Elucidating the Fracture Toughness of Additively Manufactured and Thermo-Mechanically Treated Ti6Al4V
Additive manufacturing of workhorse Ti6Al4V aerospace alloy components by direct metal laser sintering (DMLS) offers cost-efficiency in producing complex designs. However, the rapid and complex heating and cooling cycles during manufacturing can lead to undesirable microstructures and mechanical pro...
Saved in:
Published in | MATERIALS TRANSACTIONS Vol. 66; no. 5; pp. 532 - 541 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Sendai
The Japan Institute of Metals and Materials
01.05.2025
公益社団法人 日本金属学会 Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1345-9678 1347-5320 |
DOI | 10.2320/matertrans.MT-MC2024006 |
Cover
Abstract | Additive manufacturing of workhorse Ti6Al4V aerospace alloy components by direct metal laser sintering (DMLS) offers cost-efficiency in producing complex designs. However, the rapid and complex heating and cooling cycles during manufacturing can lead to undesirable microstructures and mechanical properties that are inferior to the wrought product. The present investigation aims to study the microstructure-fracture toughness paradigm for the heat treated DMLS Ti6Al4V sample with conventional thermos-mechanically processed microstructures. To this end, DMLS Ti6Al4V samples were subjected to isothermal heat treatment at 800°C for 1 h to obtain a basketweave α+β dual phase microstructure, while hot rolled samples with equiaxed α+β microstructure were subjected to heat treatment at 1000°C for 1 h to obtain a lamellar α+β microstructure. Fracture toughness tests were performed in three-point bend geometry on fatigue pre-cracked specimens for the three distinct microstructures. The fracture toughness of the heat treated DMLS parts is comparable to the thermo-mechanically treated lamellar α+β microstructure and superior to the equiaxed microstructure. Full-field strain measurement was performed during fracture toughness testing using digital image correlation and detailed microstructural characterisation was performed using electron backscatter diffraction and synchrotron diffraction. It was revealed that the deformation within the lamellar α+β phase delays the crack nucleation, while further crack propagation through thicker α laths and prior β grain boundaries contribute to pronounced crack tortuosity or crack path deflection resulting in a more corrugated fracture surface and enhanced fracture toughness. |
---|---|
AbstractList | Additive manufacturing of workhorse Ti6Al4V aerospace alloy components by direct metal laser sintering (DMLS) offers cost-efficiency in producing complex designs. However, the rapid and complex heating and cooling cycles during manufacturing can lead to undesirable microstructures and mechanical properties that are inferior to the wrought product. The present investigation aims to study the microstructure-fracture toughness paradigm for the heat treated DMLS Ti6Al4V sample with conventional thermos-mechanically processed microstructures. To this end, DMLS Ti6Al4V samples were subjected to isothermal heat treatment at 800°C for 1 h to obtain a basketweave α+β dual phase microstructure, while hot rolled samples with equiaxed α+β microstructure were subjected to heat treatment at 1000°C for 1 h to obtain a lamellar α+β microstructure. Fracture toughness tests were performed in three-point bend geometry on fatigue pre-cracked specimens for the three distinct microstructures. The fracture toughness of the heat treated DMLS parts is comparable to the thermo-mechanically treated lamellar α+β microstructure and superior to the equiaxed microstructure. Full-field strain measurement was performed during fracture toughness testing using digital image correlation and detailed microstructural characterisation was performed using electron backscatter diffraction and synchrotron diffraction. It was revealed that the deformation within the lamellar α+β phase delays the crack nucleation, while further crack propagation through thicker α laths and prior β grain boundaries contribute to pronounced crack tortuosity or crack path deflection resulting in a more corrugated fracture surface and enhanced fracture toughness. Additive manufacturing of workhorse Ti6Al4V aerospace alloy components by direct metal laser sintering (DMLS) offers cost-efficiency in producing complex designs. However, the rapid and complex heating and cooling cycles during manufacturing can lead to undesirable microstructures and mechanical properties that are inferior to the wrought product. The present investigation aims to study the microstructure-fracture toughness paradigm for the heat treated DMLS Ti6Al4V sample with conventional thermos-mechanically processed microstructures. To this end, DMLS Ti6Al4V samples were subjected to isothermal heat treatment at 800 °C for 1 h to obtain a basketweave α+β dual phase microstructure, while hot rolled samples with equiaxed α+β microstructure were subjected to heat treatment at 1000 °C for 1 h to obtain a lamellar α+β microstructure. Fracture toughness tests were performed in three-point bend geometry on fatigue pre-cracked specimens for the three distinct microstructures. The fracture toughness of the heat treated DMLS parts is comparable to the thermo-mechanically treated lamellar α+β microstructure and superior to the equiaxed microstructure. Full-field strain measurement was performed during fracture toughness testing using digital image correlation and detailed microstructural characterisation was performed using electron backscatter diffraction and synchrotron diffraction. It was revealed that the deformation within the lamellar α+β phase delays the crack nucleation, while further crack propagation through thicker α laths and prior β grain boundaries contribute to pronounced crack tortuosity or crack path deflection resulting in a more corrugated fracture surface and enhanced fracture toughness. |
ArticleNumber | MT-MC2024006 |
Author | Jha, Sumit Sahu, Vivek K. Chandrakar, Shirish Gurao, N.P. |
Author_xml | – sequence: 1 fullname: Chandrakar, Shirish organization: Department of Materials Science and Engineering, Indian Institute of Technology Kanpur – sequence: 1 fullname: Sahu, Vivek K. organization: Department of Fuel, Minerals and Metallurgical Engineering, IIT-ISM Dhanbad – sequence: 1 fullname: Jha, Sumit organization: Department of Materials Science and Engineering, Indian Institute of Technology Kanpur – sequence: 1 fullname: Gurao, N.P. organization: Department of Materials Science and Engineering, Indian Institute of Technology Kanpur |
BackLink | https://cir.nii.ac.jp/crid/1390021990401567104$$DView record in CiNii |
BookMark | eNpNkE9r3DAQxUVJoUmaz1BDe3U6-mvruCxJWojpxc1VyJK8q8Urp5JcyLePNi7bXGYG5jfvDe8KXYQ5OIS-YLgllMD3o84u5qhDuu36utsSIAxAfECXmLKm5oW5eJt5LUXTfkJXKR0AaMMJuUTublqMtzr7sKvy3lX3UZu8RFf187LbB5dSNY_Vxlqf_V83vVSdDsu4MrbSwVb93sXjXHfO7HXwRk8F6qMrb5WdF5uJPX1GH0c9JXfzr1-j3_d3_fZH_fjr4ed281gbTnGux4bYRlONW0aa1gwjBdlSbe0IdBBmYIRJwwfL5YBlO2iggrfQMukGMQpr6DX6uuo-x_nP4lJWh3mJoVgqSnDbMOCUF6pZKRPnlKIb1XP0Rx1fFAZ1ylT9z1R1vTpnWi6_rZfBe2X8qWIqAQiWEhhgLhoMrGDdih1S1jt3ltcxezO59_JCKH4q723OXAk0KhfoK6V9lok |
Cites_doi | 10.1016/j.actamat.2015.11.011 10.1111/j.1460-2695.1993.tb00132.x 10.1016/j.actamat.2020.03.003 10.1016/j.msea.2014.01.041 10.1016/j.ijplas.2022.103318 10.1016/j.scriptamat.2019.09.021 10.1557/jmr.2009.0173 10.1016/j.actamat.2018.12.038 10.2320/matertrans.MT-MB2022006 10.1016/S0921-5093(97)00778-8 10.1016/j.mtla.2024.102236 10.1016/j.actamat.2018.05.044 10.1016/j.actamat.2014.12.054 10.1016/j.msea.2020.140367 10.1016/j.msea.2022.144363 10.1007/s11661-010-0397-x 10.1016/j.actamat.2010.02.004 10.1016/j.addma.2023.103772 10.1016/j.matchar.2019.110039 10.1016/j.actamat.2021.117240 10.2320/matertrans.MT-M2019370 10.1016/j.ijplas.2024.103985 10.1016/j.jallcom.2012.07.022 10.2139/ssrn.4257760 10.1007/s11661-011-0731-y 10.1038/srep26039 10.1007/s40195-017-0665-5 10.1016/j.jmrt.2023.04.090 10.1007/s41745-022-00292-2 10.1016/j.jallcom.2021.159023 10.1016/j.matchar.2013.07.012 10.1016/j.msea.2017.01.019 10.1080/14786430701373672 10.1016/j.addma.2014.12.006 10.1016/j.msea.2021.142345 10.1016/j.matdes.2018.107552 10.3390/ma11010146 10.1007/s11661-024-07388-7 10.1016/j.msea.2021.141271 10.2320/matertrans.L-M2018846 10.1016/j.msea.2020.140687 10.1016/j.matchar.2017.01.014 10.1016/j.matchar.2017.01.012 10.1016/S0013-7944(00)00099-0 10.1107/S1600576716000455 10.1016/S0924-0136(02)00865-8 10.1007/s11661-008-9634-y 10.1016/j.actamat.2019.03.003 10.1007/s11661-020-05979-8 10.1201/9781315370293 |
ContentType | Journal Article |
Copyright | 2025 The Japan Institute of Metals and Materials Copyright Japan Science and Technology Agency 2025 |
Copyright_xml | – notice: 2025 The Japan Institute of Metals and Materials – notice: Copyright Japan Science and Technology Agency 2025 |
DBID | RYH AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.2320/matertrans.MT-MC2024006 |
DatabaseName | CiNii Complete CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-5320 |
EndPage | 541 |
ExternalDocumentID | 10_2320_matertrans_MT_MC2024006 article_matertrans_66_5_66_MT_MC2024006_article_char_en |
GroupedDBID | -~X .L7 .LE 5GY 93D ABJNI ACGFS ACIWK ADMLS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 JSI JSP RJT RZJ SJN RYH AAYXX CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c531t-f72d7a3a184278cbf30983addf03b6cb4249c5bd59b198ba036580849eb6f6dc3 |
ISSN | 1345-9678 |
IngestDate | Mon Jun 30 07:24:54 EDT 2025 Tue Aug 05 12:00:45 EDT 2025 Thu Jun 26 22:03:04 EDT 2025 Wed Sep 03 06:30:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c531t-f72d7a3a184278cbf30983addf03b6cb4249c5bd59b198ba036580849eb6f6dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.2320/matertrans.mt-mc2024006 |
PQID | 3218740535 |
PQPubID | 1976393 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3218740535 crossref_primary_10_2320_matertrans_MT_MC2024006 nii_cinii_1390021990401567104 jstage_primary_article_matertrans_66_5_66_MT_MC2024006_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Sendai |
PublicationPlace_xml | – name: Sendai |
PublicationTitle | MATERIALS TRANSACTIONS |
PublicationTitleAlternate | Mater. Trans. |
PublicationTitle_FL | MATERIALS TRANSACTIONS Mater. Trans |
PublicationYear | 2025 |
Publisher | The Japan Institute of Metals and Materials 公益社団法人 日本金属学会 Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Institute of Metals and Materials – name: 公益社団法人 日本金属学会 – name: Japan Science and Technology Agency |
References | 44 45 46 47 48 49 50 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – ident: 29 doi: 10.1016/j.actamat.2015.11.011 – ident: 50 doi: 10.1111/j.1460-2695.1993.tb00132.x – ident: 32 doi: 10.1016/j.actamat.2020.03.003 – ident: 18 doi: 10.1016/j.msea.2014.01.041 – ident: 49 doi: 10.1016/j.ijplas.2022.103318 – ident: 11 doi: 10.1016/j.scriptamat.2019.09.021 – ident: 7 doi: 10.1557/jmr.2009.0173 – ident: 25 doi: 10.1016/j.actamat.2018.12.038 – ident: 38 doi: 10.2320/matertrans.MT-MB2022006 – ident: 28 doi: 10.1016/S0921-5093(97)00778-8 – ident: 5 doi: 10.1016/j.mtla.2024.102236 – ident: 16 doi: 10.1016/j.actamat.2018.05.044 – ident: 13 doi: 10.1016/j.actamat.2014.12.054 – ident: 36 doi: 10.1016/j.msea.2020.140367 – ident: 41 doi: 10.1016/j.msea.2022.144363 – ident: 6 doi: 10.1007/s11661-010-0397-x – ident: 9 doi: 10.1016/j.actamat.2010.02.004 – ident: 34 doi: 10.1016/j.addma.2023.103772 – ident: 43 doi: 10.1016/j.matchar.2019.110039 – ident: 12 doi: 10.1016/j.actamat.2021.117240 – ident: 39 doi: 10.2320/matertrans.MT-M2019370 – ident: 17 doi: 10.1016/j.ijplas.2024.103985 – ident: 23 doi: 10.1016/j.jallcom.2012.07.022 – ident: 46 doi: 10.2139/ssrn.4257760 – ident: 27 doi: 10.1007/s11661-011-0731-y – ident: 24 doi: 10.1038/srep26039 – ident: 31 doi: 10.1007/s40195-017-0665-5 – ident: 35 doi: 10.1016/j.jmrt.2023.04.090 – ident: 15 doi: 10.1007/s41745-022-00292-2 – ident: 20 doi: 10.1016/j.jallcom.2021.159023 – ident: 3 doi: 10.1016/j.matchar.2013.07.012 – ident: 26 doi: 10.1016/j.msea.2017.01.019 – ident: 10 doi: 10.1080/14786430701373672 – ident: 45 doi: 10.1016/j.addma.2014.12.006 – ident: 37 doi: 10.1016/j.msea.2021.142345 – ident: 1 doi: 10.1016/j.matdes.2018.107552 – ident: 21 doi: 10.3390/ma11010146 – ident: 4 doi: 10.1007/s11661-024-07388-7 – ident: 33 doi: 10.1016/j.msea.2021.141271 – ident: 40 doi: 10.2320/matertrans.L-M2018846 – ident: 44 doi: 10.1016/j.msea.2020.140687 – ident: 14 doi: 10.1016/j.matchar.2017.01.014 – ident: 30 doi: 10.1016/j.matchar.2017.01.012 – ident: 19 doi: 10.1016/S0013-7944(00)00099-0 – ident: 42 doi: 10.1107/S1600576716000455 – ident: 8 doi: 10.1016/S0924-0136(02)00865-8 – ident: 2 doi: 10.1007/s11661-008-9634-y – ident: 22 doi: 10.1016/j.actamat.2019.03.003 – ident: 48 doi: 10.1007/s11661-020-05979-8 – ident: 47 doi: 10.1201/9781315370293 |
SSID | ssj0037522 |
Score | 2.4359198 |
Snippet | Additive manufacturing of workhorse Ti6Al4V aerospace alloy components by direct metal laser sintering (DMLS) offers cost-efficiency in producing complex... |
SourceID | proquest crossref nii jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 532 |
SubjectTerms | Additive manufacturing Crack initiation Crack propagation digital image correlation Digital imaging DMLS Ti6Al4V EBSD Electron backscatter diffraction Fatigue failure Fatigue tests Fracture mechanics Fracture surfaces Fracture toughness Grain boundaries Heat treating Heat treatment Lamellar structure Laser sintering Manufacturing Mechanical properties Microstructure Nucleation Samples Strain measurement Thermomechanical treatment Titanium base alloys Tortuosity |
Title | Elucidating the Fracture Toughness of Additively Manufactured and Thermo-Mechanically Treated Ti6Al4V |
URI | https://www.jstage.jst.go.jp/article/matertrans/66/5/66_MT-MC2024006/_article/-char/en https://cir.nii.ac.jp/crid/1390021990401567104 https://www.proquest.com/docview/3218740535 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | MATERIALS TRANSACTIONS, 2025/05/01, Vol.66(5), pp.532-541 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2LQc4IJ5ioUU-cENe8rDzOFalSwUEIW2KeotiO1FD94GWzQF-DT-VmdjJmrIIysVaZW0nzkzG3yTfzBDywtda6EB6DLC4ZrxUnCVaaRYr5QdlFHi6i6_IPkRn5_zthbgYjX44rKV2Iyfq-864kv-RKhwDuWKU7A0kO0wKB-A3yBdakDC0_yTj03mrGoxPsCFPUwx5wi8COdbe6YwYAk2tO4LQ_BuSXdra9OlStCLhYr1YsazCAGCUF3TKEUfC_3kTHc_5Jxe-ZuXGrAtLS_R1xgdUPisv2443Cye7evlu4lAHlnpdXhku9-yywar2A3XHfHGatYtmYOC8adflysSBfZy47yUCsWUBWlMacsHSyBTomVT9sZhhKQrX_pqqK1bPhGNMhX3zafZlYRJkXTf5gAiRI7nA9XdLn2Q5y04CzN3m7UiyfW3zGyiJ4AzhVMV2oiLLi2GiPXIQxDESAQ6OX2fvZ_1uH8YmI_2wWsMhxKle_eGafkFAtz6DE4DZHfaWTfMbHuhATn6P3LXeCT02qnafjKrlA3LHyVn5kFSO0lFQOtorHR2Ujq5qulU66iodBU2gO5SOWqWjVukekfPpaX5yxmytDqbAim9YHQc6LsPST7B2i5J16KVJCJtn7YUyUpKDm6-E1CKVfprIEoCTSLyEp5WM6kir8DHZX66W1RNCNbgk4Db4Mo40T30u_Zr7istKCq1jlYyJ19-_4otJyVL8RXpjMjX3eRhgn1l3QBQVAht34NAPYyDB5IzJEcipUA224DwhRAY8xzEhAWB1PiaHvQQLayi-FmHQFb4UoXh680t_Rm5vn65Dsr9Zt9UR4OCNfG5V8SfmM7YQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+Fracture+Toughness+of+Additively+Manufactured+and+Thermo-Mechanically+Treated+Ti6Al4V&rft.jtitle=Materials+transactions&rft.au=Sahu%2C+Vivek+K.&rft.au=Chandrakar%2C+Shirish&rft.au=Jha%2C+Sumit&rft.au=Gurao%2C+N.P.&rft.date=2025-05-01&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=66&rft.issue=5&rft.spage=532&rft.epage=541&rft_id=info:doi/10.2320%2Fmatertrans.MT-MC2024006&rft.externalDBID=n%2Fa&rft.externalDocID=10_2320_matertrans_MT_MC2024006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon |