Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes

Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect...

Full description

Saved in:
Bibliographic Details
Published inJournal of pineal research Vol. 60; no. 2; pp. 132 - 141
Main Authors Zhao, Xue-Ming, Hao, Hai-Sheng, Du, Wei-Hua, Zhao, Shan-Jiang, Wang, Hao-Yu, Wang, Na, Wang, Dong, Liu, Yan, Qin, Tong, Zhu, Hua-Bin
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10−9 m melatonin. We analyzed the ROS, mitochondrial Ca2+ (mCa2+) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase‐3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa2+, Bax mRNA, and caspase‐3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa2+, Bax mRNA expression, and caspase‐3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10−9 m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential.
AbstractList Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10−9 m melatonin. We analyzed the ROS, mitochondrial Ca2+ (mCa2+) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase‐3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa2+, Bax mRNA, and caspase‐3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa2+, Bax mRNA expression, and caspase‐3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10−9 m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential.
Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10(-9) m melatonin. We analyzed the ROS, mitochondrial Ca(2+) (mCa(2+) ) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase-3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa(2+) , Bax mRNA, and caspase-3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa(2+) , Bax mRNA expression, and caspase-3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10(-9) m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential.Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10(-9) m melatonin. We analyzed the ROS, mitochondrial Ca(2+) (mCa(2+) ) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase-3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa(2+) , Bax mRNA, and caspase-3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa(2+) , Bax mRNA expression, and caspase-3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10(-9) m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential.
Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species ( ROS ) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation ( IVM ) and vitrification solution with 10 −9 m melatonin. We analyzed the ROS , mitochondrial Ca 2+ ( mC a 2+ ) and membrane potential (ΔΨm), externalization of phosphatidylserine ( PS ), caspase‐3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1 , and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS , mC a 2+ , Bax mRNA , and caspase‐3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS , mC a 2+ , Bax mRNA expression, and caspase‐3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10 −9 m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential.
Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10(-9) m melatonin. We analyzed the ROS, mitochondrial Ca(2+) (mCa(2+) ) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase-3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa(2+) , Bax mRNA, and caspase-3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa(2+) , Bax mRNA expression, and caspase-3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10(-9) m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential.
Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10 super(-9) m melatonin. We analyzed the ROS, mitochondrial Ca super(2+) (mCa super(2+)) and membrane potential ( Delta psi m), externalization of phosphatidylserine (PS), caspase-3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa super(2+), Bax mRNA, and caspase-3 protein and higher rates of PS externalization and DNA fragmentation, and decreased Delta psi m and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa super(2+), Bax mRNA expression, and caspase-3 protein, and PS externalization and DNA fragmentation rates, and increased the Delta psi m and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10 super(-9) m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential.
Author Du, Wei-Hua
Liu, Yan
Wang, Dong
Hao, Hai-Sheng
Zhao, Xue-Ming
Zhu, Hua-Bin
Wang, Hao-Yu
Zhao, Shan-Jiang
Wang, Na
Qin, Tong
Author_xml – sequence: 1
  givenname: Xue-Ming
  surname: Zhao
  fullname: Zhao, Xue-Ming
  organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
– sequence: 2
  givenname: Hai-Sheng
  surname: Hao
  fullname: Hao, Hai-Sheng
  organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
– sequence: 3
  givenname: Wei-Hua
  surname: Du
  fullname: Du, Wei-Hua
  organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
– sequence: 4
  givenname: Shan-Jiang
  surname: Zhao
  fullname: Zhao, Shan-Jiang
  organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
– sequence: 5
  givenname: Hao-Yu
  surname: Wang
  fullname: Wang, Hao-Yu
  organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
– sequence: 6
  givenname: Na
  surname: Wang
  fullname: Wang, Na
  organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
– sequence: 7
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
– sequence: 8
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
– sequence: 9
  givenname: Tong
  surname: Qin
  fullname: Qin, Tong
  organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
– sequence: 10
  givenname: Hua-Bin
  surname: Zhu
  fullname: Zhu, Hua-Bin
  email: Address reprint requests to Hua-Bin Zhu, Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China., zhuhuabin@caas.cn
  organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26485053$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxS3Uim4LB_4BlCMc0o6dOHGOsILSL-iBr5vl2BN1SmKH2Luw_z1pt-2hEoi5zDv83tNo3j7b8cEjYy84HPJ5jq5HOuRCNPCELXgFkEPdfN9hC6hLkRfQqD22H-M1ACilqqdsT1SlkiCLBTMX2JsUPPmM_BW1lGJmxjCmEGlW3mU0jFNYY8zSFWYO19iHcUCfTJ-NIc2CZhW6bE1poo7QZW1Yk8csBLtJGJ-x3c70EZ_f7QP25f27z8sP-fmn45Plm_PcykJAbp1zhXPC1qo1LQfuJLSmcMp1TdfZsm2ctY2Coi15K0sBzhneyaaSYETNsThgr7a587k_VxiTHiha7HvjMayi5rUCKUol5H-glWgqoapmRl_eoat2QKfHiQYzbfT9B2fg9RawU4hxwu4B4aBv2tFzO_q2nZk9esRaSiZR8Gky1P_L8Yt63Pw9Wp9entw78q2DYsLfDw4z_dBVXdRSf_t4rJdnX9-eLfmlros_dEuxlg
CitedBy_id crossref_primary_10_1155_2021_6668365
crossref_primary_10_1080_15384101_2024_2402190
crossref_primary_10_1007_s43032_022_01147_y
crossref_primary_10_1186_s13148_020_00911_8
crossref_primary_10_1016_j_theriogenology_2025_117399
crossref_primary_10_1016_j_reprotox_2020_01_004
crossref_primary_10_1089_bio_2023_0062
crossref_primary_10_3390_ijms20163921
crossref_primary_10_3389_fcell_2021_733860
crossref_primary_10_3389_fcell_2024_1398049
crossref_primary_10_3390_ani10020209
crossref_primary_10_1111_rda_14158
crossref_primary_10_1016_S2095_3119_18_61942_2
crossref_primary_10_3390_bioengineering9030088
crossref_primary_10_3390_antiox12040897
crossref_primary_10_1016_j_cryobiol_2024_104902
crossref_primary_10_1016_j_theriogenology_2023_04_004
crossref_primary_10_1093_humrep_dew362
crossref_primary_10_3390_antiox10020184
crossref_primary_10_3390_antiox12010035
crossref_primary_10_1080_15384101_2020_1767403
crossref_primary_10_1111_rda_14262
crossref_primary_10_3390_ijms232315089
crossref_primary_10_3389_fcell_2021_648148
crossref_primary_10_1016_j_lfs_2020_118706
crossref_primary_10_3390_ijms24010590
crossref_primary_10_1002_jcp_25876
crossref_primary_10_3389_fcell_2022_856486
crossref_primary_10_1017_S0967199421000770
crossref_primary_10_3390_ijms17122124
crossref_primary_10_1111_rda_12942
crossref_primary_10_54680_fr23110110212
crossref_primary_10_1007_s10815_022_02611_z
crossref_primary_10_1002_mrd_23247
crossref_primary_10_1007_s10499_023_01280_8
crossref_primary_10_1016_j_rbmo_2019_09_012
crossref_primary_10_1089_cell_2022_0001
crossref_primary_10_3390_biomedicines9121904
crossref_primary_10_1530_REP_18_0211
crossref_primary_10_3390_ijms21197067
crossref_primary_10_5713_ab_23_0371
crossref_primary_10_1016_j_theriogenology_2017_05_012
crossref_primary_10_1089_bio_2017_0122
crossref_primary_10_1111_jpi_12707
crossref_primary_10_3389_fvets_2022_903195
crossref_primary_10_1016_j_theriogenology_2023_06_012
crossref_primary_10_1016_j_repbio_2017_09_002
crossref_primary_10_1016_j_theriogenology_2020_10_036
crossref_primary_10_1016_j_theriogenology_2024_08_029
crossref_primary_10_1016_j_psj_2023_103331
crossref_primary_10_1111_jpi_12388
crossref_primary_10_1111_jpi_12543
crossref_primary_10_3390_antiox13070814
crossref_primary_10_3390_vetsci9080439
crossref_primary_10_1016_j_theriogenology_2019_11_037
crossref_primary_10_3390_antiox11091640
crossref_primary_10_3390_ani12192636
crossref_primary_10_1017_S0967199420000465
crossref_primary_10_3389_fvets_2023_1212047
crossref_primary_10_1016_j_biopha_2024_116487
crossref_primary_10_1016_j_theriogenology_2017_12_031
crossref_primary_10_1038_s41598_017_10907_9
crossref_primary_10_1089_bio_2017_0074
crossref_primary_10_1016_j_theriogenology_2021_07_027
crossref_primary_10_1530_REP_16_0530
crossref_primary_10_2478_aoas_2020_0030
crossref_primary_10_1002_jcp_30468
crossref_primary_10_1590_1519_6984_241081
crossref_primary_10_1016_j_reprotox_2017_12_005
crossref_primary_10_3389_fvets_2021_752001
crossref_primary_10_1177_0004867418796955
crossref_primary_10_1016_j_theriogenology_2019_09_010
crossref_primary_10_1262_jrd_2022_053
crossref_primary_10_1016_j_ecoenv_2022_113166
crossref_primary_10_1002_mrd_22739
crossref_primary_10_1071_AN22133
crossref_primary_10_1111_asj_13683
crossref_primary_10_1016_j_theriogenology_2021_09_032
crossref_primary_10_1016_j_lfs_2019_116810
crossref_primary_10_1016_j_cryobiol_2020_02_011
crossref_primary_10_1071_RD22130
crossref_primary_10_3389_fvets_2023_1174756
crossref_primary_10_1111_jpi_12447
crossref_primary_10_1016_j_cryobiol_2020_03_004
crossref_primary_10_3390_cells8091009
crossref_primary_10_1017_S0967199423000345
crossref_primary_10_1071_RD18162
crossref_primary_10_1111_rda_13890
crossref_primary_10_18632_oncotarget_12720
crossref_primary_10_1080_14647273_2023_2190987
crossref_primary_10_1111_rda_14623
crossref_primary_10_1016_j_chemosphere_2019_02_092
crossref_primary_10_31083_j_ceog5009197
crossref_primary_10_3390_genes13050805
crossref_primary_10_3390_molecules23020494
crossref_primary_10_1016_j_cryobiol_2019_05_005
crossref_primary_10_1016_j_cryobiol_2019_05_008
crossref_primary_10_17221_44_2021_CJAS
crossref_primary_10_1021_acs_jafc_0c06340
crossref_primary_10_1007_s10815_024_03287_3
crossref_primary_10_1111_jpi_12477
crossref_primary_10_7717_peerj_3485
crossref_primary_10_3390_jdb12040026
crossref_primary_10_1016_j_theriogenology_2025_02_025
crossref_primary_10_1071_RD18216
crossref_primary_10_3390_cells11223573
crossref_primary_10_1111_asj_12970
crossref_primary_10_3390_nu15153288
crossref_primary_10_1016_j_theriogenology_2024_11_025
crossref_primary_10_1016_j_cryobiol_2019_11_001
crossref_primary_10_1016_j_ecoenv_2024_116100
crossref_primary_10_3390_jcm12134444
crossref_primary_10_3390_cells11244018
crossref_primary_10_3390_ijms20020409
crossref_primary_10_1016_j_cryobiol_2020_06_012
crossref_primary_10_4274_BMJ_galenos_2023_2022_12_11
crossref_primary_10_1111_jpi_12627
crossref_primary_10_1016_j_domaniend_2020_106447
crossref_primary_10_3390_antiox12050991
crossref_primary_10_52396_JUSTC_2023_0072
crossref_primary_10_1016_j_stemcr_2019_01_019
crossref_primary_10_3390_antiox8070198
crossref_primary_10_3390_ani11082324
crossref_primary_10_1002_mrd_23052
crossref_primary_10_1186_s40104_021_00605_y
crossref_primary_10_3390_antiox11020344
crossref_primary_10_1111_rda_14009
Cites_doi 10.1101/gad.13.15.1899
10.1002/mrd.21295
10.1023/A:1009616228304
10.1016/S0891-5849(00)00435-4
10.1530/rep.1.00878
10.1016/j.fertnstert.2011.06.030
10.1071/RDv24n1Ab44
10.1016/S0022-1759(00)00285-4
10.1016/j.cryobiol.2014.09.380
10.1111/jpi.12163
10.1016/j.theriogenology.2006.09.004
10.1002/mrd.21389
10.1016/0011-2240(91)90007-B
10.1095/biolreprod.104.031690
10.1002/mrd.21064
10.1155/2013/920257
10.1016/j.theriogenology.2014.09.031
10.1016/j.fertnstert.2011.04.089
10.1095/biolreprod62.6.1745
10.1016/j.fertnstert.2010.01.043
10.1111/j.1600-079X.2007.00432.x
10.1093/humrep/13.4.998
10.1016/j.fertnstert.2014.03.052
10.1095/biolreprod63.2.513
10.1371/journal.pone.0097731
10.1097/00007890-200001150-00024
10.1016/j.theriogenology.2010.12.028
10.1111/j.1600-079X.2007.00479.x
10.1002/(SICI)1098-2795(199809)51:1<53::AID-MRD6>3.0.CO;2-V
10.1016/j.cryobiol.2007.06.008
10.1111/j.1600-079X.2006.00351.x
10.1007/s00424-012-1122-y
10.1111/asj.12067
10.1002/mrd.22018
10.1111/jpi.12162
10.1101/gad.1658508
10.1111/jpi.12267
10.1093/humrep/del319
10.1111/jpi.12234
10.1016/S0011-2240(03)00070-1
10.1111/j.1600-079X.2009.00717.x
10.1095/biolreprod.113.109769
10.1111/jpi.12126
10.1095/biolreprod63.3.805
10.1016/j.cell.2005.05.011
10.1016/j.theriogenology.2012.11.011
10.1126/science.1099320
10.2174/1568026023394443
10.1126/science.1132009
10.1371/journal.pone.0058063
10.1111/jpi.12069
10.1071/RD10013
10.1002/cbin.10163
10.1093/humrep/14.12.3077
10.1111/j.1600-079X.2007.00524.x
10.1038/35048073
10.1093/humrep/der210
10.1290/1071-2690(2000)036<0262:CVIFIO>2.0.CO;2
10.1016/j.freeradbiomed.2007.01.018
10.1111/j.1600-079X.2008.00602.x
10.1016/j.anireprosci.2012.08.020
10.1073/pnas.88.9.3671
10.1262/jrd.50.287
10.1016/S0015-0282(02)04678-2
10.1016/j.rbmo.2014.03.024
10.1111/j.1600-079X.2011.00944.x
10.1095/biolreprod.112.106450
10.1016/j.theriogenology.2011.04.017
10.1126/science.281.5381.1309
10.1111/j.1600-079X.2011.00856.x
10.1111/j.1600-079X.2007.00475.x
10.1083/jcb.200303047
ContentType Journal Article
Copyright 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1111/jpi.12290
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1600-079X
EndPage 141
ExternalDocumentID 26485053
10_1111_jpi_12290
JPI12290
ark_67375_WNG_CKVBKC1P_7
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31472100
– fundername: Agricultural Science and Technology Innovation Program
  funderid: ASTIP‐IAS‐TS‐5; ASTIP‐IAS06‐2014
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
186
1OB
1OC
29L
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BQCPF
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7TK
ID FETCH-LOGICAL-c5320-cddd3dd2c78bab101d50ba3d8df9ffc4b9dcc9803b41b5420dda1f59650a271e3
IEDL.DBID DR2
ISSN 0742-3098
1600-079X
IngestDate Fri Jul 11 11:47:07 EDT 2025
Fri Jul 11 04:24:45 EDT 2025
Thu Apr 03 07:02:44 EDT 2025
Tue Jul 01 01:05:20 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Wed Jan 22 16:52:06 EST 2025
Wed Oct 30 09:51:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords bovine
melatonin
oocytes
mitochondria
vitrification
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5320-cddd3dd2c78bab101d50ba3d8df9ffc4b9dcc9803b41b5420dda1f59650a271e3
Notes istex:3C06CD8728282F9EC54D71467B20B4D3F9173A88
ArticleID:JPI12290
National Natural Science Foundation of China - No. 31472100
Agricultural Science and Technology Innovation Program - No. ASTIP-IAS-TS-5; No. ASTIP-IAS06-2014
ark:/67375/WNG-CKVBKC1P-7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26485053
PQID 1762962869
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1780524825
proquest_miscellaneous_1762962869
pubmed_primary_26485053
crossref_primary_10_1111_jpi_12290
crossref_citationtrail_10_1111_jpi_12290
wiley_primary_10_1111_jpi_12290_JPI12290
istex_primary_ark_67375_WNG_CKVBKC1P_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2016
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of pineal research
PublicationTitleAlternate J. Pineal Res
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Rajaei F, Abedpour N, Salehnia M et al. The effect of vitrification on mouse oocyte apoptosis by cryotop method. Iran Biomed J 2013; 17:200-205.
Wilding M, de Placido G, de Matteo L et al. Chaotic mosaicism in human preimplantation embryos is correlated with a low mitochondrial membrane potential. Fertil Steril 2003; 79:340-346.
Yang HW, Hwang KJ, Kwon HC et al. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod 1998; 13:998-1002.
Liang YY, Phermthai T, Nagai T et al. In vitro development of vitrified buffalo oocytes following parthenogenetic activation and intracytoplasmic sperm injection. Theriogenology 2011; 75:1652-1660.
Schmidt-Mende J, Hellström-Lindberg E, Joseph B et al. Freezing induces artificial cleavage of apoptosis-related proteins in human bone marrow cells. J Immunol Methods 2000; 245:91-94.
Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev 2008; 22:1577-1590.
Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 2014; 57:131-146.
Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000; 5:415-418.
Vallorani C, Spinaci M, Bucci D et al. Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade. Anim Reprod Sci 2012; 135:68-74.
Manchester LC, Coto-Montes A, Boga JA et al. Melatonin: an ancient molecule that makes melatonin metabolically tolerable. J Pineal Res 2015; 59:403-419.
Papis K, Poleszczuk O, Wenta-Muchalska E et al. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J Pineal Res 2007; 43:321-326.
Lord T, Nixon B, Jones KT et al. Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol Reprod 2013; 88:67.
Potdar N, Gelbaya TA, Nardo LG. Oocyte vitrification in the 21st century and post-warming fertility outcomes: a systematic review and meta-analysis. Reprod Biomed Online 2014; 29:159-176.
Chen HY, Chen TY, Lee MY et al. Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood-brain barrier permeability after transient focal cerebral ischemia in mice. J Pineal Res 2006; 41:175-182.
Tan DX, Manchester LC, Reiter RJ et al. Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radic Biol Med 2000; 29:1177-1185.
Smiley ST, Reers M, Mottola-Hartshorn C et al. Intracellular heterogeneity in mitochondrial-membrane potentials revealed by a J-aggregate-forming lipophilic cation Jc-1. Proc Natl Acad Sci USA 1991; 88:3671-3675.
Tian X, Wang F, He C et al. Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach. J Pineal Res 2014; 57:239-247.
Stehle JH, Saade A, Rawashdeh O et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 2011; 51:17-43.
Li L, Zhang X, Zhao L et al. Comparison of DNA apoptosis in mouse and human blastocysts after vitrification and slow freezing. Mol Reprod Dev 2012; 79:229-236.
Men H, Monson RL, Parrish JJ et al. Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture. Cryobiology 2003; 47:73-81.
Lincoln GA, Clarke IJ, Hut RA et al. Characterizing a mammalian circannual pacemaker. Science 2006; 314:1941-1944.
Roth Z, Hansen PJ. Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biol Reprod 2004; 71:1898-1906.
Baust JM, Van Buskirk R, Baust JG. Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim 2000; 36:262-270.
Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2001; 2:67-71.
Gualtieri R, Mollo V, Barbato V et al. Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes. Hum Reprod 2011; 26:2452-2460.
Tan DX, Reiter RJ, Manchester LC et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2:181-197.
Tamura H, Takasaki A, Miwa I et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res 2008; 44:280-287.
Tatone C, di Emidio G, Barbaro R et al. Effects of reproductive aging and postovulatory aging on the maintenance of biological competence after oocyte vitrification: insights from the mouse model. Theriogenology 2011; 76:864-873.
Hwang IS, Hara H, Chung HJ et al. Rescue of vitrified-warmed bovine oocytes with rho-associated coiled-coil kinase inhibitor. Biol Reprod 2013; 89:26.
Kohaya N, Fujiwara K, Ito J et al. Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain. PLoS ONE 2013; 8:e58063.
de Blasi M, Rubessa M, Albero G et al. Reactive oxygen species in vitrified bovine in vitro-matured oocytes. Reprod Fertil Dev 2011; 24:134.
Zhao XM, Min JT, Du WH et al. Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus. Zygote 2014; 29:1-12.
Liu L, Trimarchi JR, Keefe DL. Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol Reprod 2000; 62:1745-1753.
Kang JT, Koo OJ, Kwon DK et al. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res 2009; 46:22-28.
Levi Setti PE, Porcu E, Patrizio P et al. Human oocyte cryopreservation with slow freezing versus vitrification. Results from the National Italian Registry data, 2007-2011. Fertil Steril 2014; 102: 90-95.
Favetta LA, St John EJ, King WA et al. High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic Biol Med 2007; 42:1201-1210.
Wang F, Tian X, Zhang L et al. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J Pineal Res 2013; 55:267-274.
Rodriguez-Osorio N, Kim IJ, Wang H et al. Melatonin increases cleavage rate of porcine preimplantation embryos in vitro. J Pineal Res 2007; 43:283-288.
Kim JM, Liu H, Tazaki M et al. Changes in histone acetylation during mouse oocyte meiosis. J Cell Biol 2003; 162:37-46.
Coelho LA, Peres R, Amaral FG et al. Daily differential expression of melatonin-related genes and clock genes in rat cumulus-oocyte complex: changes after pinealectomy. J Pineal Res 2015; 58:490-499.
Moriga T, Arii S, Takeda Y et al. Protection by vascular endothelial growth factor against sinusoidal endothelial damage and apoptosis induced by cold preservation. Transplantation 2000; 69:141-147.
Anguita B, Vandaele L, Mateusen B et al. Developmental competence of bovine oocytes is not related to apoptosis incidence in oocytes, cumulus cells and blastocysts. Theriogenology 2007; 67:537-549.
Pizzo P, Drago I, Filadi R et al. Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities. Pflugers Arch 2012; 464:3-17.
Wang F, Tian X, Zhang L et al. Beneficial effects of melatonin on in vitro bovine embryonic development are mediated by melatonin receptor 1. J Pineal Res 2014; 56:333-342.
Gupta MK, Uhm SJ, Lee HT. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril 2010; 93:2602-2607.
Chen JY, Li XX, Xu YK et al. Developmental competence and gene expression of immature oocytes following liquid helium vitrification in bovine. Cryobiology 2014; 69:428-433.
Somfai T, Yoshioka K, Tanihara F et al. Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. PLoS ONE 2014; 9:e97731.
Kuleshova L, Gianaroli L, Magli C et al. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 1999; 14:3077-3079.
Giaretta E, Spinaci M, Bucci D et al. Effects of resveratrol on vitrified porcine oocytes. Oxid Med Cell Longev 2013; 2013:920257.
Lei T, Guo N, Liu JQ et al. Vitrification of in vitro matured oocytes: effects on meiotic spindle configuration and mitochondrial function. Int J Clin Exp Pathol 2014; 7:1159-1165.
Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305:626-629.
Manda K, Ueno M, Anzai K. AFMK, a melatonin metabolite, attenuates X-ray-induced oxidative damage to DNA, proteins and lipids in mice. J Pineal Res 2007; 42:386-393.
Gao C, Han HB, Tian XZ et al. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J Pineal Res 2012; 52:305-311.
Larman MG, Katz-Jaffe MG, Sheehan CB et al. 1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum Reprod 2007; 22:250-259.
Zhao XM, Du WH, Wang D et al. Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes. Fertil Steril 2011; 95:2786-2788.
Somfai T, Ozawa M, Noguchi J et al. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 2007; 55:115-126.
Zhao XM, Fu XW, Hou YP et al. Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2-PN) embryos. Mol Reprod Dev 2009; 76:1056-1063.
Dinnyés A, Dai Y, Jiang S et al. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 2000; 63:513-518.
Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281:1309-1312.
Hosseini SM, Asgari V, Ostadhosse
1998; 281
2009; 47
2009; 46
2000; 5
2011; 96
2014; 69
2006; 131
2014; 29
2013; 8
2012; 52
2010; 22
2013; 17
2004; 71
2012; 135
2000; 245
2013; 55
2013; 2013
1991; 88
2015; 83
1999; 14
1999; 13
2003; 162
2003; 47
2000; 62
2014; 57
2011; 24
2008; 22
2011; 26
2014; 9
1998; 51
2014; 7
2007; 22
2007; 67
2014; 56
1998; 13
2015; 59
2015; 58
2000; 29
2012; 464
2000; 69
2013; 88
2013; 89
2013; 84
2000; 63
2003; 79
2011; 75
2002; 2
2011; 76
2011; 78
2006; 314
2012; 79
2007; 55
2004; 305
2004; 50
2006; 41
1991; 28
2009; 76
2000; 36
2005; 122
2013; 79
2011; 95
2011; 51
2014; 38
2001; 2
2008; 44
2007; 42
2007; 43
2014; 102
2010; 93
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Rajaei F (e_1_2_7_23_1) 2013; 17
Lei T (e_1_2_7_67_1) 2014; 7
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Zhao XM (e_1_2_7_52_1) 2014; 29
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Phongnimitr T, Liang Y, Srirattana K et al. Effect of L-carnitine on maturation, cryo-tolerance and embryo developmental competence of bovine oocytes. Anim Sci J 2013; 84:719-725.
– reference: Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 2014; 57:131-146.
– reference: Jang W, Lee SE, Choi HY et al. Vitrification of immature mouse oocytes by the modified-cut standard straw method. Cell Biol Int 2014; 38:164-171.
– reference: Tan DX, Reiter RJ, Manchester LC et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2:181-197.
– reference: El-Raey M, Geshi M, Somfai T et al. Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle. Mol Reprod Dev 2011; 78:250-262.
– reference: Anguita B, Vandaele L, Mateusen B et al. Developmental competence of bovine oocytes is not related to apoptosis incidence in oocytes, cumulus cells and blastocysts. Theriogenology 2007; 67:537-549.
– reference: Men H, Monson RL, Parrish JJ et al. Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture. Cryobiology 2003; 47:73-81.
– reference: Smiley ST, Reers M, Mottola-Hartshorn C et al. Intracellular heterogeneity in mitochondrial-membrane potentials revealed by a J-aggregate-forming lipophilic cation Jc-1. Proc Natl Acad Sci USA 1991; 88:3671-3675.
– reference: Liu L, Trimarchi JR, Keefe DL. Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol Reprod 2000; 62:1745-1753.
– reference: Moriga T, Arii S, Takeda Y et al. Protection by vascular endothelial growth factor against sinusoidal endothelial damage and apoptosis induced by cold preservation. Transplantation 2000; 69:141-147.
– reference: Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305:626-629.
– reference: Vallorani C, Spinaci M, Bucci D et al. Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade. Anim Reprod Sci 2012; 135:68-74.
– reference: Zhao XM, Fu XW, Hou YP et al. Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2-PN) embryos. Mol Reprod Dev 2009; 76:1056-1063.
– reference: Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13:1899-1911.
– reference: Gualtieri R, Mollo V, Barbato V et al. Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes. Hum Reprod 2011; 26:2452-2460.
– reference: Lord T, Nixon B, Jones KT et al. Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol Reprod 2013; 88:67.
– reference: Zhao XM, Du WH, Wang D et al. Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol Reprod Dev 2011; 78:942-950.
– reference: Coelho LA, Peres R, Amaral FG et al. Daily differential expression of melatonin-related genes and clock genes in rat cumulus-oocyte complex: changes after pinealectomy. J Pineal Res 2015; 58:490-499.
– reference: Potdar N, Gelbaya TA, Nardo LG. Oocyte vitrification in the 21st century and post-warming fertility outcomes: a systematic review and meta-analysis. Reprod Biomed Online 2014; 29:159-176.
– reference: Hwang IS, Hara H, Chung HJ et al. Rescue of vitrified-warmed bovine oocytes with rho-associated coiled-coil kinase inhibitor. Biol Reprod 2013; 89:26.
– reference: Manchester LC, Coto-Montes A, Boga JA et al. Melatonin: an ancient molecule that makes melatonin metabolically tolerable. J Pineal Res 2015; 59:403-419.
– reference: Cobo A, Diaz C. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril 2011; 96:277-285.
– reference: Favetta LA, St John EJ, King WA et al. High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic Biol Med 2007; 42:1201-1210.
– reference: Wang F, Tian X, Zhang L et al. Beneficial effects of melatonin on in vitro bovine embryonic development are mediated by melatonin receptor 1. J Pineal Res 2014; 56:333-342.
– reference: Lei T, Guo N, Liu JQ et al. Vitrification of in vitro matured oocytes: effects on meiotic spindle configuration and mitochondrial function. Int J Clin Exp Pathol 2014; 7:1159-1165.
– reference: Roth Z, Hansen PJ. Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biol Reprod 2004; 71:1898-1906.
– reference: Tatone C, di Emidio G, Barbaro R et al. Effects of reproductive aging and postovulatory aging on the maintenance of biological competence after oocyte vitrification: insights from the mouse model. Theriogenology 2011; 76:864-873.
– reference: Baust JM, Van Buskirk R, Baust JG. Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim 2000; 36:262-270.
– reference: Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281:1309-1312.
– reference: Gao C, Han HB, Tian XZ et al. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J Pineal Res 2012; 52:305-311.
– reference: Li L, Zhang X, Zhao L et al. Comparison of DNA apoptosis in mouse and human blastocysts after vitrification and slow freezing. Mol Reprod Dev 2012; 79:229-236.
– reference: Shi JM, Tian XZ, Zhou GB et al. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J Pineal Res 2009; 47:318-323.
– reference: Zhao XM, Min JT, Du WH et al. Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus. Zygote 2014; 29:1-12.
– reference: Larman MG, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 2006; 131:53-61.
– reference: Somfai T, Ozawa M, Noguchi J et al. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 2007; 55:115-126.
– reference: Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev 2008; 22:1577-1590.
– reference: Rodriguez-Osorio N, Kim IJ, Wang H et al. Melatonin increases cleavage rate of porcine preimplantation embryos in vitro. J Pineal Res 2007; 43:283-288.
– reference: Kohaya N, Fujiwara K, Ito J et al. Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain. PLoS ONE 2013; 8:e58063.
– reference: Larman MG, Katz-Jaffe MG, Sheehan CB et al. 1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum Reprod 2007; 22:250-259.
– reference: Yang HW, Hwang KJ, Kwon HC et al. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod 1998; 13:998-1002.
– reference: Yoneda A, Suzuki K, Mori T et al. Effects of delipidation and oxygen concentration on in vitro development of porcine embryos. J Reprod Dev 2004; 50:287-295.
– reference: Somfai T, Yoshioka K, Tanihara F et al. Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. PLoS ONE 2014; 9:e97731.
– reference: Chankitisakul V, Somfai T, Inaba Y et al. Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes. Theriogenology 2013; 79:590-598.
– reference: de Blasi M, Rubessa M, Albero G et al. Reactive oxygen species in vitrified bovine in vitro-matured oocytes. Reprod Fertil Dev 2011; 24:134.
– reference: Vajta G, Holm P, Kuwayama M et al. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 1998; 51:53-58.
– reference: Zhao XM, Du WH, Wang D et al. Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes. Fertil Steril 2011; 95:2786-2788.
– reference: Schmidt-Mende J, Hellström-Lindberg E, Joseph B et al. Freezing induces artificial cleavage of apoptosis-related proteins in human bone marrow cells. J Immunol Methods 2000; 245:91-94.
– reference: Manda K, Ueno M, Anzai K. AFMK, a melatonin metabolite, attenuates X-ray-induced oxidative damage to DNA, proteins and lipids in mice. J Pineal Res 2007; 42:386-393.
– reference: Gupta MK, Uhm SJ, Lee HT. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril 2010; 93:2602-2607.
– reference: Wilding M, de Placido G, de Matteo L et al. Chaotic mosaicism in human preimplantation embryos is correlated with a low mitochondrial membrane potential. Fertil Steril 2003; 79:340-346.
– reference: Levi Setti PE, Porcu E, Patrizio P et al. Human oocyte cryopreservation with slow freezing versus vitrification. Results from the National Italian Registry data, 2007-2011. Fertil Steril 2014; 102: 90-95.
– reference: Papis K, Poleszczuk O, Wenta-Muchalska E et al. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J Pineal Res 2007; 43:321-326.
– reference: Liang YY, Phermthai T, Nagai T et al. In vitro development of vitrified buffalo oocytes following parthenogenetic activation and intracytoplasmic sperm injection. Theriogenology 2011; 75:1652-1660.
– reference: Tamura H, Takasaki A, Miwa I et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res 2008; 44:280-287.
– reference: Lincoln GA, Clarke IJ, Hut RA et al. Characterizing a mammalian circannual pacemaker. Science 2006; 314:1941-1944.
– reference: Chen JY, Li XX, Xu YK et al. Developmental competence and gene expression of immature oocytes following liquid helium vitrification in bovine. Cryobiology 2014; 69:428-433.
– reference: Wang F, Tian X, Zhang L et al. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J Pineal Res 2013; 55:267-274.
– reference: Tian X, Wang F, He C et al. Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach. J Pineal Res 2014; 57:239-247.
– reference: Hosseini SM, Asgari V, Ostadhosseini S et al. Developmental competence of ovine oocytes after vitrification: Differential effects of vitrification steps, embryo production methods, and parental origin of pronuclei. Theriogenology 2015; 83:366-376.
– reference: Giorgio M, Migliaccio E, Orsini F et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005; 122:221-233.
– reference: Pizzo P, Drago I, Filadi R et al. Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities. Pflugers Arch 2012; 464:3-17.
– reference: Morató R, Izquierdo D, Paramio MT et al. Survival and apoptosis rates after vitrification in cryotop devices of in vitro-produced calf and cow blastocysts at different developmental stages. Reprod Fertil Dev 2010; 22:1141-1147.
– reference: Dinnyés A, Dai Y, Jiang S et al. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 2000; 63:513-518.
– reference: Kuleshova L, Gianaroli L, Magli C et al. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 1999; 14:3077-3079.
– reference: Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000; 5:415-418.
– reference: Rajaei F, Abedpour N, Salehnia M et al. The effect of vitrification on mouse oocyte apoptosis by cryotop method. Iran Biomed J 2013; 17:200-205.
– reference: Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2001; 2:67-71.
– reference: Giaretta E, Spinaci M, Bucci D et al. Effects of resveratrol on vitrified porcine oocytes. Oxid Med Cell Longev 2013; 2013:920257.
– reference: Chen HY, Chen TY, Lee MY et al. Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood-brain barrier permeability after transient focal cerebral ischemia in mice. J Pineal Res 2006; 41:175-182.
– reference: Stehle JH, Saade A, Rawashdeh O et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 2011; 51:17-43.
– reference: Kono T, Kwon OY, Nakahara T. Development of vitrified mouse oocytes after IVF. Cryobiology 1991; 28:50-54.
– reference: Tatemoto H, Sakurai N, Muto N. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol Reprod 2000; 63:805-810.
– reference: Kang JT, Koo OJ, Kwon DK et al. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res 2009; 46:22-28.
– reference: Kim JM, Liu H, Tazaki M et al. Changes in histone acetylation during mouse oocyte meiosis. J Cell Biol 2003; 162:37-46.
– reference: Tan DX, Manchester LC, Reiter RJ et al. Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radic Biol Med 2000; 29:1177-1185.
– volume: 79
  start-page: 229
  year: 2012
  end-page: 236
  article-title: Comparison of DNA apoptosis in mouse and human blastocysts after vitrification and slow freezing
  publication-title: Mol Reprod Dev
– volume: 42
  start-page: 386
  year: 2007
  end-page: 393
  article-title: AFMK, a melatonin metabolite, attenuates X‐ray‐induced oxidative damage to DNA, proteins and lipids in mice
  publication-title: J Pineal Res
– volume: 22
  start-page: 1577
  year: 2008
  end-page: 1590
  article-title: Mitochondrial dynamics and apoptosis
  publication-title: Genes Dev
– volume: 79
  start-page: 590
  year: 2013
  end-page: 598
  article-title: Supplementation of maturation medium with L‐carnitine improves cryo‐tolerance of bovine matured oocytes
  publication-title: Theriogenology
– volume: 83
  start-page: 366
  year: 2015
  end-page: 376
  article-title: Developmental competence of ovine oocytes after vitrification: Differential effects of vitrification steps, embryo production methods, and parental origin of pronuclei
  publication-title: Theriogenology
– volume: 7
  start-page: 1159
  year: 2014
  end-page: 1165
  article-title: Vitrification of matured oocytes: effects on meiotic spindle configuration and mitochondrial function
  publication-title: Int J Clin Exp Pathol
– volume: 88
  start-page: 3671
  year: 1991
  end-page: 3675
  article-title: Intracellular heterogeneity in mitochondrial‐membrane potentials revealed by a J‐aggregate‐forming lipophilic cation Jc‐1
  publication-title: Proc Natl Acad Sci USA
– volume: 88
  start-page: 67
  year: 2013
  article-title: Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization
  publication-title: Biol Reprod
– volume: 78
  start-page: 942
  year: 2011
  end-page: 950
  article-title: Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended culture
  publication-title: Mol Reprod Dev
– volume: 13
  start-page: 998
  year: 1998
  end-page: 1002
  article-title: Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos
  publication-title: Hum Reprod
– volume: 78
  start-page: 250
  year: 2011
  end-page: 262
  article-title: Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in cattle
  publication-title: Mol Reprod Dev
– volume: 38
  start-page: 164
  year: 2014
  end-page: 171
  article-title: Vitrification of immature mouse oocytes by the modified‐cut standard straw method
  publication-title: Cell Biol Int
– volume: 59
  start-page: 403
  year: 2015
  end-page: 419
  article-title: Melatonin: an ancient molecule that makes melatonin metabolically tolerable
  publication-title: J Pineal Res
– volume: 76
  start-page: 1056
  year: 2009
  end-page: 1063
  article-title: Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2‐PN) embryos
  publication-title: Mol Reprod Dev
– volume: 314
  start-page: 1941
  year: 2006
  end-page: 1944
  article-title: Characterizing a mammalian circannual pacemaker
  publication-title: Science
– volume: 17
  start-page: 200
  year: 2013
  end-page: 205
  article-title: The effect of vitrification on mouse oocyte apoptosis by cryotop method
  publication-title: Iran Biomed J
– volume: 5
  start-page: 415
  year: 2000
  end-page: 418
  article-title: Role of reactive oxygen species (ROS) in apoptosis induction
  publication-title: Apoptosis
– volume: 95
  start-page: 2786
  year: 2011
  end-page: 2788
  article-title: Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes
  publication-title: Fertil Steril
– volume: 71
  start-page: 1898
  year: 2004
  end-page: 1906
  article-title: Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation
  publication-title: Biol Reprod
– volume: 55
  start-page: 115
  year: 2007
  end-page: 126
  article-title: Developmental competence of –fertilized porcine oocytes after maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage
  publication-title: Cryobiology
– volume: 13
  start-page: 1899
  year: 1999
  end-page: 1911
  article-title: BCL‐2 family members and the mitochondria in apoptosis
  publication-title: Genes Dev
– volume: 58
  start-page: 490
  year: 2015
  end-page: 499
  article-title: Daily differential expression of melatonin‐related genes and clock genes in rat cumulus‐oocyte complex: changes after pinealectomy
  publication-title: J Pineal Res
– volume: 63
  start-page: 805
  year: 2000
  end-page: 810
  article-title: Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during maturation: role of cumulus cells
  publication-title: Biol Reprod
– volume: 63
  start-page: 513
  year: 2000
  end-page: 518
  article-title: High developmental rates of vitrified bovine oocytes following parthenogenetic activation, fertilization, and somatic cell nuclear transfer
  publication-title: Biol Reprod
– volume: 75
  start-page: 1652
  year: 2011
  end-page: 1660
  article-title: development of vitrified buffalo oocytes following parthenogenetic activation and intracytoplasmic sperm injection
  publication-title: Theriogenology
– volume: 67
  start-page: 537
  year: 2007
  end-page: 549
  article-title: Developmental competence of bovine oocytes is not related to apoptosis incidence in oocytes, cumulus cells and blastocysts
  publication-title: Theriogenology
– volume: 96
  start-page: 277
  year: 2011
  end-page: 285
  article-title: Clinical application of oocyte vitrification: a systematic review and meta‐analysis of randomized controlled trials
  publication-title: Fertil Steril
– volume: 135
  start-page: 68
  year: 2012
  end-page: 74
  article-title: Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade
  publication-title: Anim Reprod Sci
– volume: 56
  start-page: 333
  year: 2014
  end-page: 342
  article-title: Beneficial effects of melatonin on bovine embryonic development are mediated by melatonin receptor 1
  publication-title: J Pineal Res
– volume: 281
  start-page: 1309
  year: 1998
  end-page: 1312
  article-title: Mitochondria and apoptosis
  publication-title: Science
– volume: 464
  start-page: 3
  year: 2012
  end-page: 17
  article-title: Mitochondrial Ca homeostasis: mechanism, role, and tissue specificities
  publication-title: Pflugers Arch
– volume: 46
  start-page: 22
  year: 2009
  end-page: 28
  article-title: Effects of melatonin on maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells
  publication-title: J Pineal Res
– volume: 24
  start-page: 134
  year: 2011
  article-title: Reactive oxygen species in vitrified bovine ‐matured oocytes
  publication-title: Reprod Fertil Dev
– volume: 57
  start-page: 131
  year: 2014
  end-page: 146
  article-title: Melatonin: a well‐documented antioxidant with conditional pro‐oxidant actions
  publication-title: J Pineal Res
– volume: 102
  start-page: 90
  year: 2014
  end-page: 95
  article-title: Human oocyte cryopreservation with slow freezing versus vitrification. Results from the National Italian Registry data, 2007‐2011
  publication-title: Fertil Steril
– volume: 43
  start-page: 283
  year: 2007
  end-page: 288
  article-title: Melatonin increases cleavage rate of porcine preimplantation embryos
  publication-title: J Pineal Res
– volume: 131
  start-page: 53
  year: 2006
  end-page: 61
  article-title: Calcium‐free vitrification reduces cryoprotectant‐induced zona pellucida hardening and increases fertilization rates in mouse oocytes
  publication-title: Reproduction
– volume: 50
  start-page: 287
  year: 2004
  end-page: 295
  article-title: Effects of delipidation and oxygen concentration on development of porcine embryos
  publication-title: J Reprod Dev
– volume: 2
  start-page: 181
  year: 2002
  end-page: 197
  article-title: Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger
  publication-title: Curr Top Med Chem
– volume: 43
  start-page: 321
  year: 2007
  end-page: 326
  article-title: Melatonin effect on bovine embryo development in relation to oxygen concentration
  publication-title: J Pineal Res
– volume: 93
  start-page: 2602
  year: 2010
  end-page: 2607
  article-title: Effect of vitrification and beta‐mercaptoethanol on reactive oxygen species activity and development of oocytes vitrified before or after fertilization
  publication-title: Fertil Steril
– volume: 62
  start-page: 1745
  year: 2000
  end-page: 1753
  article-title: Involvement of mitochondria in oxidative stress‐induced cell death in mouse zygotes
  publication-title: Biol Reprod
– volume: 69
  start-page: 428
  year: 2014
  end-page: 433
  article-title: Developmental competence and gene expression of immature oocytes following liquid helium vitrification in bovine
  publication-title: Cryobiology
– volume: 28
  start-page: 50
  year: 1991
  end-page: 54
  article-title: Development of vitrified mouse oocytes after IVF
  publication-title: Cryobiology
– volume: 57
  start-page: 239
  year: 2014
  end-page: 247
  article-title: Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach
  publication-title: J Pineal Res
– volume: 122
  start-page: 221
  year: 2005
  end-page: 233
  article-title: Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis
  publication-title: Cell
– volume: 305
  start-page: 626
  year: 2004
  end-page: 629
  article-title: The pathophysiology of mitochondrial cell death
  publication-title: Science
– volume: 29
  start-page: 1177
  year: 2000
  end-page: 1185
  article-title: Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation
  publication-title: Free Radic Biol Med
– volume: 41
  start-page: 175
  year: 2006
  end-page: 182
  article-title: Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood‐brain barrier permeability after transient focal cerebral ischemia in mice
  publication-title: J Pineal Res
– volume: 89
  start-page: 26
  year: 2013
  article-title: Rescue of vitrified‐warmed bovine oocytes with rho‐associated coiled‐coil kinase inhibitor
  publication-title: Biol Reprod
– volume: 9
  start-page: e97731
  year: 2014
  article-title: Generation of live piglets from cryopreserved oocytes for the first time using a defined system for embryo production
  publication-title: PLoS ONE
– volume: 51
  start-page: 53
  year: 1998
  end-page: 58
  article-title: Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos
  publication-title: Mol Reprod Dev
– volume: 8
  start-page: e58063
  year: 2013
  article-title: Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain
  publication-title: PLoS ONE
– volume: 2013
  start-page: 920257
  year: 2013
  article-title: Effects of resveratrol on vitrified porcine oocytes
  publication-title: Oxid Med Cell Longev
– volume: 79
  start-page: 340
  year: 2003
  end-page: 346
  article-title: Chaotic mosaicism in human preimplantation embryos is correlated with a low mitochondrial membrane potential
  publication-title: Fertil Steril
– volume: 52
  start-page: 305
  year: 2012
  end-page: 311
  article-title: Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2‐cell embryos
  publication-title: J Pineal Res
– volume: 26
  start-page: 2452
  year: 2011
  end-page: 2460
  article-title: Ultrastructure and intracellular calcium response during activation in vitrified and slow‐frozen human oocytes
  publication-title: Hum Reprod
– volume: 69
  start-page: 141
  year: 2000
  end-page: 147
  article-title: Protection by vascular endothelial growth factor against sinusoidal endothelial damage and apoptosis induced by cold preservation
  publication-title: Transplantation
– volume: 51
  start-page: 17
  year: 2011
  end-page: 43
  article-title: A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases
  publication-title: J Pineal Res
– volume: 44
  start-page: 280
  year: 2008
  end-page: 287
  article-title: Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate
  publication-title: J Pineal Res
– volume: 76
  start-page: 864
  year: 2011
  end-page: 873
  article-title: Effects of reproductive aging and postovulatory aging on the maintenance of biological competence after oocyte vitrification: insights from the mouse model
  publication-title: Theriogenology
– volume: 47
  start-page: 318
  year: 2009
  end-page: 323
  article-title: Melatonin exists in porcine follicular fluid and improves maturation and parthenogenetic development of porcine oocytes
  publication-title: J Pineal Res
– volume: 22
  start-page: 1141
  year: 2010
  end-page: 1147
  article-title: Survival and apoptosis rates after vitrification in cryotop devices of ‐produced calf and cow blastocysts at different developmental stages
  publication-title: Reprod Fertil Dev
– volume: 22
  start-page: 250
  year: 2007
  end-page: 259
  article-title: 1,2‐propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology
  publication-title: Hum Reprod
– volume: 47
  start-page: 73
  year: 2003
  end-page: 81
  article-title: Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture
  publication-title: Cryobiology
– volume: 245
  start-page: 91
  year: 2000
  end-page: 94
  article-title: Freezing induces artificial cleavage of apoptosis‐related proteins in human bone marrow cells
  publication-title: J Immunol Methods
– volume: 55
  start-page: 267
  year: 2013
  end-page: 274
  article-title: Melatonin promotes the development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine
  publication-title: J Pineal Res
– volume: 84
  start-page: 719
  year: 2013
  end-page: 725
  article-title: Effect of L‐carnitine on maturation, cryo‐tolerance and embryo developmental competence of bovine oocytes
  publication-title: Anim Sci J
– volume: 162
  start-page: 37
  year: 2003
  end-page: 46
  article-title: Changes in histone acetylation during mouse oocyte meiosis
  publication-title: J Cell Biol
– volume: 36
  start-page: 262
  year: 2000
  end-page: 270
  article-title: Cell viability improves following inhibition of cryopreservation‐induced apoptosis
  publication-title: In Vitro Cell Dev Biol Anim
– volume: 42
  start-page: 1201
  year: 2007
  end-page: 1210
  article-title: High levels of p66shc and intracellular ROS in permanently arrested early embryos
  publication-title: Free Radic Biol Med
– volume: 14
  start-page: 3077
  year: 1999
  end-page: 3079
  article-title: Birth following vitrification of a small number of human oocytes: case report
  publication-title: Hum Reprod
– volume: 29
  start-page: 1
  year: 2014
  end-page: 12
  article-title: Melatonin enhances the maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus
  publication-title: Zygote
– volume: 2
  start-page: 67
  year: 2001
  end-page: 71
  article-title: The mitochondrion in apoptosis: how Pandora's box opens
  publication-title: Nat Rev Mol Cell Biol
– volume: 29
  start-page: 159
  year: 2014
  end-page: 176
  article-title: Oocyte vitrification in the 21st century and post‐warming fertility outcomes: a systematic review and meta‐analysis
  publication-title: Reprod Biomed Online
– ident: e_1_2_7_34_1
  doi: 10.1101/gad.13.15.1899
– ident: e_1_2_7_51_1
  doi: 10.1002/mrd.21295
– ident: e_1_2_7_15_1
  doi: 10.1023/A:1009616228304
– ident: e_1_2_7_45_1
  doi: 10.1016/S0891-5849(00)00435-4
– ident: e_1_2_7_72_1
  doi: 10.1530/rep.1.00878
– ident: e_1_2_7_4_1
  doi: 10.1016/j.fertnstert.2011.06.030
– ident: e_1_2_7_10_1
  doi: 10.1071/RDv24n1Ab44
– ident: e_1_2_7_39_1
  doi: 10.1016/S0022-1759(00)00285-4
– ident: e_1_2_7_71_1
  doi: 10.1016/j.cryobiol.2014.09.380
– ident: e_1_2_7_63_1
  doi: 10.1111/jpi.12163
– ident: e_1_2_7_64_1
  doi: 10.1016/j.theriogenology.2006.09.004
– ident: e_1_2_7_9_1
  doi: 10.1002/mrd.21389
– ident: e_1_2_7_6_1
  doi: 10.1016/0011-2240(91)90007-B
– ident: e_1_2_7_24_1
  doi: 10.1095/biolreprod.104.031690
– ident: e_1_2_7_68_1
  doi: 10.1002/mrd.21064
– ident: e_1_2_7_40_1
  doi: 10.1155/2013/920257
– ident: e_1_2_7_76_1
  doi: 10.1016/j.theriogenology.2014.09.031
– ident: e_1_2_7_8_1
  doi: 10.1016/j.fertnstert.2011.04.089
– ident: e_1_2_7_31_1
  doi: 10.1095/biolreprod62.6.1745
– ident: e_1_2_7_12_1
  doi: 10.1016/j.fertnstert.2010.01.043
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1600-079X.2007.00432.x
– ident: e_1_2_7_14_1
  doi: 10.1093/humrep/13.4.998
– ident: e_1_2_7_5_1
  doi: 10.1016/j.fertnstert.2014.03.052
– ident: e_1_2_7_3_1
  doi: 10.1095/biolreprod63.2.513
– ident: e_1_2_7_20_1
  doi: 10.1371/journal.pone.0097731
– ident: e_1_2_7_38_1
  doi: 10.1097/00007890-200001150-00024
– ident: e_1_2_7_74_1
  doi: 10.1016/j.theriogenology.2010.12.028
– ident: e_1_2_7_58_1
  doi: 10.1111/j.1600-079X.2007.00479.x
– ident: e_1_2_7_2_1
  doi: 10.1002/(SICI)1098-2795(199809)51:1<53::AID-MRD6>3.0.CO;2-V
– ident: e_1_2_7_11_1
  doi: 10.1016/j.cryobiol.2007.06.008
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1600-079X.2006.00351.x
– ident: e_1_2_7_66_1
  doi: 10.1007/s00424-012-1122-y
– ident: e_1_2_7_19_1
  doi: 10.1111/asj.12067
– ident: e_1_2_7_27_1
  doi: 10.1002/mrd.22018
– ident: e_1_2_7_47_1
  doi: 10.1111/jpi.12162
– ident: e_1_2_7_36_1
  doi: 10.1101/gad.1658508
– ident: e_1_2_7_48_1
  doi: 10.1111/jpi.12267
– ident: e_1_2_7_73_1
  doi: 10.1093/humrep/del319
– ident: e_1_2_7_55_1
  doi: 10.1111/jpi.12234
– ident: e_1_2_7_22_1
  doi: 10.1016/S0011-2240(03)00070-1
– volume: 29
  start-page: 1
  year: 2014
  ident: e_1_2_7_52_1
  article-title: Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus
  publication-title: Zygote
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1600-079X.2009.00717.x
– ident: e_1_2_7_28_1
  doi: 10.1095/biolreprod.113.109769
– ident: e_1_2_7_57_1
  doi: 10.1111/jpi.12126
– ident: e_1_2_7_29_1
  doi: 10.1095/biolreprod63.3.805
– ident: e_1_2_7_33_1
  doi: 10.1016/j.cell.2005.05.011
– ident: e_1_2_7_75_1
  doi: 10.1016/j.theriogenology.2012.11.011
– ident: e_1_2_7_35_1
  doi: 10.1126/science.1099320
– volume: 7
  start-page: 1159
  year: 2014
  ident: e_1_2_7_67_1
  article-title: Vitrification of in vitro matured oocytes: effects on meiotic spindle configuration and mitochondrial function
  publication-title: Int J Clin Exp Pathol
– volume: 17
  start-page: 200
  year: 2013
  ident: e_1_2_7_23_1
  article-title: The effect of vitrification on mouse oocyte apoptosis by cryotop method
  publication-title: Iran Biomed J
– ident: e_1_2_7_46_1
  doi: 10.2174/1568026023394443
– ident: e_1_2_7_42_1
  doi: 10.1126/science.1132009
– ident: e_1_2_7_18_1
  doi: 10.1371/journal.pone.0058063
– ident: e_1_2_7_56_1
  doi: 10.1111/jpi.12069
– ident: e_1_2_7_25_1
  doi: 10.1071/RD10013
– ident: e_1_2_7_70_1
  doi: 10.1002/cbin.10163
– ident: e_1_2_7_7_1
  doi: 10.1093/humrep/14.12.3077
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1600-079X.2007.00524.x
– ident: e_1_2_7_32_1
  doi: 10.1038/35048073
– ident: e_1_2_7_65_1
  doi: 10.1093/humrep/der210
– ident: e_1_2_7_37_1
  doi: 10.1290/1071-2690(2000)036<0262:CVIFIO>2.0.CO;2
– ident: e_1_2_7_17_1
  doi: 10.1016/j.freeradbiomed.2007.01.018
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1600-079X.2008.00602.x
– ident: e_1_2_7_26_1
  doi: 10.1016/j.anireprosci.2012.08.020
– ident: e_1_2_7_62_1
  doi: 10.1073/pnas.88.9.3671
– ident: e_1_2_7_16_1
  doi: 10.1262/jrd.50.287
– ident: e_1_2_7_69_1
  doi: 10.1016/S0015-0282(02)04678-2
– ident: e_1_2_7_21_1
  doi: 10.1016/j.rbmo.2014.03.024
– ident: e_1_2_7_60_1
  doi: 10.1111/j.1600-079X.2011.00944.x
– ident: e_1_2_7_54_1
  doi: 10.1095/biolreprod.112.106450
– ident: e_1_2_7_13_1
  doi: 10.1016/j.theriogenology.2011.04.017
– ident: e_1_2_7_30_1
  doi: 10.1126/science.281.5381.1309
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1600-079X.2011.00856.x
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1600-079X.2007.00475.x
– ident: e_1_2_7_61_1
  doi: 10.1083/jcb.200303047
SSID ssj0008886
Score 2.5228796
Snippet Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little...
Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species ( ROS ) and apoptotic events. However, little...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 132
SubjectTerms Animals
Apoptosis - drug effects
bcl-2-Associated X Protein - metabolism
bcl-X Protein - metabolism
bovine
Calcium Signaling - drug effects
Caspase 3 - metabolism
Cattle
DNA Fragmentation - drug effects
Female
Gene Expression Regulation - drug effects
melatonin
Melatonin - pharmacology
Membrane Potentials - drug effects
mitochondria
oocytes
Oocytes - cytology
Oocytes - metabolism
Reactive Oxygen Species - metabolism
vitrification
Title Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes
URI https://api.istex.fr/ark:/67375/WNG-CKVBKC1P-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpi.12290
https://www.ncbi.nlm.nih.gov/pubmed/26485053
https://www.proquest.com/docview/1762962869
https://www.proquest.com/docview/1780524825
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9sIFKOWxtCCDUMUlqyR2HhansqKUVq0qRKEHJMuvqFEhiTbZquXXM-NsUooKQtx8mMivGfubyecZQl45prHeQBLo2PKAG5UFOopEEGWZtjwTOTPoKB4epXsnfP80OV0hb4a3MH1-iDHghpbhz2s0cKXbX428KacRZiuH8xe5WgiIPl6njgLPLu1TcMYBC0W-zCrkWTzDlzfuojVc1svbgOZN3Oovnt175Osw5J5vcj5ddHpqfvyWzfE_53Sf3F0CUrrTa9A6WXHVA7KxU4Ez_v2KblNPEfWx9w2iDpE6hwFcWlZnpS67lqqmbrq6LaFVWVr6GIVrKeBKaq8JSdBDU3fITIJWXdCLspuXBcBfqjGk4WhdmytAvQ_Jye67T7O9YFmjITBYUiIw1lpmbWyyXCsN9m2TUCtmc1uIojBcC2uMyEOmeaQTHofWqqhIBABDFWeRY4_IalVX7gmhOXdc53BpuyzlJmQij5kViVUxZ2Fh0wl5PeyWNMsE5lhH45scHZmmlH75JuTlKNr0WTtuE9r2Wz5KqPk50tyyRH45ei9nB5_fHsyiY5lNyItBJyQYH_5RUZWrF62M4CoR-LhX_E0Gq0Zw8MQn5HGvUGOPSC8ECMpgal4t_jxYuX_8wTee_rvoJrkD8C7tGXNbZLWbL9wzgFCdfu5t5Sf4ihiG
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKu4ANr_IYngZBxSajxHYeXrAoU8pMpzOqUEu7M35FjVqSaJIBhm_iV_gnbCeZUlQQmy7YeXGVl--Nz70-PheAFxoL228g9ARSxCOSx54IAuoFcSwUiWmCpU0UJ9NoeEB2jsKjFfC9OwvT6EMsC242Mtz_2ga4LUj_GuVl1g-sXHlLqRzrxReTsFWvR1tmdl8itP12fzD02p4CnrQtEDyplMJKIRknggvjjyr0BccqUSlNU0kEVVLSxMeCBCIkyFeKB2lIDZDhKA40Nte9AtZsB3Gr1L_1_kysyuSSUSP6iTzs06TVMXK8oe5Rz61-a3Yiv14Ebc8jZbfUbd8AP7qP1DBcTvrzWvTlt9_0I_-Xr3gTXG8xN9xsguQWWNH5bbC-mfO6-LSAG9CxYN32wjrgE8sOtDVqmOXHmcjqCvKyKOuiyswoVzBzZRhdQQOdoTrjXJk7lEVtyVdmVKTwc1bPstQgfChs1UbDopALA-zvgINLedm7YDUvcn0fwIRoIhKDS3QcEeljmiCsaKg4IthPVdQDrzr3YLLVaLetQk7ZMlcrM-amqweeL03LRpjkIqMN52NLCz47sUy-OGSH03dsMP7wZjwI9ljcA886J2Tm_2I3jXiui3nFArNaUnt-mf7NxjbGIAkKe-Be48HLO1oGpUHZ2Lya88M_Pyzb2Ru5wYN_N30Krg73J7tsdzQdPwTXDJqNGoLgI7Baz-b6sUGMtXjiAhWCj5ft0z8BgZR5Vg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKKyEuvMpjeRoEFZesEtt5-MCh7LJ0u3S1QpT2ZvyKGrUk0SYLLH-Jv8KPwnayKUUFcemBmw-j2I5n7G_Gn2cAeKaxsPUGQk8gRTwieeyJIKBeEMdCkZgmWFpHcW8a7eyT3cPwcA18X72FafJDdAE3axluv7YGXqr0VyMvs35gs5W3jMqJXn4x_lr1cjw0i_scodHr94Mdry0p4ElbAcGTSimsFJJxIrgw6qhCX3CsEpXSNJVEUCUlTXwsSCBCgnyleJCG1OAYjuJAY_PdS2CDRD61dSKG705zVRlXMmpyfiIP-zRp0xg52tBqqGcOvw27jl_PQ7ZngbI76UbXwI_VP2oILsf9RS368ttv6SP_k594HVxtETfcbkzkBljT-U2wuZ3zuvi0hFvQcWDd5cIm4HuWG2gj1DDLjzKR1RXkZVHWRZWZVq5g5oIwuoIGOEN1yrgyPZRFbalXplWk8HNWz7PU4HsobMxGw6KQSwPrb4H9C5nsbbCeF7m-C2BCNBGJQSU6joj0MU0QVjRUHBHspyrqgRcr7WCyzdBuC4WcsM5TKzPmlqsHnnaiZZOW5DyhLadinQSfH1seXxyyg-kbNph8eDUZBDMW98CTlQ4ys7vYKyOe62JRscCcldS-XqZ_k7FlMUiCwh640yhw16PlTxqMjc3UnBr-ebBsdzZ2jXv_LvoYXJ4NR-zteDq5D64YKBs17MAHYL2eL_RDAxdr8ciZKQQfL1qlfwKX_XgF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+inhibits+apoptosis+and+improves+the+developmental+potential+of+vitrified+bovine+oocytes&rft.jtitle=Journal+of+pineal+research&rft.au=Zhao%2C+Xue%E2%80%90Ming&rft.au=Hao%2C+Hai%E2%80%90Sheng&rft.au=Du%2C+Wei%E2%80%90Hua&rft.au=Zhao%2C+Shan%E2%80%90Jiang&rft.date=2016-03-01&rft.issn=0742-3098&rft.eissn=1600-079X&rft.volume=60&rft.issue=2&rft.spage=132&rft.epage=141&rft_id=info:doi/10.1111%2Fjpi.12290&rft.externalDBID=10.1111%252Fjpi.12290&rft.externalDocID=JPI12290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0742-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0742-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0742-3098&client=summon