An affective computing approach to physiological emotion specificity: Toward subject-independent and stimulus-independent classification of film-induced emotions

The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection, sequential backward selection), classifier type (linear and quad...

Full description

Saved in:
Bibliographic Details
Published inPsychophysiology Vol. 48; no. 7; pp. 908 - 922
Main Authors Kolodyazhniy, Vitaliy, Kreibig, Sylvia D., Gross, James J., Roth, Walton T., Wilhelm, Frank H.
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.07.2011
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection, sequential backward selection), classifier type (linear and quadratic discriminant analysis, neural networks, k‐nearest neighbors method), and cross‐validation method (subject‐ and stimulus‐(in)dependence). Analyses were run on a data set of 34 participants watching two sets of three 10‐min film clips (fearful, sad, neutral) while autonomic, respiratory, and facial muscle activity were assessed. Results demonstrate that the three states can be classified with high accuracy by most classifiers, with the sparsest model having only five features, even for the most difficult task of identifying the emotion of an unknown subject in an unknown situation (77.5%). Implications for choosing PCA parameters are discussed.
AbstractList The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection, sequential backward selection), classifier type (linear and quadratic discriminant analysis, neural networks, k-nearest neighbors method), and cross-validation method (subject- and stimulus-(in)dependence). Analyses were run on a data set of 34 participants watching two sets of three 10-min film clips (fearful, sad, neutral) while autonomic, respiratory, and facial muscle activity were assessed. Results demonstrate that the three states can be classified with high accuracy by most classifiers, with the sparsest model having only five features, even for the most difficult task of identifying the emotion of an unknown subject in an unknown situation (77.5%). Implications for choosing PCA parameters are discussed.The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection, sequential backward selection), classifier type (linear and quadratic discriminant analysis, neural networks, k-nearest neighbors method), and cross-validation method (subject- and stimulus-(in)dependence). Analyses were run on a data set of 34 participants watching two sets of three 10-min film clips (fearful, sad, neutral) while autonomic, respiratory, and facial muscle activity were assessed. Results demonstrate that the three states can be classified with high accuracy by most classifiers, with the sparsest model having only five features, even for the most difficult task of identifying the emotion of an unknown subject in an unknown situation (77.5%). Implications for choosing PCA parameters are discussed.
The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection, sequential backward selection), classifier type (linear and quadratic discriminant analysis, neural networks, k-nearest neighbors method), and cross-validation method (subject- and stimulus-(in)dependence). Analyses were run on a data set of 34 participants watching two sets of three 10-min film clips (fearful, sad, neutral) while autonomic, respiratory, and facial muscle activity were assessed. Results demonstrate that the three states can be classified with high accuracy by most classifiers, with the sparsest model having only five features, even for the most difficult task of identifying the emotion of an unknown subject in an unknown situation (77.5%). Implications for choosing PCA parameters are discussed. [PUBLICATION ABSTRACT]
The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection, sequential backward selection), classifier type (linear and quadratic discriminant analysis, neural networks, k‐nearest neighbors method), and cross‐validation method (subject‐ and stimulus‐(in)dependence). Analyses were run on a data set of 34 participants watching two sets of three 10‐min film clips (fearful, sad, neutral) while autonomic, respiratory, and facial muscle activity were assessed. Results demonstrate that the three states can be classified with high accuracy by most classifiers, with the sparsest model having only five features, even for the most difficult task of identifying the emotion of an unknown subject in an unknown situation (77.5%). Implications for choosing PCA parameters are discussed.
Author Roth, Walton T.
Gross, James J.
Kolodyazhniy, Vitaliy
Kreibig, Sylvia D.
Wilhelm, Frank H.
Author_xml – sequence: 1
  givenname: Vitaliy
  surname: Kolodyazhniy
  fullname: Kolodyazhniy, Vitaliy
  organization: Department of Clinical Psychology, Psychotherapy, and Health Psychology, University of Salzburg, Salzburg, Austria
– sequence: 2
  givenname: Sylvia D.
  surname: Kreibig
  fullname: Kreibig, Sylvia D.
  organization: Department of Psychology, Stanford University, Palo Alto, California, USA
– sequence: 3
  givenname: James J.
  surname: Gross
  fullname: Gross, James J.
  organization: Department of Psychology, Stanford University, Palo Alto, California, USA
– sequence: 4
  givenname: Walton T.
  surname: Roth
  fullname: Roth, Walton T.
  organization: Department of Psychology, Stanford University, Palo Alto, California, USA
– sequence: 5
  givenname: Frank H.
  surname: Wilhelm
  fullname: Wilhelm, Frank H.
  organization: Department of Clinical Psychology, Psychotherapy, and Health Psychology, University of Salzburg, Salzburg, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21261632$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAQxy1URB_wFZDFhVMW29n4wQGpKrQgVVDEogUultcZt16SOMQJ3f04fFOcfVSiF-qDbc385zeaxzE6aEIDCGFKJjSdV8sJnXKVSSX5hJFkJZQKMlk9Qkd3jgN0RMhUZoUQ7BAdx7gkhCjK2BN0yCjjlOfsCP05bbBxDmzvfwO2oW6H3jfX2LRtF4y9wX3A7c06-lCFa29NhaEOvQ8Nji1Y77z1_fo1noVb05U4DotlQmW-KaGFdDU9Nk2y974eqiH-47CViXEkmA0vOOx8VY-SwUK5zxOfosfOVBGe7d4T9PX83ezsfXb56eLD2ellZouckYxRwUqQwnLJDThaQrFgQkpROkMkCFNQYFaBFapUrMydKARjbmqLgpbJlp-gl1tuKvzXALHXtY8Wqso0EIaoFSVCccKK_yqlICxNIJdJ-eKechmGrkllaMnVdEq44kn0fCcaFjWUuu18bbq13g8pCd5sBbYLMXbgdGr6pml9Z3ylKdHjVuilHoevx-HrcSv0Ziv0KgHkPcA-xwNCd7lvfQXrB8fpqy_fr8ZvAmRbgI89rO4ApvupuchFoecfL_T8_Jt6--PzTM_zv9Yo4mo
CitedBy_id crossref_primary_10_1080_10447318_2024_2356403
crossref_primary_10_1109_ACCESS_2019_2944001
crossref_primary_10_1080_00140139_2023_2223785
crossref_primary_10_3389_fict_2017_00001
crossref_primary_10_1016_j_intcom_2012_04_003
crossref_primary_10_3389_fpsyg_2022_705442
crossref_primary_10_1111_psyp_12385
crossref_primary_10_3389_fnhum_2023_1286621
crossref_primary_10_1016_j_ipm_2019_102185
crossref_primary_10_1016_j_tele_2020_101404
crossref_primary_10_1177_1754073913512519
crossref_primary_10_3390_s19173805
crossref_primary_10_1016_j_tics_2012_07_006
crossref_primary_10_1007_s11042_023_14489_9
crossref_primary_10_1007_s12652_021_03367_7
crossref_primary_10_1016_j_biopsycho_2013_12_013
crossref_primary_10_1177_03611981211041594
crossref_primary_10_1007_s11682_012_9195_y
crossref_primary_10_1038_s41597_024_02953_6
crossref_primary_10_1109_T_AFFC_2011_37
crossref_primary_10_1080_00140139_2020_1759699
crossref_primary_10_1007_s11042_016_3608_7
crossref_primary_10_3390_e24091281
crossref_primary_10_1109_TAFFC_2020_2981610
crossref_primary_10_1111_psyp_12799
crossref_primary_10_1080_10447318_2020_1861762
crossref_primary_10_3182_20120215_3_AT_3016_00055
crossref_primary_10_1155_2013_573734
crossref_primary_10_1016_j_ijpsycho_2017_06_002
crossref_primary_10_1016_j_neuropsychologia_2018_07_037
crossref_primary_10_1080_10447318_2015_1064638
crossref_primary_10_1177_1550147719864886
crossref_primary_10_1016_j_ipm_2016_07_001
crossref_primary_10_1016_j_cviu_2015_09_015
crossref_primary_10_33573_ujoh2015_02_041
crossref_primary_10_5057_ijae_14_65
crossref_primary_10_1111_coin_12480
crossref_primary_10_3390_app11114945
crossref_primary_10_1371_journal_pone_0140330
crossref_primary_10_3758_s13428_021_01555_z
crossref_primary_10_1016_j_artmed_2019_07_004
crossref_primary_10_1016_j_biopsycho_2010_01_017
crossref_primary_10_1109_JPROC_2023_3286445
crossref_primary_10_3923_jas_2016_406_418
crossref_primary_10_3389_fpsyg_2014_01507
crossref_primary_10_3390_s20174723
crossref_primary_10_3109_07420528_2012_700669
crossref_primary_10_3390_s22239282
crossref_primary_10_3390_s18072074
crossref_primary_10_1080_00140139_2024_2400129
crossref_primary_10_1109_T_AFFC_2011_18
crossref_primary_10_3390_s20154194
crossref_primary_10_1016_j_ijhcs_2014_05_006
crossref_primary_10_1007_s42761_023_00212_2
crossref_primary_10_1177_1754073913494899
crossref_primary_10_3758_s13428_015_0665_1
crossref_primary_10_3390_info10070239
crossref_primary_10_1371_journal_pone_0066032
crossref_primary_10_1155_2017_5282670
crossref_primary_10_3390_s22114023
crossref_primary_10_1007_s11042_022_12711_8
crossref_primary_10_3390_s19102218
crossref_primary_10_3389_fnins_2022_965871
Cites_doi 10.1126/science.6612338
10.1111/1469-8986.3510001
10.1080/02699930902928969
10.1038/nn.2324
10.1007/BF02344719
10.1523/JNEUROSCI.5984-08.2009
10.1007/s005210050026
10.1016/j.biopsycho.2009.10.006
10.1016/0167-8655(94)90127-9
10.1109/TIT.1967.1053964
10.1109/34.954607
10.1016/j.ijhcs.2007.10.011
10.1016/j.neuroimage.2009.10.092
10.1186/1471-2105-7-197
10.2307/1419197
10.1016/j.intcom.2005.07.001
10.1007/978-0-387-21606-5
10.1016/j.ijpsycho.2003.08.002
10.1037/1528-3542.4.1.3
10.1162/neco.1989.1.2.281
10.1097/00006842-195309000-00007
10.7551/mitpress/1140.001.0001
10.1016/j.biopsycho.2010.01.017
10.1111/j.1469-8986.2007.00550.x
10.1016/j.ijpsycho.2005.10.024
10.2307/3001968
10.1109/TPAMI.2008.26
10.1027//0269-8803.14.2.115
10.1111/j.1469-8986.1989.tb03163.x
10.1007/s10111-003-0143-x
10.1145/641007.641074
10.1155/S1110865704406192
10.1080/026999396380321
10.1111/j.1469-8986.1987.tb00286.x
10.1016/j.biopsycho.2010.01.020
10.1111/j.1469-8986.1984.tb00249.x
10.1093/mind/os-IX.34.188
ContentType Journal Article
Copyright Copyright © 2011 Society for Psychophysiological Research
Copyright © 2011 Society for Psychophysiological Research.
Copyright_xml – notice: Copyright © 2011 Society for Psychophysiological Research
– notice: Copyright © 2011 Society for Psychophysiological Research.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
DOI 10.1111/j.1469-8986.2010.01170.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-8986
1540-5958
EndPage 922
ExternalDocumentID 2363105071
21261632
10_1111_j_1469_8986_2010_01170_x
PSYP1170
ark_67375_WNG_WFX9DZQT_W
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
186
1OB
1OC
29P
2QV
31~
33P
36B
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52R
52S
52T
52U
52V
52W
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A04
AABNI
AAESR
AAHHS
AAONW
AAOUF
AASGY
AAXRX
AAYJJ
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABGDZ
ABITZ
ABIVO
ABJNI
ABLJU
ABPPZ
ABPVW
ABQWH
ABSOO
ABXGK
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACHQT
ACMXC
ACNCT
ACPOU
ACPRK
ACQPF
ACSCC
ACWUS
ACXQS
ADBBV
ADBTR
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFKFF
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-6
D-7
D-C
D-D
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSSH
DU5
DXH
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
ESX
F00
F01
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
G50
GODZA
HAOEW
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSSH
MSFUL
MSMAN
MSSSH
MVM
MXFUL
MXMAN
MXSSH
N04
N06
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OVD
P2W
P2Y
P2Z
P4B
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SUPJJ
SV3
TEORI
TN5
TUS
UAP
UB1
V8K
VQA
W8V
W99
WBKPD
WH7
WHDPE
WIH
WII
WIJ
WOHZO
WQZ
WRC
WSUWO
WXI
WXSBR
X7M
XG1
XJT
XOL
XSW
YNT
YYM
YYP
YZZ
ZCA
ZGI
ZWS
ZXP
ZZTAW
~IA
~WP
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ABVKB
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
AFYRF
ALVPJ
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
Z5M
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c5320-2172de87c686aef1de5b27887dfa08e7a51e2c9ec79d92d3f75722f4c551d79d3
IEDL.DBID DR2
ISSN 0048-5772
1469-8986
IngestDate Fri Jul 11 09:46:30 EDT 2025
Fri Jul 11 00:24:27 EDT 2025
Sat Aug 23 12:37:07 EDT 2025
Wed Feb 19 01:50:01 EST 2025
Tue Jul 01 01:48:17 EDT 2025
Thu Apr 24 23:10:39 EDT 2025
Wed Jan 22 16:39:55 EST 2025
Wed Oct 30 09:56:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 Society for Psychophysiological Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5320-2172de87c686aef1de5b27887dfa08e7a51e2c9ec79d92d3f75722f4c551d79d3
Notes istex:7343219D5771D354337EBC7605BAD1D3268940B0
ark:/67375/WNG-WFX9DZQT-W
ArticleID:PSYP1170
The first and second authors contributed equally to this work. This research was supported by the 6th Framework Programme Project EUCLOCK (018741) funded by the European Commission (F.W., V.K.), the Basel Scientific Society (F.W.), and the National Center of Competence in Research Affective Sciences funded by the Swiss National Science Foundation (51NF40‐104897) and hosted by the University of Geneva (S.K.) and the Swiss National Science Foundation (PBGEP1‐125914; S.K.). Some of these data were presented at the annual meeting of the Society for Psychophysiological Research (October, 2007).
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMID 21261632
PQID 869440696
PQPubID 41359
PageCount 15
ParticipantIDs proquest_miscellaneous_910796025
proquest_miscellaneous_870289838
proquest_journals_869440696
pubmed_primary_21261632
crossref_citationtrail_10_1111_j_1469_8986_2010_01170_x
crossref_primary_10_1111_j_1469_8986_2010_01170_x
wiley_primary_10_1111_j_1469_8986_2010_01170_x_PSYP1170
istex_primary_ark_67375_WNG_WFX9DZQT_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: Oxford
PublicationTitle Psychophysiology
PublicationTitleAlternate Psychophysiology
PublicationYear 2011
Publisher Blackwell Publishing Inc
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Blackwell Publishing Ltd
References Blechert, J., Lajtman, M., Michael, T., Margraf, J., & Wilhelm, F. H. (2006). Identifying anxiety states using broad sampling and advanced processing of peripheral physiological information. Biomedical Sciences Instrumentation, 42, 136-141.
Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50, 371-385.
Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing, 42, 419-427.
Yiu, K. K., Mak, M. W., & Li, C. K. (1999). Gaussian mixture models and probabilistic decision-based neural networks for pattern classification: A comparative study. Neural Computing & Applications, 3, 235-245.
Christie, I., & Friedman, B. (2004). Autonomic specificity of discrete emotion and dimensions of affective space: A multivariate approach. International Journal of Psychophysiology, 51, 143-153.
James, W. (1884). What is an emotion? Mind, 9, 188-205.
Scherer, K. R. (2009). The dynamic architecture of emotion: Evidence for the component process model. Cognition and Emotion, 23, 1307-1351.
Esterman, M., Tamber-Rosenau, B. J., Chiu, Y.-C., & Yantis, S. (2010). Avoiding non-independence in fMRI data analysis: Leave one subject out. NeuroImage, 50, 572-576.
Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 1175-1191.
Nabney, I. T. (2004). NETLAB. Algorithms for pattern recognition. Advances in pattern recognition (3rd ed.). Berlin: Springer.
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80-83.
Nasoz, F., Alvarez, K., Lisetti, C., & Finkelstein, N. (2004). Emotion recognition from physiological signals using wireless sensors for presence technologies. Cognition, Technology & Work, 6, 4-14.
Friedman, B. H. (2010). Feelings and the body: The Jamesian perspective on autonomic specificity of emotion. Biological Psychology, 84, 383-393.
Pudil, P., Novovièová, J., & Kittler, J. (1994). Floating search methods in feature selection. Pattern Recognition Letters, 15, 1119-1125.
Ax, A. F. (1953). The physiological differentiation between fear and anger in humans. Psychosomatic Medicine, 15, 433-442.
Sinha, R., & Parsons, O. A. (1996). Multivariate response patterning of fear and anger. Cognition and Emotion, 10, 173-198.
Huberty, C. J. (1994). Applied discriminant analysis. New York: Wiley.
Wilhelm, F. H., & Grossman, P. (2010). Emotions beyond the laboratory: Theoretical fundaments, study design, and analytic strategies for advanced ambulatory assessment. Biological Psychology, 84, 552-569.
Frijda, N. H. (1986). The emotions. Cambridge, UK: Cambridge University Press.
Howard, J., Plailly, J., Grueschow, M., Haynes, J. D., & Gottfried, J. A. (2009). Odor quality coding and categorization in human posterior piriform cortex. Nature Neuroscience, 12, 932-938.
Ho, T. C., Brown, S., & Serences, J. T. (2009). Domain general mechanisms of perceptual decision making in human cortex. Journal of Neuroscience, 29, 8675-8687.
Haykin, S. (1999). Neural networks: A comprehensive foundation. Upper Saddle River, NJ: Prentice Hall.
Lacey, J. I., & Lacey, B. C. (1958). Verification and extension of the principle of autonomic response-stereotypy. American Journal of Psychology, 71, 50-73.
Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, 21-27.
Nyklicek, I., Thayer, J. F., & van Doornen, L. J. P. (1997). Cardiorespiratory differentiation of musically-induced emotions. Journal of Psychophysiology, 11, 304-321.
Stemmler, G. (1987). Standardization within subjects: A critique of Ben-Shakhar's conclusions. Psychophysiology, 24, 243-246.
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining inference, and prediction. Berlin: Springer.
Wilhelm, F. H., Pfaltz, M. C., & Grossman, P. (2006). Continuous electronic data capture of physiology, behavior and experience in real life: Towards ecological momentary assessment of emotion. Interacting with Computers, 18 (2), 171-186.
Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear and sadness-inducing films. Psychophysiology, 44, 787-806.
Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972). The dependability of behavioral measurements. New York: Wiley.
Rosenfield, D., Zhou, E., Wilhelm, F. H., Conrad, A., Roth, W. T., & Meuret, A. E. (2010). Change point analysis for longitudinal physiological data: Detection of cardiorespiratory changes preceding panic attacks. Biological Psychology, 84, 112-120.
Bailenson, J. N., Pontikakis, E. D., Mauss, I. B., Gross, J. J., Jabon, M. E., Hutcherson, C. A. C., et al. (2008). Real-time classification of evoked emotions using facial feature tracking and physiological responses. International Journal of Human-Computer Studies, 66, 303-317.
Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221, 1208-1210.
Fridlund, A. J., Schwartz, G. E., & Fowler, S. C. (1984). Pattern recognition of self-reported emotional state from multiple-site facial EMG activity during affective imagery. Psychophysiology, 21, 622-637.
Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally tuned processing units. Neural Computation, 1, 281-294.
Wilhelm, F. H., Grossman, P., & Roth, W. T. (1999). Analysis of cardiovascular regulation. Biomedical Sciences Instrumentation, 35, 135-140.
Zhang, X., Lu, X., Shi, Q., Xu, X., Leung, H. E., Harris, L. N., et al. (2006). Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics, 7, 197.
Rainville, P., Bechara, A., Naqvi, N., & Damasio, A. R. (2006). Basic emotions are associated with distinct patterns of cardiorespiratory activity. International Journal of Psychophysiology, 61, 5-18.
Lisetti, C. L., & Nasoz, F. (2004). Using non-invasive wearable computers to recognize human emotions from physiological signals. EURASIP Journal on Applied Signal Processing, 2004, 1672-1687.
Stemmler, G. (1989). The autonomic differentiation of emotions revisited: Convergent and discriminant validation. Psychophysiology, 26, 617-632.
Picard, R. W. (2000). Affective computing. Cambridge, MA: MIT Press.
Hinz, A., Seibt, R., Hueber, B., & Schreinicke, G. (2000). Response specificity in psychophysiology: A comparison of different approaches. Journal of Psychophysiology, 14, 115-122.
Carver, C. S. (2004). Negative affects deriving from the behavioral approach system. Emotion, 4, 3-22.
Marwitz, M., & Stemmler, G. (1998). On the status of individual response specificity. Psychophysiology, 35, 1-15.
Kim, J., & André, E. (2008). Emotion recognition based on physiological changes in music listening. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 2067-2083.
1945; 1
1984; 21
2004; 4
2004; 6
2005; 3611
1972
2008; 30
1884; 9
2009; 12
1983; 221
2006; 61
2001
2000; 14
1997; 11
2000
1986
1967; 13
1983
2008; 66
2009; 23
2004; 42
1995; 50
1989; 1
2010
2006; 7
2006; 18
1994
1958; 71
2004
1999; 3
2003
2002
1953; 15
1989; 26
2001; 23
1996; 10
2010; 84
2009; 29
1999
1987; 24
2006; 42
2004; 51
1999; 35
1994; 15
2005; 2
2004; 2004
2007; 44
2010; 50
1998; 35
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_33_1
e_1_2_9_54_1
Webb N. M. (e_1_2_9_48_1) 2005
Hastie T. (e_1_2_9_16_1) 2001
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_18_1
e_1_2_9_41_1
Wilhelm F. H. (e_1_2_9_51_1) 1999; 35
Frijda N. H. (e_1_2_9_15_1) 1986
e_1_2_9_20_1
Nyklicek I. (e_1_2_9_37_1) 1997; 11
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
Kreibig S. D. (e_1_2_9_26_1) 2010
e_1_2_9_6_1
e_1_2_9_2_1
Stemmler G. (e_1_2_9_47_1) 2004
e_1_2_9_49_1
e_1_2_9_28_1
Lang P. J. (e_1_2_9_29_1) 1995; 50
Cronbach L. J. (e_1_2_9_9_1) 1972
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_32_1
Zhao Q. (e_1_2_9_55_1) 2005
Fridlund A. J. (e_1_2_9_12_1) 1983
Nabney I. T. (e_1_2_9_34_1) 2004
Haykin S. (e_1_2_9_17_1) 1999
e_1_2_9_38_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
Bradley M. M. (e_1_2_9_5_1) 2000
e_1_2_9_40_1
Blechert J. (e_1_2_9_4_1) 2006; 42
e_1_2_9_46_1
Huberty C. J. (e_1_2_9_21_1) 1994
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_27_1
References_xml – reference: Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally tuned processing units. Neural Computation, 1, 281-294.
– reference: Wilhelm, F. H., Grossman, P., & Roth, W. T. (1999). Analysis of cardiovascular regulation. Biomedical Sciences Instrumentation, 35, 135-140.
– reference: Bailenson, J. N., Pontikakis, E. D., Mauss, I. B., Gross, J. J., Jabon, M. E., Hutcherson, C. A. C., et al. (2008). Real-time classification of evoked emotions using facial feature tracking and physiological responses. International Journal of Human-Computer Studies, 66, 303-317.
– reference: Sinha, R., & Parsons, O. A. (1996). Multivariate response patterning of fear and anger. Cognition and Emotion, 10, 173-198.
– reference: Wilhelm, F. H., Pfaltz, M. C., & Grossman, P. (2006). Continuous electronic data capture of physiology, behavior and experience in real life: Towards ecological momentary assessment of emotion. Interacting with Computers, 18 (2), 171-186.
– reference: Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining inference, and prediction. Berlin: Springer.
– reference: Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear and sadness-inducing films. Psychophysiology, 44, 787-806.
– reference: Fridlund, A. J., Schwartz, G. E., & Fowler, S. C. (1984). Pattern recognition of self-reported emotional state from multiple-site facial EMG activity during affective imagery. Psychophysiology, 21, 622-637.
– reference: Carver, C. S. (2004). Negative affects deriving from the behavioral approach system. Emotion, 4, 3-22.
– reference: Wilhelm, F. H., & Grossman, P. (2010). Emotions beyond the laboratory: Theoretical fundaments, study design, and analytic strategies for advanced ambulatory assessment. Biological Psychology, 84, 552-569.
– reference: Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221, 1208-1210.
– reference: Blechert, J., Lajtman, M., Michael, T., Margraf, J., & Wilhelm, F. H. (2006). Identifying anxiety states using broad sampling and advanced processing of peripheral physiological information. Biomedical Sciences Instrumentation, 42, 136-141.
– reference: Lacey, J. I., & Lacey, B. C. (1958). Verification and extension of the principle of autonomic response-stereotypy. American Journal of Psychology, 71, 50-73.
– reference: Scherer, K. R. (2009). The dynamic architecture of emotion: Evidence for the component process model. Cognition and Emotion, 23, 1307-1351.
– reference: Haykin, S. (1999). Neural networks: A comprehensive foundation. Upper Saddle River, NJ: Prentice Hall.
– reference: Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972). The dependability of behavioral measurements. New York: Wiley.
– reference: Ho, T. C., Brown, S., & Serences, J. T. (2009). Domain general mechanisms of perceptual decision making in human cortex. Journal of Neuroscience, 29, 8675-8687.
– reference: Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing, 42, 419-427.
– reference: Nyklicek, I., Thayer, J. F., & van Doornen, L. J. P. (1997). Cardiorespiratory differentiation of musically-induced emotions. Journal of Psychophysiology, 11, 304-321.
– reference: Rainville, P., Bechara, A., Naqvi, N., & Damasio, A. R. (2006). Basic emotions are associated with distinct patterns of cardiorespiratory activity. International Journal of Psychophysiology, 61, 5-18.
– reference: Zhang, X., Lu, X., Shi, Q., Xu, X., Leung, H. E., Harris, L. N., et al. (2006). Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics, 7, 197.
– reference: Lisetti, C. L., & Nasoz, F. (2004). Using non-invasive wearable computers to recognize human emotions from physiological signals. EURASIP Journal on Applied Signal Processing, 2004, 1672-1687.
– reference: Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50, 371-385.
– reference: Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80-83.
– reference: Hinz, A., Seibt, R., Hueber, B., & Schreinicke, G. (2000). Response specificity in psychophysiology: A comparison of different approaches. Journal of Psychophysiology, 14, 115-122.
– reference: Yiu, K. K., Mak, M. W., & Li, C. K. (1999). Gaussian mixture models and probabilistic decision-based neural networks for pattern classification: A comparative study. Neural Computing & Applications, 3, 235-245.
– reference: Kim, J., & André, E. (2008). Emotion recognition based on physiological changes in music listening. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 2067-2083.
– reference: Christie, I., & Friedman, B. (2004). Autonomic specificity of discrete emotion and dimensions of affective space: A multivariate approach. International Journal of Psychophysiology, 51, 143-153.
– reference: Rosenfield, D., Zhou, E., Wilhelm, F. H., Conrad, A., Roth, W. T., & Meuret, A. E. (2010). Change point analysis for longitudinal physiological data: Detection of cardiorespiratory changes preceding panic attacks. Biological Psychology, 84, 112-120.
– reference: James, W. (1884). What is an emotion? Mind, 9, 188-205.
– reference: Picard, R. W. (2000). Affective computing. Cambridge, MA: MIT Press.
– reference: Pudil, P., Novovièová, J., & Kittler, J. (1994). Floating search methods in feature selection. Pattern Recognition Letters, 15, 1119-1125.
– reference: Howard, J., Plailly, J., Grueschow, M., Haynes, J. D., & Gottfried, J. A. (2009). Odor quality coding and categorization in human posterior piriform cortex. Nature Neuroscience, 12, 932-938.
– reference: Stemmler, G. (1989). The autonomic differentiation of emotions revisited: Convergent and discriminant validation. Psychophysiology, 26, 617-632.
– reference: Marwitz, M., & Stemmler, G. (1998). On the status of individual response specificity. Psychophysiology, 35, 1-15.
– reference: Frijda, N. H. (1986). The emotions. Cambridge, UK: Cambridge University Press.
– reference: Stemmler, G. (1987). Standardization within subjects: A critique of Ben-Shakhar's conclusions. Psychophysiology, 24, 243-246.
– reference: Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, 21-27.
– reference: Friedman, B. H. (2010). Feelings and the body: The Jamesian perspective on autonomic specificity of emotion. Biological Psychology, 84, 383-393.
– reference: Ax, A. F. (1953). The physiological differentiation between fear and anger in humans. Psychosomatic Medicine, 15, 433-442.
– reference: Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 1175-1191.
– reference: Nasoz, F., Alvarez, K., Lisetti, C., & Finkelstein, N. (2004). Emotion recognition from physiological signals using wireless sensors for presence technologies. Cognition, Technology & Work, 6, 4-14.
– reference: Huberty, C. J. (1994). Applied discriminant analysis. New York: Wiley.
– reference: Esterman, M., Tamber-Rosenau, B. J., Chiu, Y.-C., & Yantis, S. (2010). Avoiding non-independence in fMRI data analysis: Leave one subject out. NeuroImage, 50, 572-576.
– reference: Nabney, I. T. (2004). NETLAB. Algorithms for pattern recognition. Advances in pattern recognition (3rd ed.). Berlin: Springer.
– volume: 23
  start-page: 1175
  year: 2001
  end-page: 1191
  article-title: Toward machine emotional intelligence
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 2
  start-page: 717
  year: 2005
  end-page: 719
– year: 2001
– volume: 66
  start-page: 303
  year: 2008
  end-page: 317
  article-title: Real‐time classification of evoked emotions using facial feature tracking and physiological responses
  publication-title: International Journal of Human-Computer Studies
– volume: 21
  start-page: 622
  year: 1984
  end-page: 637
  article-title: Pattern recognition of self‐reported emotional state from multiple‐site facial EMG activity during affective imagery
  publication-title: Psychophysiology
– volume: 7
  start-page: 197
  year: 2006
  article-title: Recursive SVM feature selection and sample classification for mass‐spectrometry and microarray data
  publication-title: BMC Bioinformatics
– volume: 84
  start-page: 112
  year: 2010
  end-page: 120
  article-title: Change point analysis for longitudinal physiological data
  publication-title: Biological Psychology
– volume: 15
  start-page: 433
  year: 1953
  end-page: 442
  article-title: The physiological differentiation between fear and anger in humans
  publication-title: Psychosomatic Medicine
– year: 1994
– start-page: 243
  year: 1983
  end-page: 280
– year: 1986
– volume: 15
  start-page: 1119
  year: 1994
  end-page: 1125
  article-title: Floating search methods in feature selection
  publication-title: Pattern Recognition Letters
– volume: 4
  start-page: 3
  year: 2004
  end-page: 22
  article-title: Negative affects deriving from the behavioral approach system
  publication-title: Emotion
– volume: 42
  start-page: 419
  year: 2004
  end-page: 427
  article-title: Emotion recognition system using short‐term monitoring of physiological signals
  publication-title: Medical and Biological Engineering and Computing
– volume: 44
  start-page: 787
  year: 2007
  end-page: 806
  article-title: Cardiovascular, electrodermal, and respiratory response patterns to fear and sadness‐inducing films
  publication-title: Psychophysiology
– year: 2004
– year: 1972
– volume: 18
  start-page: 171
  issue: (2)
  year: 2006
  end-page: 186
  article-title: Continuous electronic data capture of physiology, behavior and experience in real life
  publication-title: Interacting with Computers
– volume: 61
  start-page: 5
  year: 2006
  end-page: 18
  article-title: Basic emotions are associated with distinct patterns of cardiorespiratory activity
  publication-title: International Journal of Psychophysiology
– volume: 221
  start-page: 1208
  year: 1983
  end-page: 1210
  article-title: Autonomic nervous system activity distinguishes among emotions
  publication-title: Science
– start-page: 33
  year: 2004
  end-page: 70
– volume: 84
  start-page: 383
  year: 2010
  end-page: 393
  article-title: Feelings and the body
  publication-title: Biological Psychology
– volume: 24
  start-page: 243
  year: 1987
  end-page: 246
  article-title: Standardization within subjects
  publication-title: Psychophysiology
– volume: 14
  start-page: 115
  year: 2000
  end-page: 122
  article-title: Response specificity in psychophysiology
  publication-title: Journal of Psychophysiology
– volume: 12
  start-page: 932
  year: 2009
  end-page: 938
  article-title: Odor quality coding and categorization in human posterior piriform cortex
  publication-title: Nature Neuroscience
– start-page: 319
  year: 2002
  end-page: 322
– year: 2003
– volume: 30
  start-page: 2067
  year: 2008
  end-page: 2083
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 35
  start-page: 1
  year: 1998
  end-page: 15
  article-title: On the status of individual response specificity
  publication-title: Psychophysiology
– year: 2000
– volume: 11
  start-page: 304
  year: 1997
  end-page: 321
  article-title: Cardiorespiratory differentiation of musically‐induced emotions
  publication-title: Journal of Psychophysiology
– volume: 10
  start-page: 173
  year: 1996
  end-page: 198
  article-title: Multivariate response patterning of fear and anger
  publication-title: Cognition and Emotion
– volume: 26
  start-page: 617
  year: 1989
  end-page: 632
  article-title: The autonomic differentiation of emotions revisited
  publication-title: Psychophysiology
– volume: 84
  start-page: 552
  year: 2010
  end-page: 569
  article-title: Emotions beyond the laboratory
  publication-title: Biological Psychology
– volume: 6
  start-page: 4
  year: 2004
  end-page: 14
  article-title: Emotion recognition from physiological signals using wireless sensors for presence technologies
  publication-title: Cognition, Technology & Work
– volume: 3611
  start-page: 28
  year: 2005
  end-page: 36
– volume: 9
  start-page: 188
  year: 1884
  end-page: 205
  article-title: What is an emotion?
  publication-title: Mind
– volume: 51
  start-page: 143
  year: 2004
  end-page: 153
  article-title: Autonomic specificity of discrete emotion and dimensions of affective space
  publication-title: International Journal of Psychophysiology
– volume: 1
  start-page: 281
  year: 1989
  end-page: 294
  article-title: Fast learning in networks of locally tuned processing units
  publication-title: Neural Computation
– volume: 2004
  start-page: 1672
  year: 2004
  end-page: 1687
  article-title: Using non‐invasive wearable computers to recognize human emotions from physiological signals
  publication-title: EURASIP Journal on Applied Signal Processing
– start-page: 105
  year: 2010
  end-page: 130
– volume: 71
  start-page: 50
  year: 1958
  end-page: 73
  article-title: Verification and extension of the principle of autonomic response‐stereotypy
  publication-title: American Journal of Psychology
– volume: 23
  start-page: 1307
  year: 2009
  end-page: 1351
  article-title: The dynamic architecture of emotion
  publication-title: Cognition and Emotion
– volume: 35
  start-page: 135
  year: 1999
  end-page: 140
  article-title: Analysis of cardiovascular regulation
  publication-title: Biomedical Sciences Instrumentation
– volume: 42
  start-page: 136
  year: 2006
  end-page: 141
  article-title: Identifying anxiety states using broad sampling and advanced processing of peripheral physiological information
  publication-title: Biomedical Sciences Instrumentation
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Transactions on Information Theory
– volume: 50
  start-page: 572
  year: 2010
  end-page: 576
  article-title: Avoiding non‐independence in fMRI data analysis
  publication-title: NeuroImage
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics
– start-page: 242
  year: 2000
  end-page: 276
– volume: 50
  start-page: 371
  year: 1995
  end-page: 385
  article-title: The emotion probe
  publication-title: American Psychologist
– volume: 3
  start-page: 235
  year: 1999
  end-page: 245
  article-title: Gaussian mixture models and probabilistic decision‐based neural networks for pattern classification
  publication-title: Neural Computing & Applications
– volume: 29
  start-page: 8675
  year: 2009
  end-page: 8687
  article-title: Domain general mechanisms of perceptual decision making in human cortex
  publication-title: Journal of Neuroscience
– year: 1999
– ident: e_1_2_9_10_1
  doi: 10.1126/science.6612338
– ident: e_1_2_9_31_1
  doi: 10.1111/1469-8986.3510001
– volume: 42
  start-page: 136
  year: 2006
  ident: e_1_2_9_4_1
  article-title: Identifying anxiety states using broad sampling and advanced processing of peripheral physiological information
  publication-title: Biomedical Sciences Instrumentation
– volume-title: NETLAB. Algorithms for pattern recognition. Advances in pattern recognition
  year: 2004
  ident: e_1_2_9_34_1
– ident: e_1_2_9_43_1
  doi: 10.1080/02699930902928969
– ident: e_1_2_9_20_1
  doi: 10.1038/nn.2324
– ident: e_1_2_9_24_1
  doi: 10.1007/BF02344719
– ident: e_1_2_9_25_1
– ident: e_1_2_9_19_1
  doi: 10.1523/JNEUROSCI.5984-08.2009
– ident: e_1_2_9_53_1
  doi: 10.1007/s005210050026
– ident: e_1_2_9_14_1
  doi: 10.1016/j.biopsycho.2009.10.006
– ident: e_1_2_9_40_1
  doi: 10.1016/0167-8655(94)90127-9
– ident: e_1_2_9_8_1
  doi: 10.1109/TIT.1967.1053964
– volume-title: The emotions
  year: 1986
  ident: e_1_2_9_15_1
– volume-title: The dependability of behavioral measurements
  year: 1972
  ident: e_1_2_9_9_1
– start-page: 28
  volume-title: Lecture Notes in Computer Science
  year: 2005
  ident: e_1_2_9_55_1
– start-page: 242
  volume-title: Cognitive neuroscience of emotion
  year: 2000
  ident: e_1_2_9_5_1
– start-page: 105
  volume-title: A blueprint for an affectively competent agent: Cross‐fertilization between emotion psychology, affective neuroscience, and affective computing
  year: 2010
  ident: e_1_2_9_26_1
– ident: e_1_2_9_39_1
  doi: 10.1109/34.954607
– ident: e_1_2_9_3_1
  doi: 10.1016/j.ijhcs.2007.10.011
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neuroimage.2009.10.092
– ident: e_1_2_9_33_1
– ident: e_1_2_9_54_1
  doi: 10.1186/1471-2105-7-197
– ident: e_1_2_9_28_1
  doi: 10.2307/1419197
– ident: e_1_2_9_52_1
  doi: 10.1016/j.intcom.2005.07.001
– volume-title: The elements of statistical learning: Data mining inference, and prediction
  year: 2001
  ident: e_1_2_9_16_1
  doi: 10.1007/978-0-387-21606-5
– ident: e_1_2_9_7_1
  doi: 10.1016/j.ijpsycho.2003.08.002
– ident: e_1_2_9_6_1
  doi: 10.1037/1528-3542.4.1.3
– start-page: 717
  volume-title: Encyclopedia of statistics in behavioral science
  year: 2005
  ident: e_1_2_9_48_1
– ident: e_1_2_9_32_1
  doi: 10.1162/neco.1989.1.2.281
– ident: e_1_2_9_2_1
  doi: 10.1097/00006842-195309000-00007
– ident: e_1_2_9_38_1
  doi: 10.7551/mitpress/1140.001.0001
– ident: e_1_2_9_50_1
  doi: 10.1016/j.biopsycho.2010.01.017
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1469-8986.2007.00550.x
– volume-title: Neural networks: A comprehensive foundation
  year: 1999
  ident: e_1_2_9_17_1
– start-page: 33
  volume-title: The regulation of emotion
  year: 2004
  ident: e_1_2_9_47_1
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ijpsycho.2005.10.024
– ident: e_1_2_9_49_1
  doi: 10.2307/3001968
– ident: e_1_2_9_23_1
  doi: 10.1109/TPAMI.2008.26
– ident: e_1_2_9_18_1
  doi: 10.1027//0269-8803.14.2.115
– ident: e_1_2_9_46_1
  doi: 10.1111/j.1469-8986.1989.tb03163.x
– start-page: 243
  volume-title: Social psychophysiology
  year: 1983
  ident: e_1_2_9_12_1
– ident: e_1_2_9_35_1
  doi: 10.1007/s10111-003-0143-x
– ident: e_1_2_9_36_1
  doi: 10.1145/641007.641074
– ident: e_1_2_9_30_1
  doi: 10.1155/S1110865704406192
– volume: 50
  start-page: 371
  year: 1995
  ident: e_1_2_9_29_1
  article-title: The emotion probe
  publication-title: American Psychologist
– volume: 11
  start-page: 304
  year: 1997
  ident: e_1_2_9_37_1
  article-title: Cardiorespiratory differentiation of musically‐induced emotions
  publication-title: Journal of Psychophysiology
– ident: e_1_2_9_44_1
  doi: 10.1080/026999396380321
– volume-title: Applied discriminant analysis
  year: 1994
  ident: e_1_2_9_21_1
– ident: e_1_2_9_45_1
  doi: 10.1111/j.1469-8986.1987.tb00286.x
– ident: e_1_2_9_42_1
  doi: 10.1016/j.biopsycho.2010.01.020
– volume: 35
  start-page: 135
  year: 1999
  ident: e_1_2_9_51_1
  article-title: Analysis of cardiovascular regulation
  publication-title: Biomedical Sciences Instrumentation
– ident: e_1_2_9_13_1
  doi: 10.1111/j.1469-8986.1984.tb00249.x
– ident: e_1_2_9_22_1
  doi: 10.1093/mind/os-IX.34.188
SSID ssj0009122
Score 2.3463883
Snippet The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 908
SubjectTerms Adult
Affective computing
Affective neuroscience
Autonomic nervous system
Autonomic Nervous System - physiology
Cardiovascular system
Classification
Electrodermal system
Emotion
Emotions
Emotions - physiology
Feature selection
Female
Galvanic Skin Response - physiology
Heart Rate - physiology
Humans
Indexing in process
Male
Pattern classification
Pattern recognition
Pattern Recognition, Automated - methods
Photic Stimulation
Physiological psychology
Respiration
Respiratory Rate - physiology
Title An affective computing approach to physiological emotion specificity: Toward subject-independent and stimulus-independent classification of film-induced emotions
URI https://api.istex.fr/ark:/67375/WNG-WFX9DZQT-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8986.2010.01170.x
https://www.ncbi.nlm.nih.gov/pubmed/21261632
https://www.proquest.com/docview/869440696
https://www.proquest.com/docview/870289838
https://www.proquest.com/docview/910796025
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQu2HDqzzSQuUF6i6jycOxzW5KGSokqgJTzcDGcmJHGs1MpmoSqbDiE_gL_osv4V7ngWZUpAqxi2I7ie1j-1zn-F5CXoYmyvXQBr7l3ICBIoWf5kHuS-AOMYc1jUV43vn9WXJ6Eb-bsVmrf8KzMI1_iH7DDUeGm69xgOu03B7k0hdSJK1CC4OoDJBPonQL-dHHP56kZNA6Do-Fz4BRbop6bnzQxkq1i41-fRMN3WS1blka3yeLrkKNGmUxqKt0kH3b8vX4f2r8gNxr2SsdNXB7SO7Y4hHZGxVgua--0iPq9KRuo36P_BwVVDu1CEyoNHPRI2CdpJ0Xc1qt6WWXH6FCbRNSiOLpT1QwgYHwik6crpeWdYo7Rr--_5j3gXsrqgtIqearelmXW0kZmgX4FAc9us5pPl-umkwAZ9O9rXxMLsZvJq9P_TYshJ9hFAsfQ2oZK3iWiETbPDCWpSGKIg2gTliuWWDDTNqMSyMRi5zxMMzjDMihgXvRE7JTrAv7jFDgZ6HRjIXoaCyyOo2A3ebQNHYo9DAKPcI7CKis9ZmOoTuWasN2kgr7RGGfKNcn6tojQV_ysvEbcosyRw5lfQF9tUDdHWdqevZWTcczefLlw0RNPXLQwVC1U06pRCJjPMaceIT2qTBX4A8gXdh1DVk4_lcWkfh7FmCPHIzakHnkaYPv_muA5CTA3rFRHEpvXS91_unzOV7u_3PJA3K32cxHnfRzslNd1fYFsMEqPSS7o-OT4_GhG--_AfBEV7E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbhMxFLVQu4ANFAp0KA8vUHcTZR4e291FlBCgjQqkSmBjeWY8UtRkUjUzUmHVT-hf9L_6JdzreaBERaoQuyi2J7F9bJ975_heQt76aZDprvFcw3kKBooUbpx5mSuBO4QczjQW4H3no2E0OAk_TdikTgeEd2Gq-BCtww1Xht2vcYGjQ3p9lUtXSBHVEi3MotIBQrmJCb4xkP7B1z-xpKRXhw4PhcuAU67Kem590spZtYnDfnEbEV3ltfZg6j8is6ZLlR7ltFMWcSf5tRbt8T_1eYs8rAks7VWIe0zumfwJ2e7lYLzPf9I9aiWl1le_Ta57OdVWMAJ7Kk1sAgk4KmkTyJwWC3rW1Ee0UFNlFaJ4ARRFTGAj7NORlfbSZRmj0-jm8mra5u4tqM6hpJjOy1m5XCtK0DLAp1j00UVGs-lsXlUCRKfNry2fkpP--9G7gVtnhnATTGThYlat1AieRCLSJvNSw2IfdZEpAE8Yrpln_ESahMtUIhw5476fhQnwwxS-C56RjXyRmx1CgaL5qWbMx1hjgdFxAAQ3g6ExXaG7ge8Q3mBAJXXYdMzeMVMr5pNUOCcK50TZOVEXDvHalmdV6JA7tNmzMGsb6PNTlN5xpsbDD2rcn8iDH19GauyQ3QaHqt51lkpEMsSbzJFDaFsK2wW-A9K5WZRQheOrZRGIv1cBAsnBrvWZQ55XAG__DfCcCAg8DoqF6Z37pY6_fT_Gjy_-ueUbcn8wOjpUhx-Hn3fJg8q3j7Lpl2SjOC_NKyCHRfzaLvrfdIdaWw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLXQjITYwMAAE4aHF2h2qZqHY3t2FaUMr6pARy1srCR2pKptWk0TaWDFJ_AX_Bdfwr3OA7UapBFiF8V2EtvH9rnO8b2EPPd1kMVd47mGcw0GihRuknmZK4E7hBzWNBbgeef3w-jsPHwzZdNa_4RnYSr_EO2GG44MO1_jAF_rbHeQS1dIEdUKLQyi0gE-uR9GXYlhHPof_7iSkl7tOTwULgNKua3qufJJW0vVPrb65VU8dJvW2nVpcIfMmxpVcpR5pyySTvptx9nj_6nyAbld01faq_B2l9ww-T1y2MvBdF9-pSfUCkrtTv0h-dnLaWzlIjCj0tSGj4CFkjZuzGmxousmP2KFmiqmEMXjnyhhAgvhlI6tsJduygS3jH59_zFrI_cWNM4hpZgty0W52UlK0S7Ap1js0VVGs9liWWUCPOvmbZv75HzwcvzizK3jQrgphrFwMaaWNoKnkYhik3nasMRHVaQG2AnDY-YZP5Um5VJLBCNn3PezMAV2qOFe8IDs5avcHBEKBM3XMWM-ehoLTJwEQG8zaBrTFXE38B3CGwiotHaajrE7FmrLeJIK-0RhnyjbJ-rSIV5bcl05DrlGmROLsrZAfDFH4R1najJ8pSaDqex_-TBWE4ccNzBU9ZyzUSKSIZ5jjhxC21SYLPAPUJybVQlZOP5YFoH4exagjxysWp855GGF7_ZrgOVEQN-xUSxKr10vNfr0eYSXj_655DNyc9QfqHevh2-Pya1qYx8104_JXnFRmifADIvkqR3yvwEaLlkK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+affective+computing+approach+to+physiological+emotion+specificity%3A+Toward+subject-independent+and+stimulus-independent+classification+of+film-induced+emotions&rft.jtitle=Psychophysiology&rft.au=Kolodyazhniy%2C+Vitaliy&rft.au=Kreibig%2C+Sylvia+D&rft.au=Gross%2C+James+J&rft.au=Roth%2C+Walton+T&rft.date=2011-07-01&rft.issn=0048-5772&rft.eissn=1469-8986&rft.volume=48&rft.issue=7&rft.spage=908&rft.epage=922&rft_id=info:doi/10.1111%2Fj.1469-8986.2010.01170.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon