840e58d42fd9f84c3a3b7ec56e6ddec74e4b2b19eb42fcc2149399d3 |
IEDL.DBID | 24P |
ISSN | 0014-5793 1873-3468 |
IngestDate | Thu Aug 21 06:48:49 EDT 2025 Fri May 09 12:19:05 EDT 2025 Fri Jul 11 18:32:21 EDT 2025 Fri Jul 11 12:41:20 EDT 2025 Thu Apr 24 23:02:25 EDT 2025 Tue Jul 01 02:46:53 EDT 2025 Wed Jan 22 16:23:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | bio-image analysis software open-source |
Language | English |
License | Attribution Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5321-9514db5bd840e58d42fd9f84c3a3b7ec56e6ddec74e4b2b19eb42fcc2149399d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4159-6934 0000-0002-3466-1320 0000-0002-8021-8127 0000-0003-2112-0143 0000-0001-7456-4632 0000-0001-5949-2327 0000-0003-4910-1868 0000-0003-4105-1990 0000-0002-0770-0777 0000-0003-2190-4909 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.14451 |
PMID | 35833863 |
PQID | 2689670481 |
PQPubID | 23479 |
PageCount | 2485 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_490039 hal_primary_oai_HAL_hal_03757709v1 proquest_miscellaneous_2811973875 proquest_miscellaneous_2689670481 crossref_primary_10_1002_1873_3468_14451 crossref_citationtrail_10_1002_1873_3468_14451 wiley_primary_10_1002_1873_3468_14451_FEB214451 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | FEBS letters |
PublicationYear | 2022 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2013; 29 2017; 7 2006; 31 2019; 52 2019; 13 2021; 600 2010; 189 2008; 9 2019; 17 2016; 32 2020; 17 2019; 16 2011; 54 2011; 12 2011; 14 2017; 115 2012; 10 2013; 9 2014; 21 2018; 46 2017; 73 2020; 7 2021; 37 2010; 26 2014; 2 2020; 1 2002; 85 2010; 29 2010; Chapter 14 2017; 33 2007; 9 1983 2000; 120 2012; 28 2021; 40 2021; 9 2015; 12 2009; 25 2021; 6 2015; 5 2015; 4 2005; 152 2021; 3 2012 2012; 180 2008 2021; 184 2006 2020; 36 2020; 585 2005 2020; 147 2015; 9 2018; 21 2016; 14 2018; 26 2012; 30 2007; 157 2016; 7 2021; 10 2021; 12 2022; 3 2020; 31 2022 2016; 219 2017; 14 2021 2020 2021; 18 2004; 58 2021; 17 2019 2018 2017 2016 2017; 18 2015 2020; 12265 1998; 7 2014; 30 2012; 7 2018; 16 2018; 15 2012; 9 1996; 116 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 Okuta R (e_1_2_10_111_1) 2017 Wei D (e_1_2_10_132_1) 2020; 12265 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 Edelstein A (e_1_2_10_50_1) 2010; 14 e_1_2_10_64_1 Paszke A (e_1_2_10_94_1) 2019 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 Yoo TS (e_1_2_10_43_1) 2002; 85 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 Adams D (e_1_2_10_5_1) 1983 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_27_1 Kluyver T (e_1_2_10_46_1) 2016 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_20_1 (e_1_2_10_6_1) 2019 e_1_2_10_108_1 Pedregosa F (e_1_2_10_70_1) 2011; 12 e_1_2_10_130_1 Witten IH (e_1_2_10_84_1) 2016 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_81_1 Bradski G (e_1_2_10_63_1) 2000; 120 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 5 start-page: 15915 year: 2015 article-title: SIMcheck: a toolbox for successful super‐resolution structured illumination microscopy publication-title: Sci Rep – volume: 31 year: 2020 article-title: CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues publication-title: Cell Rep. – volume: 189 start-page: 777 year: 2010 end-page: 82 article-title: Metadata matters: access to image data in the real world publication-title: J Cell Biol – year: 2020 article-title: Interactive design of GPU‐accelerated image data flow graphs and cross‐platform deployment using multi‐lingual code generation publication-title: bioRxiv – start-page: 265 year: 2018 end-page: 73 – volume: 3 year: 2022 article-title: An open‐source whole slide image registration workflow at cellular precision using Fiji, QuPath and elastix publication-title: Front Comput Sci. – volume: 147 year: 2020 article-title: EPySeg: a coding‐free solution for automated segmentation of epithelia using deep learning publication-title: Development – volume: 17 start-page: 5 year: 2020 end-page: 6 article-title: CLIJ: GPU‐accelerated image processing for everyone publication-title: Nat. Methods – volume: 10 start-page: 181 year: 2012 end-page: 8 article-title: Gwyddion: an open-source software for SPM data analysis publication-title: Centr Eur J Phys – volume: 30 start-page: 1323 year: 2012 end-page: 41 article-title: 3D Slicer as an image computing platform for the Quantitative Imaging Network publication-title: Magn Reson Imaging – year: 2019 article-title: PyTorch: an imperative style, high‐performance deep learning library publication-title: arXiv – volume: 9 start-page: 38 year: 2013 article-title: An online database for plant image analysis software tools publication-title: Plant Methods – volume: 73 start-page: 469 year: 2017 end-page: 77 article-title: Recent developments in the CCP‐EM software suite publication-title: Acta Crystallogr D Struct Biol – volume: 6 start-page: 37 year: 2021 article-title: BoneJ2 – refactoring established research software publication-title: Wellcome Open Res – volume: 12 start-page: 1065 year: 2015 end-page: 71 article-title: SR‐Tesseler: a method to segment and quantify localization‐based super‐resolution microscopy data publication-title: Nat Methods – volume: 54 start-page: 2033 year: 2011 end-page: 44 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: Neuroimage – year: 2022 – volume: 29 start-page: 1840 year: 2013 end-page: 1 article-title: TANGO: a generic tool for high‐throughput 3D image analysis for studying nuclear organization publication-title: Bioinformatics – volume: 157 start-page: 38 year: 2007 end-page: 46 article-title: EMAN2: an extensible image processing suite for electron microscopy publication-title: J Struct Biol – volume: 9 start-page: 142 year: 2015 article-title: Crowdsourcing the creation of image segmentation algorithms for connectomics publication-title: Front Neuroanat – year: 2019 – volume: 17 year: 2019 article-title: Scientific Community Image Forum: a discussion forum for scientific image software publication-title: PLoS Biol – volume: 25 start-page: 1984 year: 2009 end-page: 6 article-title: CATMAID: collaborative annotation toolkit for massive amounts of image data publication-title: Bioinformatics – volume: 9 start-page: 671 year: 2012 end-page: 5 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat Methods – volume: 26 start-page: 979 year: 2010 end-page: 81 article-title: EBImage – an R package for image processing with applications to cellular phenotypes publication-title: Bioinformatics – volume: 184 start-page: 4819 year: 2021 end-page: 4837.e22 article-title: Whole‐body integration of gene expression and single‐cell morphology publication-title: Cell – volume: 14 start-page: e1002340 year: 2016 article-title: Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets publication-title: PLoS Biol – volume: 180 start-page: 519 year: 2012 end-page: 30 article-title: RELION: implementation of a Bayesian approach to cryo‐EM structure determination publication-title: J Struct Biol – volume: 37 start-page: 3079 issue: 18 year: 2021 end-page: 81 article-title: BigDataProcessor2: a free and open‐source Fiji plugin for inspection and processing of TB sized image data publication-title: Bioinformatics – volume: 219 start-page: 69 year: 2016 end-page: 93 article-title: Transforms and operators for directional bioimage analysis: a survey publication-title: Adv Anat Embryol Cell Biol – year: 2022 article-title: TissUUmaps 3: interactive visualization and quality assessment of large‐scale spatial omics data publication-title: bioRxiv – volume: 9 start-page: 90 year: 2007 end-page: 5 article-title: Matplotlib: a 2D graphics environment publication-title: Comput Sci Eng – volume: 16 start-page: 870 year: 2019 end-page: 4 article-title: BigStitcher: reconstructing high‐resolution image datasets of cleared and expanded samples publication-title: Nat Methods – volume: 18 start-page: 100 year: 2021 end-page: 6 article-title: Cellpose: a generalist algorithm for cellular segmentation publication-title: Nat Methods – volume: 120 start-page: 122 year: 2000 end-page: 5 article-title: The OpenCV library publication-title: Dr Dobb's J Software Tools – volume: 115 start-page: 80 year: 2017 end-page: 90 article-title: TrackMate: an open and extensible platform for single‐particle tracking publication-title: Methods – year: 2016 – volume: 116 start-page: 71 year: 1996 end-page: 6 article-title: Computer visualization of three‐dimensional image data using IMOD publication-title: J Struct Biol – volume: 18 start-page: 529 year: 2017 article-title: ImageJ2: ImageJ for the next generation of scientific image data publication-title: BMC Bioinformatics – volume: 2 year: 2014 article-title: scikit‐image: image processing in Python publication-title: PeerJ – volume: 21 start-page: 1188 year: 2014 end-page: 93 article-title: TomoPy: a framework for the analysis of synchrotron tomographic data publication-title: J Synchrotron Radiat – volume: 10 start-page: 302 year: 2021 article-title: Developing open‐source software for bioimage analysis: opportunities and challenges publication-title: F1000Res – volume: 115 start-page: 28 year: 2017 end-page: 41 article-title: DeconvolutionLab2: an open‐source software for deconvolution microscopy publication-title: Methods – volume: 13 year: 2019 article-title: Cytomine: toward an open and collaborative software platform for digital pathology bridged to molecular investigations publication-title: Proteomics Clin Appl – volume: 1 year: 2020 article-title: BIAFLOWS: a collaborative framework to reproducibly deploy and benchmark bioimage analysis workflows publication-title: Patterns (N Y) – volume: 29 start-page: 196 year: 2010 end-page: 205 article-title: elastix: a toolbox for intensity‐based medical image registration publication-title: IEEE Trans Med Imaging – start-page: 319 year: 2008 end-page: 26 – volume: 12 start-page: 5611 year: 2021 article-title: Sub‐diffraction error mapping for localisation microscopy images publication-title: Nat Commun – volume: 32 start-page: 3532 year: 2016 end-page: 4 article-title: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ publication-title: Bioinformatics – volume: 9 year: 2021 article-title: Navigating the light‐sheet image analysis software landscape: concepts for driving cohesion from data acquisition to analysis publication-title: Front Cell Dev Biol – volume: 3 year: 2021 article-title: Image processing filters for grids of cells analogous to filters processing grids of pixels publication-title: Front Comput Sci – volume: 16 year: 2018 article-title: CellProfiler 3.0: next‐generation image processing for biology publication-title: PLoS Biol – volume: 7 start-page: 12471 year: 2016 article-title: Fast live‐cell conventional fluorophore nanoscopy with ImageJ through super‐resolution radial fluctuations publication-title: Nat Commun – volume: 18 start-page: 374 year: 2021 end-page: 7 article-title: SNT: a unifying toolbox for quantification of neuronal anatomy publication-title: Nat Methods – volume: 26 start-page: 12 year: 2018 end-page: 7 article-title: Tutorial on the visualization of volumetric data using tomviz publication-title: Micros Today – volume: 7 start-page: 27 year: 1998 end-page: 41 article-title: A pyramid approach to subpixel registration based on intensity publication-title: IEEE Trans Image Process – year: 2021 – start-page: 87 year: 2016 end-page: 90 – volume: 12 start-page: 481 year: 2015 end-page: 3 article-title: BigDataViewer: visualization and processing for large image data sets publication-title: Nat Methods – volume: 585 start-page: 357 year: 2020 end-page: 62 article-title: Array programming with NumPy publication-title: Nature – volume: 7 year: 2020 article-title: Three‐dimensional segmentation of computed tomography data using: new tools and developments publication-title: R Soc Open Sci – volume: 14 start-page: 1081 year: 2011 end-page: 8 article-title: High‐accuracy neurite reconstruction for high‐throughput neuroanatomy publication-title: Nat Neurosci – volume: 18 start-page: 226 year: 2021 end-page: 8 article-title: Pycro‐Manager: open‐source software for customized and reproducible microscope control publication-title: Nat Methods – volume: 46 start-page: W537 year: 2018 end-page: 44 article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update publication-title: Nucleic Acids Res – volume: Chapter 14 start-page: Unit14.20 year: 2010 article-title: Computer control of microscopes using μManager publication-title: Curr Protoc Mol Biol – volume: 33 start-page: 2424 year: 2017 end-page: 6 article-title: Trainable Weka segmentation: a machine learning tool for microscopy pixel classification publication-title: Bioinformatics – volume: 21 start-page: 1281 year: 2018 end-page: 9 article-title: DeepLabCut: markerless pose estimation of user‐defined body parts with deep learning publication-title: Nat Neurosci – volume: 52 year: 2019 article-title: NanoJ: a high‐performance open‐source super‐resolution microscopy toolbox publication-title: J Phys D Appl Phys – volume: 9 start-page: 482 year: 2008 article-title: CellProfiler Analyst: data exploration and analysis software for complex image‐based screens publication-title: BMC Bioinformatics – volume: 152 start-page: 36 year: 2005 end-page: 51 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: J Struct Biol – volume: 12 start-page: 2825 year: 2011 end-page: 30 article-title: Scikit‐learn: machine learning in Python publication-title: J Mach Learn Res – volume: 16 start-page: 1199 year: 2019 end-page: 200 article-title: ImJoy: an open‐source computational platform for the deep learning era publication-title: Nat Methods – volume: 7 start-page: 10980 year: 2016 article-title: Open‐source image reconstruction of super‐resolution structured illumination microscopy data in ImageJ publication-title: Nat Commun – year: 2021 article-title: Squidpy: a scalable framework for spatial single cell analysis publication-title: bioRxiv – volume: 7 start-page: 16878 year: 2017 article-title: QuPath: open source software for digital pathology image analysis publication-title: Sci Rep – volume: 18 start-page: 1496 year: 2021 end-page: 8 article-title: OME‐NGFF: a next‐generation file format for expanding bioimaging data‐access strategies publication-title: Nat Methods – volume: 14 start-page: 1141 year: 2017 end-page: 52 article-title: An objective comparison of cell‐tracking algorithms publication-title: Nat Methods – volume: 9 start-page: 676 year: 2012 end-page: 82 article-title: Fiji: an open‐source platform for biological‐image analysis publication-title: Nat Methods – volume: 18 start-page: 1192 year: 2021 end-page: 5 article-title: DeepImageJ: a user‐friendly environment to run deep learning models in ImageJ publication-title: Nat Methods – year: 2015 – volume: 16 start-page: 387 year: 2019 end-page: 95 article-title: Super‐resolution fight club: assessment of 2D and 3D single‐molecule localization microscopy software publication-title: Nat Methods – volume: 17 start-page: 870 year: 2020 end-page: 2 article-title: SMAP: a modular super‐resolution microscopy analysis platform for SMLM data publication-title: Nat Methods – year: 1983 – volume: 28 start-page: 3009 year: 2012 end-page: 11 article-title: ImgLib2 – generic image processing in Java publication-title: Bioinformatics – volume: 15 start-page: 263 year: 2018 end-page: 6 article-title: Quantitative mapping and minimization of super‐resolution optical imaging artifacts publication-title: Nat Methods – volume: 12265 start-page: 66 year: 2020 end-page: 76 article-title: MitoEM Dataset: large‐scale 3D mitochondria instance segmentation from EM images publication-title: Med Image Comput Comput Assist Interv – volume: 7 year: 2012 article-title: TrakEM2 software for neural circuit reconstruction publication-title: PLoS One – volume: 58 start-page: 167 year: 2004 end-page: 76 article-title: Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images publication-title: Cytometry A – volume: 16 start-page: 1215 year: 2019 end-page: 25 article-title: Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction publication-title: Nat Methods – volume: 32 start-page: 1395 year: 2016 end-page: 401 article-title: Collaborative analysis of multi‐gigapixel imaging data using Cytomine publication-title: Bioinformatics – volume: 15 start-page: 1090 year: 2018 end-page: 7 article-title: Content‐aware image restoration: pushing the limits of fluorescence microscopy publication-title: Nat Methods – volume: 17 start-page: e1008374 year: 2021 article-title: DeepMIB: user‐friendly and open‐source software for training of deep learning network for biological image segmentation publication-title: PLoS Comput Biol – volume: 9 start-page: 690 year: 2012 end-page: 6 article-title: Icy: an open bioimage informatics platform for extended reproducible research publication-title: Nat Methods – volume: 16 start-page: 278 year: 2019 end-page: 80 article-title: 3Dscript: animating 3D/4D microscopy data using a natural‐language‐based syntax publication-title: Nat Methods – volume: 31 start-page: 1116 year: 2006 end-page: 28 article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – volume: 12 start-page: 2276 year: 2021 article-title: Democratising deep learning for microscopy with ZeroCostDL4Mic publication-title: Nat Commun – year: 2012 – volume: 40 year: 2021 article-title: Reproducible image handling and analysis publication-title: EMBO J – volume: 9 start-page: 245 year: 2012 end-page: 53 article-title: OMERO: flexible, model‐driven data management for experimental biology publication-title: Nat Methods – year: 2018 article-title: Noise2Void – learning denoising from single noisy images publication-title: arXiv – volume: 17 start-page: 261 year: 2020 end-page: 72 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat Methods – volume: 30 start-page: 2389 year: 2014 end-page: 90 article-title: ThunderSTORM: a comprehensive ImageJ plug‐in for PALM and STORM data analysis and super‐resolution imaging publication-title: Bioinformatics – volume: 85 start-page: 586 year: 2002 end-page: 92 article-title: Engineering and algorithm design for an image processing Api: a technical report on ITK–the Insight Toolkit publication-title: Stud Health Technol Inform – year: 2021 article-title: Open microscopy in the life sciences: Quo Vadis? publication-title: arXiv. – volume: 14 start-page: 691 year: 2017 end-page: 4 article-title: webKnossos: efficient online 3D data annotation for connectomics publication-title: Nat Methods – volume: 16 start-page: 1226 year: 2019 end-page: 32 article-title: ilastik: interactive machine learning for (bio)image analysis publication-title: Nat Methods – year: 2006 – year: 2020 – volume: 36 start-page: 4363 year: 2020 end-page: 5 article-title: TissUUmaps: interactive visualization of large‐scale spatial gene expression and tissue morphology data publication-title: Bioinformatics – volume: 4 year: 2015 article-title: MorphoGraphX: a platform for quantifying morphogenesis in 4D publication-title: Elife – start-page: 717 year: 2005 end-page: 31 – year: 2017 – volume: 6 start-page: 2440 year: 2021 article-title: starfish: scalable pipelines for image‐criptomics publication-title: J Open Source Softw – volume: 600 start-page: 347 year: 2021 end-page: 8 article-title: Python power‐up: new image tool visualizes complex data publication-title: Nature – ident: e_1_2_10_49_1 doi: 10.1109/MCSE.2007.55 – ident: e_1_2_10_79_1 doi: 10.1093/bioinformatics/btu202 – ident: e_1_2_10_52_1 doi: 10.1371/journal.pbio.1002340 – ident: e_1_2_10_131_1 doi: 10.3389/fnana.2015.00142 – ident: e_1_2_10_73_1 doi: 10.1038/s41592-021-01105-7 – ident: e_1_2_10_18_1 doi: 10.12688/wellcomeopenres.16619.1 – ident: e_1_2_10_23_1 doi: 10.1371/journal.pbio.2005970 – ident: e_1_2_10_76_1 doi: 10.1109/83.650848 – ident: e_1_2_10_64_1 doi: 10.1038/s41598-017-17204-5 – ident: e_1_2_10_124_1 doi: 10.1038/s41467-021-25812-z – ident: e_1_2_10_119_1 doi: 10.1093/bioinformatics/btaa541 – ident: e_1_2_10_88_1 – ident: e_1_2_10_34_1 doi: 10.1038/nmeth.2075 – ident: e_1_2_10_118_1 doi: 10.3389/fcomp.2021.774396 – ident: e_1_2_10_30_1 doi: 10.1038/ncomms10980 – ident: e_1_2_10_95_1 doi: 10.1038/s41592-021-01262-9 – ident: e_1_2_10_89_1 doi: 10.1242/dev.194589 – ident: e_1_2_10_16_1 doi: 10.1083/jcb.201004104 – ident: e_1_2_10_85_1 doi: 10.1371/journal.pone.0038011 – volume: 12265 start-page: 66 year: 2020 ident: e_1_2_10_132_1 article-title: MitoEM Dataset: large‐scale 3D mitochondria instance segmentation from EM images publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_10_100_1 doi: 10.1038/d41586-021-03628-7 – ident: e_1_2_10_122_1 doi: 10.1038/nmeth.4605 – year: 2019 ident: e_1_2_10_94_1 article-title: PyTorch: an imperative style, high‐performance deep learning library publication-title: arXiv – ident: e_1_2_10_4_1 – ident: e_1_2_10_35_1 doi: 10.1038/s41592-019-0582-9 – ident: e_1_2_10_83_1 doi: 10.1093/bioinformatics/btx180 – ident: e_1_2_10_59_1 – ident: e_1_2_10_29_1 doi: 10.1016/j.jsb.2006.05.009 – ident: e_1_2_10_103_1 doi: 10.1038/s41592-019-0359-1 – ident: e_1_2_10_133_1 – ident: e_1_2_10_77_1 doi: 10.1007/978-3-030-00934-2_30 – ident: e_1_2_10_96_1 doi: 10.1038/s41467-021-22518-0 – ident: e_1_2_10_123_1 doi: 10.1038/srep15915 – ident: e_1_2_10_106_1 doi: 10.1016/j.patter.2020.100040 – ident: e_1_2_10_107_1 doi: 10.1093/bioinformatics/btab106 – ident: e_1_2_10_45_1 – ident: e_1_2_10_97_1 doi: 10.1038/s41592-019-0627-0 – ident: e_1_2_10_13_1 doi: 10.1016/j.neuroimage.2010.09.025 – ident: e_1_2_10_74_1 doi: 10.1038/s41592-020-0938-1 – ident: e_1_2_10_48_1 doi: 10.1038/nn.2868 – volume-title: Proceedings of workshop on machine learning systems (LearningSys) in the thirty‐first annual conference on neural information processing systems (NIPS) year: 2017 ident: e_1_2_10_111_1 – ident: e_1_2_10_51_1 doi: 10.1038/s41592-021-01087-6 – ident: e_1_2_10_47_1 doi: 10.1007/978-3-540-78246-9_38 – ident: e_1_2_10_40_1 – volume: 14 start-page: Unit14.20 year: 2010 ident: e_1_2_10_50_1 article-title: Computer control of microscopes using μManager publication-title: Curr Protoc Mol Biol – ident: e_1_2_10_93_1 – ident: e_1_2_10_65_1 – ident: e_1_2_10_117_1 doi: 10.21105/joss.02440 – ident: e_1_2_10_105_1 doi: 10.1093/bioinformatics/btw013 – ident: e_1_2_10_37_1 doi: 10.1186/s12859-017-1934-z – ident: e_1_2_10_121_1 doi: 10.1038/s41592-019-0364-4 – ident: e_1_2_10_7_1 doi: 10.1186/1746-4811-9-38 – ident: e_1_2_10_68_1 – ident: e_1_2_10_129_1 doi: 10.1038/nmeth.4473 – ident: e_1_2_10_126_1 doi: 10.1038/s41592-021-01326-w – ident: e_1_2_10_17_1 – volume: 85 start-page: 586 year: 2002 ident: e_1_2_10_43_1 article-title: Engineering and algorithm design for an image processing Api: a technical report on ITK–the Insight Toolkit publication-title: Stud Health Technol Inform – ident: e_1_2_10_26_1 doi: 10.1117/12.935640 – ident: e_1_2_10_55_1 doi: 10.1088/1361-6463/ab0261 – ident: e_1_2_10_3_1 – ident: e_1_2_10_72_1 doi: 10.1016/j.jsb.2005.07.007 – ident: e_1_2_10_120_1 doi: 10.1101/2022.01.28.478131 – ident: e_1_2_10_11_1 doi: 10.1093/bioinformatics/btt276 – ident: e_1_2_10_53_1 doi: 10.7554/eLife.05864 – ident: e_1_2_10_36_1 doi: 10.1038/nmeth.2089 – ident: e_1_2_10_113_1 – ident: e_1_2_10_57_1 doi: 10.1002/cyto.a.20022 – ident: e_1_2_10_112_1 doi: 10.1038/s41592-019-0650-1 – ident: e_1_2_10_102_1 doi: 10.3389/fcomp.2021.780026 – ident: e_1_2_10_21_1 – ident: e_1_2_10_110_1 doi: 10.25080/Majora-7b98e3ed-013 – ident: e_1_2_10_60_1 doi: 10.1016/B978-012387582-2/50038-1 – ident: e_1_2_10_115_1 doi: 10.1016/j.celrep.2020.107523 – ident: e_1_2_10_28_1 doi: 10.1109/TMI.2009.2035616 – ident: e_1_2_10_62_1 doi: 10.1038/nmeth.1896 – ident: e_1_2_10_87_1 doi: 10.48550/arXiv.1811.10980 – ident: e_1_2_10_127_1 – ident: e_1_2_10_61_1 doi: 10.1007/978-3-319-28549-8_3 – ident: e_1_2_10_114_1 doi: 10.1101/2020.11.19.386565 – ident: e_1_2_10_81_1 doi: 10.1017/S1551929517001213 – ident: e_1_2_10_14_1 doi: 10.1038/nmeth.3392 – ident: e_1_2_10_90_1 doi: 10.1038/s41593-018-0209-y – ident: e_1_2_10_99_1 – ident: e_1_2_10_56_1 doi: 10.1038/ncomms12471 – ident: e_1_2_10_66_1 doi: 10.1093/bioinformatics/btq046 – ident: e_1_2_10_15_1 doi: 10.1038/s41592-019-0501-0 – ident: e_1_2_10_67_1 doi: 10.1016/j.jsb.2012.09.006 – ident: e_1_2_10_125_1 – ident: e_1_2_10_2_1 doi: 10.12688/f1000research.52531.1 – ident: e_1_2_10_27_1 doi: 10.1098/rsos.201033 – ident: e_1_2_10_108_1 doi: 10.1002/prca.201800057 – ident: e_1_2_10_130_1 – ident: e_1_2_10_22_1 doi: 10.1038/s41592-020-01018-x – ident: e_1_2_10_71_1 doi: 10.1038/s41592-019-0686-2 – ident: e_1_2_10_54_1 doi: 10.1093/bioinformatics/btw413 – ident: e_1_2_10_10_1 – ident: e_1_2_10_12_1 doi: 10.1016/j.mri.2012.05.001 – ident: e_1_2_10_44_1 doi: 10.1016/j.neuroimage.2006.01.015 – ident: e_1_2_10_25_1 doi: 10.1016/j.ymeth.2016.12.015 – ident: e_1_2_10_32_1 – ident: e_1_2_10_101_1 doi: 10.1016/j.cell.2021.07.017 – ident: e_1_2_10_104_1 doi: 10.1093/nar/gky379 – ident: e_1_2_10_38_1 – ident: e_1_2_10_128_1 doi: 10.15252/embj.2020105889 – ident: e_1_2_10_42_1 doi: 10.1093/emboj/20.20.5636 – ident: e_1_2_10_58_1 doi: 10.1038/s41586-020-2649-2 – ident: e_1_2_10_82_1 doi: 10.1016/j.ymeth.2016.09.016 – ident: e_1_2_10_31_1 doi: 10.1038/nmeth.2019 – ident: e_1_2_10_91_1 doi: 10.1038/s41592-019-0458-z – start-page: 87 volume-title: Positioning and power in academic publishing: players, agents and agendas year: 2016 ident: e_1_2_10_46_1 – ident: e_1_2_10_69_1 doi: 10.7717/peerj.453 – volume: 120 start-page: 122 year: 2000 ident: e_1_2_10_63_1 article-title: The OpenCV library publication-title: Dr Dobb's J Software Tools – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_10_70_1 article-title: Scikit‐learn: machine learning in Python publication-title: J Mach Learn Res – volume-title: Data mining: practical machine learning tools and techniques year: 2016 ident: e_1_2_10_84_1 – ident: e_1_2_10_33_1 doi: 10.2478/s11534-011-0096-2 – volume-title: Bioimage data analysis workflows year: 2019 ident: e_1_2_10_6_1 – ident: e_1_2_10_20_1 doi: 10.1107/S2059798317007859 – ident: e_1_2_10_78_1 doi: 10.1109/WACV45572.2020.9093435 – volume-title: The meaning of Liff year: 1983 ident: e_1_2_10_5_1 – ident: e_1_2_10_9_1 doi: 10.3389/fcell.2021.739079 – ident: e_1_2_10_41_1 doi: 10.1093/bioinformatics/bts543 – ident: e_1_2_10_80_1 doi: 10.1107/S1600577514013939 – ident: e_1_2_10_19_1 doi: 10.1093/bioinformatics/btp266 – ident: e_1_2_10_116_1 doi: 10.1101/2021.02.19.431994 – ident: e_1_2_10_39_1 doi: 10.1371/journal.pbio.3000340 – ident: e_1_2_10_92_1 – ident: e_1_2_10_8_1 doi: 10.48550/arXiv.2110.13951 – ident: e_1_2_10_86_1 doi: 10.1038/s41592-018-0216-7 – ident: e_1_2_10_75_1 doi: 10.1038/nmeth.3579 – ident: e_1_2_10_98_1 doi: 10.1371/journal.pcbi.1008374 – ident: e_1_2_10_109_1 doi: 10.1038/nmeth.4331 – ident: e_1_2_10_24_1 doi: 10.1186/1471-2105-9-482 |
SSID | ssj0001819 |
Score | 2.524879 |
SecondaryResourceType | review_article |
Snippet | Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from... |
SourceID | swepub hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2472 |
SubjectTerms | Bioengineering bioimaging Bioinformatics bio‐image analysis Computer Science computer software Computerized Image Processing Datoriserad bildbehandling Imaging Life Sciences microscopy Numerical Analysis open‐source software |
Title | A Hitchhiker's guide through the bio‐image analysis software universe |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.14451 https://www.proquest.com/docview/2689670481 https://www.proquest.com/docview/2811973875 https://hal.inrae.fr/hal-03757709 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-490039 |
Volume | 596 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKKwQXRFsQS6EyFX-XsLu283dMS5cVBYQQBW6WHU_aCJqtdptWvfUR-ox9EmacZGGRKOIUKxo70Yw9nrFnvmHsqbImDV1RBMrgDFZWyMAqgECACK0ihHEPkvT-QzTeV2-_hV00IeXCNPgQ8wM3WhleX9MCN3bW_wUaOkxiGUgVJXQ_SUnUK5RgS_D5Qn2cK2PcwBoLeKiCEOdih-4zEP0_BljYmG4cUljk7zZngyO6aML6PWh0l91pjUeeNdJeZUtQrbH1rELH-eicP-c-nNOfk6-xm9td69ZOV9Rtnb3J-LhEQR2W32H6YsYP6tIBb4v14BO4LSdXF5flEeoZblrEEj5DZX1mpsDrJo4D7rH90e7nnXHQ1lII8lBSFAYaRs6G1qFDB2HilChcWiQql0baGPIwggg1XR4rQIHZYQoWSfJcoAeFNoyT99lyNangAeOpBJsMhHVGpgQ3hkPnibPODp0tnDQ99qpjpM5boHGqd_FDNxDJQhPnNXFee8732Mt5h-MGY-PvpFsomTkVYWOPs3ea3lEx3zgepKdI9KQTnEb20g2IqWBSz7SIkjSKCSLnGpqEblYl-nE99qyR-sL3XpdfMj2ZHui61orOgdMe6_tJ8a-f16PdbeFbD_-7xwa7LSjxwocRPmLLJ9MaHqM5dGI3_YTfZCvZ3qevez8Bqa3_eA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKK1QuiLYgtjzqIl6XsLu28zqmj22AbcWhRb1ZcTxpI9os2m1A3PgJ_EZ-CTNOsu0iAeIUKxo70Yw9nhmPv2HsuTJZ7Nui8FSGM1gZIT2jADwBwjeKEMYdSNLhUZCeqHen_umNuzANPsQ84EYrw-lrWuAUkO5fo4YOo1B6UgURHVDSLeoVFYiQFqdQH-baGHewxgQeKs_HydjB-wxE_7cBFnamW-eUF3nT6GyARBdtWLcJje6xu631yJNG3GtsCap1tpFU6DlffuMvucvndIHydXZ7p2ut7nZV3TbYQcLTEiV1Xn6C6asZP6tLC7yt1oNP4Kac_Pz-o7xERcOzFrKEz1Bbf82mwOsmkQPus5PR_vFu6rXFFLzcl5SGgZaRNb6x6NGBH1klChsXkcplJk0IuR9AgKouDxWgxMwwBoMkeS7QhUIjxsoHbLmaVPCQ8ViCiQbC2EzGhDeGQ-eRNdYMrSmszHrsTcdInbdI41Tw4kI3GMlCE-c1cV47zvfY63mHzw3Ixp9Jn6Fk5lQEjp0mY03vqJpvGA7iL0i03QlOI3vpCCSrYFLPtAiiOAgJI-cvNBEdrUp05HrsRSP1he_tlR8TPZme6brWigLBcY_13aT418_r0f6OcK3N_-6xxVbT48OxHr89ev-I3RF0C8PlFD5my1fTGp6gbXRlnrrJ_wtztgFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEY8LghbE8jSI1yXsru28juljWaBUPVDUmxXHkzaCZqvdBsSNn8Bv5Jcw4yQLiwSIU6xo7EQz9njGM_4G4LG2eRq6sgx0TjNYW6kCqxEDiTK0mhHGPUjS271oeqBfH4Z9NiHfhWnxIZYHbrwyvL7mBX7qyuFP0NBxEqtA6Sjh-CRfor7gQ34M7qz3l8qYNrDWAh7rIKS52KP7jOTwtwFWNqbzx5wW-avN2eKIrpqwfg-aXIOrnfEoslba1-Ec1uuwkdXkOJ98EU-FT-f05-TrcHGzb13e6ou6bcDLTEwrEtRx9QHnzxbiqKkciq5YDz1R2Gr2_eu36oT0jMg7xBKxIGX9OZ-jaNo8DrwBB5Odd1vToKulEBSh4iwMMoycDa0jhw7DxGlZurRMdKFyZWMswggj0nRFrJEEZscpWiIpCkkeFNkwTt2EtXpW4y0QqUKbjKR1uUoZboyGLhJnnR07WzqVD-BFz0hTdEDjXO_io2khkqVhzhvmvPGcH8DzZYfTFmPjz6SPSDJLKsbGnma7ht9xMd84HqWfiOhhLzhD7OUISF7jrFkYGSVpFDNEzl9oEo6sKvLjBvCklfrK97ar95mZzY9M0xjN58DpAIZ-Uvzr581kZ1P61u3_7vEALu1vT8zuq703d-CK5DsYPqPwLqydzRu8R5bRmb3v5_4P6UgAgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hitchhiker%27s+guide+through+the+bio%E2%80%90image+analysis+software+universe&rft.jtitle=FEBS+letters&rft.au=Haase%2C+Robert&rft.au=Fazeli%2C+Elnaz&rft.au=Legland%2C+David&rft.au=Doube%2C+Michael&rft.date=2022-10-01&rft.pub=Wiley&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=596&rft.issue=19&rft.spage=2472&rft.epage=2485&rft_id=info:doi/10.1002%2F1873-3468.14451&rft_id=info%3Apmid%2F35833863&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03757709v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon |