The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines

The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five million deaths worldwide. It was recognized in the beginning that only an effective vaccine could lead to a way out of the pandemic, and therefore...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cell and developmental biology Vol. 9; p. 789427
Main Authors Morais, Pedro, Adachi, Hironori, Yu, Yi-Tao
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 04.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five million deaths worldwide. It was recognized in the beginning that only an effective vaccine could lead to a way out of the pandemic, and therefore the race for the COVID-19 vaccine started immediately, boosted by the availability of the viral sequence data. Two novel vaccine platforms, based on mRNA technology, were developed in 2020 by Pfizer-BioNTech and Moderna Therapeutics (comirnaty® and spikevax®, respectively), and were the first ones presenting efficacies higher than 90%. Both consisted of N1-methyl-pseudouridine-modified mRNA encoding the SARS-COVID-19 Spike protein and were delivered with a lipid nanoparticle (LNP) formulation. Because the delivery problem of ribonucleic acids had been known for decades, the success of LNPs was quickly hailed by many as the unsung hero of COVID-19 mRNA vaccines. However, the clinical trial efficacy results of the Curevac mRNA vaccine (CVnCoV) suggested that the delivery system was not the only key to the success. CVnCoV consisted of an unmodified mRNA (encoding the same spike protein as Moderna and Pfizer-BioNTech’s mRNA vaccines) and was formulated with the same LNP as Pfizer-BioNTech’s vaccine (Acuitas ALC-0315). However, its efficacy was only 48%. This striking difference in efficacy could be attributed to the presence of a critical RNA modification (N1-methyl-pseudouridine) in the Pfizer-BioNTech and Moderna’s mRNA vaccines (but not in CVnCoV). Here we highlight the features of N1-methyl-pseudouridine and its contributions to mRNA vaccines.
AbstractList The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five million deaths worldwide. It was recognized in the beginning that only an effective vaccine could lead to a way out of the pandemic, and therefore the race for the COVID-19 vaccine started immediately, boosted by the availability of the viral sequence data. Two novel vaccine platforms, based on mRNA technology, were developed in 2020 by Pfizer-BioNTech and Moderna Therapeutics (comirnaty® and spikevax®, respectively), and were the first ones presenting efficacies higher than 90%. Both consisted of N1-methyl-pseudouridine-modified mRNA encoding the SARS-COVID-19 Spike protein and were delivered with a lipid nanoparticle (LNP) formulation. Because the delivery problem of ribonucleic acids had been known for decades, the success of LNPs was quickly hailed by many as the unsung hero of COVID-19 mRNA vaccines. However, the clinical trial efficacy results of the Curevac mRNA vaccine (CVnCoV) suggested that the delivery system was not the only key to the success. CVnCoV consisted of an unmodified mRNA (encoding the same spike protein as Moderna and Pfizer-BioNTech’s mRNA vaccines) and was formulated with the same LNP as Pfizer-BioNTech’s vaccine (Acuitas ALC-0315). However, its efficacy was only 48%. This striking difference in efficacy could be attributed to the presence of a critical RNA modification (N1-methyl-pseudouridine) in the Pfizer-BioNTech and Moderna’s mRNA vaccines (but not in CVnCoV). Here we highlight the features of N1-methyl-pseudouridine and its contributions to mRNA vaccines.
The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five million deaths worldwide. It was recognized in the beginning that only an effective vaccine could lead to a way out of the pandemic, and therefore the race for the COVID-19 vaccine started immediately, boosted by the availability of the viral sequence data. Two novel vaccine platforms, based on mRNA technology, were developed in 2020 by Pfizer-BioNTech and Moderna Therapeutics (comirnaty® and spikevax®, respectively), and were the first ones presenting efficacies higher than 90%. Both consisted of N1-methyl-pseudouridine-modified mRNA encoding the SARS-COVID-19 Spike protein and were delivered with a lipid nanoparticle (LNP) formulation. Because the delivery problem of ribonucleic acids had been known for decades, the success of LNPs was quickly hailed by many as the unsung hero of COVID-19 mRNA vaccines. However, the clinical trial efficacy results of the Curevac mRNA vaccine (CVnCoV) suggested that the delivery system was not the only key to the success. CVnCoV consisted of an unmodified mRNA (encoding the same spike protein as Moderna and Pfizer-BioNTech's mRNA vaccines) and was formulated with the same LNP as Pfizer-BioNTech's vaccine (Acuitas ALC-0315). However, its efficacy was only 48%. This striking difference in efficacy could be attributed to the presence of a critical RNA modification (N1-methyl-pseudouridine) in the Pfizer-BioNTech and Moderna's mRNA vaccines (but not in CVnCoV). Here we highlight the features of N1-methyl-pseudouridine and its contributions to mRNA vaccines.The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five million deaths worldwide. It was recognized in the beginning that only an effective vaccine could lead to a way out of the pandemic, and therefore the race for the COVID-19 vaccine started immediately, boosted by the availability of the viral sequence data. Two novel vaccine platforms, based on mRNA technology, were developed in 2020 by Pfizer-BioNTech and Moderna Therapeutics (comirnaty® and spikevax®, respectively), and were the first ones presenting efficacies higher than 90%. Both consisted of N1-methyl-pseudouridine-modified mRNA encoding the SARS-COVID-19 Spike protein and were delivered with a lipid nanoparticle (LNP) formulation. Because the delivery problem of ribonucleic acids had been known for decades, the success of LNPs was quickly hailed by many as the unsung hero of COVID-19 mRNA vaccines. However, the clinical trial efficacy results of the Curevac mRNA vaccine (CVnCoV) suggested that the delivery system was not the only key to the success. CVnCoV consisted of an unmodified mRNA (encoding the same spike protein as Moderna and Pfizer-BioNTech's mRNA vaccines) and was formulated with the same LNP as Pfizer-BioNTech's vaccine (Acuitas ALC-0315). However, its efficacy was only 48%. This striking difference in efficacy could be attributed to the presence of a critical RNA modification (N1-methyl-pseudouridine) in the Pfizer-BioNTech and Moderna's mRNA vaccines (but not in CVnCoV). Here we highlight the features of N1-methyl-pseudouridine and its contributions to mRNA vaccines.
Author Adachi, Hironori
Morais, Pedro
Yu, Yi-Tao
AuthorAffiliation 1 ProQR Therapeutics, Leiden , Netherlands
2 Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester , NY , United States
AuthorAffiliation_xml – name: 2 Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester , NY , United States
– name: 1 ProQR Therapeutics, Leiden , Netherlands
Author_xml – sequence: 1
  givenname: Pedro
  surname: Morais
  fullname: Morais, Pedro
– sequence: 2
  givenname: Hironori
  surname: Adachi
  fullname: Adachi, Hironori
– sequence: 3
  givenname: Yi-Tao
  surname: Yu
  fullname: Yu, Yi-Tao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34805188$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1rFTEUhoNUbK39AW5klm7mms9JZiOUqdYLxYrU4i7k46RNmTupyYzgv29ubyut4Coh5z3P4eR5jfamNAFCbwleMab6D8HBOK4opmQlVc-pfIEOKO27tmP8596T-z46KuUGY0yokEKxV2ifcYUFUeoAnVxcQzPkOEdnxmZI05yjXeaYpiaF5luBxaclRx8naObUbL5_PW6G88v1SUv65tI4VwvlDXoZzFjg6OE8RD8-f7oYvrRn56fr4fisdYKRuQ2G8gA4eBEc95g7EaztvMUh8MAoBUqwcx2mzlsA3hMnHFgJTFLjsQnsEK13XJ_Mjb7NcWPyH51M1PcPKV9pk-smI-hgO8NF31kaem65s9B76RyT0kujbFdZH3es28VuwDuom5vxGfR5ZYrX-ir91qqrXylJBbx_AOT0a4Ey600sWydmgrQUTWtOUcGFqNF3T2f9HfKooQbkLuByKiVD0C7OZmuhjo6jJlhvnet753rrXO-c107yT-cj_P89dyg1sVw
CitedBy_id crossref_primary_10_1038_s41525_023_00387_4
crossref_primary_10_11648_j_ejcbs_20241002_11
crossref_primary_10_3390_biomedicines13010097
crossref_primary_10_1016_j_molcel_2024_09_003
crossref_primary_10_1002_slct_202400006
crossref_primary_10_1007_s13258_024_01601_y
crossref_primary_10_31083_j_fbl2707207
crossref_primary_10_1016_j_omtn_2022_04_017
crossref_primary_10_1111_pbi_13829
crossref_primary_10_1016_j_molcel_2022_10_012
crossref_primary_10_1039_D4AY00114A
crossref_primary_10_7759_cureus_50703
crossref_primary_10_1038_s41571_023_00811_9
crossref_primary_10_1007_s40820_025_01665_9
crossref_primary_10_1016_j_mib_2023_102417
crossref_primary_10_1055_a_2500_1878
crossref_primary_10_3389_fimmu_2022_1018961
crossref_primary_10_1039_D3CB00221G
crossref_primary_10_3390_pharmaceutics15020351
crossref_primary_10_1016_j_jmb_2023_168385
crossref_primary_10_1002_macp_202100443
crossref_primary_10_1021_acs_molpharmaceut_2c00033
crossref_primary_10_1152_ajpcell_00460_2021
crossref_primary_10_1016_j_ijbiomac_2024_131427
crossref_primary_10_3389_falgy_2023_1277244
crossref_primary_10_1002_ctm2_70140
crossref_primary_10_1038_s41584_023_00992_8
crossref_primary_10_3390_vaccines12010009
crossref_primary_10_1016_j_checat_2024_101127
crossref_primary_10_3389_fcell_2022_901510
crossref_primary_10_1016_j_abb_2025_110326
crossref_primary_10_1016_j_ymthe_2023_03_024
crossref_primary_10_1261_rna_080031_124
crossref_primary_10_1515_mr_2023_0062
crossref_primary_10_1038_s41467_022_33661_7
crossref_primary_10_2174_0929867330666221014111403
crossref_primary_10_1042_BCJ20230096
crossref_primary_10_1186_s12915_025_02170_6
crossref_primary_10_1016_j_omtn_2023_102069
crossref_primary_10_1016_j_stem_2023_01_007
crossref_primary_10_1016_j_jbc_2024_108015
crossref_primary_10_1021_jasms_3c00411
crossref_primary_10_3389_fimmu_2023_1155728
crossref_primary_10_3390_vaccines12121315
crossref_primary_10_1360_TB_2023_0800
crossref_primary_10_1002_ejoc_202400342
crossref_primary_10_1055_s_0042_1751508
crossref_primary_10_1186_s12967_024_05687_6
crossref_primary_10_7868_S0032874X23120086
crossref_primary_10_1002_adma_202308029
crossref_primary_10_1002_ijch_202400005
crossref_primary_10_1038_s44298_024_00067_9
crossref_primary_10_3390_pharmaceutics15020620
crossref_primary_10_1093_nar_gkad067
crossref_primary_10_1128_aem_00826_23
crossref_primary_10_1007_s10822_022_00447_4
crossref_primary_10_1038_s41598_022_17249_1
crossref_primary_10_1021_acscatal_3c04436
crossref_primary_10_3390_molecules27092939
crossref_primary_10_1002_advs_202401287
crossref_primary_10_1016_j_tig_2023_09_001
crossref_primary_10_1016_j_ymthe_2023_02_012
crossref_primary_10_3390_vaccines11071142
crossref_primary_10_1016_j_vaccine_2023_07_024
crossref_primary_10_1152_ajpcell_00024_2023
crossref_primary_10_1038_s41577_024_01091_9
crossref_primary_10_1038_s41392_022_01175_9
crossref_primary_10_1039_D4CB00022F
crossref_primary_10_3389_fmolb_2023_1128067
crossref_primary_10_1002_mco2_559
crossref_primary_10_3390_biomedicines11082287
crossref_primary_10_1186_s12951_022_01243_w
crossref_primary_10_1016_j_gde_2024_102210
crossref_primary_10_1038_s41573_023_00827_x
crossref_primary_10_3390_vaccines13010052
crossref_primary_10_7759_cureus_52876
crossref_primary_10_1038_s41380_023_02339_x
crossref_primary_10_1002_cmdc_202300600
crossref_primary_10_1016_j_molliq_2024_124407
crossref_primary_10_3389_fcell_2022_849298
crossref_primary_10_1016_j_intimp_2024_113137
crossref_primary_10_1038_s41598_024_68617_y
crossref_primary_10_1038_s41598_023_46351_1
crossref_primary_10_1038_s41587_025_02561_8
crossref_primary_10_1021_acsbiomedchemau_4c00057
crossref_primary_10_56782_pps_292
crossref_primary_10_1016_j_bbcan_2023_189068
crossref_primary_10_3390_ijms242317116
crossref_primary_10_3390_biomedicines12061284
crossref_primary_10_1093_nar_gkae779
crossref_primary_10_3389_fimmu_2022_843928
crossref_primary_10_3389_fimmu_2023_1286820
crossref_primary_10_2298_VSP2310811J
crossref_primary_10_1038_s41541_023_00783_y
crossref_primary_10_1021_acsnano_2c12584
crossref_primary_10_3390_pharmaceutics15010194
crossref_primary_10_3390_j6020017
crossref_primary_10_1038_s41598_024_54941_w
crossref_primary_10_1016_j_tips_2023_11_002
crossref_primary_10_1016_j_ijpharm_2023_123688
crossref_primary_10_1002_jex2_70010
crossref_primary_10_1111_imm_13844
crossref_primary_10_1093_narmme_ugae004
crossref_primary_10_1016_j_stem_2024_10_002
crossref_primary_10_3389_fbioe_2022_1052436
crossref_primary_10_1039_D4GC02955K
crossref_primary_10_1021_acsomega_3c08505
crossref_primary_10_1038_s41541_023_00751_6
crossref_primary_10_1038_s41580_023_00622_x
crossref_primary_10_1039_D3AN02157B
crossref_primary_10_1038_s41587_024_02393_y
crossref_primary_10_1016_j_biomaterials_2022_121971
crossref_primary_10_1038_s41392_022_01007_w
crossref_primary_10_29121_granthaalayah_v12_i6_2024_5696
crossref_primary_10_3390_pathogens11121469
crossref_primary_10_3389_fmicb_2024_1342544
crossref_primary_10_3389_fmolb_2023_1219668
crossref_primary_10_1016_j_omtn_2023_102087
crossref_primary_10_1016_j_vaccine_2025_126883
crossref_primary_10_1021_acs_molpharmaceut_2c00653
crossref_primary_10_3389_fmolb_2023_1176416
crossref_primary_10_1021_jacs_2c00020
crossref_primary_10_1038_s41392_024_01777_5
crossref_primary_10_1021_acs_molpharmaceut_3c00803
crossref_primary_10_1038_s41581_022_00617_5
crossref_primary_10_1021_acssynbio_4c00028
crossref_primary_10_3390_microorganisms10091754
crossref_primary_10_3390_cancers15102860
crossref_primary_10_1016_j_tibtech_2024_07_012
crossref_primary_10_1248_yakushi_24_00175
crossref_primary_10_1136_bmj_2022_073747
crossref_primary_10_1021_acsomega_3c05219
crossref_primary_10_1038_s41467_023_41354_y
crossref_primary_10_1002_jmv_28572
crossref_primary_10_3390_vaccines10050709
Cites_doi 10.1016/S0021-9258(18)70770-9
10.1038/d41586-021-02483-w
10.1074/jbc.M310175200
10.1093/nar/gkr586
10.1002/1521-4141(200001)30:1<1:aid-immu1>3.0.co;2-#
10.1126/science.1690918
10.1016/j.jconrel.2015.08.051
10.1126/science.abk0458
10.1073/pnas.1821754116
10.1038/d41573-021-00156-x
10.1038/sj.gt.3302964
10.1126/science.abb6502
10.1073/pnas.1707304114
10.1038/nature10165
10.1056/NEJMoa2035389
10.1126/science.abj9853
10.1021/ja01096a050
10.1038/nbt.3802
10.1093/nar/gkq347
10.1038/274921a0
10.1056/NEJMc2104974
10.1093/nar/gkp1189
10.1016/j.cell.2014.08.028
10.1084/jem.20171450
10.1038/s41541-021-00292-w
10.1002/eji.200636617
10.1093/nar/gnf138
10.3390/pharmaceutics12020102
10.1038/nature13802
10.1007/978-3-030-71612-7_19
10.1016/j.immuni.2005.06.008
10.1021/acscentsci.1c00197
10.1016/j.vaccine.2021.02.007
10.1038/167483a0
10.1128/MCB.00531-10
10.1093/infdis/jix592
10.1038/s41541-020-0159-8
10.1038/d41586-021-01661-0
10.1016/j.cell.2017.02.017
10.1016/j.bbrc.2019.10.009
10.1093/nar/12.18.7035
10.1126/sciadv.aaz6893
10.1101/2021.05.13.443734
10.1038/nsb873
10.2139/ssrn.3911826
10.1093/nar/gkt1330
10.1126/science.1093620
10.3390/pharmaceutics13010045
10.3390/v13020270
10.1038/d41586-021-01694-5
10.1093/nar/23.24.5020
10.1038/s41586-020-2622-0
10.1016/S0140-6736(21)01358-1
10.1093/nar/27.7.1683
10.3390/vaccines9010065
10.3390/ijms21124394
10.1093/nar/gkx135
10.1042/bj1690071
10.1038/274923a0
10.1007/s11095-004-1873-z
10.1073/pnas.202477199
10.1002/1873-3468.14190
10.1038/nature12302
10.1007/s40265-018-0983-6
10.1038/nature21428
10.1517/14712598.4.8.1285
10.1080/152165400410182
10.1093/nar/12.18.7057
10.1056/NEJMoa2034577
10.1038/mt.2015.103
10.1371/journal.pone.0110799
10.1093/nar/gkx1030
10.1002/eji.1830230749
10.3390/biomedicines9050550
10.3390/vaccines9010003
10.1038/mt.2008.200
10.1016/j.immuni.2005.08.003
10.1017/S1355838201002308
10.1093/nar/gkaa070
10.3389/fgene.2020.00088
10.1126/science.abb2507
10.4049/jimmunol.165.8.4710
10.1016/j.stem.2010.08.012
10.1073/pnas.86.16.6077
ContentType Journal Article
Copyright Copyright © 2021 Morais, Adachi and Yu.
Copyright © 2021 Morais, Adachi and Yu. 2021 Morais, Adachi and Yu
Copyright_xml – notice: Copyright © 2021 Morais, Adachi and Yu.
– notice: Copyright © 2021 Morais, Adachi and Yu. 2021 Morais, Adachi and Yu
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fcell.2021.789427
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Morais et al
EISSN 2296-634X
ExternalDocumentID oai_doaj_org_article_fb6a4596b2f94b4cbe9d7cc377d7a8b6
PMC8600071
34805188
10_3389_fcell_2021_789427
Genre Journal Article
Review
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM138387
– fundername: NCI NIH HHS
  grantid: R21 CA241111
– fundername: ;
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
EMOBN
IAO
IEA
IHR
IHW
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c531t-fa24fe0fd5fc4d04c5fbb6db0ff4f322e210cc602cdbee491c5ceb7e372ad0af3
IEDL.DBID M48
ISSN 2296-634X
IngestDate Wed Aug 27 01:23:03 EDT 2025
Thu Aug 21 18:27:50 EDT 2025
Fri Jul 11 11:26:19 EDT 2025
Thu Jan 02 22:45:18 EST 2025
Tue Jul 01 03:20:46 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
N1-methyl-pseudouridine
RNA modification
SARS-CoV-2
lipid nanoparticles
vaccines
mRNA
pseudouridine
Language English
License Copyright © 2021 Morais, Adachi and Yu.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-fa24fe0fd5fc4d04c5fbb6db0ff4f322e210cc602cdbee491c5ceb7e372ad0af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Chengqi Yi, Peking University, China
Jia Sheng, University at Albany, United States
Reviewed by: Jean-Paul Desaulniers, Ontario Tech University, Canada
This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Cell and Developmental Biology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2021.789427
PMID 34805188
PQID 2600825455
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_fb6a4596b2f94b4cbe9d7cc377d7a8b6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8600071
proquest_miscellaneous_2600825455
pubmed_primary_34805188
crossref_citationtrail_10_3389_fcell_2021_789427
crossref_primary_10_3389_fcell_2021_789427
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-04
PublicationDateYYYYMMDD 2021-11-04
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-04
  day: 04
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in cell and developmental biology
PublicationTitleAlternate Front Cell Dev Biol
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Morais (B50) 2021
Dowdy (B26) 2017; 35
Wrapp (B86) 2020; 367
Mateus (B47) 2021; 374
B68
Pardi (B62) 2018; 215
Jackson (B33) 2020; 5
Nelson (B55) 2020; 6
Cohn (B17) 1951; 167
Morais (B51) 2020; 21
Boccaletto (B9) 2018; 46
Karikó (B37) 2008; 16
Fernández (B28) 2013; 500
Brand (B10) 1978; 169
Krieg (B42) 1984; 12
Kis (B40) 2020; 9
Wadhwa (B81) 2020; 12
Malone (B45) 1989; 86
Mullard (B52) 2021; 20
Adachi (B1) 2021; 9
Heil (B29) 2004; 303
Martinon (B46) 1993; 23
Sheikh (B89) 2021; 397
Anderson (B3) 2011; 39
Charette (B13) 2000; 49
Carlile (B12) 2014; 515
Svitkin (B77) 2017; 45
Newby (B56) 2001; 7
B74
Newby (B57); 99
Polack (B69) 2020; 383
Wolff (B85) 1990; 247
Dolgin (B25); 597
Cohen (B16) 2021
Kyriakidis (B43) 2021; 6
Karijolich (B35) 2011; 474
Davis (B20) 1995; 23
B8
Anderson (B4) 2010; 38
Baden (B6) 2021; 384
Karikó (B36) 2005; 23
Kierzek (B39) 2014; 42
Pallesen (B61) 2017; 114
Pardi (B64) 2013
Richner (B71) 2017; 168
Buschmann (B11) 2021; 9
Hoerr (B30) 2000; 30
Lovejoy (B44) 2014; 9
Westhof (B84) 2019; 520
Abu-Raddad (B88) 2021; 385
Dolgin (B24); 594
Ruffell (B73) 2021; 595
Song (B76) 2020; 11
Padilla (B60) 2002; 30
Corbett (B18) 2020; 586
Thorp (B79) 2020; 367
Meyer (B49) 2018; 217
Diebold (B22) 2006; 36
Davis (B21) 1957; 227
Weissman (B83) 2000; 165
Pascolo (B66) 2004; 4
Thess (B78) 2015; 23
Andries (B5) 2015; 217
Karikó (B38) 2004; 279
Warren (B82) 2010; 7
Ostro (B59) 1978; 274
Roth (B72) 2021
Pardi (B63) 2017; 543
Hoy (B31) 2018; 78
Schwartz (B75) 2014; 159
Probst (B70) 2007; 14
Chu (B15) 2021; 39
B19
Pascolo (B67) 2021; 13
Baker (B7) 2021
Eyler (B27) 2019; 116
Tomita (B80) 1999; 27
Jeffs (B34) 2005; 22
Parr (B65) 2020; 48
Dimitriadis (B23) 1978; 274
Kremsner (B41) 2021
Chen (B14) 2010; 30
Nance (B53) 2021; 7
Alfagih (B2) 2020; 13
Melton (B48) 1984; 12
Naylor (B54) 1965; 87
Newby (B58); 9
Wurm (B87) 2010; 38
Ishii (B32) 2005; 23
References_xml – volume: 227
  start-page: 907
  year: 1957
  ident: B21
  article-title: Ribonucleic Acids from Yeast Which Contain a Fifth Nucleotide
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)70770-9
– volume: 597
  start-page: 318
  ident: B25
  article-title: The Tangled History of mRNA Vaccines
  publication-title: Nature
  doi: 10.1038/d41586-021-02483-w
– volume: 279
  start-page: 12542
  year: 2004
  ident: B38
  article-title: mRNA Is an Endogenous Ligand for Toll-like Receptor 3
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M310175200
– volume: 39
  start-page: 9329
  year: 2011
  ident: B3
  article-title: Nucleoside Modifications in RNA Limit Activation of 2'-5'-oligoadenylate Synthetase and Increase Resistance to Cleavage by RNase L
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr586
– volume: 30
  start-page: 1
  year: 2000
  ident: B30
  article-title: In Vivo application of RNA Leads to Induction of Specific Cytotoxic T Lymphocytes and Antibodies
  publication-title: Eur. J. Immunol.
  doi: 10.1002/1521-4141(200001)30:1<1:aid-immu1>3.0.co;2-#
– volume: 247
  start-page: 1465
  year: 1990
  ident: B85
  article-title: Direct Gene Transfer into Mouse Muscle In Vivo
  publication-title: Science
  doi: 10.1126/science.1690918
– volume: 217
  start-page: 337
  year: 2015
  ident: B5
  article-title: N1-methylpseudouridine-incorporated mRNA Outperforms Pseudouridine-Incorporated mRNA by Providing Enhanced Protein Expression and Reduced Immunogenicity in Mammalian Cell Lines and Mice
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2015.08.051
– ident: B68
– year: 2021
  ident: B16
  article-title: What Went Wrong with CureVac’s Highly Anticipated New mRNA Vaccine for COVID-19
  publication-title: Science
  doi: 10.1126/science.abk0458
– volume: 116
  start-page: 23068
  year: 2019
  ident: B27
  article-title: Pseudouridinylation of mRNA Coding Sequences Alters Translation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1821754116
– volume: 20
  start-page: 728
  year: 2021
  ident: B52
  article-title: Pfizer's COVID-19 Vaccine Secures First Full FDA Approval
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/d41573-021-00156-x
– volume: 14
  start-page: 1175
  year: 2007
  ident: B70
  article-title: Spontaneous Cellular Uptake of Exogenous Messenger RNA In Vivo Is Nucleic Acid-specific, Saturable and Ion Dependent
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3302964
– volume: 367
  start-page: 1169
  year: 2020
  ident: B79
  article-title: Do us a Favor
  publication-title: Science
  doi: 10.1126/science.abb6502
– volume: 114
  start-page: E7348
  year: 2017
  ident: B61
  article-title: Immunogenicity and Structures of a Rationally Designed Prefusion MERS-CoV Spike Antigen
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1707304114
– start-page: 29
  volume-title: Synthetic Messenger RNA and Cell Metabolism Modulation Methods in Molecular Biology
  year: 2013
  ident: B64
  article-title: In Vitro Transcription of Long RNA Containing Modified Nucleosides
– volume: 474
  start-page: 395
  year: 2011
  ident: B35
  article-title: Converting Nonsense Codons into Sense Codons by Targeted Pseudouridylation
  publication-title: Nature
  doi: 10.1038/nature10165
– volume: 384
  start-page: 403
  year: 2021
  ident: B6
  article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035389
– volume: 374
  start-page: eabj9853
  year: 2021
  ident: B47
  article-title: Low-dose mRNA-1273 COVID-19 Vaccine Generates Durable Memory Enhanced by Cross-Reactive T Cells
  publication-title: Science
  doi: 10.1126/science.abj9853
– volume: 87
  start-page: 4209
  year: 1965
  ident: B54
  article-title: Selective Chemical Modifications of Uridine and Pseudouridine in Polynucleotides and Their Effect on the Specificities of Ribonuclease and Phosphodiesterases
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01096a050
– volume: 35
  start-page: 222
  year: 2017
  ident: B26
  article-title: Overcoming Cellular Barriers for RNA Therapeutics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3802
– volume: 38
  start-page: 5884
  year: 2010
  ident: B4
  article-title: Incorporation of Pseudouridine into mRNA Enhances Translation by Diminishing PKR Activation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq347
– volume: 274
  start-page: 921
  year: 1978
  ident: B59
  article-title: Evidence for Translation of Rabbit Globin mRNA after Liposomemediated Insertion into a Human Cell Line
  publication-title: Nature
  doi: 10.1038/274921a0
– volume: 385
  start-page: 187
  year: 2021
  ident: B88
  article-title: Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2104974
– volume: 38
  start-page: 2387
  year: 2010
  ident: B87
  article-title: The Ribosome Assembly Factor Nep1 Responsible for Bowen-Conradi Syndrome Is a Pseudouridine-N1-specific Methyltransferase
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp1189
– volume: 159
  start-page: 148
  year: 2014
  ident: B75
  article-title: Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.028
– volume: 215
  start-page: 1571
  year: 2018
  ident: B62
  article-title: Nucleoside-modified mRNA Vaccines Induce Potent T Follicular Helper and Germinal center B Cell Responses
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20171450
– volume: 6
  start-page: 28
  year: 2021
  ident: B43
  article-title: SARS-CoV-2 Vaccines Strategies: a Comprehensive Review of Phase 3 Candidates
  publication-title: npj Vaccin.
  doi: 10.1038/s41541-021-00292-w
– volume: 36
  start-page: 3256
  year: 2006
  ident: B22
  article-title: Nucleic Acid Agonists for Toll-like Receptor 7 Are Defined by the Presence of Uridine Ribonucleotides
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200636617
– volume: 30
  start-page: 138e
  year: 2002
  ident: B60
  article-title: A Y639F/H784A T7 RNA Polymerase Double Mutant Displays superior Properties for Synthesizing RNAs with Non-canonical NTPs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gnf138
– volume: 12
  start-page: 102
  year: 2020
  ident: B81
  article-title: Opportunities and Challenges in the Delivery of mRNA-Based Vaccines
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12020102
– volume: 515
  start-page: 143
  year: 2014
  ident: B12
  article-title: Pseudouridine Profiling Reveals Regulated mRNA Pseudouridylation in Yeast and Human Cells
  publication-title: Nature
  doi: 10.1038/nature13802
– start-page: 505
  volume-title: Epitranscriptomics
  year: 2021
  ident: B50
  article-title: Mechanisms and Clinical Applications of RNA Pseudouridylation
  doi: 10.1007/978-3-030-71612-7_19
– volume: 23
  start-page: 165
  year: 2005
  ident: B36
  article-title: Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.06.008
– volume: 7
  start-page: 748
  year: 2021
  ident: B53
  article-title: Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.1c00197
– volume: 39
  start-page: 2791
  year: 2021
  ident: B15
  article-title: A Preliminary Report of a Randomized Controlled Phase 2 Trial of the Safety and Immunogenicity of mRNA-1273 SARS-CoV-2 Vaccine
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2021.02.007
– volume: 167
  start-page: 483
  year: 1951
  ident: B17
  article-title: Nucleoside-5′-Phosphates from Ribonucleic Acid
  publication-title: Nature
  doi: 10.1038/167483a0
– volume: 30
  start-page: 4108
  year: 2010
  ident: B14
  article-title: A Flexible RNA Backbone within the Polypyrimidine Tract Is Required for U2AF 65 Binding and Pre-mRNA Splicing In Vivo
  publication-title: Mol. Cel. Biol.
  doi: 10.1128/MCB.00531-10
– volume: 217
  start-page: 451
  year: 2018
  ident: B49
  article-title: Modified mRNA-Based Vaccines Elicit Robust Immune Responses and Protect Guinea Pigs from Ebola Virus Disease
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jix592
– volume: 5
  start-page: 11
  year: 2020
  ident: B33
  article-title: The Promise of mRNA Vaccines: a Biotech and Industrial Perspective
  publication-title: npj Vaccin.
  doi: 10.1038/s41541-020-0159-8
– volume: 594
  start-page: 483
  ident: B24
  article-title: CureVac COVID Vaccine Let-Down Spotlights mRNA Design Challenges
  publication-title: Nature
  doi: 10.1038/d41586-021-01661-0
– volume: 168
  start-page: 1114
  year: 2017
  ident: B71
  article-title: Modified mRNA Vaccines Protect against Zika Virus Infection
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.017
– volume: 520
  start-page: 702
  year: 2019
  ident: B84
  article-title: Pseudouridines or How to Draw on Weak Energy Differences
  publication-title: Biochem. Biophysical Res. Commun.
  doi: 10.1016/j.bbrc.2019.10.009
– volume: 12
  start-page: 7035
  year: 1984
  ident: B48
  article-title: Efficientin Vitrosynthesis of Biologically Active RNA and RNA Hybridization Probes from Plasmids Containing a Bacteriophage SP6 Promoter
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/12.18.7035
– volume: 6
  start-page: eaaz6893
  year: 2020
  ident: B55
  article-title: Impact of mRNA Chemistry and Manufacturing Process on Innate Immune Activation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz6893
– year: 2021
  ident: B72
  article-title: CV2CoV, an Enhanced mRNA-Based SARS-CoV-2 Vaccine Candidate, Supports Higher Protein Expression and Improved Immunogenicity in Rats
  publication-title: Immunology
  doi: 10.1101/2021.05.13.443734
– volume: 9
  start-page: 958
  ident: B58
  article-title: Sculpting of the Spliceosomal branch Site Recognition Motif by a Conserved Pseudouridine
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb873
– year: 2021
  ident: B41
  article-title: Efficacy and Safety of the CVnCoV SARS-CoV-2 mRNA Vaccine Candidate: Results from Herald, a Phase 2b/3, Randomised, Observer-Blinded, Placebo-Controlled Clinical Trial in Ten Countries in Europe and Latin America
  publication-title: SSRN J.
  doi: 10.2139/ssrn.3911826
– volume: 42
  start-page: 3492
  year: 2014
  ident: B39
  article-title: The Contribution of Pseudouridine to Stabilities and Structure of RNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1330
– volume: 303
  start-page: 1526
  year: 2004
  ident: B29
  article-title: Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8
  publication-title: Science
  doi: 10.1126/science.1093620
– volume: 13
  start-page: 45
  year: 2020
  ident: B2
  article-title: Nanoparticles as Adjuvants and Nanodelivery Systems for mRNA-Based Vaccines
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13010045
– volume: 13
  start-page: 270
  year: 2021
  ident: B67
  article-title: Synthetic Messenger RNA-Based Vaccines: from Scorn to Hype
  publication-title: Viruses
  doi: 10.3390/v13020270
– year: 2021
  ident: B7
  article-title: Coronapod: CureVac Disappoints in COVID Vaccine Trial
  publication-title: Nature
  doi: 10.1038/d41586-021-01694-5
– volume: 23
  start-page: 5020
  year: 1995
  ident: B20
  article-title: Stabilization of RNA Stacking by Pseudouridine
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/23.24.5020
– volume: 586
  start-page: 567
  year: 2020
  ident: B18
  article-title: SARS-CoV-2 mRNA Vaccine Design Enabled by Prototype Pathogen Preparedness
  publication-title: Nature
  doi: 10.1038/s41586-020-2622-0
– volume: 397
  start-page: 2461
  year: 2021
  ident: B89
  article-title: SARS-CoV-2 Delta VOC in Scotland: Demographics, Risk of Hospital Admission, and Vaccine Effectiveness
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)01358-1
– volume: 27
  start-page: 1683
  year: 1999
  ident: B80
  article-title: The Presence of Pseudouridine in the Anticodon Alters the Genetic Code: a Possible Mechanism for Assignment of the AAA Lysine Codon as Asparagine in Echinoderm Mitochondria
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.7.1683
– volume: 9
  start-page: 65
  year: 2021
  ident: B11
  article-title: Nanomaterial Delivery Systems for mRNA Vaccines
  publication-title: Vaccines
  doi: 10.3390/vaccines9010065
– volume: 21
  start-page: 4394
  year: 2020
  ident: B51
  article-title: Suppression of Nonsense Mutations by New Emerging Technologies
  publication-title: IJMS
  doi: 10.3390/ijms21124394
– volume: 45
  start-page: 6023
  year: 2017
  ident: B77
  article-title: N1-methyl-pseudouridine in mRNA Enhances Translation through eIF2α-dependent and Independent Mechanisms by Increasing Ribosome Density
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx135
– volume: 169
  start-page: 71
  year: 1978
  ident: B10
  article-title: Biosynthesis of a Hypermodified Nucleotide in Saccharomyces Carlsbergensis 17S and HeLa-Cell 18S Ribosomal Ribonucleic Acid
  publication-title: Biochem. J.
  doi: 10.1042/bj1690071
– volume: 274
  start-page: 923
  year: 1978
  ident: B23
  article-title: Translation of Rabbit Globin mRNA Introduced by Liposomes into Mouse Lymphocytes
  publication-title: Nature
  doi: 10.1038/274923a0
– volume: 22
  start-page: 362
  year: 2005
  ident: B34
  article-title: A Scalable, Extrusion-free Method for Efficient Liposomal Encapsulation of Plasmid DNA
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-004-1873-z
– volume: 99
  start-page: 12697
  ident: B57
  article-title: Investigation of Overhauser Effects between Pseudouridine and Water Protons in RNA Helices
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.202477199
– volume: 595
  start-page: 2305
  year: 2021
  ident: B73
  article-title: The Future in an RNA Molecule: from mRNA Vaccines to Therapeutics - an Interview with Drew Weissman
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.14190
– volume: 500
  start-page: 107
  year: 2013
  ident: B28
  article-title: Unusual Base Pairing during the Decoding of a Stop Codon by the Ribosome
  publication-title: Nature
  doi: 10.1038/nature12302
– volume: 78
  start-page: 1625
  year: 2018
  ident: B31
  article-title: Patisiran: First Global Approval
  publication-title: Drugs
  doi: 10.1007/s40265-018-0983-6
– volume: 543
  start-page: 248
  year: 2017
  ident: B63
  article-title: Zika Virus protection by a Single Low-Dose Nucleoside-Modified mRNA Vaccination
  publication-title: Nature
  doi: 10.1038/nature21428
– ident: B8
– volume: 4
  start-page: 1285
  year: 2004
  ident: B66
  article-title: Messenger RNA-Based Vaccines
  publication-title: Expert Opin. Biol. Ther.
  doi: 10.1517/14712598.4.8.1285
– volume: 49
  start-page: 341
  year: 2000
  ident: B13
  article-title: Pseudouridine in RNA: what, where, How, and Why
  publication-title: IUBMB Life (International Union Biochem. Mol. Biol. Life)
  doi: 10.1080/152165400410182
– volume: 12
  start-page: 7057
  year: 1984
  ident: B42
  article-title: Functional Messenger RNAs Are Produced by SP6in Vitrotranscription of Cloned cDNAs
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/12.18.7057
– volume: 383
  start-page: 2603
  year: 2020
  ident: B69
  article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– volume: 23
  start-page: 1456
  year: 2015
  ident: B78
  article-title: Sequence-engineered mRNA without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2015.103
– volume: 9
  start-page: e110799
  year: 2014
  ident: B44
  article-title: Transcriptome-Wide Mapping of Pseudouridines: Pseudouridine Synthases Modify Specific mRNAs in S. cerevisiae
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0110799
– volume: 46
  start-page: D303
  year: 2018
  ident: B9
  article-title: MODOMICS: a Database of RNA Modification Pathways. 2017 Update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1030
– volume: 23
  start-page: 1719
  year: 1993
  ident: B46
  article-title: Induction of Virus-specific Cytotoxic T Lymphocytesin Vivo by Liposome-Entrapped mRNA
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.1830230749
– volume: 9
  start-page: 550
  year: 2021
  ident: B1
  article-title: From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies
  publication-title: Biomedicines
  doi: 10.3390/biomedicines9050550
– volume: 9
  start-page: 3
  year: 2020
  ident: B40
  article-title: Resources, Production Scales and Time Required for Producing RNA Vaccines for the Global Pandemic Demand
  publication-title: Vaccines
  doi: 10.3390/vaccines9010003
– volume: 16
  start-page: 1833
  year: 2008
  ident: B37
  article-title: Incorporation of Pseudouridine into mRNA Yields Superior Nonimmunogenic Vector with Increased Translational Capacity and Biological Stability
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.200
– volume: 23
  start-page: 111
  year: 2005
  ident: B32
  article-title: TLR Ignores Methylated RNA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.08.003
– volume: 7
  start-page: 833
  year: 2001
  ident: B56
  article-title: A Conserved Pseudouridine Modification in Eukaryotic U2 snRNA Induces a Change in branch-site Architecture
  publication-title: RNA
  doi: 10.1017/S1355838201002308
– volume: 48
  start-page: e35
  year: 2020
  ident: B65
  article-title: N 1-Methylpseudouridine Substitution Enhances the Performance of Synthetic mRNA Switches in Cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa070
– volume: 11
  start-page: 88
  year: 2020
  ident: B76
  article-title: PIANO: A Web Server for Pseudouridine-Site (Ψ) Identification and Functional Annotation
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00088
– volume: 367
  start-page: 1260
  year: 2020
  ident: B86
  article-title: Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 165
  start-page: 4710
  year: 2000
  ident: B83
  article-title: HIV Gag mRNA Transfection of Dendritic Cells (DC) Delivers Encoded Antigen to MHC Class I and II Molecules, Causes DC Maturation, and Induces a Potent Human In Vitro Primary Immune Response
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.165.8.4710
– volume: 7
  start-page: 618
  year: 2010
  ident: B82
  article-title: Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.08.012
– volume: 86
  start-page: 6077
  year: 1989
  ident: B45
  article-title: Cationic Liposome-Mediated RNA Transfection
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.86.16.6077
– ident: B19
– ident: B74
SSID ssj0001257583
Score 2.554461
SecondaryResourceType review_article
Snippet The current COVID-19 pandemic is a massive source of global disruption, having led so far to two hundred and fifty million COVID-19 cases and almost five...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 789427
SubjectTerms Cell and Developmental Biology
COVID-19
mRNA
pseudouridine
RNA modification
SARS-CoV-2
vaccines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUMil9F03bVGgp4IbP0aWdUyThiSQtJQm5Cb0GNFA4i3Z3UP_fWes3WW3lPbSgy-2jMU3I-Yh-fuEeNcFD5T1p7LrI5QAyZTORVM2qDxdUWPgPuT5RXdyCWfX6npN6ovPhGV64AzcfvKdA2U63yQDHoJHE3UIrdZRu96PZNsU89aKqdxdoTSkb_M2JlVhZj9xI5zqwab-oHsDrCKzFohGvv4_JZm_n5VcCz7Hj8TDRdYoD_JsH4stHJ6IB1lH8udTcUTGlkvRAsmEU0sZKzlJ8ssU55F77RSmUM4m8u7rxYE8_Hx1elTWRl65wJvr02fi8vjTt8OTciGPUAZaOLMyuQYSVimqFCBWEFTyvou-SgkSrVOkai6ErmpC9Ihg6qACeo2tblysXGqfi-1hMuBLIWuFNUZNuIYIBluDIVHm4oFQdKnvC1EtsbJhwR3OEha3lmoIhteO8FqG12Z4C_F-9cqPTJzxt8Ef2QCrgcx5Pd4gT7ALT7D_8oRC7C3NZ2mN8DfcgJP51DIJP1fCShXiRTbn6lMt9BWT0hVCbxh6Yy6bT4ab7yMPd9-NGdqr_zH5XbHDeIx_OcJrsT27n-MbSndm_u3o2b8AK3MBFw
  priority: 102
  providerName: Directory of Open Access Journals
Title The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines
URI https://www.ncbi.nlm.nih.gov/pubmed/34805188
https://www.proquest.com/docview/2600825455
https://pubmed.ncbi.nlm.nih.gov/PMC8600071
https://doaj.org/article/fb6a4596b2f94b4cbe9d7cc377d7a8b6
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF5qRfClWK9RW1bwSUjNZTabfShSW0sVWkU8pW_LXmarUJN6LtD-e2dzOXjk4JMPeUl2yfLNDvPNbPINY68rZ4FYf0ir2kMKEFRqjFdpgcLS5SW6WIc8PatOJvDpQlxssLG91QDgbG1qF_tJTaZXeze_bt-Rw-_HjJPi7dsQa9yU6hX5nqwVFPIOu0uBScaGBqcD2-9LLsRN6rI_21w_cyU6dSL-65jn3x9Q_hGRjh-wrYFK8oPe9ttsA5uH7F7fXPL2ETuiHcDHTgY8qlCNva14G_iXGS58LMBT7EI-b_nPr2cH_PDz-cejNFf83Lh44j57zCbHH74dnqRDz4TUkTfN02AKCJgFL4IDn4ETwdrK2ywECOS8SCmec1VWOG8RQeVOOLQSS1kYn5lQPmGbTdvgM8ZzgTl6KZ1zHhSWCl0gOmOBUDShrhOWjVhpNwiKx74WV5oSiwiv7uDVEV7dw5uwN8sp172axr8Gv48GWA6MQtjdjXZ6qQe_0sFWBoSqbBEUWHAWlacVl1J6aWpbJezVaD5NjhPfYRpsFzMdlfljeixEwp725ly-qoQ6i0p1CZMrhl5Zy-qT5sf3Tpy7rjra9vx_LP4Fux_x6H59hJdscz5d4A5xoLnd7WoHu93-_g1IEwm1
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Critical+Contribution+of+Pseudouridine+to+mRNA+COVID-19+Vaccines&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Pedro+Morais&rft.au=Hironori+Adachi&rft.au=Yi-Tao+Yu&rft.date=2021-11-04&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-634X&rft.volume=9&rft_id=info:doi/10.3389%2Ffcell.2021.789427&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fb6a4596b2f94b4cbe9d7cc377d7a8b6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon