An affective computing approach to physiological emotion specificity: Toward subject-independent and stimulus-independent classification of film-induced emotions
The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection, sequential backward selection), classifier type (linear and quad...
Saved in:
Published in | Psychophysiology Vol. 48; no. 7; pp. 908 - 922 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.07.2011
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection, sequential backward selection), classifier type (linear and quadratic discriminant analysis, neural networks, k‐nearest neighbors method), and cross‐validation method (subject‐ and stimulus‐(in)dependence). Analyses were run on a data set of 34 participants watching two sets of three 10‐min film clips (fearful, sad, neutral) while autonomic, respiratory, and facial muscle activity were assessed. Results demonstrate that the three states can be classified with high accuracy by most classifiers, with the sparsest model having only five features, even for the most difficult task of identifying the emotion of an unknown subject in an unknown situation (77.5%). Implications for choosing PCA parameters are discussed. |
---|---|
AbstractList | The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection, sequential backward selection), classifier type (linear and quadratic discriminant analysis, neural networks, k-nearest neighbors method), and cross-validation method (subject- and stimulus-(in)dependence). Analyses were run on a data set of 34 participants watching two sets of three 10-min film clips (fearful, sad, neutral) while autonomic, respiratory, and facial muscle activity were assessed. Results demonstrate that the three states can be classified with high accuracy by most classifiers, with the sparsest model having only five features, even for the most difficult task of identifying the emotion of an unknown subject in an unknown situation (77.5%). Implications for choosing PCA parameters are discussed.The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection, sequential backward selection), classifier type (linear and quadratic discriminant analysis, neural networks, k-nearest neighbors method), and cross-validation method (subject- and stimulus-(in)dependence). Analyses were run on a data set of 34 participants watching two sets of three 10-min film clips (fearful, sad, neutral) while autonomic, respiratory, and facial muscle activity were assessed. Results demonstrate that the three states can be classified with high accuracy by most classifiers, with the sparsest model having only five features, even for the most difficult task of identifying the emotion of an unknown subject in an unknown situation (77.5%). Implications for choosing PCA parameters are discussed. The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection, sequential backward selection), classifier type (linear and quadratic discriminant analysis, neural networks, k-nearest neighbors method), and cross-validation method (subject- and stimulus-(in)dependence). Analyses were run on a data set of 34 participants watching two sets of three 10-min film clips (fearful, sad, neutral) while autonomic, respiratory, and facial muscle activity were assessed. Results demonstrate that the three states can be classified with high accuracy by most classifiers, with the sparsest model having only five features, even for the most difficult task of identifying the emotion of an unknown subject in an unknown situation (77.5%). Implications for choosing PCA parameters are discussed. [PUBLICATION ABSTRACT] The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection, sequential backward selection), classifier type (linear and quadratic discriminant analysis, neural networks, k‐nearest neighbors method), and cross‐validation method (subject‐ and stimulus‐(in)dependence). Analyses were run on a data set of 34 participants watching two sets of three 10‐min film clips (fearful, sad, neutral) while autonomic, respiratory, and facial muscle activity were assessed. Results demonstrate that the three states can be classified with high accuracy by most classifiers, with the sparsest model having only five features, even for the most difficult task of identifying the emotion of an unknown subject in an unknown situation (77.5%). Implications for choosing PCA parameters are discussed. |
Author | Roth, Walton T. Gross, James J. Kolodyazhniy, Vitaliy Kreibig, Sylvia D. Wilhelm, Frank H. |
Author_xml | – sequence: 1 givenname: Vitaliy surname: Kolodyazhniy fullname: Kolodyazhniy, Vitaliy organization: Department of Clinical Psychology, Psychotherapy, and Health Psychology, University of Salzburg, Salzburg, Austria – sequence: 2 givenname: Sylvia D. surname: Kreibig fullname: Kreibig, Sylvia D. organization: Department of Psychology, Stanford University, Palo Alto, California, USA – sequence: 3 givenname: James J. surname: Gross fullname: Gross, James J. organization: Department of Psychology, Stanford University, Palo Alto, California, USA – sequence: 4 givenname: Walton T. surname: Roth fullname: Roth, Walton T. organization: Department of Psychology, Stanford University, Palo Alto, California, USA – sequence: 5 givenname: Frank H. surname: Wilhelm fullname: Wilhelm, Frank H. organization: Department of Clinical Psychology, Psychotherapy, and Health Psychology, University of Salzburg, Salzburg, Austria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21261632$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAQxy1URB_wFZDFhVMW29n4wQGpKrQgVVDEogUultcZt16SOMQJ3f04fFOcfVSiF-qDbc385zeaxzE6aEIDCGFKJjSdV8sJnXKVSSX5hJFkJZQKMlk9Qkd3jgN0RMhUZoUQ7BAdx7gkhCjK2BN0yCjjlOfsCP05bbBxDmzvfwO2oW6H3jfX2LRtF4y9wX3A7c06-lCFa29NhaEOvQ8Nji1Y77z1_fo1noVb05U4DotlQmW-KaGFdDU9Nk2y974eqiH-47CViXEkmA0vOOx8VY-SwUK5zxOfosfOVBGe7d4T9PX83ezsfXb56eLD2ellZouckYxRwUqQwnLJDThaQrFgQkpROkMkCFNQYFaBFapUrMydKARjbmqLgpbJlp-gl1tuKvzXALHXtY8Wqso0EIaoFSVCccKK_yqlICxNIJdJ-eKechmGrkllaMnVdEq44kn0fCcaFjWUuu18bbq13g8pCd5sBbYLMXbgdGr6pml9Z3ylKdHjVuilHoevx-HrcSv0Ziv0KgHkPcA-xwNCd7lvfQXrB8fpqy_fr8ZvAmRbgI89rO4ApvupuchFoecfL_T8_Jt6--PzTM_zv9Yo4mo |
CitedBy_id | crossref_primary_10_1080_10447318_2024_2356403 crossref_primary_10_1109_ACCESS_2019_2944001 crossref_primary_10_1080_00140139_2023_2223785 crossref_primary_10_3389_fict_2017_00001 crossref_primary_10_1016_j_intcom_2012_04_003 crossref_primary_10_3389_fpsyg_2022_705442 crossref_primary_10_1111_psyp_12385 crossref_primary_10_3389_fnhum_2023_1286621 crossref_primary_10_1016_j_ipm_2019_102185 crossref_primary_10_1016_j_tele_2020_101404 crossref_primary_10_1177_1754073913512519 crossref_primary_10_3390_s19173805 crossref_primary_10_1016_j_tics_2012_07_006 crossref_primary_10_1007_s11042_023_14489_9 crossref_primary_10_1007_s12652_021_03367_7 crossref_primary_10_1016_j_biopsycho_2013_12_013 crossref_primary_10_1177_03611981211041594 crossref_primary_10_1007_s11682_012_9195_y crossref_primary_10_1038_s41597_024_02953_6 crossref_primary_10_1109_T_AFFC_2011_37 crossref_primary_10_1080_00140139_2020_1759699 crossref_primary_10_1007_s11042_016_3608_7 crossref_primary_10_3390_e24091281 crossref_primary_10_1109_TAFFC_2020_2981610 crossref_primary_10_1111_psyp_12799 crossref_primary_10_1080_10447318_2020_1861762 crossref_primary_10_3182_20120215_3_AT_3016_00055 crossref_primary_10_1155_2013_573734 crossref_primary_10_1016_j_ijpsycho_2017_06_002 crossref_primary_10_1016_j_neuropsychologia_2018_07_037 crossref_primary_10_1080_10447318_2015_1064638 crossref_primary_10_1177_1550147719864886 crossref_primary_10_1016_j_ipm_2016_07_001 crossref_primary_10_1016_j_cviu_2015_09_015 crossref_primary_10_33573_ujoh2015_02_041 crossref_primary_10_5057_ijae_14_65 crossref_primary_10_1111_coin_12480 crossref_primary_10_3390_app11114945 crossref_primary_10_1371_journal_pone_0140330 crossref_primary_10_3758_s13428_021_01555_z crossref_primary_10_1016_j_artmed_2019_07_004 crossref_primary_10_1016_j_biopsycho_2010_01_017 crossref_primary_10_1109_JPROC_2023_3286445 crossref_primary_10_3923_jas_2016_406_418 crossref_primary_10_3389_fpsyg_2014_01507 crossref_primary_10_3390_s20174723 crossref_primary_10_3109_07420528_2012_700669 crossref_primary_10_3390_s22239282 crossref_primary_10_3390_s18072074 crossref_primary_10_1080_00140139_2024_2400129 crossref_primary_10_1109_T_AFFC_2011_18 crossref_primary_10_3390_s20154194 crossref_primary_10_1016_j_ijhcs_2014_05_006 crossref_primary_10_1007_s42761_023_00212_2 crossref_primary_10_1177_1754073913494899 crossref_primary_10_3758_s13428_015_0665_1 crossref_primary_10_3390_info10070239 crossref_primary_10_1371_journal_pone_0066032 crossref_primary_10_1155_2017_5282670 crossref_primary_10_3390_s22114023 crossref_primary_10_1007_s11042_022_12711_8 crossref_primary_10_3390_s19102218 crossref_primary_10_3389_fnins_2022_965871 |
Cites_doi | 10.1126/science.6612338 10.1111/1469-8986.3510001 10.1080/02699930902928969 10.1038/nn.2324 10.1007/BF02344719 10.1523/JNEUROSCI.5984-08.2009 10.1007/s005210050026 10.1016/j.biopsycho.2009.10.006 10.1016/0167-8655(94)90127-9 10.1109/TIT.1967.1053964 10.1109/34.954607 10.1016/j.ijhcs.2007.10.011 10.1016/j.neuroimage.2009.10.092 10.1186/1471-2105-7-197 10.2307/1419197 10.1016/j.intcom.2005.07.001 10.1007/978-0-387-21606-5 10.1016/j.ijpsycho.2003.08.002 10.1037/1528-3542.4.1.3 10.1162/neco.1989.1.2.281 10.1097/00006842-195309000-00007 10.7551/mitpress/1140.001.0001 10.1016/j.biopsycho.2010.01.017 10.1111/j.1469-8986.2007.00550.x 10.1016/j.ijpsycho.2005.10.024 10.2307/3001968 10.1109/TPAMI.2008.26 10.1027//0269-8803.14.2.115 10.1111/j.1469-8986.1989.tb03163.x 10.1007/s10111-003-0143-x 10.1145/641007.641074 10.1155/S1110865704406192 10.1080/026999396380321 10.1111/j.1469-8986.1987.tb00286.x 10.1016/j.biopsycho.2010.01.020 10.1111/j.1469-8986.1984.tb00249.x 10.1093/mind/os-IX.34.188 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Society for Psychophysiological Research Copyright © 2011 Society for Psychophysiological Research. |
Copyright_xml | – notice: Copyright © 2011 Society for Psychophysiological Research – notice: Copyright © 2011 Society for Psychophysiological Research. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 |
DOI | 10.1111/j.1469-8986.2010.01170.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-8986 1540-5958 |
EndPage | 922 |
ExternalDocumentID | 2363105071 21261632 10_1111_j_1469_8986_2010_01170_x PSYP1170 ark_67375_WNG_WFX9DZQT_W |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 186 1OB 1OC 29P 2QV 31~ 33P 36B 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52R 52S 52T 52U 52V 52W 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A04 AABNI AAESR AAHHS AAONW AAOUF AASGY AAXRX AAYJJ AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABGDZ ABITZ ABIVO ABJNI ABLJU ABPPZ ABPVW ABQWH ABSOO ABXGK ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACHQT ACMXC ACNCT ACPOU ACPRK ACQPF ACSCC ACWUS ACXQS ADBBV ADBTR ADEMA ADEOM ADIZJ ADKYN ADMGS ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFKFF AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AIFKG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BSCLL BY8 CAG COF CS3 D-6 D-7 D-C D-D DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSSH DU5 DXH EAD EAP EBC EBD EBS EJD EMB EMK EMOBN EPS ESX F00 F01 F5P FEDTE FUBAC FZ0 G-S G.N G50 GODZA HAOEW HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSSH MSFUL MSMAN MSSSH MVM MXFUL MXMAN MXSSH N04 N06 N9A NEJ NF~ O66 O9- OHT OIG OVD P2W P2Y P2Z P4B P4C PALCI PQQKQ Q.N Q11 QB0 R.K RCA RIG RIWAO RJQFR ROL RX1 S10 SAMSI SUPJJ SV3 TEORI TN5 TUS UAP UB1 V8K VQA W8V W99 WBKPD WH7 WHDPE WIH WII WIJ WOHZO WQZ WRC WSUWO WXI WXSBR X7M XG1 XJT XOL XSW YNT YYM YYP YZZ ZCA ZGI ZWS ZXP ZZTAW ~IA ~WP AAHQN AAIPD AAMNL AANHP AAYCA ABVKB ACRPL ACUHS ACYXJ ADNMO AFWVQ AFYRF ALVPJ AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN Z5M 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c5320-2172de87c686aef1de5b27887dfa08e7a51e2c9ec79d92d3f75722f4c551d79d3 |
IEDL.DBID | DR2 |
ISSN | 0048-5772 1469-8986 |
IngestDate | Fri Jul 11 09:46:30 EDT 2025 Fri Jul 11 00:24:27 EDT 2025 Sat Aug 23 12:37:07 EDT 2025 Wed Feb 19 01:50:01 EST 2025 Tue Jul 01 01:48:17 EDT 2025 Thu Apr 24 23:10:39 EDT 2025 Wed Jan 22 16:39:55 EST 2025 Wed Oct 30 09:56:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2011 Society for Psychophysiological Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5320-2172de87c686aef1de5b27887dfa08e7a51e2c9ec79d92d3f75722f4c551d79d3 |
Notes | istex:7343219D5771D354337EBC7605BAD1D3268940B0 ark:/67375/WNG-WFX9DZQT-W ArticleID:PSYP1170 The first and second authors contributed equally to this work. This research was supported by the 6th Framework Programme Project EUCLOCK (018741) funded by the European Commission (F.W., V.K.), the Basel Scientific Society (F.W.), and the National Center of Competence in Research Affective Sciences funded by the Swiss National Science Foundation (51NF40‐104897) and hosted by the University of Geneva (S.K.) and the Swiss National Science Foundation (PBGEP1‐125914; S.K.). Some of these data were presented at the annual meeting of the Society for Psychophysiological Research (October, 2007). SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PMID | 21261632 |
PQID | 869440696 |
PQPubID | 41359 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_910796025 proquest_miscellaneous_870289838 proquest_journals_869440696 pubmed_primary_21261632 crossref_citationtrail_10_1111_j_1469_8986_2010_01170_x crossref_primary_10_1111_j_1469_8986_2010_01170_x wiley_primary_10_1111_j_1469_8986_2010_01170_x_PSYP1170 istex_primary_ark_67375_WNG_WFX9DZQT_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2011 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: July 2011 |
PublicationDecade | 2010 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States – name: Oxford |
PublicationTitle | Psychophysiology |
PublicationTitleAlternate | Psychophysiology |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Inc Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Inc – name: Blackwell Publishing Ltd |
References | Blechert, J., Lajtman, M., Michael, T., Margraf, J., & Wilhelm, F. H. (2006). Identifying anxiety states using broad sampling and advanced processing of peripheral physiological information. Biomedical Sciences Instrumentation, 42, 136-141. Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50, 371-385. Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing, 42, 419-427. Yiu, K. K., Mak, M. W., & Li, C. K. (1999). Gaussian mixture models and probabilistic decision-based neural networks for pattern classification: A comparative study. Neural Computing & Applications, 3, 235-245. Christie, I., & Friedman, B. (2004). Autonomic specificity of discrete emotion and dimensions of affective space: A multivariate approach. International Journal of Psychophysiology, 51, 143-153. James, W. (1884). What is an emotion? Mind, 9, 188-205. Scherer, K. R. (2009). The dynamic architecture of emotion: Evidence for the component process model. Cognition and Emotion, 23, 1307-1351. Esterman, M., Tamber-Rosenau, B. J., Chiu, Y.-C., & Yantis, S. (2010). Avoiding non-independence in fMRI data analysis: Leave one subject out. NeuroImage, 50, 572-576. Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 1175-1191. Nabney, I. T. (2004). NETLAB. Algorithms for pattern recognition. Advances in pattern recognition (3rd ed.). Berlin: Springer. Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80-83. Nasoz, F., Alvarez, K., Lisetti, C., & Finkelstein, N. (2004). Emotion recognition from physiological signals using wireless sensors for presence technologies. Cognition, Technology & Work, 6, 4-14. Friedman, B. H. (2010). Feelings and the body: The Jamesian perspective on autonomic specificity of emotion. Biological Psychology, 84, 383-393. Pudil, P., Novovièová, J., & Kittler, J. (1994). Floating search methods in feature selection. Pattern Recognition Letters, 15, 1119-1125. Ax, A. F. (1953). The physiological differentiation between fear and anger in humans. Psychosomatic Medicine, 15, 433-442. Sinha, R., & Parsons, O. A. (1996). Multivariate response patterning of fear and anger. Cognition and Emotion, 10, 173-198. Huberty, C. J. (1994). Applied discriminant analysis. New York: Wiley. Wilhelm, F. H., & Grossman, P. (2010). Emotions beyond the laboratory: Theoretical fundaments, study design, and analytic strategies for advanced ambulatory assessment. Biological Psychology, 84, 552-569. Frijda, N. H. (1986). The emotions. Cambridge, UK: Cambridge University Press. Howard, J., Plailly, J., Grueschow, M., Haynes, J. D., & Gottfried, J. A. (2009). Odor quality coding and categorization in human posterior piriform cortex. Nature Neuroscience, 12, 932-938. Ho, T. C., Brown, S., & Serences, J. T. (2009). Domain general mechanisms of perceptual decision making in human cortex. Journal of Neuroscience, 29, 8675-8687. Haykin, S. (1999). Neural networks: A comprehensive foundation. Upper Saddle River, NJ: Prentice Hall. Lacey, J. I., & Lacey, B. C. (1958). Verification and extension of the principle of autonomic response-stereotypy. American Journal of Psychology, 71, 50-73. Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, 21-27. Nyklicek, I., Thayer, J. F., & van Doornen, L. J. P. (1997). Cardiorespiratory differentiation of musically-induced emotions. Journal of Psychophysiology, 11, 304-321. Stemmler, G. (1987). Standardization within subjects: A critique of Ben-Shakhar's conclusions. Psychophysiology, 24, 243-246. Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining inference, and prediction. Berlin: Springer. Wilhelm, F. H., Pfaltz, M. C., & Grossman, P. (2006). Continuous electronic data capture of physiology, behavior and experience in real life: Towards ecological momentary assessment of emotion. Interacting with Computers, 18 (2), 171-186. Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear and sadness-inducing films. Psychophysiology, 44, 787-806. Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972). The dependability of behavioral measurements. New York: Wiley. Rosenfield, D., Zhou, E., Wilhelm, F. H., Conrad, A., Roth, W. T., & Meuret, A. E. (2010). Change point analysis for longitudinal physiological data: Detection of cardiorespiratory changes preceding panic attacks. Biological Psychology, 84, 112-120. Bailenson, J. N., Pontikakis, E. D., Mauss, I. B., Gross, J. J., Jabon, M. E., Hutcherson, C. A. C., et al. (2008). Real-time classification of evoked emotions using facial feature tracking and physiological responses. International Journal of Human-Computer Studies, 66, 303-317. Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221, 1208-1210. Fridlund, A. J., Schwartz, G. E., & Fowler, S. C. (1984). Pattern recognition of self-reported emotional state from multiple-site facial EMG activity during affective imagery. Psychophysiology, 21, 622-637. Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally tuned processing units. Neural Computation, 1, 281-294. Wilhelm, F. H., Grossman, P., & Roth, W. T. (1999). Analysis of cardiovascular regulation. Biomedical Sciences Instrumentation, 35, 135-140. Zhang, X., Lu, X., Shi, Q., Xu, X., Leung, H. E., Harris, L. N., et al. (2006). Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics, 7, 197. Rainville, P., Bechara, A., Naqvi, N., & Damasio, A. R. (2006). Basic emotions are associated with distinct patterns of cardiorespiratory activity. International Journal of Psychophysiology, 61, 5-18. Lisetti, C. L., & Nasoz, F. (2004). Using non-invasive wearable computers to recognize human emotions from physiological signals. EURASIP Journal on Applied Signal Processing, 2004, 1672-1687. Stemmler, G. (1989). The autonomic differentiation of emotions revisited: Convergent and discriminant validation. Psychophysiology, 26, 617-632. Picard, R. W. (2000). Affective computing. Cambridge, MA: MIT Press. Hinz, A., Seibt, R., Hueber, B., & Schreinicke, G. (2000). Response specificity in psychophysiology: A comparison of different approaches. Journal of Psychophysiology, 14, 115-122. Carver, C. S. (2004). Negative affects deriving from the behavioral approach system. Emotion, 4, 3-22. Marwitz, M., & Stemmler, G. (1998). On the status of individual response specificity. Psychophysiology, 35, 1-15. Kim, J., & André, E. (2008). Emotion recognition based on physiological changes in music listening. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 2067-2083. 1945; 1 1984; 21 2004; 4 2004; 6 2005; 3611 1972 2008; 30 1884; 9 2009; 12 1983; 221 2006; 61 2001 2000; 14 1997; 11 2000 1986 1967; 13 1983 2008; 66 2009; 23 2004; 42 1995; 50 1989; 1 2010 2006; 7 2006; 18 1994 1958; 71 2004 1999; 3 2003 2002 1953; 15 1989; 26 2001; 23 1996; 10 2010; 84 2009; 29 1999 1987; 24 2006; 42 2004; 51 1999; 35 1994; 15 2005; 2 2004; 2004 2007; 44 2010; 50 1998; 35 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_33_1 e_1_2_9_54_1 Webb N. M. (e_1_2_9_48_1) 2005 Hastie T. (e_1_2_9_16_1) 2001 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_18_1 e_1_2_9_41_1 Wilhelm F. H. (e_1_2_9_51_1) 1999; 35 Frijda N. H. (e_1_2_9_15_1) 1986 e_1_2_9_20_1 Nyklicek I. (e_1_2_9_37_1) 1997; 11 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 Kreibig S. D. (e_1_2_9_26_1) 2010 e_1_2_9_6_1 e_1_2_9_2_1 Stemmler G. (e_1_2_9_47_1) 2004 e_1_2_9_49_1 e_1_2_9_28_1 Lang P. J. (e_1_2_9_29_1) 1995; 50 Cronbach L. J. (e_1_2_9_9_1) 1972 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_32_1 Zhao Q. (e_1_2_9_55_1) 2005 Fridlund A. J. (e_1_2_9_12_1) 1983 Nabney I. T. (e_1_2_9_34_1) 2004 Haykin S. (e_1_2_9_17_1) 1999 e_1_2_9_38_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 Bradley M. M. (e_1_2_9_5_1) 2000 e_1_2_9_40_1 Blechert J. (e_1_2_9_4_1) 2006; 42 e_1_2_9_46_1 Huberty C. J. (e_1_2_9_21_1) 1994 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_27_1 |
References_xml | – reference: Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally tuned processing units. Neural Computation, 1, 281-294. – reference: Wilhelm, F. H., Grossman, P., & Roth, W. T. (1999). Analysis of cardiovascular regulation. Biomedical Sciences Instrumentation, 35, 135-140. – reference: Bailenson, J. N., Pontikakis, E. D., Mauss, I. B., Gross, J. J., Jabon, M. E., Hutcherson, C. A. C., et al. (2008). Real-time classification of evoked emotions using facial feature tracking and physiological responses. International Journal of Human-Computer Studies, 66, 303-317. – reference: Sinha, R., & Parsons, O. A. (1996). Multivariate response patterning of fear and anger. Cognition and Emotion, 10, 173-198. – reference: Wilhelm, F. H., Pfaltz, M. C., & Grossman, P. (2006). Continuous electronic data capture of physiology, behavior and experience in real life: Towards ecological momentary assessment of emotion. Interacting with Computers, 18 (2), 171-186. – reference: Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining inference, and prediction. Berlin: Springer. – reference: Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear and sadness-inducing films. Psychophysiology, 44, 787-806. – reference: Fridlund, A. J., Schwartz, G. E., & Fowler, S. C. (1984). Pattern recognition of self-reported emotional state from multiple-site facial EMG activity during affective imagery. Psychophysiology, 21, 622-637. – reference: Carver, C. S. (2004). Negative affects deriving from the behavioral approach system. Emotion, 4, 3-22. – reference: Wilhelm, F. H., & Grossman, P. (2010). Emotions beyond the laboratory: Theoretical fundaments, study design, and analytic strategies for advanced ambulatory assessment. Biological Psychology, 84, 552-569. – reference: Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221, 1208-1210. – reference: Blechert, J., Lajtman, M., Michael, T., Margraf, J., & Wilhelm, F. H. (2006). Identifying anxiety states using broad sampling and advanced processing of peripheral physiological information. Biomedical Sciences Instrumentation, 42, 136-141. – reference: Lacey, J. I., & Lacey, B. C. (1958). Verification and extension of the principle of autonomic response-stereotypy. American Journal of Psychology, 71, 50-73. – reference: Scherer, K. R. (2009). The dynamic architecture of emotion: Evidence for the component process model. Cognition and Emotion, 23, 1307-1351. – reference: Haykin, S. (1999). Neural networks: A comprehensive foundation. Upper Saddle River, NJ: Prentice Hall. – reference: Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972). The dependability of behavioral measurements. New York: Wiley. – reference: Ho, T. C., Brown, S., & Serences, J. T. (2009). Domain general mechanisms of perceptual decision making in human cortex. Journal of Neuroscience, 29, 8675-8687. – reference: Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing, 42, 419-427. – reference: Nyklicek, I., Thayer, J. F., & van Doornen, L. J. P. (1997). Cardiorespiratory differentiation of musically-induced emotions. Journal of Psychophysiology, 11, 304-321. – reference: Rainville, P., Bechara, A., Naqvi, N., & Damasio, A. R. (2006). Basic emotions are associated with distinct patterns of cardiorespiratory activity. International Journal of Psychophysiology, 61, 5-18. – reference: Zhang, X., Lu, X., Shi, Q., Xu, X., Leung, H. E., Harris, L. N., et al. (2006). Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics, 7, 197. – reference: Lisetti, C. L., & Nasoz, F. (2004). Using non-invasive wearable computers to recognize human emotions from physiological signals. EURASIP Journal on Applied Signal Processing, 2004, 1672-1687. – reference: Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50, 371-385. – reference: Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80-83. – reference: Hinz, A., Seibt, R., Hueber, B., & Schreinicke, G. (2000). Response specificity in psychophysiology: A comparison of different approaches. Journal of Psychophysiology, 14, 115-122. – reference: Yiu, K. K., Mak, M. W., & Li, C. K. (1999). Gaussian mixture models and probabilistic decision-based neural networks for pattern classification: A comparative study. Neural Computing & Applications, 3, 235-245. – reference: Kim, J., & André, E. (2008). Emotion recognition based on physiological changes in music listening. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 2067-2083. – reference: Christie, I., & Friedman, B. (2004). Autonomic specificity of discrete emotion and dimensions of affective space: A multivariate approach. International Journal of Psychophysiology, 51, 143-153. – reference: Rosenfield, D., Zhou, E., Wilhelm, F. H., Conrad, A., Roth, W. T., & Meuret, A. E. (2010). Change point analysis for longitudinal physiological data: Detection of cardiorespiratory changes preceding panic attacks. Biological Psychology, 84, 112-120. – reference: James, W. (1884). What is an emotion? Mind, 9, 188-205. – reference: Picard, R. W. (2000). Affective computing. Cambridge, MA: MIT Press. – reference: Pudil, P., Novovièová, J., & Kittler, J. (1994). Floating search methods in feature selection. Pattern Recognition Letters, 15, 1119-1125. – reference: Howard, J., Plailly, J., Grueschow, M., Haynes, J. D., & Gottfried, J. A. (2009). Odor quality coding and categorization in human posterior piriform cortex. Nature Neuroscience, 12, 932-938. – reference: Stemmler, G. (1989). The autonomic differentiation of emotions revisited: Convergent and discriminant validation. Psychophysiology, 26, 617-632. – reference: Marwitz, M., & Stemmler, G. (1998). On the status of individual response specificity. Psychophysiology, 35, 1-15. – reference: Frijda, N. H. (1986). The emotions. Cambridge, UK: Cambridge University Press. – reference: Stemmler, G. (1987). Standardization within subjects: A critique of Ben-Shakhar's conclusions. Psychophysiology, 24, 243-246. – reference: Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, 21-27. – reference: Friedman, B. H. (2010). Feelings and the body: The Jamesian perspective on autonomic specificity of emotion. Biological Psychology, 84, 383-393. – reference: Ax, A. F. (1953). The physiological differentiation between fear and anger in humans. Psychosomatic Medicine, 15, 433-442. – reference: Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 1175-1191. – reference: Nasoz, F., Alvarez, K., Lisetti, C., & Finkelstein, N. (2004). Emotion recognition from physiological signals using wireless sensors for presence technologies. Cognition, Technology & Work, 6, 4-14. – reference: Huberty, C. J. (1994). Applied discriminant analysis. New York: Wiley. – reference: Esterman, M., Tamber-Rosenau, B. J., Chiu, Y.-C., & Yantis, S. (2010). Avoiding non-independence in fMRI data analysis: Leave one subject out. NeuroImage, 50, 572-576. – reference: Nabney, I. T. (2004). NETLAB. Algorithms for pattern recognition. Advances in pattern recognition (3rd ed.). Berlin: Springer. – volume: 23 start-page: 1175 year: 2001 end-page: 1191 article-title: Toward machine emotional intelligence publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 2 start-page: 717 year: 2005 end-page: 719 – year: 2001 – volume: 66 start-page: 303 year: 2008 end-page: 317 article-title: Real‐time classification of evoked emotions using facial feature tracking and physiological responses publication-title: International Journal of Human-Computer Studies – volume: 21 start-page: 622 year: 1984 end-page: 637 article-title: Pattern recognition of self‐reported emotional state from multiple‐site facial EMG activity during affective imagery publication-title: Psychophysiology – volume: 7 start-page: 197 year: 2006 article-title: Recursive SVM feature selection and sample classification for mass‐spectrometry and microarray data publication-title: BMC Bioinformatics – volume: 84 start-page: 112 year: 2010 end-page: 120 article-title: Change point analysis for longitudinal physiological data publication-title: Biological Psychology – volume: 15 start-page: 433 year: 1953 end-page: 442 article-title: The physiological differentiation between fear and anger in humans publication-title: Psychosomatic Medicine – year: 1994 – start-page: 243 year: 1983 end-page: 280 – year: 1986 – volume: 15 start-page: 1119 year: 1994 end-page: 1125 article-title: Floating search methods in feature selection publication-title: Pattern Recognition Letters – volume: 4 start-page: 3 year: 2004 end-page: 22 article-title: Negative affects deriving from the behavioral approach system publication-title: Emotion – volume: 42 start-page: 419 year: 2004 end-page: 427 article-title: Emotion recognition system using short‐term monitoring of physiological signals publication-title: Medical and Biological Engineering and Computing – volume: 44 start-page: 787 year: 2007 end-page: 806 article-title: Cardiovascular, electrodermal, and respiratory response patterns to fear and sadness‐inducing films publication-title: Psychophysiology – year: 2004 – year: 1972 – volume: 18 start-page: 171 issue: (2) year: 2006 end-page: 186 article-title: Continuous electronic data capture of physiology, behavior and experience in real life publication-title: Interacting with Computers – volume: 61 start-page: 5 year: 2006 end-page: 18 article-title: Basic emotions are associated with distinct patterns of cardiorespiratory activity publication-title: International Journal of Psychophysiology – volume: 221 start-page: 1208 year: 1983 end-page: 1210 article-title: Autonomic nervous system activity distinguishes among emotions publication-title: Science – start-page: 33 year: 2004 end-page: 70 – volume: 84 start-page: 383 year: 2010 end-page: 393 article-title: Feelings and the body publication-title: Biological Psychology – volume: 24 start-page: 243 year: 1987 end-page: 246 article-title: Standardization within subjects publication-title: Psychophysiology – volume: 14 start-page: 115 year: 2000 end-page: 122 article-title: Response specificity in psychophysiology publication-title: Journal of Psychophysiology – volume: 12 start-page: 932 year: 2009 end-page: 938 article-title: Odor quality coding and categorization in human posterior piriform cortex publication-title: Nature Neuroscience – start-page: 319 year: 2002 end-page: 322 – year: 2003 – volume: 30 start-page: 2067 year: 2008 end-page: 2083 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 35 start-page: 1 year: 1998 end-page: 15 article-title: On the status of individual response specificity publication-title: Psychophysiology – year: 2000 – volume: 11 start-page: 304 year: 1997 end-page: 321 article-title: Cardiorespiratory differentiation of musically‐induced emotions publication-title: Journal of Psychophysiology – volume: 10 start-page: 173 year: 1996 end-page: 198 article-title: Multivariate response patterning of fear and anger publication-title: Cognition and Emotion – volume: 26 start-page: 617 year: 1989 end-page: 632 article-title: The autonomic differentiation of emotions revisited publication-title: Psychophysiology – volume: 84 start-page: 552 year: 2010 end-page: 569 article-title: Emotions beyond the laboratory publication-title: Biological Psychology – volume: 6 start-page: 4 year: 2004 end-page: 14 article-title: Emotion recognition from physiological signals using wireless sensors for presence technologies publication-title: Cognition, Technology & Work – volume: 3611 start-page: 28 year: 2005 end-page: 36 – volume: 9 start-page: 188 year: 1884 end-page: 205 article-title: What is an emotion? publication-title: Mind – volume: 51 start-page: 143 year: 2004 end-page: 153 article-title: Autonomic specificity of discrete emotion and dimensions of affective space publication-title: International Journal of Psychophysiology – volume: 1 start-page: 281 year: 1989 end-page: 294 article-title: Fast learning in networks of locally tuned processing units publication-title: Neural Computation – volume: 2004 start-page: 1672 year: 2004 end-page: 1687 article-title: Using non‐invasive wearable computers to recognize human emotions from physiological signals publication-title: EURASIP Journal on Applied Signal Processing – start-page: 105 year: 2010 end-page: 130 – volume: 71 start-page: 50 year: 1958 end-page: 73 article-title: Verification and extension of the principle of autonomic response‐stereotypy publication-title: American Journal of Psychology – volume: 23 start-page: 1307 year: 2009 end-page: 1351 article-title: The dynamic architecture of emotion publication-title: Cognition and Emotion – volume: 35 start-page: 135 year: 1999 end-page: 140 article-title: Analysis of cardiovascular regulation publication-title: Biomedical Sciences Instrumentation – volume: 42 start-page: 136 year: 2006 end-page: 141 article-title: Identifying anxiety states using broad sampling and advanced processing of peripheral physiological information publication-title: Biomedical Sciences Instrumentation – volume: 13 start-page: 21 year: 1967 end-page: 27 article-title: Nearest neighbor pattern classification publication-title: IEEE Transactions on Information Theory – volume: 50 start-page: 572 year: 2010 end-page: 576 article-title: Avoiding non‐independence in fMRI data analysis publication-title: NeuroImage – volume: 1 start-page: 80 year: 1945 end-page: 83 article-title: Individual comparisons by ranking methods publication-title: Biometrics – start-page: 242 year: 2000 end-page: 276 – volume: 50 start-page: 371 year: 1995 end-page: 385 article-title: The emotion probe publication-title: American Psychologist – volume: 3 start-page: 235 year: 1999 end-page: 245 article-title: Gaussian mixture models and probabilistic decision‐based neural networks for pattern classification publication-title: Neural Computing & Applications – volume: 29 start-page: 8675 year: 2009 end-page: 8687 article-title: Domain general mechanisms of perceptual decision making in human cortex publication-title: Journal of Neuroscience – year: 1999 – ident: e_1_2_9_10_1 doi: 10.1126/science.6612338 – ident: e_1_2_9_31_1 doi: 10.1111/1469-8986.3510001 – volume: 42 start-page: 136 year: 2006 ident: e_1_2_9_4_1 article-title: Identifying anxiety states using broad sampling and advanced processing of peripheral physiological information publication-title: Biomedical Sciences Instrumentation – volume-title: NETLAB. Algorithms for pattern recognition. Advances in pattern recognition year: 2004 ident: e_1_2_9_34_1 – ident: e_1_2_9_43_1 doi: 10.1080/02699930902928969 – ident: e_1_2_9_20_1 doi: 10.1038/nn.2324 – ident: e_1_2_9_24_1 doi: 10.1007/BF02344719 – ident: e_1_2_9_25_1 – ident: e_1_2_9_19_1 doi: 10.1523/JNEUROSCI.5984-08.2009 – ident: e_1_2_9_53_1 doi: 10.1007/s005210050026 – ident: e_1_2_9_14_1 doi: 10.1016/j.biopsycho.2009.10.006 – ident: e_1_2_9_40_1 doi: 10.1016/0167-8655(94)90127-9 – ident: e_1_2_9_8_1 doi: 10.1109/TIT.1967.1053964 – volume-title: The emotions year: 1986 ident: e_1_2_9_15_1 – volume-title: The dependability of behavioral measurements year: 1972 ident: e_1_2_9_9_1 – start-page: 28 volume-title: Lecture Notes in Computer Science year: 2005 ident: e_1_2_9_55_1 – start-page: 242 volume-title: Cognitive neuroscience of emotion year: 2000 ident: e_1_2_9_5_1 – start-page: 105 volume-title: A blueprint for an affectively competent agent: Cross‐fertilization between emotion psychology, affective neuroscience, and affective computing year: 2010 ident: e_1_2_9_26_1 – ident: e_1_2_9_39_1 doi: 10.1109/34.954607 – ident: e_1_2_9_3_1 doi: 10.1016/j.ijhcs.2007.10.011 – ident: e_1_2_9_11_1 doi: 10.1016/j.neuroimage.2009.10.092 – ident: e_1_2_9_33_1 – ident: e_1_2_9_54_1 doi: 10.1186/1471-2105-7-197 – ident: e_1_2_9_28_1 doi: 10.2307/1419197 – ident: e_1_2_9_52_1 doi: 10.1016/j.intcom.2005.07.001 – volume-title: The elements of statistical learning: Data mining inference, and prediction year: 2001 ident: e_1_2_9_16_1 doi: 10.1007/978-0-387-21606-5 – ident: e_1_2_9_7_1 doi: 10.1016/j.ijpsycho.2003.08.002 – ident: e_1_2_9_6_1 doi: 10.1037/1528-3542.4.1.3 – start-page: 717 volume-title: Encyclopedia of statistics in behavioral science year: 2005 ident: e_1_2_9_48_1 – ident: e_1_2_9_32_1 doi: 10.1162/neco.1989.1.2.281 – ident: e_1_2_9_2_1 doi: 10.1097/00006842-195309000-00007 – ident: e_1_2_9_38_1 doi: 10.7551/mitpress/1140.001.0001 – ident: e_1_2_9_50_1 doi: 10.1016/j.biopsycho.2010.01.017 – ident: e_1_2_9_27_1 doi: 10.1111/j.1469-8986.2007.00550.x – volume-title: Neural networks: A comprehensive foundation year: 1999 ident: e_1_2_9_17_1 – start-page: 33 volume-title: The regulation of emotion year: 2004 ident: e_1_2_9_47_1 – ident: e_1_2_9_41_1 doi: 10.1016/j.ijpsycho.2005.10.024 – ident: e_1_2_9_49_1 doi: 10.2307/3001968 – ident: e_1_2_9_23_1 doi: 10.1109/TPAMI.2008.26 – ident: e_1_2_9_18_1 doi: 10.1027//0269-8803.14.2.115 – ident: e_1_2_9_46_1 doi: 10.1111/j.1469-8986.1989.tb03163.x – start-page: 243 volume-title: Social psychophysiology year: 1983 ident: e_1_2_9_12_1 – ident: e_1_2_9_35_1 doi: 10.1007/s10111-003-0143-x – ident: e_1_2_9_36_1 doi: 10.1145/641007.641074 – ident: e_1_2_9_30_1 doi: 10.1155/S1110865704406192 – volume: 50 start-page: 371 year: 1995 ident: e_1_2_9_29_1 article-title: The emotion probe publication-title: American Psychologist – volume: 11 start-page: 304 year: 1997 ident: e_1_2_9_37_1 article-title: Cardiorespiratory differentiation of musically‐induced emotions publication-title: Journal of Psychophysiology – ident: e_1_2_9_44_1 doi: 10.1080/026999396380321 – volume-title: Applied discriminant analysis year: 1994 ident: e_1_2_9_21_1 – ident: e_1_2_9_45_1 doi: 10.1111/j.1469-8986.1987.tb00286.x – ident: e_1_2_9_42_1 doi: 10.1016/j.biopsycho.2010.01.020 – volume: 35 start-page: 135 year: 1999 ident: e_1_2_9_51_1 article-title: Analysis of cardiovascular regulation publication-title: Biomedical Sciences Instrumentation – ident: e_1_2_9_13_1 doi: 10.1111/j.1469-8986.1984.tb00249.x – ident: e_1_2_9_22_1 doi: 10.1093/mind/os-IX.34.188 |
SSID | ssj0009122 |
Score | 2.3463883 |
Snippet | The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To address limitations of prior research using... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 908 |
SubjectTerms | Adult Affective computing Affective neuroscience Autonomic nervous system Autonomic Nervous System - physiology Cardiovascular system Classification Electrodermal system Emotion Emotions Emotions - physiology Feature selection Female Galvanic Skin Response - physiology Heart Rate - physiology Humans Indexing in process Male Pattern classification Pattern recognition Pattern Recognition, Automated - methods Photic Stimulation Physiological psychology Respiration Respiratory Rate - physiology |
Title | An affective computing approach to physiological emotion specificity: Toward subject-independent and stimulus-independent classification of film-induced emotions |
URI | https://api.istex.fr/ark:/67375/WNG-WFX9DZQT-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8986.2010.01170.x https://www.ncbi.nlm.nih.gov/pubmed/21261632 https://www.proquest.com/docview/869440696 https://www.proquest.com/docview/870289838 https://www.proquest.com/docview/910796025 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQu2HDqzzSQuUF6i6jycOxzW5KGSokqgJTzcDGcmJHGs1MpmoSqbDiE_gL_osv4V7ngWZUpAqxi2I7ie1j-1zn-F5CXoYmyvXQBr7l3ICBIoWf5kHuS-AOMYc1jUV43vn9WXJ6Eb-bsVmrf8KzMI1_iH7DDUeGm69xgOu03B7k0hdSJK1CC4OoDJBPonQL-dHHP56kZNA6Do-Fz4BRbop6bnzQxkq1i41-fRMN3WS1blka3yeLrkKNGmUxqKt0kH3b8vX4f2r8gNxr2SsdNXB7SO7Y4hHZGxVgua--0iPq9KRuo36P_BwVVDu1CEyoNHPRI2CdpJ0Xc1qt6WWXH6FCbRNSiOLpT1QwgYHwik6crpeWdYo7Rr--_5j3gXsrqgtIqearelmXW0kZmgX4FAc9us5pPl-umkwAZ9O9rXxMLsZvJq9P_TYshJ9hFAsfQ2oZK3iWiETbPDCWpSGKIg2gTliuWWDDTNqMSyMRi5zxMMzjDMihgXvRE7JTrAv7jFDgZ6HRjIXoaCyyOo2A3ebQNHYo9DAKPcI7CKis9ZmOoTuWasN2kgr7RGGfKNcn6tojQV_ysvEbcosyRw5lfQF9tUDdHWdqevZWTcczefLlw0RNPXLQwVC1U06pRCJjPMaceIT2qTBX4A8gXdh1DVk4_lcWkfh7FmCPHIzakHnkaYPv_muA5CTA3rFRHEpvXS91_unzOV7u_3PJA3K32cxHnfRzslNd1fYFsMEqPSS7o-OT4_GhG--_AfBEV7E |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbhMxFLVQu4ANFAp0KA8vUHcTZR4e291FlBCgjQqkSmBjeWY8UtRkUjUzUmHVT-hf9L_6JdzreaBERaoQuyi2J7F9bJ975_heQt76aZDprvFcw3kKBooUbpx5mSuBO4QczjQW4H3no2E0OAk_TdikTgeEd2Gq-BCtww1Xht2vcYGjQ3p9lUtXSBHVEi3MotIBQrmJCb4xkP7B1z-xpKRXhw4PhcuAU67Kem590spZtYnDfnEbEV3ltfZg6j8is6ZLlR7ltFMWcSf5tRbt8T_1eYs8rAks7VWIe0zumfwJ2e7lYLzPf9I9aiWl1le_Ta57OdVWMAJ7Kk1sAgk4KmkTyJwWC3rW1Ee0UFNlFaJ4ARRFTGAj7NORlfbSZRmj0-jm8mra5u4tqM6hpJjOy1m5XCtK0DLAp1j00UVGs-lsXlUCRKfNry2fkpP--9G7gVtnhnATTGThYlat1AieRCLSJvNSw2IfdZEpAE8Yrpln_ESahMtUIhw5476fhQnwwxS-C56RjXyRmx1CgaL5qWbMx1hjgdFxAAQ3g6ExXaG7ge8Q3mBAJXXYdMzeMVMr5pNUOCcK50TZOVEXDvHalmdV6JA7tNmzMGsb6PNTlN5xpsbDD2rcn8iDH19GauyQ3QaHqt51lkpEMsSbzJFDaFsK2wW-A9K5WZRQheOrZRGIv1cBAsnBrvWZQ55XAG__DfCcCAg8DoqF6Z37pY6_fT_Gjy_-ueUbcn8wOjpUhx-Hn3fJg8q3j7Lpl2SjOC_NKyCHRfzaLvrfdIdaWw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLXQjITYwMAAE4aHF2h2qZqHY3t2FaUMr6pARy1srCR2pKptWk0TaWDFJ_AX_Bdfwr3OA7UapBFiF8V2EtvH9rnO8b2EPPd1kMVd47mGcw0GihRuknmZK4E7hBzWNBbgeef3w-jsPHwzZdNa_4RnYSr_EO2GG44MO1_jAF_rbHeQS1dIEdUKLQyi0gE-uR9GXYlhHPof_7iSkl7tOTwULgNKua3qufJJW0vVPrb65VU8dJvW2nVpcIfMmxpVcpR5pyySTvptx9nj_6nyAbld01faq_B2l9ww-T1y2MvBdF9-pSfUCkrtTv0h-dnLaWzlIjCj0tSGj4CFkjZuzGmxousmP2KFmiqmEMXjnyhhAgvhlI6tsJduygS3jH59_zFrI_cWNM4hpZgty0W52UlK0S7Ap1js0VVGs9liWWUCPOvmbZv75HzwcvzizK3jQrgphrFwMaaWNoKnkYhik3nasMRHVaQG2AnDY-YZP5Um5VJLBCNn3PezMAV2qOFe8IDs5avcHBEKBM3XMWM-ehoLTJwEQG8zaBrTFXE38B3CGwiotHaajrE7FmrLeJIK-0RhnyjbJ-rSIV5bcl05DrlGmROLsrZAfDFH4R1najJ8pSaDqex_-TBWE4ccNzBU9ZyzUSKSIZ5jjhxC21SYLPAPUJybVQlZOP5YFoH4exagjxysWp855GGF7_ZrgOVEQN-xUSxKr10vNfr0eYSXj_655DNyc9QfqHevh2-Pya1qYx8104_JXnFRmifADIvkqR3yvwEaLlkK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+affective+computing+approach+to+physiological+emotion+specificity%3A+Toward+subject-independent+and+stimulus-independent+classification+of+film-induced+emotions&rft.jtitle=Psychophysiology&rft.au=Kolodyazhniy%2C+Vitaliy&rft.au=Kreibig%2C+Sylvia+D&rft.au=Gross%2C+James+J&rft.au=Roth%2C+Walton+T&rft.date=2011-07-01&rft.issn=0048-5772&rft.eissn=1469-8986&rft.volume=48&rft.issue=7&rft.spage=908&rft.epage=922&rft_id=info:doi/10.1111%2Fj.1469-8986.2010.01170.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon |