The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines
The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five million deaths worldwide. It was recognized in the beginning that only an effective vaccine could lead to a way out of the pandemic, and therefore...
Saved in:
Published in | Frontiers in cell and developmental biology Vol. 9; p. 789427 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
04.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five million deaths worldwide. It was recognized in the beginning that only an effective vaccine could lead to a way out of the pandemic, and therefore the race for the COVID-19 vaccine started immediately, boosted by the availability of the viral sequence data. Two novel vaccine platforms, based on mRNA technology, were developed in 2020 by Pfizer-BioNTech and Moderna Therapeutics (comirnaty® and spikevax®, respectively), and were the first ones presenting efficacies higher than 90%. Both consisted of N1-methyl-pseudouridine-modified mRNA encoding the SARS-COVID-19 Spike protein and were delivered with a lipid nanoparticle (LNP) formulation. Because the delivery problem of ribonucleic acids had been known for decades, the success of LNPs was quickly hailed by many as the unsung hero of COVID-19 mRNA vaccines. However, the clinical trial efficacy results of the Curevac mRNA vaccine (CVnCoV) suggested that the delivery system was not the only key to the success. CVnCoV consisted of an unmodified mRNA (encoding the same spike protein as Moderna and Pfizer-BioNTech’s mRNA vaccines) and was formulated with the same LNP as Pfizer-BioNTech’s vaccine (Acuitas ALC-0315). However, its efficacy was only 48%. This striking difference in efficacy could be attributed to the presence of a critical RNA modification (N1-methyl-pseudouridine) in the Pfizer-BioNTech and Moderna’s mRNA vaccines (but not in CVnCoV). Here we highlight the features of N1-methyl-pseudouridine and its contributions to mRNA vaccines. |
---|---|
AbstractList | The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five million deaths worldwide. It was recognized in the beginning that only an effective vaccine could lead to a way out of the pandemic, and therefore the race for the COVID-19 vaccine started immediately, boosted by the availability of the viral sequence data. Two novel vaccine platforms, based on mRNA technology, were developed in 2020 by Pfizer-BioNTech and Moderna Therapeutics (comirnaty® and spikevax®, respectively), and were the first ones presenting efficacies higher than 90%. Both consisted of N1-methyl-pseudouridine-modified mRNA encoding the SARS-COVID-19 Spike protein and were delivered with a lipid nanoparticle (LNP) formulation. Because the delivery problem of ribonucleic acids had been known for decades, the success of LNPs was quickly hailed by many as the unsung hero of COVID-19 mRNA vaccines. However, the clinical trial efficacy results of the Curevac mRNA vaccine (CVnCoV) suggested that the delivery system was not the only key to the success. CVnCoV consisted of an unmodified mRNA (encoding the same spike protein as Moderna and Pfizer-BioNTech’s mRNA vaccines) and was formulated with the same LNP as Pfizer-BioNTech’s vaccine (Acuitas ALC-0315). However, its efficacy was only 48%. This striking difference in efficacy could be attributed to the presence of a critical RNA modification (N1-methyl-pseudouridine) in the Pfizer-BioNTech and Moderna’s mRNA vaccines (but not in CVnCoV). Here we highlight the features of N1-methyl-pseudouridine and its contributions to mRNA vaccines. The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five million deaths worldwide. It was recognized in the beginning that only an effective vaccine could lead to a way out of the pandemic, and therefore the race for the COVID-19 vaccine started immediately, boosted by the availability of the viral sequence data. Two novel vaccine platforms, based on mRNA technology, were developed in 2020 by Pfizer-BioNTech and Moderna Therapeutics (comirnaty® and spikevax®, respectively), and were the first ones presenting efficacies higher than 90%. Both consisted of N1-methyl-pseudouridine-modified mRNA encoding the SARS-COVID-19 Spike protein and were delivered with a lipid nanoparticle (LNP) formulation. Because the delivery problem of ribonucleic acids had been known for decades, the success of LNPs was quickly hailed by many as the unsung hero of COVID-19 mRNA vaccines. However, the clinical trial efficacy results of the Curevac mRNA vaccine (CVnCoV) suggested that the delivery system was not the only key to the success. CVnCoV consisted of an unmodified mRNA (encoding the same spike protein as Moderna and Pfizer-BioNTech's mRNA vaccines) and was formulated with the same LNP as Pfizer-BioNTech's vaccine (Acuitas ALC-0315). However, its efficacy was only 48%. This striking difference in efficacy could be attributed to the presence of a critical RNA modification (N1-methyl-pseudouridine) in the Pfizer-BioNTech and Moderna's mRNA vaccines (but not in CVnCoV). Here we highlight the features of N1-methyl-pseudouridine and its contributions to mRNA vaccines.The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five million deaths worldwide. It was recognized in the beginning that only an effective vaccine could lead to a way out of the pandemic, and therefore the race for the COVID-19 vaccine started immediately, boosted by the availability of the viral sequence data. Two novel vaccine platforms, based on mRNA technology, were developed in 2020 by Pfizer-BioNTech and Moderna Therapeutics (comirnaty® and spikevax®, respectively), and were the first ones presenting efficacies higher than 90%. Both consisted of N1-methyl-pseudouridine-modified mRNA encoding the SARS-COVID-19 Spike protein and were delivered with a lipid nanoparticle (LNP) formulation. Because the delivery problem of ribonucleic acids had been known for decades, the success of LNPs was quickly hailed by many as the unsung hero of COVID-19 mRNA vaccines. However, the clinical trial efficacy results of the Curevac mRNA vaccine (CVnCoV) suggested that the delivery system was not the only key to the success. CVnCoV consisted of an unmodified mRNA (encoding the same spike protein as Moderna and Pfizer-BioNTech's mRNA vaccines) and was formulated with the same LNP as Pfizer-BioNTech's vaccine (Acuitas ALC-0315). However, its efficacy was only 48%. This striking difference in efficacy could be attributed to the presence of a critical RNA modification (N1-methyl-pseudouridine) in the Pfizer-BioNTech and Moderna's mRNA vaccines (but not in CVnCoV). Here we highlight the features of N1-methyl-pseudouridine and its contributions to mRNA vaccines. |
Author | Adachi, Hironori Morais, Pedro Yu, Yi-Tao |
AuthorAffiliation | 1 ProQR Therapeutics, Leiden , Netherlands 2 Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester , NY , United States |
AuthorAffiliation_xml | – name: 2 Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester , NY , United States – name: 1 ProQR Therapeutics, Leiden , Netherlands |
Author_xml | – sequence: 1 givenname: Pedro surname: Morais fullname: Morais, Pedro – sequence: 2 givenname: Hironori surname: Adachi fullname: Adachi, Hironori – sequence: 3 givenname: Yi-Tao surname: Yu fullname: Yu, Yi-Tao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34805188$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1rFTEUhoNUbK39AW5klm7mms9JZiOUqdYLxYrU4i7k46RNmTupyYzgv29ubyut4Coh5z3P4eR5jfamNAFCbwleMab6D8HBOK4opmQlVc-pfIEOKO27tmP8596T-z46KuUGY0yokEKxV2ifcYUFUeoAnVxcQzPkOEdnxmZI05yjXeaYpiaF5luBxaclRx8naObUbL5_PW6G88v1SUv65tI4VwvlDXoZzFjg6OE8RD8-f7oYvrRn56fr4fisdYKRuQ2G8gA4eBEc95g7EaztvMUh8MAoBUqwcx2mzlsA3hMnHFgJTFLjsQnsEK13XJ_Mjb7NcWPyH51M1PcPKV9pk-smI-hgO8NF31kaem65s9B76RyT0kujbFdZH3es28VuwDuom5vxGfR5ZYrX-ir91qqrXylJBbx_AOT0a4Ey600sWydmgrQUTWtOUcGFqNF3T2f9HfKooQbkLuByKiVD0C7OZmuhjo6jJlhvnet753rrXO-c107yT-cj_P89dyg1sVw |
CitedBy_id | crossref_primary_10_1038_s41525_023_00387_4 crossref_primary_10_11648_j_ejcbs_20241002_11 crossref_primary_10_3390_biomedicines13010097 crossref_primary_10_1016_j_molcel_2024_09_003 crossref_primary_10_1002_slct_202400006 crossref_primary_10_1007_s13258_024_01601_y crossref_primary_10_31083_j_fbl2707207 crossref_primary_10_1016_j_omtn_2022_04_017 crossref_primary_10_1111_pbi_13829 crossref_primary_10_1016_j_molcel_2022_10_012 crossref_primary_10_1039_D4AY00114A crossref_primary_10_7759_cureus_50703 crossref_primary_10_1038_s41571_023_00811_9 crossref_primary_10_1007_s40820_025_01665_9 crossref_primary_10_1016_j_mib_2023_102417 crossref_primary_10_1055_a_2500_1878 crossref_primary_10_3389_fimmu_2022_1018961 crossref_primary_10_1039_D3CB00221G crossref_primary_10_3390_pharmaceutics15020351 crossref_primary_10_1016_j_jmb_2023_168385 crossref_primary_10_1002_macp_202100443 crossref_primary_10_1021_acs_molpharmaceut_2c00033 crossref_primary_10_1152_ajpcell_00460_2021 crossref_primary_10_1016_j_ijbiomac_2024_131427 crossref_primary_10_3389_falgy_2023_1277244 crossref_primary_10_1002_ctm2_70140 crossref_primary_10_1038_s41584_023_00992_8 crossref_primary_10_3390_vaccines12010009 crossref_primary_10_1016_j_checat_2024_101127 crossref_primary_10_3389_fcell_2022_901510 crossref_primary_10_1016_j_abb_2025_110326 crossref_primary_10_1016_j_ymthe_2023_03_024 crossref_primary_10_1261_rna_080031_124 crossref_primary_10_1515_mr_2023_0062 crossref_primary_10_1038_s41467_022_33661_7 crossref_primary_10_2174_0929867330666221014111403 crossref_primary_10_1042_BCJ20230096 crossref_primary_10_1186_s12915_025_02170_6 crossref_primary_10_1016_j_omtn_2023_102069 crossref_primary_10_1016_j_stem_2023_01_007 crossref_primary_10_1016_j_jbc_2024_108015 crossref_primary_10_1021_jasms_3c00411 crossref_primary_10_3389_fimmu_2023_1155728 crossref_primary_10_3390_vaccines12121315 crossref_primary_10_1360_TB_2023_0800 crossref_primary_10_1002_ejoc_202400342 crossref_primary_10_1055_s_0042_1751508 crossref_primary_10_1186_s12967_024_05687_6 crossref_primary_10_7868_S0032874X23120086 crossref_primary_10_1002_adma_202308029 crossref_primary_10_1002_ijch_202400005 crossref_primary_10_1038_s44298_024_00067_9 crossref_primary_10_3390_pharmaceutics15020620 crossref_primary_10_1093_nar_gkad067 crossref_primary_10_1128_aem_00826_23 crossref_primary_10_1007_s10822_022_00447_4 crossref_primary_10_1038_s41598_022_17249_1 crossref_primary_10_1021_acscatal_3c04436 crossref_primary_10_3390_molecules27092939 crossref_primary_10_1002_advs_202401287 crossref_primary_10_1016_j_tig_2023_09_001 crossref_primary_10_1016_j_ymthe_2023_02_012 crossref_primary_10_3390_vaccines11071142 crossref_primary_10_1016_j_vaccine_2023_07_024 crossref_primary_10_1152_ajpcell_00024_2023 crossref_primary_10_1038_s41577_024_01091_9 crossref_primary_10_1038_s41392_022_01175_9 crossref_primary_10_1039_D4CB00022F crossref_primary_10_3389_fmolb_2023_1128067 crossref_primary_10_1002_mco2_559 crossref_primary_10_3390_biomedicines11082287 crossref_primary_10_1186_s12951_022_01243_w crossref_primary_10_1016_j_gde_2024_102210 crossref_primary_10_1038_s41573_023_00827_x crossref_primary_10_3390_vaccines13010052 crossref_primary_10_7759_cureus_52876 crossref_primary_10_1038_s41380_023_02339_x crossref_primary_10_1002_cmdc_202300600 crossref_primary_10_1016_j_molliq_2024_124407 crossref_primary_10_3389_fcell_2022_849298 crossref_primary_10_1016_j_intimp_2024_113137 crossref_primary_10_1038_s41598_024_68617_y crossref_primary_10_1038_s41598_023_46351_1 crossref_primary_10_1038_s41587_025_02561_8 crossref_primary_10_1021_acsbiomedchemau_4c00057 crossref_primary_10_56782_pps_292 crossref_primary_10_1016_j_bbcan_2023_189068 crossref_primary_10_3390_ijms242317116 crossref_primary_10_3390_biomedicines12061284 crossref_primary_10_1093_nar_gkae779 crossref_primary_10_3389_fimmu_2022_843928 crossref_primary_10_3389_fimmu_2023_1286820 crossref_primary_10_2298_VSP2310811J crossref_primary_10_1038_s41541_023_00783_y crossref_primary_10_1021_acsnano_2c12584 crossref_primary_10_3390_pharmaceutics15010194 crossref_primary_10_3390_j6020017 crossref_primary_10_1038_s41598_024_54941_w crossref_primary_10_1016_j_tips_2023_11_002 crossref_primary_10_1016_j_ijpharm_2023_123688 crossref_primary_10_1002_jex2_70010 crossref_primary_10_1111_imm_13844 crossref_primary_10_1093_narmme_ugae004 crossref_primary_10_1016_j_stem_2024_10_002 crossref_primary_10_3389_fbioe_2022_1052436 crossref_primary_10_1039_D4GC02955K crossref_primary_10_1021_acsomega_3c08505 crossref_primary_10_1038_s41541_023_00751_6 crossref_primary_10_1038_s41580_023_00622_x crossref_primary_10_1039_D3AN02157B crossref_primary_10_1038_s41587_024_02393_y crossref_primary_10_1016_j_biomaterials_2022_121971 crossref_primary_10_1038_s41392_022_01007_w crossref_primary_10_29121_granthaalayah_v12_i6_2024_5696 crossref_primary_10_3390_pathogens11121469 crossref_primary_10_3389_fmicb_2024_1342544 crossref_primary_10_3389_fmolb_2023_1219668 crossref_primary_10_1016_j_omtn_2023_102087 crossref_primary_10_1016_j_vaccine_2025_126883 crossref_primary_10_1021_acs_molpharmaceut_2c00653 crossref_primary_10_3389_fmolb_2023_1176416 crossref_primary_10_1021_jacs_2c00020 crossref_primary_10_1038_s41392_024_01777_5 crossref_primary_10_1021_acs_molpharmaceut_3c00803 crossref_primary_10_1038_s41581_022_00617_5 crossref_primary_10_1021_acssynbio_4c00028 crossref_primary_10_3390_microorganisms10091754 crossref_primary_10_3390_cancers15102860 crossref_primary_10_1016_j_tibtech_2024_07_012 crossref_primary_10_1248_yakushi_24_00175 crossref_primary_10_1136_bmj_2022_073747 crossref_primary_10_1021_acsomega_3c05219 crossref_primary_10_1038_s41467_023_41354_y crossref_primary_10_1002_jmv_28572 crossref_primary_10_3390_vaccines10050709 |
Cites_doi | 10.1016/S0021-9258(18)70770-9 10.1038/d41586-021-02483-w 10.1074/jbc.M310175200 10.1093/nar/gkr586 10.1002/1521-4141(200001)30:1<1:aid-immu1>3.0.co;2-# 10.1126/science.1690918 10.1016/j.jconrel.2015.08.051 10.1126/science.abk0458 10.1073/pnas.1821754116 10.1038/d41573-021-00156-x 10.1038/sj.gt.3302964 10.1126/science.abb6502 10.1073/pnas.1707304114 10.1038/nature10165 10.1056/NEJMoa2035389 10.1126/science.abj9853 10.1021/ja01096a050 10.1038/nbt.3802 10.1093/nar/gkq347 10.1038/274921a0 10.1056/NEJMc2104974 10.1093/nar/gkp1189 10.1016/j.cell.2014.08.028 10.1084/jem.20171450 10.1038/s41541-021-00292-w 10.1002/eji.200636617 10.1093/nar/gnf138 10.3390/pharmaceutics12020102 10.1038/nature13802 10.1007/978-3-030-71612-7_19 10.1016/j.immuni.2005.06.008 10.1021/acscentsci.1c00197 10.1016/j.vaccine.2021.02.007 10.1038/167483a0 10.1128/MCB.00531-10 10.1093/infdis/jix592 10.1038/s41541-020-0159-8 10.1038/d41586-021-01661-0 10.1016/j.cell.2017.02.017 10.1016/j.bbrc.2019.10.009 10.1093/nar/12.18.7035 10.1126/sciadv.aaz6893 10.1101/2021.05.13.443734 10.1038/nsb873 10.2139/ssrn.3911826 10.1093/nar/gkt1330 10.1126/science.1093620 10.3390/pharmaceutics13010045 10.3390/v13020270 10.1038/d41586-021-01694-5 10.1093/nar/23.24.5020 10.1038/s41586-020-2622-0 10.1016/S0140-6736(21)01358-1 10.1093/nar/27.7.1683 10.3390/vaccines9010065 10.3390/ijms21124394 10.1093/nar/gkx135 10.1042/bj1690071 10.1038/274923a0 10.1007/s11095-004-1873-z 10.1073/pnas.202477199 10.1002/1873-3468.14190 10.1038/nature12302 10.1007/s40265-018-0983-6 10.1038/nature21428 10.1517/14712598.4.8.1285 10.1080/152165400410182 10.1093/nar/12.18.7057 10.1056/NEJMoa2034577 10.1038/mt.2015.103 10.1371/journal.pone.0110799 10.1093/nar/gkx1030 10.1002/eji.1830230749 10.3390/biomedicines9050550 10.3390/vaccines9010003 10.1038/mt.2008.200 10.1016/j.immuni.2005.08.003 10.1017/S1355838201002308 10.1093/nar/gkaa070 10.3389/fgene.2020.00088 10.1126/science.abb2507 10.4049/jimmunol.165.8.4710 10.1016/j.stem.2010.08.012 10.1073/pnas.86.16.6077 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Morais, Adachi and Yu. Copyright © 2021 Morais, Adachi and Yu. 2021 Morais, Adachi and Yu |
Copyright_xml | – notice: Copyright © 2021 Morais, Adachi and Yu. – notice: Copyright © 2021 Morais, Adachi and Yu. 2021 Morais, Adachi and Yu |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fcell.2021.789427 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Morais et al |
EISSN | 2296-634X |
ExternalDocumentID | oai_doaj_org_article_fb6a4596b2f94b4cbe9d7cc377d7a8b6 PMC8600071 34805188 10_3389_fcell_2021_789427 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM138387 – fundername: NCI NIH HHS grantid: R21 CA241111 – fundername: ; |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM EMOBN IAO IEA IHR IHW IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c531t-fa24fe0fd5fc4d04c5fbb6db0ff4f322e210cc602cdbee491c5ceb7e372ad0af3 |
IEDL.DBID | M48 |
ISSN | 2296-634X |
IngestDate | Wed Aug 27 01:23:03 EDT 2025 Thu Aug 21 18:27:50 EDT 2025 Fri Jul 11 11:26:19 EDT 2025 Thu Jan 02 22:45:18 EST 2025 Tue Jul 01 03:20:46 EDT 2025 Thu Apr 24 23:02:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 N1-methyl-pseudouridine RNA modification SARS-CoV-2 lipid nanoparticles vaccines mRNA pseudouridine |
Language | English |
License | Copyright © 2021 Morais, Adachi and Yu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-fa24fe0fd5fc4d04c5fbb6db0ff4f322e210cc602cdbee491c5ceb7e372ad0af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Chengqi Yi, Peking University, China Jia Sheng, University at Albany, United States Reviewed by: Jean-Paul Desaulniers, Ontario Tech University, Canada This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Cell and Developmental Biology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2021.789427 |
PMID | 34805188 |
PQID | 2600825455 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fb6a4596b2f94b4cbe9d7cc377d7a8b6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8600071 proquest_miscellaneous_2600825455 pubmed_primary_34805188 crossref_citationtrail_10_3389_fcell_2021_789427 crossref_primary_10_3389_fcell_2021_789427 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-04 |
PublicationDateYYYYMMDD | 2021-11-04 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in cell and developmental biology |
PublicationTitleAlternate | Front Cell Dev Biol |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Morais (B50) 2021 Dowdy (B26) 2017; 35 Wrapp (B86) 2020; 367 Mateus (B47) 2021; 374 B68 Pardi (B62) 2018; 215 Jackson (B33) 2020; 5 Nelson (B55) 2020; 6 Cohn (B17) 1951; 167 Morais (B51) 2020; 21 Boccaletto (B9) 2018; 46 Karikó (B37) 2008; 16 Fernández (B28) 2013; 500 Brand (B10) 1978; 169 Krieg (B42) 1984; 12 Kis (B40) 2020; 9 Wadhwa (B81) 2020; 12 Malone (B45) 1989; 86 Mullard (B52) 2021; 20 Adachi (B1) 2021; 9 Heil (B29) 2004; 303 Martinon (B46) 1993; 23 Sheikh (B89) 2021; 397 Anderson (B3) 2011; 39 Charette (B13) 2000; 49 Carlile (B12) 2014; 515 Svitkin (B77) 2017; 45 Newby (B56) 2001; 7 B74 Newby (B57); 99 Polack (B69) 2020; 383 Wolff (B85) 1990; 247 Dolgin (B25); 597 Cohen (B16) 2021 Kyriakidis (B43) 2021; 6 Karijolich (B35) 2011; 474 Davis (B20) 1995; 23 B8 Anderson (B4) 2010; 38 Baden (B6) 2021; 384 Karikó (B36) 2005; 23 Kierzek (B39) 2014; 42 Pallesen (B61) 2017; 114 Pardi (B64) 2013 Richner (B71) 2017; 168 Buschmann (B11) 2021; 9 Hoerr (B30) 2000; 30 Lovejoy (B44) 2014; 9 Westhof (B84) 2019; 520 Abu-Raddad (B88) 2021; 385 Dolgin (B24); 594 Ruffell (B73) 2021; 595 Song (B76) 2020; 11 Padilla (B60) 2002; 30 Corbett (B18) 2020; 586 Thorp (B79) 2020; 367 Meyer (B49) 2018; 217 Diebold (B22) 2006; 36 Davis (B21) 1957; 227 Weissman (B83) 2000; 165 Pascolo (B66) 2004; 4 Thess (B78) 2015; 23 Andries (B5) 2015; 217 Karikó (B38) 2004; 279 Warren (B82) 2010; 7 Ostro (B59) 1978; 274 Roth (B72) 2021 Pardi (B63) 2017; 543 Hoy (B31) 2018; 78 Schwartz (B75) 2014; 159 Probst (B70) 2007; 14 Chu (B15) 2021; 39 B19 Pascolo (B67) 2021; 13 Baker (B7) 2021 Eyler (B27) 2019; 116 Tomita (B80) 1999; 27 Jeffs (B34) 2005; 22 Parr (B65) 2020; 48 Dimitriadis (B23) 1978; 274 Kremsner (B41) 2021 Chen (B14) 2010; 30 Nance (B53) 2021; 7 Alfagih (B2) 2020; 13 Melton (B48) 1984; 12 Naylor (B54) 1965; 87 Newby (B58); 9 Wurm (B87) 2010; 38 Ishii (B32) 2005; 23 |
References_xml | – volume: 227 start-page: 907 year: 1957 ident: B21 article-title: Ribonucleic Acids from Yeast Which Contain a Fifth Nucleotide publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)70770-9 – volume: 597 start-page: 318 ident: B25 article-title: The Tangled History of mRNA Vaccines publication-title: Nature doi: 10.1038/d41586-021-02483-w – volume: 279 start-page: 12542 year: 2004 ident: B38 article-title: mRNA Is an Endogenous Ligand for Toll-like Receptor 3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M310175200 – volume: 39 start-page: 9329 year: 2011 ident: B3 article-title: Nucleoside Modifications in RNA Limit Activation of 2'-5'-oligoadenylate Synthetase and Increase Resistance to Cleavage by RNase L publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr586 – volume: 30 start-page: 1 year: 2000 ident: B30 article-title: In Vivo application of RNA Leads to Induction of Specific Cytotoxic T Lymphocytes and Antibodies publication-title: Eur. J. Immunol. doi: 10.1002/1521-4141(200001)30:1<1:aid-immu1>3.0.co;2-# – volume: 247 start-page: 1465 year: 1990 ident: B85 article-title: Direct Gene Transfer into Mouse Muscle In Vivo publication-title: Science doi: 10.1126/science.1690918 – volume: 217 start-page: 337 year: 2015 ident: B5 article-title: N1-methylpseudouridine-incorporated mRNA Outperforms Pseudouridine-Incorporated mRNA by Providing Enhanced Protein Expression and Reduced Immunogenicity in Mammalian Cell Lines and Mice publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2015.08.051 – ident: B68 – year: 2021 ident: B16 article-title: What Went Wrong with CureVac’s Highly Anticipated New mRNA Vaccine for COVID-19 publication-title: Science doi: 10.1126/science.abk0458 – volume: 116 start-page: 23068 year: 2019 ident: B27 article-title: Pseudouridinylation of mRNA Coding Sequences Alters Translation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1821754116 – volume: 20 start-page: 728 year: 2021 ident: B52 article-title: Pfizer's COVID-19 Vaccine Secures First Full FDA Approval publication-title: Nat. Rev. Drug Discov. doi: 10.1038/d41573-021-00156-x – volume: 14 start-page: 1175 year: 2007 ident: B70 article-title: Spontaneous Cellular Uptake of Exogenous Messenger RNA In Vivo Is Nucleic Acid-specific, Saturable and Ion Dependent publication-title: Gene Ther. doi: 10.1038/sj.gt.3302964 – volume: 367 start-page: 1169 year: 2020 ident: B79 article-title: Do us a Favor publication-title: Science doi: 10.1126/science.abb6502 – volume: 114 start-page: E7348 year: 2017 ident: B61 article-title: Immunogenicity and Structures of a Rationally Designed Prefusion MERS-CoV Spike Antigen publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1707304114 – start-page: 29 volume-title: Synthetic Messenger RNA and Cell Metabolism Modulation Methods in Molecular Biology year: 2013 ident: B64 article-title: In Vitro Transcription of Long RNA Containing Modified Nucleosides – volume: 474 start-page: 395 year: 2011 ident: B35 article-title: Converting Nonsense Codons into Sense Codons by Targeted Pseudouridylation publication-title: Nature doi: 10.1038/nature10165 – volume: 384 start-page: 403 year: 2021 ident: B6 article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 – volume: 374 start-page: eabj9853 year: 2021 ident: B47 article-title: Low-dose mRNA-1273 COVID-19 Vaccine Generates Durable Memory Enhanced by Cross-Reactive T Cells publication-title: Science doi: 10.1126/science.abj9853 – volume: 87 start-page: 4209 year: 1965 ident: B54 article-title: Selective Chemical Modifications of Uridine and Pseudouridine in Polynucleotides and Their Effect on the Specificities of Ribonuclease and Phosphodiesterases publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01096a050 – volume: 35 start-page: 222 year: 2017 ident: B26 article-title: Overcoming Cellular Barriers for RNA Therapeutics publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3802 – volume: 38 start-page: 5884 year: 2010 ident: B4 article-title: Incorporation of Pseudouridine into mRNA Enhances Translation by Diminishing PKR Activation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq347 – volume: 274 start-page: 921 year: 1978 ident: B59 article-title: Evidence for Translation of Rabbit Globin mRNA after Liposomemediated Insertion into a Human Cell Line publication-title: Nature doi: 10.1038/274921a0 – volume: 385 start-page: 187 year: 2021 ident: B88 article-title: Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2104974 – volume: 38 start-page: 2387 year: 2010 ident: B87 article-title: The Ribosome Assembly Factor Nep1 Responsible for Bowen-Conradi Syndrome Is a Pseudouridine-N1-specific Methyltransferase publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp1189 – volume: 159 start-page: 148 year: 2014 ident: B75 article-title: Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA publication-title: Cell doi: 10.1016/j.cell.2014.08.028 – volume: 215 start-page: 1571 year: 2018 ident: B62 article-title: Nucleoside-modified mRNA Vaccines Induce Potent T Follicular Helper and Germinal center B Cell Responses publication-title: J. Exp. Med. doi: 10.1084/jem.20171450 – volume: 6 start-page: 28 year: 2021 ident: B43 article-title: SARS-CoV-2 Vaccines Strategies: a Comprehensive Review of Phase 3 Candidates publication-title: npj Vaccin. doi: 10.1038/s41541-021-00292-w – volume: 36 start-page: 3256 year: 2006 ident: B22 article-title: Nucleic Acid Agonists for Toll-like Receptor 7 Are Defined by the Presence of Uridine Ribonucleotides publication-title: Eur. J. Immunol. doi: 10.1002/eji.200636617 – volume: 30 start-page: 138e year: 2002 ident: B60 article-title: A Y639F/H784A T7 RNA Polymerase Double Mutant Displays superior Properties for Synthesizing RNAs with Non-canonical NTPs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gnf138 – volume: 12 start-page: 102 year: 2020 ident: B81 article-title: Opportunities and Challenges in the Delivery of mRNA-Based Vaccines publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12020102 – volume: 515 start-page: 143 year: 2014 ident: B12 article-title: Pseudouridine Profiling Reveals Regulated mRNA Pseudouridylation in Yeast and Human Cells publication-title: Nature doi: 10.1038/nature13802 – start-page: 505 volume-title: Epitranscriptomics year: 2021 ident: B50 article-title: Mechanisms and Clinical Applications of RNA Pseudouridylation doi: 10.1007/978-3-030-71612-7_19 – volume: 23 start-page: 165 year: 2005 ident: B36 article-title: Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA publication-title: Immunity doi: 10.1016/j.immuni.2005.06.008 – volume: 7 start-page: 748 year: 2021 ident: B53 article-title: Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.1c00197 – volume: 39 start-page: 2791 year: 2021 ident: B15 article-title: A Preliminary Report of a Randomized Controlled Phase 2 Trial of the Safety and Immunogenicity of mRNA-1273 SARS-CoV-2 Vaccine publication-title: Vaccine doi: 10.1016/j.vaccine.2021.02.007 – volume: 167 start-page: 483 year: 1951 ident: B17 article-title: Nucleoside-5′-Phosphates from Ribonucleic Acid publication-title: Nature doi: 10.1038/167483a0 – volume: 30 start-page: 4108 year: 2010 ident: B14 article-title: A Flexible RNA Backbone within the Polypyrimidine Tract Is Required for U2AF 65 Binding and Pre-mRNA Splicing In Vivo publication-title: Mol. Cel. Biol. doi: 10.1128/MCB.00531-10 – volume: 217 start-page: 451 year: 2018 ident: B49 article-title: Modified mRNA-Based Vaccines Elicit Robust Immune Responses and Protect Guinea Pigs from Ebola Virus Disease publication-title: J. Infect. Dis. doi: 10.1093/infdis/jix592 – volume: 5 start-page: 11 year: 2020 ident: B33 article-title: The Promise of mRNA Vaccines: a Biotech and Industrial Perspective publication-title: npj Vaccin. doi: 10.1038/s41541-020-0159-8 – volume: 594 start-page: 483 ident: B24 article-title: CureVac COVID Vaccine Let-Down Spotlights mRNA Design Challenges publication-title: Nature doi: 10.1038/d41586-021-01661-0 – volume: 168 start-page: 1114 year: 2017 ident: B71 article-title: Modified mRNA Vaccines Protect against Zika Virus Infection publication-title: Cell doi: 10.1016/j.cell.2017.02.017 – volume: 520 start-page: 702 year: 2019 ident: B84 article-title: Pseudouridines or How to Draw on Weak Energy Differences publication-title: Biochem. Biophysical Res. Commun. doi: 10.1016/j.bbrc.2019.10.009 – volume: 12 start-page: 7035 year: 1984 ident: B48 article-title: Efficientin Vitrosynthesis of Biologically Active RNA and RNA Hybridization Probes from Plasmids Containing a Bacteriophage SP6 Promoter publication-title: Nucl. Acids Res. doi: 10.1093/nar/12.18.7035 – volume: 6 start-page: eaaz6893 year: 2020 ident: B55 article-title: Impact of mRNA Chemistry and Manufacturing Process on Innate Immune Activation publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz6893 – year: 2021 ident: B72 article-title: CV2CoV, an Enhanced mRNA-Based SARS-CoV-2 Vaccine Candidate, Supports Higher Protein Expression and Improved Immunogenicity in Rats publication-title: Immunology doi: 10.1101/2021.05.13.443734 – volume: 9 start-page: 958 ident: B58 article-title: Sculpting of the Spliceosomal branch Site Recognition Motif by a Conserved Pseudouridine publication-title: Nat. Struct. Biol. doi: 10.1038/nsb873 – year: 2021 ident: B41 article-title: Efficacy and Safety of the CVnCoV SARS-CoV-2 mRNA Vaccine Candidate: Results from Herald, a Phase 2b/3, Randomised, Observer-Blinded, Placebo-Controlled Clinical Trial in Ten Countries in Europe and Latin America publication-title: SSRN J. doi: 10.2139/ssrn.3911826 – volume: 42 start-page: 3492 year: 2014 ident: B39 article-title: The Contribution of Pseudouridine to Stabilities and Structure of RNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1330 – volume: 303 start-page: 1526 year: 2004 ident: B29 article-title: Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8 publication-title: Science doi: 10.1126/science.1093620 – volume: 13 start-page: 45 year: 2020 ident: B2 article-title: Nanoparticles as Adjuvants and Nanodelivery Systems for mRNA-Based Vaccines publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13010045 – volume: 13 start-page: 270 year: 2021 ident: B67 article-title: Synthetic Messenger RNA-Based Vaccines: from Scorn to Hype publication-title: Viruses doi: 10.3390/v13020270 – year: 2021 ident: B7 article-title: Coronapod: CureVac Disappoints in COVID Vaccine Trial publication-title: Nature doi: 10.1038/d41586-021-01694-5 – volume: 23 start-page: 5020 year: 1995 ident: B20 article-title: Stabilization of RNA Stacking by Pseudouridine publication-title: Nucl. Acids Res. doi: 10.1093/nar/23.24.5020 – volume: 586 start-page: 567 year: 2020 ident: B18 article-title: SARS-CoV-2 mRNA Vaccine Design Enabled by Prototype Pathogen Preparedness publication-title: Nature doi: 10.1038/s41586-020-2622-0 – volume: 397 start-page: 2461 year: 2021 ident: B89 article-title: SARS-CoV-2 Delta VOC in Scotland: Demographics, Risk of Hospital Admission, and Vaccine Effectiveness publication-title: Lancet doi: 10.1016/S0140-6736(21)01358-1 – volume: 27 start-page: 1683 year: 1999 ident: B80 article-title: The Presence of Pseudouridine in the Anticodon Alters the Genetic Code: a Possible Mechanism for Assignment of the AAA Lysine Codon as Asparagine in Echinoderm Mitochondria publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.7.1683 – volume: 9 start-page: 65 year: 2021 ident: B11 article-title: Nanomaterial Delivery Systems for mRNA Vaccines publication-title: Vaccines doi: 10.3390/vaccines9010065 – volume: 21 start-page: 4394 year: 2020 ident: B51 article-title: Suppression of Nonsense Mutations by New Emerging Technologies publication-title: IJMS doi: 10.3390/ijms21124394 – volume: 45 start-page: 6023 year: 2017 ident: B77 article-title: N1-methyl-pseudouridine in mRNA Enhances Translation through eIF2α-dependent and Independent Mechanisms by Increasing Ribosome Density publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx135 – volume: 169 start-page: 71 year: 1978 ident: B10 article-title: Biosynthesis of a Hypermodified Nucleotide in Saccharomyces Carlsbergensis 17S and HeLa-Cell 18S Ribosomal Ribonucleic Acid publication-title: Biochem. J. doi: 10.1042/bj1690071 – volume: 274 start-page: 923 year: 1978 ident: B23 article-title: Translation of Rabbit Globin mRNA Introduced by Liposomes into Mouse Lymphocytes publication-title: Nature doi: 10.1038/274923a0 – volume: 22 start-page: 362 year: 2005 ident: B34 article-title: A Scalable, Extrusion-free Method for Efficient Liposomal Encapsulation of Plasmid DNA publication-title: Pharm. Res. doi: 10.1007/s11095-004-1873-z – volume: 99 start-page: 12697 ident: B57 article-title: Investigation of Overhauser Effects between Pseudouridine and Water Protons in RNA Helices publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.202477199 – volume: 595 start-page: 2305 year: 2021 ident: B73 article-title: The Future in an RNA Molecule: from mRNA Vaccines to Therapeutics - an Interview with Drew Weissman publication-title: FEBS Lett. doi: 10.1002/1873-3468.14190 – volume: 500 start-page: 107 year: 2013 ident: B28 article-title: Unusual Base Pairing during the Decoding of a Stop Codon by the Ribosome publication-title: Nature doi: 10.1038/nature12302 – volume: 78 start-page: 1625 year: 2018 ident: B31 article-title: Patisiran: First Global Approval publication-title: Drugs doi: 10.1007/s40265-018-0983-6 – volume: 543 start-page: 248 year: 2017 ident: B63 article-title: Zika Virus protection by a Single Low-Dose Nucleoside-Modified mRNA Vaccination publication-title: Nature doi: 10.1038/nature21428 – ident: B8 – volume: 4 start-page: 1285 year: 2004 ident: B66 article-title: Messenger RNA-Based Vaccines publication-title: Expert Opin. Biol. Ther. doi: 10.1517/14712598.4.8.1285 – volume: 49 start-page: 341 year: 2000 ident: B13 article-title: Pseudouridine in RNA: what, where, How, and Why publication-title: IUBMB Life (International Union Biochem. Mol. Biol. Life) doi: 10.1080/152165400410182 – volume: 12 start-page: 7057 year: 1984 ident: B42 article-title: Functional Messenger RNAs Are Produced by SP6in Vitrotranscription of Cloned cDNAs publication-title: Nucl. Acids Res. doi: 10.1093/nar/12.18.7057 – volume: 383 start-page: 2603 year: 2020 ident: B69 article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – volume: 23 start-page: 1456 year: 2015 ident: B78 article-title: Sequence-engineered mRNA without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals publication-title: Mol. Ther. doi: 10.1038/mt.2015.103 – volume: 9 start-page: e110799 year: 2014 ident: B44 article-title: Transcriptome-Wide Mapping of Pseudouridines: Pseudouridine Synthases Modify Specific mRNAs in S. cerevisiae publication-title: PLoS ONE doi: 10.1371/journal.pone.0110799 – volume: 46 start-page: D303 year: 2018 ident: B9 article-title: MODOMICS: a Database of RNA Modification Pathways. 2017 Update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1030 – volume: 23 start-page: 1719 year: 1993 ident: B46 article-title: Induction of Virus-specific Cytotoxic T Lymphocytesin Vivo by Liposome-Entrapped mRNA publication-title: Eur. J. Immunol. doi: 10.1002/eji.1830230749 – volume: 9 start-page: 550 year: 2021 ident: B1 article-title: From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies publication-title: Biomedicines doi: 10.3390/biomedicines9050550 – volume: 9 start-page: 3 year: 2020 ident: B40 article-title: Resources, Production Scales and Time Required for Producing RNA Vaccines for the Global Pandemic Demand publication-title: Vaccines doi: 10.3390/vaccines9010003 – volume: 16 start-page: 1833 year: 2008 ident: B37 article-title: Incorporation of Pseudouridine into mRNA Yields Superior Nonimmunogenic Vector with Increased Translational Capacity and Biological Stability publication-title: Mol. Ther. doi: 10.1038/mt.2008.200 – volume: 23 start-page: 111 year: 2005 ident: B32 article-title: TLR Ignores Methylated RNA publication-title: Immunity doi: 10.1016/j.immuni.2005.08.003 – volume: 7 start-page: 833 year: 2001 ident: B56 article-title: A Conserved Pseudouridine Modification in Eukaryotic U2 snRNA Induces a Change in branch-site Architecture publication-title: RNA doi: 10.1017/S1355838201002308 – volume: 48 start-page: e35 year: 2020 ident: B65 article-title: N 1-Methylpseudouridine Substitution Enhances the Performance of Synthetic mRNA Switches in Cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa070 – volume: 11 start-page: 88 year: 2020 ident: B76 article-title: PIANO: A Web Server for Pseudouridine-Site (Ψ) Identification and Functional Annotation publication-title: Front. Genet. doi: 10.3389/fgene.2020.00088 – volume: 367 start-page: 1260 year: 2020 ident: B86 article-title: Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 165 start-page: 4710 year: 2000 ident: B83 article-title: HIV Gag mRNA Transfection of Dendritic Cells (DC) Delivers Encoded Antigen to MHC Class I and II Molecules, Causes DC Maturation, and Induces a Potent Human In Vitro Primary Immune Response publication-title: J. Immunol. doi: 10.4049/jimmunol.165.8.4710 – volume: 7 start-page: 618 year: 2010 ident: B82 article-title: Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.08.012 – volume: 86 start-page: 6077 year: 1989 ident: B45 article-title: Cationic Liposome-Mediated RNA Transfection publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.86.16.6077 – ident: B19 – ident: B74 |
SSID | ssj0001257583 |
Score | 2.554461 |
SecondaryResourceType | review_article |
Snippet | The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 789427 |
SubjectTerms | Cell and Developmental Biology COVID-19 mRNA pseudouridine RNA modification SARS-CoV-2 vaccines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUMil9F03bVGgp4IbP0aWdUyThiSQtJQm5Cb0GNFA4i3Z3UP_fWes3WW3lPbSgy-2jMU3I-Yh-fuEeNcFD5T1p7LrI5QAyZTORVM2qDxdUWPgPuT5RXdyCWfX6npN6ovPhGV64AzcfvKdA2U63yQDHoJHE3UIrdZRu96PZNsU89aKqdxdoTSkb_M2JlVhZj9xI5zqwab-oHsDrCKzFohGvv4_JZm_n5VcCz7Hj8TDRdYoD_JsH4stHJ6IB1lH8udTcUTGlkvRAsmEU0sZKzlJ8ssU55F77RSmUM4m8u7rxYE8_Hx1elTWRl65wJvr02fi8vjTt8OTciGPUAZaOLMyuQYSVimqFCBWEFTyvou-SgkSrVOkai6ErmpC9Ihg6qACeo2tblysXGqfi-1hMuBLIWuFNUZNuIYIBluDIVHm4oFQdKnvC1EtsbJhwR3OEha3lmoIhteO8FqG12Z4C_F-9cqPTJzxt8Ef2QCrgcx5Pd4gT7ALT7D_8oRC7C3NZ2mN8DfcgJP51DIJP1fCShXiRTbn6lMt9BWT0hVCbxh6Yy6bT4ab7yMPd9-NGdqr_zH5XbHDeIx_OcJrsT27n-MbSndm_u3o2b8AK3MBFw priority: 102 providerName: Directory of Open Access Journals |
Title | The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34805188 https://www.proquest.com/docview/2600825455 https://pubmed.ncbi.nlm.nih.gov/PMC8600071 https://doaj.org/article/fb6a4596b2f94b4cbe9d7cc377d7a8b6 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF5qRfClWK9RW1bwSUjNZTabfShSW0sVWkU8pW_LXmarUJN6LtD-e2dzOXjk4JMPeUl2yfLNDvPNbPINY68rZ4FYf0ir2kMKEFRqjFdpgcLS5SW6WIc8PatOJvDpQlxssLG91QDgbG1qF_tJTaZXeze_bt-Rw-_HjJPi7dsQa9yU6hX5nqwVFPIOu0uBScaGBqcD2-9LLsRN6rI_21w_cyU6dSL-65jn3x9Q_hGRjh-wrYFK8oPe9ttsA5uH7F7fXPL2ETuiHcDHTgY8qlCNva14G_iXGS58LMBT7EI-b_nPr2cH_PDz-cejNFf83Lh44j57zCbHH74dnqRDz4TUkTfN02AKCJgFL4IDn4ETwdrK2ywECOS8SCmec1VWOG8RQeVOOLQSS1kYn5lQPmGbTdvgM8ZzgTl6KZ1zHhSWCl0gOmOBUDShrhOWjVhpNwiKx74WV5oSiwiv7uDVEV7dw5uwN8sp172axr8Gv48GWA6MQtjdjXZ6qQe_0sFWBoSqbBEUWHAWlacVl1J6aWpbJezVaD5NjhPfYRpsFzMdlfljeixEwp725ly-qoQ6i0p1CZMrhl5Zy-qT5sf3Tpy7rjra9vx_LP4Fux_x6H59hJdscz5d4A5xoLnd7WoHu93-_g1IEwm1 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Critical+Contribution+of+Pseudouridine+to+mRNA+COVID-19+Vaccines&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Pedro+Morais&rft.au=Hironori+Adachi&rft.au=Yi-Tao+Yu&rft.date=2021-11-04&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-634X&rft.volume=9&rft_id=info:doi/10.3389%2Ffcell.2021.789427&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fb6a4596b2f94b4cbe9d7cc377d7a8b6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |