Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes
Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect...
Saved in:
Published in | Journal of pineal research Vol. 60; no. 2; pp. 132 - 141 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10−9 m melatonin. We analyzed the ROS, mitochondrial Ca2+ (mCa2+) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase‐3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa2+, Bax mRNA, and caspase‐3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa2+, Bax mRNA expression, and caspase‐3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10−9 m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential. |
---|---|
AbstractList | Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10−9 m melatonin. We analyzed the ROS, mitochondrial Ca2+ (mCa2+) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase‐3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa2+, Bax mRNA, and caspase‐3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa2+, Bax mRNA expression, and caspase‐3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10−9 m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential. Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10(-9) m melatonin. We analyzed the ROS, mitochondrial Ca(2+) (mCa(2+) ) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase-3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa(2+) , Bax mRNA, and caspase-3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa(2+) , Bax mRNA expression, and caspase-3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10(-9) m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential.Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10(-9) m melatonin. We analyzed the ROS, mitochondrial Ca(2+) (mCa(2+) ) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase-3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa(2+) , Bax mRNA, and caspase-3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa(2+) , Bax mRNA expression, and caspase-3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10(-9) m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential. Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species ( ROS ) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation ( IVM ) and vitrification solution with 10 −9 m melatonin. We analyzed the ROS , mitochondrial Ca 2+ ( mC a 2+ ) and membrane potential (ΔΨm), externalization of phosphatidylserine ( PS ), caspase‐3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1 , and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS , mC a 2+ , Bax mRNA , and caspase‐3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS , mC a 2+ , Bax mRNA expression, and caspase‐3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10 −9 m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential. Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10(-9) m melatonin. We analyzed the ROS, mitochondrial Ca(2+) (mCa(2+) ) and membrane potential (ΔΨm), externalization of phosphatidylserine (PS), caspase-3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa(2+) , Bax mRNA, and caspase-3 protein and higher rates of PS externalization and DNA fragmentation, and decreased ΔΨm and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa(2+) , Bax mRNA expression, and caspase-3 protein, and PS externalization and DNA fragmentation rates, and increased the ΔΨm and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10(-9) m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential. Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little information is available the effect of melatonin on the ROS levels and apoptotic events in vitrified oocytes. Therefore, we studied the effect of melatonin on ROS and apoptotic events in vitrified bovine oocytes by supplementing vitrification solution or in vitro maturation (IVM) and vitrification solution with 10 super(-9) m melatonin. We analyzed the ROS, mitochondrial Ca super(2+) (mCa super(2+)) and membrane potential ( Delta psi m), externalization of phosphatidylserine (PS), caspase-3 activation, DNA fragmentation, mRNA expression levels of Bax and Bcl2 l1, and developmental potential of vitrified bovine oocytes. Vitrified bovine oocytes exhibited increased levels of ROS, mCa super(2+), Bax mRNA, and caspase-3 protein and higher rates of PS externalization and DNA fragmentation, and decreased Delta psi m and Bcl2 l1 mRNA expression level. However, melatonin supplementation in vitrification solution or IVM and vitrification solution significantly decreased the levels of ROS, mCa super(2+), Bax mRNA expression, and caspase-3 protein, and PS externalization and DNA fragmentation rates, and increased the Delta psi m and Bcl2 l1 mRNA expression level in vitrified oocytes, resulting in an increased developmental ability of vitrified bovine oocytes after parthenogenetic activation. The developmental ability of vitrified oocytes with melatonin supplementation in IVM and vitrification solution was similar to that of fresh ones. This study showed that supplementing the IVM and vitrification medium or vitrification medium with 10 super(-9) m melatonin significantly decreased the ROS level and inhibited apoptotic events of vitrified bovine oocytes, consequently increasing their developmental potential. |
Author | Du, Wei-Hua Liu, Yan Wang, Dong Hao, Hai-Sheng Zhao, Xue-Ming Zhu, Hua-Bin Wang, Hao-Yu Zhao, Shan-Jiang Wang, Na Qin, Tong |
Author_xml | – sequence: 1 givenname: Xue-Ming surname: Zhao fullname: Zhao, Xue-Ming organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China – sequence: 2 givenname: Hai-Sheng surname: Hao fullname: Hao, Hai-Sheng organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China – sequence: 3 givenname: Wei-Hua surname: Du fullname: Du, Wei-Hua organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China – sequence: 4 givenname: Shan-Jiang surname: Zhao fullname: Zhao, Shan-Jiang organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China – sequence: 5 givenname: Hao-Yu surname: Wang fullname: Wang, Hao-Yu organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China – sequence: 6 givenname: Na surname: Wang fullname: Wang, Na organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China – sequence: 7 givenname: Dong surname: Wang fullname: Wang, Dong organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China – sequence: 8 givenname: Yan surname: Liu fullname: Liu, Yan organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China – sequence: 9 givenname: Tong surname: Qin fullname: Qin, Tong organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China – sequence: 10 givenname: Hua-Bin surname: Zhu fullname: Zhu, Hua-Bin email: Address reprint requests to Hua-Bin Zhu, Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China., zhuhuabin@caas.cn organization: Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26485053$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1v1DAQxS3Uim4LB_4BlCMc0o6dOHGOsILSL-iBr5vl2BN1SmKH2Luw_z1pt-2hEoi5zDv83tNo3j7b8cEjYy84HPJ5jq5HOuRCNPCELXgFkEPdfN9hC6hLkRfQqD22H-M1ACilqqdsT1SlkiCLBTMX2JsUPPmM_BW1lGJmxjCmEGlW3mU0jFNYY8zSFWYO19iHcUCfTJ-NIc2CZhW6bE1poo7QZW1Yk8csBLtJGJ-x3c70EZ_f7QP25f27z8sP-fmn45Plm_PcykJAbp1zhXPC1qo1LQfuJLSmcMp1TdfZsm2ctY2Coi15K0sBzhneyaaSYETNsThgr7a587k_VxiTHiha7HvjMayi5rUCKUol5H-glWgqoapmRl_eoat2QKfHiQYzbfT9B2fg9RawU4hxwu4B4aBv2tFzO_q2nZk9esRaSiZR8Gky1P_L8Yt63Pw9Wp9entw78q2DYsLfDw4z_dBVXdRSf_t4rJdnX9-eLfmlros_dEuxlg |
CitedBy_id | crossref_primary_10_1155_2021_6668365 crossref_primary_10_1080_15384101_2024_2402190 crossref_primary_10_1007_s43032_022_01147_y crossref_primary_10_1186_s13148_020_00911_8 crossref_primary_10_1016_j_theriogenology_2025_117399 crossref_primary_10_1016_j_reprotox_2020_01_004 crossref_primary_10_1089_bio_2023_0062 crossref_primary_10_3390_ijms20163921 crossref_primary_10_3389_fcell_2021_733860 crossref_primary_10_3389_fcell_2024_1398049 crossref_primary_10_3390_ani10020209 crossref_primary_10_1111_rda_14158 crossref_primary_10_1016_S2095_3119_18_61942_2 crossref_primary_10_3390_bioengineering9030088 crossref_primary_10_3390_antiox12040897 crossref_primary_10_1016_j_cryobiol_2024_104902 crossref_primary_10_1016_j_theriogenology_2023_04_004 crossref_primary_10_1093_humrep_dew362 crossref_primary_10_3390_antiox10020184 crossref_primary_10_3390_antiox12010035 crossref_primary_10_1080_15384101_2020_1767403 crossref_primary_10_1111_rda_14262 crossref_primary_10_3390_ijms232315089 crossref_primary_10_3389_fcell_2021_648148 crossref_primary_10_1016_j_lfs_2020_118706 crossref_primary_10_3390_ijms24010590 crossref_primary_10_1002_jcp_25876 crossref_primary_10_3389_fcell_2022_856486 crossref_primary_10_1017_S0967199421000770 crossref_primary_10_3390_ijms17122124 crossref_primary_10_1111_rda_12942 crossref_primary_10_54680_fr23110110212 crossref_primary_10_1007_s10815_022_02611_z crossref_primary_10_1002_mrd_23247 crossref_primary_10_1007_s10499_023_01280_8 crossref_primary_10_1016_j_rbmo_2019_09_012 crossref_primary_10_1089_cell_2022_0001 crossref_primary_10_3390_biomedicines9121904 crossref_primary_10_1530_REP_18_0211 crossref_primary_10_3390_ijms21197067 crossref_primary_10_5713_ab_23_0371 crossref_primary_10_1016_j_theriogenology_2017_05_012 crossref_primary_10_1089_bio_2017_0122 crossref_primary_10_1111_jpi_12707 crossref_primary_10_3389_fvets_2022_903195 crossref_primary_10_1016_j_theriogenology_2023_06_012 crossref_primary_10_1016_j_repbio_2017_09_002 crossref_primary_10_1016_j_theriogenology_2020_10_036 crossref_primary_10_1016_j_theriogenology_2024_08_029 crossref_primary_10_1016_j_psj_2023_103331 crossref_primary_10_1111_jpi_12388 crossref_primary_10_1111_jpi_12543 crossref_primary_10_3390_antiox13070814 crossref_primary_10_3390_vetsci9080439 crossref_primary_10_1016_j_theriogenology_2019_11_037 crossref_primary_10_3390_antiox11091640 crossref_primary_10_3390_ani12192636 crossref_primary_10_1017_S0967199420000465 crossref_primary_10_3389_fvets_2023_1212047 crossref_primary_10_1016_j_biopha_2024_116487 crossref_primary_10_1016_j_theriogenology_2017_12_031 crossref_primary_10_1038_s41598_017_10907_9 crossref_primary_10_1089_bio_2017_0074 crossref_primary_10_1016_j_theriogenology_2021_07_027 crossref_primary_10_1530_REP_16_0530 crossref_primary_10_2478_aoas_2020_0030 crossref_primary_10_1002_jcp_30468 crossref_primary_10_1590_1519_6984_241081 crossref_primary_10_1016_j_reprotox_2017_12_005 crossref_primary_10_3389_fvets_2021_752001 crossref_primary_10_1177_0004867418796955 crossref_primary_10_1016_j_theriogenology_2019_09_010 crossref_primary_10_1262_jrd_2022_053 crossref_primary_10_1016_j_ecoenv_2022_113166 crossref_primary_10_1002_mrd_22739 crossref_primary_10_1071_AN22133 crossref_primary_10_1111_asj_13683 crossref_primary_10_1016_j_theriogenology_2021_09_032 crossref_primary_10_1016_j_lfs_2019_116810 crossref_primary_10_1016_j_cryobiol_2020_02_011 crossref_primary_10_1071_RD22130 crossref_primary_10_3389_fvets_2023_1174756 crossref_primary_10_1111_jpi_12447 crossref_primary_10_1016_j_cryobiol_2020_03_004 crossref_primary_10_3390_cells8091009 crossref_primary_10_1017_S0967199423000345 crossref_primary_10_1071_RD18162 crossref_primary_10_1111_rda_13890 crossref_primary_10_18632_oncotarget_12720 crossref_primary_10_1080_14647273_2023_2190987 crossref_primary_10_1111_rda_14623 crossref_primary_10_1016_j_chemosphere_2019_02_092 crossref_primary_10_31083_j_ceog5009197 crossref_primary_10_3390_genes13050805 crossref_primary_10_3390_molecules23020494 crossref_primary_10_1016_j_cryobiol_2019_05_005 crossref_primary_10_1016_j_cryobiol_2019_05_008 crossref_primary_10_17221_44_2021_CJAS crossref_primary_10_1021_acs_jafc_0c06340 crossref_primary_10_1007_s10815_024_03287_3 crossref_primary_10_1111_jpi_12477 crossref_primary_10_7717_peerj_3485 crossref_primary_10_3390_jdb12040026 crossref_primary_10_1016_j_theriogenology_2025_02_025 crossref_primary_10_1071_RD18216 crossref_primary_10_3390_cells11223573 crossref_primary_10_1111_asj_12970 crossref_primary_10_3390_nu15153288 crossref_primary_10_1016_j_theriogenology_2024_11_025 crossref_primary_10_1016_j_cryobiol_2019_11_001 crossref_primary_10_1016_j_ecoenv_2024_116100 crossref_primary_10_3390_jcm12134444 crossref_primary_10_3390_cells11244018 crossref_primary_10_3390_ijms20020409 crossref_primary_10_1016_j_cryobiol_2020_06_012 crossref_primary_10_4274_BMJ_galenos_2023_2022_12_11 crossref_primary_10_1111_jpi_12627 crossref_primary_10_1016_j_domaniend_2020_106447 crossref_primary_10_3390_antiox12050991 crossref_primary_10_52396_JUSTC_2023_0072 crossref_primary_10_1016_j_stemcr_2019_01_019 crossref_primary_10_3390_antiox8070198 crossref_primary_10_3390_ani11082324 crossref_primary_10_1002_mrd_23052 crossref_primary_10_1186_s40104_021_00605_y crossref_primary_10_3390_antiox11020344 crossref_primary_10_1111_rda_14009 |
Cites_doi | 10.1101/gad.13.15.1899 10.1002/mrd.21295 10.1023/A:1009616228304 10.1016/S0891-5849(00)00435-4 10.1530/rep.1.00878 10.1016/j.fertnstert.2011.06.030 10.1071/RDv24n1Ab44 10.1016/S0022-1759(00)00285-4 10.1016/j.cryobiol.2014.09.380 10.1111/jpi.12163 10.1016/j.theriogenology.2006.09.004 10.1002/mrd.21389 10.1016/0011-2240(91)90007-B 10.1095/biolreprod.104.031690 10.1002/mrd.21064 10.1155/2013/920257 10.1016/j.theriogenology.2014.09.031 10.1016/j.fertnstert.2011.04.089 10.1095/biolreprod62.6.1745 10.1016/j.fertnstert.2010.01.043 10.1111/j.1600-079X.2007.00432.x 10.1093/humrep/13.4.998 10.1016/j.fertnstert.2014.03.052 10.1095/biolreprod63.2.513 10.1371/journal.pone.0097731 10.1097/00007890-200001150-00024 10.1016/j.theriogenology.2010.12.028 10.1111/j.1600-079X.2007.00479.x 10.1002/(SICI)1098-2795(199809)51:1<53::AID-MRD6>3.0.CO;2-V 10.1016/j.cryobiol.2007.06.008 10.1111/j.1600-079X.2006.00351.x 10.1007/s00424-012-1122-y 10.1111/asj.12067 10.1002/mrd.22018 10.1111/jpi.12162 10.1101/gad.1658508 10.1111/jpi.12267 10.1093/humrep/del319 10.1111/jpi.12234 10.1016/S0011-2240(03)00070-1 10.1111/j.1600-079X.2009.00717.x 10.1095/biolreprod.113.109769 10.1111/jpi.12126 10.1095/biolreprod63.3.805 10.1016/j.cell.2005.05.011 10.1016/j.theriogenology.2012.11.011 10.1126/science.1099320 10.2174/1568026023394443 10.1126/science.1132009 10.1371/journal.pone.0058063 10.1111/jpi.12069 10.1071/RD10013 10.1002/cbin.10163 10.1093/humrep/14.12.3077 10.1111/j.1600-079X.2007.00524.x 10.1038/35048073 10.1093/humrep/der210 10.1290/1071-2690(2000)036<0262:CVIFIO>2.0.CO;2 10.1016/j.freeradbiomed.2007.01.018 10.1111/j.1600-079X.2008.00602.x 10.1016/j.anireprosci.2012.08.020 10.1073/pnas.88.9.3671 10.1262/jrd.50.287 10.1016/S0015-0282(02)04678-2 10.1016/j.rbmo.2014.03.024 10.1111/j.1600-079X.2011.00944.x 10.1095/biolreprod.112.106450 10.1016/j.theriogenology.2011.04.017 10.1126/science.281.5381.1309 10.1111/j.1600-079X.2011.00856.x 10.1111/j.1600-079X.2007.00475.x 10.1083/jcb.200303047 |
ContentType | Journal Article |
Copyright | 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK |
DOI | 10.1111/jpi.12290 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1600-079X |
EndPage | 141 |
ExternalDocumentID | 26485053 10_1111_jpi_12290 JPI12290 ark_67375_WNG_CKVBKC1P_7 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31472100 – fundername: Agricultural Science and Technology Innovation Program funderid: ASTIP‐IAS‐TS‐5; ASTIP‐IAS06‐2014 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 186 1OB 1OC 29L 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BQCPF BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WXI WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7TK |
ID | FETCH-LOGICAL-c5320-cddd3dd2c78bab101d50ba3d8df9ffc4b9dcc9803b41b5420dda1f59650a271e3 |
IEDL.DBID | DR2 |
ISSN | 0742-3098 1600-079X |
IngestDate | Fri Jul 11 11:47:07 EDT 2025 Fri Jul 11 04:24:45 EDT 2025 Thu Apr 03 07:02:44 EDT 2025 Tue Jul 01 01:05:20 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Wed Jan 22 16:52:06 EST 2025 Wed Oct 30 09:51:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | bovine melatonin oocytes mitochondria vitrification |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5320-cddd3dd2c78bab101d50ba3d8df9ffc4b9dcc9803b41b5420dda1f59650a271e3 |
Notes | istex:3C06CD8728282F9EC54D71467B20B4D3F9173A88 ArticleID:JPI12290 National Natural Science Foundation of China - No. 31472100 Agricultural Science and Technology Innovation Program - No. ASTIP-IAS-TS-5; No. ASTIP-IAS06-2014 ark:/67375/WNG-CKVBKC1P-7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26485053 |
PQID | 1762962869 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1780524825 proquest_miscellaneous_1762962869 pubmed_primary_26485053 crossref_primary_10_1111_jpi_12290 crossref_citationtrail_10_1111_jpi_12290 wiley_primary_10_1111_jpi_12290_JPI12290 istex_primary_ark_67375_WNG_CKVBKC1P_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2016 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: March 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of pineal research |
PublicationTitleAlternate | J. Pineal Res |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Rajaei F, Abedpour N, Salehnia M et al. The effect of vitrification on mouse oocyte apoptosis by cryotop method. Iran Biomed J 2013; 17:200-205. Wilding M, de Placido G, de Matteo L et al. Chaotic mosaicism in human preimplantation embryos is correlated with a low mitochondrial membrane potential. Fertil Steril 2003; 79:340-346. Yang HW, Hwang KJ, Kwon HC et al. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod 1998; 13:998-1002. Liang YY, Phermthai T, Nagai T et al. In vitro development of vitrified buffalo oocytes following parthenogenetic activation and intracytoplasmic sperm injection. Theriogenology 2011; 75:1652-1660. Schmidt-Mende J, Hellström-Lindberg E, Joseph B et al. Freezing induces artificial cleavage of apoptosis-related proteins in human bone marrow cells. J Immunol Methods 2000; 245:91-94. Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev 2008; 22:1577-1590. Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 2014; 57:131-146. Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000; 5:415-418. Vallorani C, Spinaci M, Bucci D et al. Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade. Anim Reprod Sci 2012; 135:68-74. Manchester LC, Coto-Montes A, Boga JA et al. Melatonin: an ancient molecule that makes melatonin metabolically tolerable. J Pineal Res 2015; 59:403-419. Papis K, Poleszczuk O, Wenta-Muchalska E et al. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J Pineal Res 2007; 43:321-326. Lord T, Nixon B, Jones KT et al. Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol Reprod 2013; 88:67. Potdar N, Gelbaya TA, Nardo LG. Oocyte vitrification in the 21st century and post-warming fertility outcomes: a systematic review and meta-analysis. Reprod Biomed Online 2014; 29:159-176. Chen HY, Chen TY, Lee MY et al. Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood-brain barrier permeability after transient focal cerebral ischemia in mice. J Pineal Res 2006; 41:175-182. Tan DX, Manchester LC, Reiter RJ et al. Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radic Biol Med 2000; 29:1177-1185. Smiley ST, Reers M, Mottola-Hartshorn C et al. Intracellular heterogeneity in mitochondrial-membrane potentials revealed by a J-aggregate-forming lipophilic cation Jc-1. Proc Natl Acad Sci USA 1991; 88:3671-3675. Tian X, Wang F, He C et al. Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach. J Pineal Res 2014; 57:239-247. Stehle JH, Saade A, Rawashdeh O et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 2011; 51:17-43. Li L, Zhang X, Zhao L et al. Comparison of DNA apoptosis in mouse and human blastocysts after vitrification and slow freezing. Mol Reprod Dev 2012; 79:229-236. Men H, Monson RL, Parrish JJ et al. Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture. Cryobiology 2003; 47:73-81. Lincoln GA, Clarke IJ, Hut RA et al. Characterizing a mammalian circannual pacemaker. Science 2006; 314:1941-1944. Roth Z, Hansen PJ. Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biol Reprod 2004; 71:1898-1906. Baust JM, Van Buskirk R, Baust JG. Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim 2000; 36:262-270. Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2001; 2:67-71. Gualtieri R, Mollo V, Barbato V et al. Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes. Hum Reprod 2011; 26:2452-2460. Tan DX, Reiter RJ, Manchester LC et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2:181-197. Tamura H, Takasaki A, Miwa I et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res 2008; 44:280-287. Tatone C, di Emidio G, Barbaro R et al. Effects of reproductive aging and postovulatory aging on the maintenance of biological competence after oocyte vitrification: insights from the mouse model. Theriogenology 2011; 76:864-873. Hwang IS, Hara H, Chung HJ et al. Rescue of vitrified-warmed bovine oocytes with rho-associated coiled-coil kinase inhibitor. Biol Reprod 2013; 89:26. Kohaya N, Fujiwara K, Ito J et al. Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain. PLoS ONE 2013; 8:e58063. de Blasi M, Rubessa M, Albero G et al. Reactive oxygen species in vitrified bovine in vitro-matured oocytes. Reprod Fertil Dev 2011; 24:134. Zhao XM, Min JT, Du WH et al. Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus. Zygote 2014; 29:1-12. Liu L, Trimarchi JR, Keefe DL. Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol Reprod 2000; 62:1745-1753. Kang JT, Koo OJ, Kwon DK et al. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res 2009; 46:22-28. Levi Setti PE, Porcu E, Patrizio P et al. Human oocyte cryopreservation with slow freezing versus vitrification. Results from the National Italian Registry data, 2007-2011. Fertil Steril 2014; 102: 90-95. Favetta LA, St John EJ, King WA et al. High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic Biol Med 2007; 42:1201-1210. Wang F, Tian X, Zhang L et al. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J Pineal Res 2013; 55:267-274. Rodriguez-Osorio N, Kim IJ, Wang H et al. Melatonin increases cleavage rate of porcine preimplantation embryos in vitro. J Pineal Res 2007; 43:283-288. Kim JM, Liu H, Tazaki M et al. Changes in histone acetylation during mouse oocyte meiosis. J Cell Biol 2003; 162:37-46. Coelho LA, Peres R, Amaral FG et al. Daily differential expression of melatonin-related genes and clock genes in rat cumulus-oocyte complex: changes after pinealectomy. J Pineal Res 2015; 58:490-499. Moriga T, Arii S, Takeda Y et al. Protection by vascular endothelial growth factor against sinusoidal endothelial damage and apoptosis induced by cold preservation. Transplantation 2000; 69:141-147. Anguita B, Vandaele L, Mateusen B et al. Developmental competence of bovine oocytes is not related to apoptosis incidence in oocytes, cumulus cells and blastocysts. Theriogenology 2007; 67:537-549. Pizzo P, Drago I, Filadi R et al. Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities. Pflugers Arch 2012; 464:3-17. Wang F, Tian X, Zhang L et al. Beneficial effects of melatonin on in vitro bovine embryonic development are mediated by melatonin receptor 1. J Pineal Res 2014; 56:333-342. Gupta MK, Uhm SJ, Lee HT. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril 2010; 93:2602-2607. Chen JY, Li XX, Xu YK et al. Developmental competence and gene expression of immature oocytes following liquid helium vitrification in bovine. Cryobiology 2014; 69:428-433. Somfai T, Yoshioka K, Tanihara F et al. Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. PLoS ONE 2014; 9:e97731. Kuleshova L, Gianaroli L, Magli C et al. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 1999; 14:3077-3079. Giaretta E, Spinaci M, Bucci D et al. Effects of resveratrol on vitrified porcine oocytes. Oxid Med Cell Longev 2013; 2013:920257. Lei T, Guo N, Liu JQ et al. Vitrification of in vitro matured oocytes: effects on meiotic spindle configuration and mitochondrial function. Int J Clin Exp Pathol 2014; 7:1159-1165. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305:626-629. Manda K, Ueno M, Anzai K. AFMK, a melatonin metabolite, attenuates X-ray-induced oxidative damage to DNA, proteins and lipids in mice. J Pineal Res 2007; 42:386-393. Gao C, Han HB, Tian XZ et al. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J Pineal Res 2012; 52:305-311. Larman MG, Katz-Jaffe MG, Sheehan CB et al. 1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum Reprod 2007; 22:250-259. Zhao XM, Du WH, Wang D et al. Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes. Fertil Steril 2011; 95:2786-2788. Somfai T, Ozawa M, Noguchi J et al. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 2007; 55:115-126. Zhao XM, Fu XW, Hou YP et al. Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2-PN) embryos. Mol Reprod Dev 2009; 76:1056-1063. Dinnyés A, Dai Y, Jiang S et al. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 2000; 63:513-518. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281:1309-1312. Hosseini SM, Asgari V, Ostadhosse 1998; 281 2009; 47 2009; 46 2000; 5 2011; 96 2014; 69 2006; 131 2014; 29 2013; 8 2012; 52 2010; 22 2013; 17 2004; 71 2012; 135 2000; 245 2013; 55 2013; 2013 1991; 88 2015; 83 1999; 14 1999; 13 2003; 162 2003; 47 2000; 62 2014; 57 2011; 24 2008; 22 2011; 26 2014; 9 1998; 51 2014; 7 2007; 22 2007; 67 2014; 56 1998; 13 2015; 59 2015; 58 2000; 29 2012; 464 2000; 69 2013; 88 2013; 89 2013; 84 2000; 63 2003; 79 2011; 75 2002; 2 2011; 76 2011; 78 2006; 314 2012; 79 2007; 55 2004; 305 2004; 50 2006; 41 1991; 28 2009; 76 2000; 36 2005; 122 2013; 79 2011; 95 2011; 51 2014; 38 2001; 2 2008; 44 2007; 42 2007; 43 2014; 102 2010; 93 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Rajaei F (e_1_2_7_23_1) 2013; 17 Lei T (e_1_2_7_67_1) 2014; 7 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Zhao XM (e_1_2_7_52_1) 2014; 29 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – reference: Phongnimitr T, Liang Y, Srirattana K et al. Effect of L-carnitine on maturation, cryo-tolerance and embryo developmental competence of bovine oocytes. Anim Sci J 2013; 84:719-725. – reference: Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 2014; 57:131-146. – reference: Jang W, Lee SE, Choi HY et al. Vitrification of immature mouse oocytes by the modified-cut standard straw method. Cell Biol Int 2014; 38:164-171. – reference: Tan DX, Reiter RJ, Manchester LC et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2:181-197. – reference: El-Raey M, Geshi M, Somfai T et al. Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle. Mol Reprod Dev 2011; 78:250-262. – reference: Anguita B, Vandaele L, Mateusen B et al. Developmental competence of bovine oocytes is not related to apoptosis incidence in oocytes, cumulus cells and blastocysts. Theriogenology 2007; 67:537-549. – reference: Men H, Monson RL, Parrish JJ et al. Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture. Cryobiology 2003; 47:73-81. – reference: Smiley ST, Reers M, Mottola-Hartshorn C et al. Intracellular heterogeneity in mitochondrial-membrane potentials revealed by a J-aggregate-forming lipophilic cation Jc-1. Proc Natl Acad Sci USA 1991; 88:3671-3675. – reference: Liu L, Trimarchi JR, Keefe DL. Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol Reprod 2000; 62:1745-1753. – reference: Moriga T, Arii S, Takeda Y et al. Protection by vascular endothelial growth factor against sinusoidal endothelial damage and apoptosis induced by cold preservation. Transplantation 2000; 69:141-147. – reference: Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305:626-629. – reference: Vallorani C, Spinaci M, Bucci D et al. Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade. Anim Reprod Sci 2012; 135:68-74. – reference: Zhao XM, Fu XW, Hou YP et al. Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2-PN) embryos. Mol Reprod Dev 2009; 76:1056-1063. – reference: Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13:1899-1911. – reference: Gualtieri R, Mollo V, Barbato V et al. Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes. Hum Reprod 2011; 26:2452-2460. – reference: Lord T, Nixon B, Jones KT et al. Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol Reprod 2013; 88:67. – reference: Zhao XM, Du WH, Wang D et al. Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol Reprod Dev 2011; 78:942-950. – reference: Coelho LA, Peres R, Amaral FG et al. Daily differential expression of melatonin-related genes and clock genes in rat cumulus-oocyte complex: changes after pinealectomy. J Pineal Res 2015; 58:490-499. – reference: Potdar N, Gelbaya TA, Nardo LG. Oocyte vitrification in the 21st century and post-warming fertility outcomes: a systematic review and meta-analysis. Reprod Biomed Online 2014; 29:159-176. – reference: Hwang IS, Hara H, Chung HJ et al. Rescue of vitrified-warmed bovine oocytes with rho-associated coiled-coil kinase inhibitor. Biol Reprod 2013; 89:26. – reference: Manchester LC, Coto-Montes A, Boga JA et al. Melatonin: an ancient molecule that makes melatonin metabolically tolerable. J Pineal Res 2015; 59:403-419. – reference: Cobo A, Diaz C. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril 2011; 96:277-285. – reference: Favetta LA, St John EJ, King WA et al. High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic Biol Med 2007; 42:1201-1210. – reference: Wang F, Tian X, Zhang L et al. Beneficial effects of melatonin on in vitro bovine embryonic development are mediated by melatonin receptor 1. J Pineal Res 2014; 56:333-342. – reference: Lei T, Guo N, Liu JQ et al. Vitrification of in vitro matured oocytes: effects on meiotic spindle configuration and mitochondrial function. Int J Clin Exp Pathol 2014; 7:1159-1165. – reference: Roth Z, Hansen PJ. Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biol Reprod 2004; 71:1898-1906. – reference: Tatone C, di Emidio G, Barbaro R et al. Effects of reproductive aging and postovulatory aging on the maintenance of biological competence after oocyte vitrification: insights from the mouse model. Theriogenology 2011; 76:864-873. – reference: Baust JM, Van Buskirk R, Baust JG. Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim 2000; 36:262-270. – reference: Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281:1309-1312. – reference: Gao C, Han HB, Tian XZ et al. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J Pineal Res 2012; 52:305-311. – reference: Li L, Zhang X, Zhao L et al. Comparison of DNA apoptosis in mouse and human blastocysts after vitrification and slow freezing. Mol Reprod Dev 2012; 79:229-236. – reference: Shi JM, Tian XZ, Zhou GB et al. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J Pineal Res 2009; 47:318-323. – reference: Zhao XM, Min JT, Du WH et al. Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus. Zygote 2014; 29:1-12. – reference: Larman MG, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 2006; 131:53-61. – reference: Somfai T, Ozawa M, Noguchi J et al. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 2007; 55:115-126. – reference: Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev 2008; 22:1577-1590. – reference: Rodriguez-Osorio N, Kim IJ, Wang H et al. Melatonin increases cleavage rate of porcine preimplantation embryos in vitro. J Pineal Res 2007; 43:283-288. – reference: Kohaya N, Fujiwara K, Ito J et al. Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain. PLoS ONE 2013; 8:e58063. – reference: Larman MG, Katz-Jaffe MG, Sheehan CB et al. 1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum Reprod 2007; 22:250-259. – reference: Yang HW, Hwang KJ, Kwon HC et al. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod 1998; 13:998-1002. – reference: Yoneda A, Suzuki K, Mori T et al. Effects of delipidation and oxygen concentration on in vitro development of porcine embryos. J Reprod Dev 2004; 50:287-295. – reference: Somfai T, Yoshioka K, Tanihara F et al. Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. PLoS ONE 2014; 9:e97731. – reference: Chankitisakul V, Somfai T, Inaba Y et al. Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes. Theriogenology 2013; 79:590-598. – reference: de Blasi M, Rubessa M, Albero G et al. Reactive oxygen species in vitrified bovine in vitro-matured oocytes. Reprod Fertil Dev 2011; 24:134. – reference: Vajta G, Holm P, Kuwayama M et al. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 1998; 51:53-58. – reference: Zhao XM, Du WH, Wang D et al. Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes. Fertil Steril 2011; 95:2786-2788. – reference: Schmidt-Mende J, Hellström-Lindberg E, Joseph B et al. Freezing induces artificial cleavage of apoptosis-related proteins in human bone marrow cells. J Immunol Methods 2000; 245:91-94. – reference: Manda K, Ueno M, Anzai K. AFMK, a melatonin metabolite, attenuates X-ray-induced oxidative damage to DNA, proteins and lipids in mice. J Pineal Res 2007; 42:386-393. – reference: Gupta MK, Uhm SJ, Lee HT. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril 2010; 93:2602-2607. – reference: Wilding M, de Placido G, de Matteo L et al. Chaotic mosaicism in human preimplantation embryos is correlated with a low mitochondrial membrane potential. Fertil Steril 2003; 79:340-346. – reference: Levi Setti PE, Porcu E, Patrizio P et al. Human oocyte cryopreservation with slow freezing versus vitrification. Results from the National Italian Registry data, 2007-2011. Fertil Steril 2014; 102: 90-95. – reference: Papis K, Poleszczuk O, Wenta-Muchalska E et al. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J Pineal Res 2007; 43:321-326. – reference: Liang YY, Phermthai T, Nagai T et al. In vitro development of vitrified buffalo oocytes following parthenogenetic activation and intracytoplasmic sperm injection. Theriogenology 2011; 75:1652-1660. – reference: Tamura H, Takasaki A, Miwa I et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res 2008; 44:280-287. – reference: Lincoln GA, Clarke IJ, Hut RA et al. Characterizing a mammalian circannual pacemaker. Science 2006; 314:1941-1944. – reference: Chen JY, Li XX, Xu YK et al. Developmental competence and gene expression of immature oocytes following liquid helium vitrification in bovine. Cryobiology 2014; 69:428-433. – reference: Wang F, Tian X, Zhang L et al. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J Pineal Res 2013; 55:267-274. – reference: Tian X, Wang F, He C et al. Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach. J Pineal Res 2014; 57:239-247. – reference: Hosseini SM, Asgari V, Ostadhosseini S et al. Developmental competence of ovine oocytes after vitrification: Differential effects of vitrification steps, embryo production methods, and parental origin of pronuclei. Theriogenology 2015; 83:366-376. – reference: Giorgio M, Migliaccio E, Orsini F et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005; 122:221-233. – reference: Pizzo P, Drago I, Filadi R et al. Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities. Pflugers Arch 2012; 464:3-17. – reference: Morató R, Izquierdo D, Paramio MT et al. Survival and apoptosis rates after vitrification in cryotop devices of in vitro-produced calf and cow blastocysts at different developmental stages. Reprod Fertil Dev 2010; 22:1141-1147. – reference: Dinnyés A, Dai Y, Jiang S et al. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 2000; 63:513-518. – reference: Kuleshova L, Gianaroli L, Magli C et al. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 1999; 14:3077-3079. – reference: Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000; 5:415-418. – reference: Rajaei F, Abedpour N, Salehnia M et al. The effect of vitrification on mouse oocyte apoptosis by cryotop method. Iran Biomed J 2013; 17:200-205. – reference: Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2001; 2:67-71. – reference: Giaretta E, Spinaci M, Bucci D et al. Effects of resveratrol on vitrified porcine oocytes. Oxid Med Cell Longev 2013; 2013:920257. – reference: Chen HY, Chen TY, Lee MY et al. Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood-brain barrier permeability after transient focal cerebral ischemia in mice. J Pineal Res 2006; 41:175-182. – reference: Stehle JH, Saade A, Rawashdeh O et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 2011; 51:17-43. – reference: Kono T, Kwon OY, Nakahara T. Development of vitrified mouse oocytes after IVF. Cryobiology 1991; 28:50-54. – reference: Tatemoto H, Sakurai N, Muto N. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol Reprod 2000; 63:805-810. – reference: Kang JT, Koo OJ, Kwon DK et al. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res 2009; 46:22-28. – reference: Kim JM, Liu H, Tazaki M et al. Changes in histone acetylation during mouse oocyte meiosis. J Cell Biol 2003; 162:37-46. – reference: Tan DX, Manchester LC, Reiter RJ et al. Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radic Biol Med 2000; 29:1177-1185. – volume: 79 start-page: 229 year: 2012 end-page: 236 article-title: Comparison of DNA apoptosis in mouse and human blastocysts after vitrification and slow freezing publication-title: Mol Reprod Dev – volume: 42 start-page: 386 year: 2007 end-page: 393 article-title: AFMK, a melatonin metabolite, attenuates X‐ray‐induced oxidative damage to DNA, proteins and lipids in mice publication-title: J Pineal Res – volume: 22 start-page: 1577 year: 2008 end-page: 1590 article-title: Mitochondrial dynamics and apoptosis publication-title: Genes Dev – volume: 79 start-page: 590 year: 2013 end-page: 598 article-title: Supplementation of maturation medium with L‐carnitine improves cryo‐tolerance of bovine matured oocytes publication-title: Theriogenology – volume: 83 start-page: 366 year: 2015 end-page: 376 article-title: Developmental competence of ovine oocytes after vitrification: Differential effects of vitrification steps, embryo production methods, and parental origin of pronuclei publication-title: Theriogenology – volume: 7 start-page: 1159 year: 2014 end-page: 1165 article-title: Vitrification of matured oocytes: effects on meiotic spindle configuration and mitochondrial function publication-title: Int J Clin Exp Pathol – volume: 88 start-page: 3671 year: 1991 end-page: 3675 article-title: Intracellular heterogeneity in mitochondrial‐membrane potentials revealed by a J‐aggregate‐forming lipophilic cation Jc‐1 publication-title: Proc Natl Acad Sci USA – volume: 88 start-page: 67 year: 2013 article-title: Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization publication-title: Biol Reprod – volume: 78 start-page: 942 year: 2011 end-page: 950 article-title: Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended culture publication-title: Mol Reprod Dev – volume: 13 start-page: 998 year: 1998 end-page: 1002 article-title: Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos publication-title: Hum Reprod – volume: 78 start-page: 250 year: 2011 end-page: 262 article-title: Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in cattle publication-title: Mol Reprod Dev – volume: 38 start-page: 164 year: 2014 end-page: 171 article-title: Vitrification of immature mouse oocytes by the modified‐cut standard straw method publication-title: Cell Biol Int – volume: 59 start-page: 403 year: 2015 end-page: 419 article-title: Melatonin: an ancient molecule that makes melatonin metabolically tolerable publication-title: J Pineal Res – volume: 76 start-page: 1056 year: 2009 end-page: 1063 article-title: Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2‐PN) embryos publication-title: Mol Reprod Dev – volume: 314 start-page: 1941 year: 2006 end-page: 1944 article-title: Characterizing a mammalian circannual pacemaker publication-title: Science – volume: 17 start-page: 200 year: 2013 end-page: 205 article-title: The effect of vitrification on mouse oocyte apoptosis by cryotop method publication-title: Iran Biomed J – volume: 5 start-page: 415 year: 2000 end-page: 418 article-title: Role of reactive oxygen species (ROS) in apoptosis induction publication-title: Apoptosis – volume: 95 start-page: 2786 year: 2011 end-page: 2788 article-title: Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes publication-title: Fertil Steril – volume: 71 start-page: 1898 year: 2004 end-page: 1906 article-title: Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation publication-title: Biol Reprod – volume: 55 start-page: 115 year: 2007 end-page: 126 article-title: Developmental competence of –fertilized porcine oocytes after maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage publication-title: Cryobiology – volume: 13 start-page: 1899 year: 1999 end-page: 1911 article-title: BCL‐2 family members and the mitochondria in apoptosis publication-title: Genes Dev – volume: 58 start-page: 490 year: 2015 end-page: 499 article-title: Daily differential expression of melatonin‐related genes and clock genes in rat cumulus‐oocyte complex: changes after pinealectomy publication-title: J Pineal Res – volume: 63 start-page: 805 year: 2000 end-page: 810 article-title: Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during maturation: role of cumulus cells publication-title: Biol Reprod – volume: 63 start-page: 513 year: 2000 end-page: 518 article-title: High developmental rates of vitrified bovine oocytes following parthenogenetic activation, fertilization, and somatic cell nuclear transfer publication-title: Biol Reprod – volume: 75 start-page: 1652 year: 2011 end-page: 1660 article-title: development of vitrified buffalo oocytes following parthenogenetic activation and intracytoplasmic sperm injection publication-title: Theriogenology – volume: 67 start-page: 537 year: 2007 end-page: 549 article-title: Developmental competence of bovine oocytes is not related to apoptosis incidence in oocytes, cumulus cells and blastocysts publication-title: Theriogenology – volume: 96 start-page: 277 year: 2011 end-page: 285 article-title: Clinical application of oocyte vitrification: a systematic review and meta‐analysis of randomized controlled trials publication-title: Fertil Steril – volume: 135 start-page: 68 year: 2012 end-page: 74 article-title: Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade publication-title: Anim Reprod Sci – volume: 56 start-page: 333 year: 2014 end-page: 342 article-title: Beneficial effects of melatonin on bovine embryonic development are mediated by melatonin receptor 1 publication-title: J Pineal Res – volume: 281 start-page: 1309 year: 1998 end-page: 1312 article-title: Mitochondria and apoptosis publication-title: Science – volume: 464 start-page: 3 year: 2012 end-page: 17 article-title: Mitochondrial Ca homeostasis: mechanism, role, and tissue specificities publication-title: Pflugers Arch – volume: 46 start-page: 22 year: 2009 end-page: 28 article-title: Effects of melatonin on maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells publication-title: J Pineal Res – volume: 24 start-page: 134 year: 2011 article-title: Reactive oxygen species in vitrified bovine ‐matured oocytes publication-title: Reprod Fertil Dev – volume: 57 start-page: 131 year: 2014 end-page: 146 article-title: Melatonin: a well‐documented antioxidant with conditional pro‐oxidant actions publication-title: J Pineal Res – volume: 102 start-page: 90 year: 2014 end-page: 95 article-title: Human oocyte cryopreservation with slow freezing versus vitrification. Results from the National Italian Registry data, 2007‐2011 publication-title: Fertil Steril – volume: 43 start-page: 283 year: 2007 end-page: 288 article-title: Melatonin increases cleavage rate of porcine preimplantation embryos publication-title: J Pineal Res – volume: 131 start-page: 53 year: 2006 end-page: 61 article-title: Calcium‐free vitrification reduces cryoprotectant‐induced zona pellucida hardening and increases fertilization rates in mouse oocytes publication-title: Reproduction – volume: 50 start-page: 287 year: 2004 end-page: 295 article-title: Effects of delipidation and oxygen concentration on development of porcine embryos publication-title: J Reprod Dev – volume: 2 start-page: 181 year: 2002 end-page: 197 article-title: Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger publication-title: Curr Top Med Chem – volume: 43 start-page: 321 year: 2007 end-page: 326 article-title: Melatonin effect on bovine embryo development in relation to oxygen concentration publication-title: J Pineal Res – volume: 93 start-page: 2602 year: 2010 end-page: 2607 article-title: Effect of vitrification and beta‐mercaptoethanol on reactive oxygen species activity and development of oocytes vitrified before or after fertilization publication-title: Fertil Steril – volume: 62 start-page: 1745 year: 2000 end-page: 1753 article-title: Involvement of mitochondria in oxidative stress‐induced cell death in mouse zygotes publication-title: Biol Reprod – volume: 69 start-page: 428 year: 2014 end-page: 433 article-title: Developmental competence and gene expression of immature oocytes following liquid helium vitrification in bovine publication-title: Cryobiology – volume: 28 start-page: 50 year: 1991 end-page: 54 article-title: Development of vitrified mouse oocytes after IVF publication-title: Cryobiology – volume: 57 start-page: 239 year: 2014 end-page: 247 article-title: Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach publication-title: J Pineal Res – volume: 122 start-page: 221 year: 2005 end-page: 233 article-title: Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis publication-title: Cell – volume: 305 start-page: 626 year: 2004 end-page: 629 article-title: The pathophysiology of mitochondrial cell death publication-title: Science – volume: 29 start-page: 1177 year: 2000 end-page: 1185 article-title: Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation publication-title: Free Radic Biol Med – volume: 41 start-page: 175 year: 2006 end-page: 182 article-title: Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood‐brain barrier permeability after transient focal cerebral ischemia in mice publication-title: J Pineal Res – volume: 89 start-page: 26 year: 2013 article-title: Rescue of vitrified‐warmed bovine oocytes with rho‐associated coiled‐coil kinase inhibitor publication-title: Biol Reprod – volume: 9 start-page: e97731 year: 2014 article-title: Generation of live piglets from cryopreserved oocytes for the first time using a defined system for embryo production publication-title: PLoS ONE – volume: 51 start-page: 53 year: 1998 end-page: 58 article-title: Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos publication-title: Mol Reprod Dev – volume: 8 start-page: e58063 year: 2013 article-title: Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain publication-title: PLoS ONE – volume: 2013 start-page: 920257 year: 2013 article-title: Effects of resveratrol on vitrified porcine oocytes publication-title: Oxid Med Cell Longev – volume: 79 start-page: 340 year: 2003 end-page: 346 article-title: Chaotic mosaicism in human preimplantation embryos is correlated with a low mitochondrial membrane potential publication-title: Fertil Steril – volume: 52 start-page: 305 year: 2012 end-page: 311 article-title: Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2‐cell embryos publication-title: J Pineal Res – volume: 26 start-page: 2452 year: 2011 end-page: 2460 article-title: Ultrastructure and intracellular calcium response during activation in vitrified and slow‐frozen human oocytes publication-title: Hum Reprod – volume: 69 start-page: 141 year: 2000 end-page: 147 article-title: Protection by vascular endothelial growth factor against sinusoidal endothelial damage and apoptosis induced by cold preservation publication-title: Transplantation – volume: 51 start-page: 17 year: 2011 end-page: 43 article-title: A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases publication-title: J Pineal Res – volume: 44 start-page: 280 year: 2008 end-page: 287 article-title: Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate publication-title: J Pineal Res – volume: 76 start-page: 864 year: 2011 end-page: 873 article-title: Effects of reproductive aging and postovulatory aging on the maintenance of biological competence after oocyte vitrification: insights from the mouse model publication-title: Theriogenology – volume: 47 start-page: 318 year: 2009 end-page: 323 article-title: Melatonin exists in porcine follicular fluid and improves maturation and parthenogenetic development of porcine oocytes publication-title: J Pineal Res – volume: 22 start-page: 1141 year: 2010 end-page: 1147 article-title: Survival and apoptosis rates after vitrification in cryotop devices of ‐produced calf and cow blastocysts at different developmental stages publication-title: Reprod Fertil Dev – volume: 22 start-page: 250 year: 2007 end-page: 259 article-title: 1,2‐propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology publication-title: Hum Reprod – volume: 47 start-page: 73 year: 2003 end-page: 81 article-title: Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture publication-title: Cryobiology – volume: 245 start-page: 91 year: 2000 end-page: 94 article-title: Freezing induces artificial cleavage of apoptosis‐related proteins in human bone marrow cells publication-title: J Immunol Methods – volume: 55 start-page: 267 year: 2013 end-page: 274 article-title: Melatonin promotes the development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine publication-title: J Pineal Res – volume: 84 start-page: 719 year: 2013 end-page: 725 article-title: Effect of L‐carnitine on maturation, cryo‐tolerance and embryo developmental competence of bovine oocytes publication-title: Anim Sci J – volume: 162 start-page: 37 year: 2003 end-page: 46 article-title: Changes in histone acetylation during mouse oocyte meiosis publication-title: J Cell Biol – volume: 36 start-page: 262 year: 2000 end-page: 270 article-title: Cell viability improves following inhibition of cryopreservation‐induced apoptosis publication-title: In Vitro Cell Dev Biol Anim – volume: 42 start-page: 1201 year: 2007 end-page: 1210 article-title: High levels of p66shc and intracellular ROS in permanently arrested early embryos publication-title: Free Radic Biol Med – volume: 14 start-page: 3077 year: 1999 end-page: 3079 article-title: Birth following vitrification of a small number of human oocytes: case report publication-title: Hum Reprod – volume: 29 start-page: 1 year: 2014 end-page: 12 article-title: Melatonin enhances the maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus publication-title: Zygote – volume: 2 start-page: 67 year: 2001 end-page: 71 article-title: The mitochondrion in apoptosis: how Pandora's box opens publication-title: Nat Rev Mol Cell Biol – volume: 29 start-page: 159 year: 2014 end-page: 176 article-title: Oocyte vitrification in the 21st century and post‐warming fertility outcomes: a systematic review and meta‐analysis publication-title: Reprod Biomed Online – ident: e_1_2_7_34_1 doi: 10.1101/gad.13.15.1899 – ident: e_1_2_7_51_1 doi: 10.1002/mrd.21295 – ident: e_1_2_7_15_1 doi: 10.1023/A:1009616228304 – ident: e_1_2_7_45_1 doi: 10.1016/S0891-5849(00)00435-4 – ident: e_1_2_7_72_1 doi: 10.1530/rep.1.00878 – ident: e_1_2_7_4_1 doi: 10.1016/j.fertnstert.2011.06.030 – ident: e_1_2_7_10_1 doi: 10.1071/RDv24n1Ab44 – ident: e_1_2_7_39_1 doi: 10.1016/S0022-1759(00)00285-4 – ident: e_1_2_7_71_1 doi: 10.1016/j.cryobiol.2014.09.380 – ident: e_1_2_7_63_1 doi: 10.1111/jpi.12163 – ident: e_1_2_7_64_1 doi: 10.1016/j.theriogenology.2006.09.004 – ident: e_1_2_7_9_1 doi: 10.1002/mrd.21389 – ident: e_1_2_7_6_1 doi: 10.1016/0011-2240(91)90007-B – ident: e_1_2_7_24_1 doi: 10.1095/biolreprod.104.031690 – ident: e_1_2_7_68_1 doi: 10.1002/mrd.21064 – ident: e_1_2_7_40_1 doi: 10.1155/2013/920257 – ident: e_1_2_7_76_1 doi: 10.1016/j.theriogenology.2014.09.031 – ident: e_1_2_7_8_1 doi: 10.1016/j.fertnstert.2011.04.089 – ident: e_1_2_7_31_1 doi: 10.1095/biolreprod62.6.1745 – ident: e_1_2_7_12_1 doi: 10.1016/j.fertnstert.2010.01.043 – ident: e_1_2_7_44_1 doi: 10.1111/j.1600-079X.2007.00432.x – ident: e_1_2_7_14_1 doi: 10.1093/humrep/13.4.998 – ident: e_1_2_7_5_1 doi: 10.1016/j.fertnstert.2014.03.052 – ident: e_1_2_7_3_1 doi: 10.1095/biolreprod63.2.513 – ident: e_1_2_7_20_1 doi: 10.1371/journal.pone.0097731 – ident: e_1_2_7_38_1 doi: 10.1097/00007890-200001150-00024 – ident: e_1_2_7_74_1 doi: 10.1016/j.theriogenology.2010.12.028 – ident: e_1_2_7_58_1 doi: 10.1111/j.1600-079X.2007.00479.x – ident: e_1_2_7_2_1 doi: 10.1002/(SICI)1098-2795(199809)51:1<53::AID-MRD6>3.0.CO;2-V – ident: e_1_2_7_11_1 doi: 10.1016/j.cryobiol.2007.06.008 – ident: e_1_2_7_43_1 doi: 10.1111/j.1600-079X.2006.00351.x – ident: e_1_2_7_66_1 doi: 10.1007/s00424-012-1122-y – ident: e_1_2_7_19_1 doi: 10.1111/asj.12067 – ident: e_1_2_7_27_1 doi: 10.1002/mrd.22018 – ident: e_1_2_7_47_1 doi: 10.1111/jpi.12162 – ident: e_1_2_7_36_1 doi: 10.1101/gad.1658508 – ident: e_1_2_7_48_1 doi: 10.1111/jpi.12267 – ident: e_1_2_7_73_1 doi: 10.1093/humrep/del319 – ident: e_1_2_7_55_1 doi: 10.1111/jpi.12234 – ident: e_1_2_7_22_1 doi: 10.1016/S0011-2240(03)00070-1 – volume: 29 start-page: 1 year: 2014 ident: e_1_2_7_52_1 article-title: Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus publication-title: Zygote – ident: e_1_2_7_50_1 doi: 10.1111/j.1600-079X.2009.00717.x – ident: e_1_2_7_28_1 doi: 10.1095/biolreprod.113.109769 – ident: e_1_2_7_57_1 doi: 10.1111/jpi.12126 – ident: e_1_2_7_29_1 doi: 10.1095/biolreprod63.3.805 – ident: e_1_2_7_33_1 doi: 10.1016/j.cell.2005.05.011 – ident: e_1_2_7_75_1 doi: 10.1016/j.theriogenology.2012.11.011 – ident: e_1_2_7_35_1 doi: 10.1126/science.1099320 – volume: 7 start-page: 1159 year: 2014 ident: e_1_2_7_67_1 article-title: Vitrification of in vitro matured oocytes: effects on meiotic spindle configuration and mitochondrial function publication-title: Int J Clin Exp Pathol – volume: 17 start-page: 200 year: 2013 ident: e_1_2_7_23_1 article-title: The effect of vitrification on mouse oocyte apoptosis by cryotop method publication-title: Iran Biomed J – ident: e_1_2_7_46_1 doi: 10.2174/1568026023394443 – ident: e_1_2_7_42_1 doi: 10.1126/science.1132009 – ident: e_1_2_7_18_1 doi: 10.1371/journal.pone.0058063 – ident: e_1_2_7_56_1 doi: 10.1111/jpi.12069 – ident: e_1_2_7_25_1 doi: 10.1071/RD10013 – ident: e_1_2_7_70_1 doi: 10.1002/cbin.10163 – ident: e_1_2_7_7_1 doi: 10.1093/humrep/14.12.3077 – ident: e_1_2_7_53_1 doi: 10.1111/j.1600-079X.2007.00524.x – ident: e_1_2_7_32_1 doi: 10.1038/35048073 – ident: e_1_2_7_65_1 doi: 10.1093/humrep/der210 – ident: e_1_2_7_37_1 doi: 10.1290/1071-2690(2000)036<0262:CVIFIO>2.0.CO;2 – ident: e_1_2_7_17_1 doi: 10.1016/j.freeradbiomed.2007.01.018 – ident: e_1_2_7_49_1 doi: 10.1111/j.1600-079X.2008.00602.x – ident: e_1_2_7_26_1 doi: 10.1016/j.anireprosci.2012.08.020 – ident: e_1_2_7_62_1 doi: 10.1073/pnas.88.9.3671 – ident: e_1_2_7_16_1 doi: 10.1262/jrd.50.287 – ident: e_1_2_7_69_1 doi: 10.1016/S0015-0282(02)04678-2 – ident: e_1_2_7_21_1 doi: 10.1016/j.rbmo.2014.03.024 – ident: e_1_2_7_60_1 doi: 10.1111/j.1600-079X.2011.00944.x – ident: e_1_2_7_54_1 doi: 10.1095/biolreprod.112.106450 – ident: e_1_2_7_13_1 doi: 10.1016/j.theriogenology.2011.04.017 – ident: e_1_2_7_30_1 doi: 10.1126/science.281.5381.1309 – ident: e_1_2_7_41_1 doi: 10.1111/j.1600-079X.2011.00856.x – ident: e_1_2_7_59_1 doi: 10.1111/j.1600-079X.2007.00475.x – ident: e_1_2_7_61_1 doi: 10.1083/jcb.200303047 |
SSID | ssj0008886 |
Score | 2.5228796 |
Snippet | Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. However, little... Vitrification of oocytes has been shown to be closely associated with increased levels of reactive oxygen species ( ROS ) and apoptotic events. However, little... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 132 |
SubjectTerms | Animals Apoptosis - drug effects bcl-2-Associated X Protein - metabolism bcl-X Protein - metabolism bovine Calcium Signaling - drug effects Caspase 3 - metabolism Cattle DNA Fragmentation - drug effects Female Gene Expression Regulation - drug effects melatonin Melatonin - pharmacology Membrane Potentials - drug effects mitochondria oocytes Oocytes - cytology Oocytes - metabolism Reactive Oxygen Species - metabolism vitrification |
Title | Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes |
URI | https://api.istex.fr/ark:/67375/WNG-CKVBKC1P-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpi.12290 https://www.ncbi.nlm.nih.gov/pubmed/26485053 https://www.proquest.com/docview/1762962869 https://www.proquest.com/docview/1780524825 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9sIFKOWxtCCDUMUlqyR2HhansqKUVq0qRKEHJMuvqFEhiTbZquXXM-NsUooKQtx8mMivGfubyecZQl45prHeQBLo2PKAG5UFOopEEGWZtjwTOTPoKB4epXsnfP80OV0hb4a3MH1-iDHghpbhz2s0cKXbX428KacRZiuH8xe5WgiIPl6njgLPLu1TcMYBC0W-zCrkWTzDlzfuojVc1svbgOZN3Oovnt175Osw5J5vcj5ddHpqfvyWzfE_53Sf3F0CUrrTa9A6WXHVA7KxU4Ez_v2KblNPEfWx9w2iDpE6hwFcWlZnpS67lqqmbrq6LaFVWVr6GIVrKeBKaq8JSdBDU3fITIJWXdCLspuXBcBfqjGk4WhdmytAvQ_Jye67T7O9YFmjITBYUiIw1lpmbWyyXCsN9m2TUCtmc1uIojBcC2uMyEOmeaQTHofWqqhIBABDFWeRY4_IalVX7gmhOXdc53BpuyzlJmQij5kViVUxZ2Fh0wl5PeyWNMsE5lhH45scHZmmlH75JuTlKNr0WTtuE9r2Wz5KqPk50tyyRH45ei9nB5_fHsyiY5lNyItBJyQYH_5RUZWrF62M4CoR-LhX_E0Gq0Zw8MQn5HGvUGOPSC8ECMpgal4t_jxYuX_8wTee_rvoJrkD8C7tGXNbZLWbL9wzgFCdfu5t5Sf4ihiG |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKu4ANr_IYngZBxSajxHYeXrAoU8pMpzOqUEu7M35FjVqSaJIBhm_iV_gnbCeZUlQQmy7YeXGVl--Nz70-PheAFxoL228g9ARSxCOSx54IAuoFcSwUiWmCpU0UJ9NoeEB2jsKjFfC9OwvT6EMsC242Mtz_2ga4LUj_GuVl1g-sXHlLqRzrxReTsFWvR1tmdl8itP12fzD02p4CnrQtEDyplMJKIRknggvjjyr0BccqUSlNU0kEVVLSxMeCBCIkyFeKB2lIDZDhKA40Nte9AtZsB3Gr1L_1_kysyuSSUSP6iTzs06TVMXK8oe5Rz61-a3Yiv14Ebc8jZbfUbd8AP7qP1DBcTvrzWvTlt9_0I_-Xr3gTXG8xN9xsguQWWNH5bbC-mfO6-LSAG9CxYN32wjrgE8sOtDVqmOXHmcjqCvKyKOuiyswoVzBzZRhdQQOdoTrjXJk7lEVtyVdmVKTwc1bPstQgfChs1UbDopALA-zvgINLedm7YDUvcn0fwIRoIhKDS3QcEeljmiCsaKg4IthPVdQDrzr3YLLVaLetQk7ZMlcrM-amqweeL03LRpjkIqMN52NLCz47sUy-OGSH03dsMP7wZjwI9ljcA886J2Tm_2I3jXiui3nFArNaUnt-mf7NxjbGIAkKe-Be48HLO1oGpUHZ2Lya88M_Pyzb2Ru5wYN_N30Krg73J7tsdzQdPwTXDJqNGoLgI7Baz-b6sUGMtXjiAhWCj5ft0z8BgZR5Vg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKKyEuvMpjeRoEFZesEtt5-MCh7LJ0u3S1QpT2ZvyKGrUk0SYLLH-Jv8KPwnayKUUFcemBmw-j2I5n7G_Gn2cAeKaxsPUGQk8gRTwieeyJIKBeEMdCkZgmWFpHcW8a7eyT3cPwcA18X72FafJDdAE3axluv7YGXqr0VyMvs35gs5W3jMqJXn4x_lr1cjw0i_scodHr94Mdry0p4ElbAcGTSimsFJJxIrgw6qhCX3CsEpXSNJVEUCUlTXwsSCBCgnyleJCG1OAYjuJAY_PdS2CDRD61dSKG705zVRlXMmpyfiIP-zRp0xg52tBqqGcOvw27jl_PQ7ZngbI76UbXwI_VP2oILsf9RS368ttv6SP_k594HVxtETfcbkzkBljT-U2wuZ3zuvi0hFvQcWDd5cIm4HuWG2gj1DDLjzKR1RXkZVHWRZWZVq5g5oIwuoIGOEN1yrgyPZRFbalXplWk8HNWz7PU4HsobMxGw6KQSwPrb4H9C5nsbbCeF7m-C2BCNBGJQSU6joj0MU0QVjRUHBHspyrqgRcr7WCyzdBuC4WcsM5TKzPmlqsHnnaiZZOW5DyhLadinQSfH1seXxyyg-kbNph8eDUZBDMW98CTlQ4ys7vYKyOe62JRscCcldS-XqZ_k7FlMUiCwh640yhw16PlTxqMjc3UnBr-ebBsdzZ2jXv_LvoYXJ4NR-zteDq5D64YKBs17MAHYL2eL_RDAxdr8ciZKQQfL1qlfwKX_XgF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+inhibits+apoptosis+and+improves+the+developmental+potential+of+vitrified+bovine+oocytes&rft.jtitle=Journal+of+pineal+research&rft.au=Zhao%2C+Xue%E2%80%90Ming&rft.au=Hao%2C+Hai%E2%80%90Sheng&rft.au=Du%2C+Wei%E2%80%90Hua&rft.au=Zhao%2C+Shan%E2%80%90Jiang&rft.date=2016-03-01&rft.issn=0742-3098&rft.eissn=1600-079X&rft.volume=60&rft.issue=2&rft.spage=132&rft.epage=141&rft_id=info:doi/10.1111%2Fjpi.12290&rft.externalDBID=10.1111%252Fjpi.12290&rft.externalDocID=JPI12290 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0742-3098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0742-3098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0742-3098&client=summon |