Elucidating the Fracture Toughness of Additively Manufactured and Thermo-Mechanically Treated Ti6Al4V

Additive manufacturing of workhorse Ti6Al4V aerospace alloy components by direct metal laser sintering (DMLS) offers cost-efficiency in producing complex designs. However, the rapid and complex heating and cooling cycles during manufacturing can lead to undesirable microstructures and mechanical pro...

Full description

Saved in:
Bibliographic Details
Published inMATERIALS TRANSACTIONS Vol. 66; no. 5; pp. 532 - 541
Main Authors Chandrakar, Shirish, Sahu, Vivek K., Jha, Sumit, Gurao, N.P.
Format Journal Article
LanguageEnglish
Published Sendai The Japan Institute of Metals and Materials 01.05.2025
公益社団法人 日本金属学会
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1345-9678
1347-5320
DOI10.2320/matertrans.MT-MC2024006

Cover

Abstract Additive manufacturing of workhorse Ti6Al4V aerospace alloy components by direct metal laser sintering (DMLS) offers cost-efficiency in producing complex designs. However, the rapid and complex heating and cooling cycles during manufacturing can lead to undesirable microstructures and mechanical properties that are inferior to the wrought product. The present investigation aims to study the microstructure-fracture toughness paradigm for the heat treated DMLS Ti6Al4V sample with conventional thermos-mechanically processed microstructures. To this end, DMLS Ti6Al4V samples were subjected to isothermal heat treatment at 800°C for 1 h to obtain a basketweave α+β dual phase microstructure, while hot rolled samples with equiaxed α+β microstructure were subjected to heat treatment at 1000°C for 1 h to obtain a lamellar α+β microstructure. Fracture toughness tests were performed in three-point bend geometry on fatigue pre-cracked specimens for the three distinct microstructures. The fracture toughness of the heat treated DMLS parts is comparable to the thermo-mechanically treated lamellar α+β microstructure and superior to the equiaxed microstructure. Full-field strain measurement was performed during fracture toughness testing using digital image correlation and detailed microstructural characterisation was performed using electron backscatter diffraction and synchrotron diffraction. It was revealed that the deformation within the lamellar α+β phase delays the crack nucleation, while further crack propagation through thicker α laths and prior β grain boundaries contribute to pronounced crack tortuosity or crack path deflection resulting in a more corrugated fracture surface and enhanced fracture toughness.
AbstractList Additive manufacturing of workhorse Ti6Al4V aerospace alloy components by direct metal laser sintering (DMLS) offers cost-efficiency in producing complex designs. However, the rapid and complex heating and cooling cycles during manufacturing can lead to undesirable microstructures and mechanical properties that are inferior to the wrought product. The present investigation aims to study the microstructure-fracture toughness paradigm for the heat treated DMLS Ti6Al4V sample with conventional thermos-mechanically processed microstructures. To this end, DMLS Ti6Al4V samples were subjected to isothermal heat treatment at 800°C for 1 h to obtain a basketweave α+β dual phase microstructure, while hot rolled samples with equiaxed α+β microstructure were subjected to heat treatment at 1000°C for 1 h to obtain a lamellar α+β microstructure. Fracture toughness tests were performed in three-point bend geometry on fatigue pre-cracked specimens for the three distinct microstructures. The fracture toughness of the heat treated DMLS parts is comparable to the thermo-mechanically treated lamellar α+β microstructure and superior to the equiaxed microstructure. Full-field strain measurement was performed during fracture toughness testing using digital image correlation and detailed microstructural characterisation was performed using electron backscatter diffraction and synchrotron diffraction. It was revealed that the deformation within the lamellar α+β phase delays the crack nucleation, while further crack propagation through thicker α laths and prior β grain boundaries contribute to pronounced crack tortuosity or crack path deflection resulting in a more corrugated fracture surface and enhanced fracture toughness.
Additive manufacturing of workhorse Ti6Al4V aerospace alloy components by direct metal laser sintering (DMLS) offers cost-efficiency in producing complex designs. However, the rapid and complex heating and cooling cycles during manufacturing can lead to undesirable microstructures and mechanical properties that are inferior to the wrought product. The present investigation aims to study the microstructure-fracture toughness paradigm for the heat treated DMLS Ti6Al4V sample with conventional thermos-mechanically processed microstructures. To this end, DMLS Ti6Al4V samples were subjected to isothermal heat treatment at 800 °C for 1 h to obtain a basketweave α+β dual phase microstructure, while hot rolled samples with equiaxed α+β microstructure were subjected to heat treatment at 1000 °C for 1 h to obtain a lamellar α+β microstructure. Fracture toughness tests were performed in three-point bend geometry on fatigue pre-cracked specimens for the three distinct microstructures. The fracture toughness of the heat treated DMLS parts is comparable to the thermo-mechanically treated lamellar α+β microstructure and superior to the equiaxed microstructure. Full-field strain measurement was performed during fracture toughness testing using digital image correlation and detailed microstructural characterisation was performed using electron backscatter diffraction and synchrotron diffraction. It was revealed that the deformation within the lamellar α+β phase delays the crack nucleation, while further crack propagation through thicker α laths and prior β grain boundaries contribute to pronounced crack tortuosity or crack path deflection resulting in a more corrugated fracture surface and enhanced fracture toughness.
ArticleNumber MT-MC2024006
Author Jha, Sumit
Sahu, Vivek K.
Chandrakar, Shirish
Gurao, N.P.
Author_xml – sequence: 1
  fullname: Chandrakar, Shirish
  organization: Department of Materials Science and Engineering, Indian Institute of Technology Kanpur
– sequence: 1
  fullname: Sahu, Vivek K.
  organization: Department of Fuel, Minerals and Metallurgical Engineering, IIT-ISM Dhanbad
– sequence: 1
  fullname: Jha, Sumit
  organization: Department of Materials Science and Engineering, Indian Institute of Technology Kanpur
– sequence: 1
  fullname: Gurao, N.P.
  organization: Department of Materials Science and Engineering, Indian Institute of Technology Kanpur
BackLink https://cir.nii.ac.jp/crid/1390021990401567104$$DView record in CiNii
BookMark eNpNkE9r3DAQxUVJoUmaz1BDe3U6-mvruCxJWojpxc1VyJK8q8Urp5JcyLePNi7bXGYG5jfvDe8KXYQ5OIS-YLgllMD3o84u5qhDuu36utsSIAxAfECXmLKm5oW5eJt5LUXTfkJXKR0AaMMJuUTublqMtzr7sKvy3lX3UZu8RFf187LbB5dSNY_Vxlqf_V83vVSdDsu4MrbSwVb93sXjXHfO7HXwRk8F6qMrb5WdF5uJPX1GH0c9JXfzr1-j3_d3_fZH_fjr4ed281gbTnGux4bYRlONW0aa1gwjBdlSbe0IdBBmYIRJwwfL5YBlO2iggrfQMukGMQpr6DX6uuo-x_nP4lJWh3mJoVgqSnDbMOCUF6pZKRPnlKIb1XP0Rx1fFAZ1ylT9z1R1vTpnWi6_rZfBe2X8qWIqAQiWEhhgLhoMrGDdih1S1jt3ltcxezO59_JCKH4q723OXAk0KhfoK6V9lok
Cites_doi 10.1016/j.actamat.2015.11.011
10.1111/j.1460-2695.1993.tb00132.x
10.1016/j.actamat.2020.03.003
10.1016/j.msea.2014.01.041
10.1016/j.ijplas.2022.103318
10.1016/j.scriptamat.2019.09.021
10.1557/jmr.2009.0173
10.1016/j.actamat.2018.12.038
10.2320/matertrans.MT-MB2022006
10.1016/S0921-5093(97)00778-8
10.1016/j.mtla.2024.102236
10.1016/j.actamat.2018.05.044
10.1016/j.actamat.2014.12.054
10.1016/j.msea.2020.140367
10.1016/j.msea.2022.144363
10.1007/s11661-010-0397-x
10.1016/j.actamat.2010.02.004
10.1016/j.addma.2023.103772
10.1016/j.matchar.2019.110039
10.1016/j.actamat.2021.117240
10.2320/matertrans.MT-M2019370
10.1016/j.ijplas.2024.103985
10.1016/j.jallcom.2012.07.022
10.2139/ssrn.4257760
10.1007/s11661-011-0731-y
10.1038/srep26039
10.1007/s40195-017-0665-5
10.1016/j.jmrt.2023.04.090
10.1007/s41745-022-00292-2
10.1016/j.jallcom.2021.159023
10.1016/j.matchar.2013.07.012
10.1016/j.msea.2017.01.019
10.1080/14786430701373672
10.1016/j.addma.2014.12.006
10.1016/j.msea.2021.142345
10.1016/j.matdes.2018.107552
10.3390/ma11010146
10.1007/s11661-024-07388-7
10.1016/j.msea.2021.141271
10.2320/matertrans.L-M2018846
10.1016/j.msea.2020.140687
10.1016/j.matchar.2017.01.014
10.1016/j.matchar.2017.01.012
10.1016/S0013-7944(00)00099-0
10.1107/S1600576716000455
10.1016/S0924-0136(02)00865-8
10.1007/s11661-008-9634-y
10.1016/j.actamat.2019.03.003
10.1007/s11661-020-05979-8
10.1201/9781315370293
ContentType Journal Article
Copyright 2025 The Japan Institute of Metals and Materials
Copyright Japan Science and Technology Agency 2025
Copyright_xml – notice: 2025 The Japan Institute of Metals and Materials
– notice: Copyright Japan Science and Technology Agency 2025
DBID RYH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.2320/matertrans.MT-MC2024006
DatabaseName CiNii Complete
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5320
EndPage 541
ExternalDocumentID 10_2320_matertrans_MT_MC2024006
article_matertrans_66_5_66_MT_MC2024006_article_char_en
GroupedDBID -~X
.L7
.LE
5GY
93D
ABJNI
ACGFS
ACIWK
ADMLS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
JSI
JSP
RJT
RZJ
SJN
RYH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c531t-f72d7a3a184278cbf30983addf03b6cb4249c5bd59b198ba036580849eb6f6dc3
ISSN 1345-9678
IngestDate Mon Jun 30 07:24:54 EDT 2025
Tue Aug 05 12:00:45 EDT 2025
Thu Jun 26 22:03:04 EDT 2025
Wed Sep 03 06:30:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c531t-f72d7a3a184278cbf30983addf03b6cb4249c5bd59b198ba036580849eb6f6dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.2320/matertrans.mt-mc2024006
PQID 3218740535
PQPubID 1976393
PageCount 10
ParticipantIDs proquest_journals_3218740535
crossref_primary_10_2320_matertrans_MT_MC2024006
nii_cinii_1390021990401567104
jstage_primary_article_matertrans_66_5_66_MT_MC2024006_article_char_en
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Sendai
PublicationPlace_xml – name: Sendai
PublicationTitle MATERIALS TRANSACTIONS
PublicationTitleAlternate Mater. Trans.
PublicationTitle_FL MATERIALS TRANSACTIONS
Mater. Trans
PublicationYear 2025
Publisher The Japan Institute of Metals and Materials
公益社団法人 日本金属学会
Japan Science and Technology Agency
Publisher_xml – name: The Japan Institute of Metals and Materials
– name: 公益社団法人 日本金属学会
– name: Japan Science and Technology Agency
References 44
45
46
47
48
49
50
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 29
  doi: 10.1016/j.actamat.2015.11.011
– ident: 50
  doi: 10.1111/j.1460-2695.1993.tb00132.x
– ident: 32
  doi: 10.1016/j.actamat.2020.03.003
– ident: 18
  doi: 10.1016/j.msea.2014.01.041
– ident: 49
  doi: 10.1016/j.ijplas.2022.103318
– ident: 11
  doi: 10.1016/j.scriptamat.2019.09.021
– ident: 7
  doi: 10.1557/jmr.2009.0173
– ident: 25
  doi: 10.1016/j.actamat.2018.12.038
– ident: 38
  doi: 10.2320/matertrans.MT-MB2022006
– ident: 28
  doi: 10.1016/S0921-5093(97)00778-8
– ident: 5
  doi: 10.1016/j.mtla.2024.102236
– ident: 16
  doi: 10.1016/j.actamat.2018.05.044
– ident: 13
  doi: 10.1016/j.actamat.2014.12.054
– ident: 36
  doi: 10.1016/j.msea.2020.140367
– ident: 41
  doi: 10.1016/j.msea.2022.144363
– ident: 6
  doi: 10.1007/s11661-010-0397-x
– ident: 9
  doi: 10.1016/j.actamat.2010.02.004
– ident: 34
  doi: 10.1016/j.addma.2023.103772
– ident: 43
  doi: 10.1016/j.matchar.2019.110039
– ident: 12
  doi: 10.1016/j.actamat.2021.117240
– ident: 39
  doi: 10.2320/matertrans.MT-M2019370
– ident: 17
  doi: 10.1016/j.ijplas.2024.103985
– ident: 23
  doi: 10.1016/j.jallcom.2012.07.022
– ident: 46
  doi: 10.2139/ssrn.4257760
– ident: 27
  doi: 10.1007/s11661-011-0731-y
– ident: 24
  doi: 10.1038/srep26039
– ident: 31
  doi: 10.1007/s40195-017-0665-5
– ident: 35
  doi: 10.1016/j.jmrt.2023.04.090
– ident: 15
  doi: 10.1007/s41745-022-00292-2
– ident: 20
  doi: 10.1016/j.jallcom.2021.159023
– ident: 3
  doi: 10.1016/j.matchar.2013.07.012
– ident: 26
  doi: 10.1016/j.msea.2017.01.019
– ident: 10
  doi: 10.1080/14786430701373672
– ident: 45
  doi: 10.1016/j.addma.2014.12.006
– ident: 37
  doi: 10.1016/j.msea.2021.142345
– ident: 1
  doi: 10.1016/j.matdes.2018.107552
– ident: 21
  doi: 10.3390/ma11010146
– ident: 4
  doi: 10.1007/s11661-024-07388-7
– ident: 33
  doi: 10.1016/j.msea.2021.141271
– ident: 40
  doi: 10.2320/matertrans.L-M2018846
– ident: 44
  doi: 10.1016/j.msea.2020.140687
– ident: 14
  doi: 10.1016/j.matchar.2017.01.014
– ident: 30
  doi: 10.1016/j.matchar.2017.01.012
– ident: 19
  doi: 10.1016/S0013-7944(00)00099-0
– ident: 42
  doi: 10.1107/S1600576716000455
– ident: 8
  doi: 10.1016/S0924-0136(02)00865-8
– ident: 2
  doi: 10.1007/s11661-008-9634-y
– ident: 22
  doi: 10.1016/j.actamat.2019.03.003
– ident: 48
  doi: 10.1007/s11661-020-05979-8
– ident: 47
  doi: 10.1201/9781315370293
SSID ssj0037522
Score 2.4359198
Snippet Additive manufacturing of workhorse Ti6Al4V aerospace alloy components by direct metal laser sintering (DMLS) offers cost-efficiency in producing complex...
SourceID proquest
crossref
nii
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 532
SubjectTerms Additive manufacturing
Crack initiation
Crack propagation
digital image correlation
Digital imaging
DMLS Ti6Al4V
EBSD
Electron backscatter diffraction
Fatigue failure
Fatigue tests
Fracture mechanics
Fracture surfaces
Fracture toughness
Grain boundaries
Heat treating
Heat treatment
Lamellar structure
Laser sintering
Manufacturing
Mechanical properties
Microstructure
Nucleation
Samples
Strain measurement
Thermomechanical treatment
Titanium base alloys
Tortuosity
Title Elucidating the Fracture Toughness of Additively Manufactured and Thermo-Mechanically Treated Ti6Al4V
URI https://www.jstage.jst.go.jp/article/matertrans/66/5/66_MT-MC2024006/_article/-char/en
https://cir.nii.ac.jp/crid/1390021990401567104
https://www.proquest.com/docview/3218740535
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX MATERIALS TRANSACTIONS, 2025/05/01, Vol.66(5), pp.532-541
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2LQc4IJ5ioUU-cENe8rDzOFalSwUEIW2KeotiO1FD94GWzQF-DT-VmdjJmrIIysVaZW0nzkzG3yTfzBDywtda6EB6DLC4ZrxUnCVaaRYr5QdlFHi6i6_IPkRn5_zthbgYjX44rKV2Iyfq-864kv-RKhwDuWKU7A0kO0wKB-A3yBdakDC0_yTj03mrGoxPsCFPUwx5wi8COdbe6YwYAk2tO4LQ_BuSXdra9OlStCLhYr1YsazCAGCUF3TKEUfC_3kTHc_5Jxe-ZuXGrAtLS_R1xgdUPisv2443Cye7evlu4lAHlnpdXhku9-yywar2A3XHfHGatYtmYOC8adflysSBfZy47yUCsWUBWlMacsHSyBTomVT9sZhhKQrX_pqqK1bPhGNMhX3zafZlYRJkXTf5gAiRI7nA9XdLn2Q5y04CzN3m7UiyfW3zGyiJ4AzhVMV2oiLLi2GiPXIQxDESAQ6OX2fvZ_1uH8YmI_2wWsMhxKle_eGafkFAtz6DE4DZHfaWTfMbHuhATn6P3LXeCT02qnafjKrlA3LHyVn5kFSO0lFQOtorHR2Ujq5qulU66iodBU2gO5SOWqWjVukekfPpaX5yxmytDqbAim9YHQc6LsPST7B2i5J16KVJCJtn7YUyUpKDm6-E1CKVfprIEoCTSLyEp5WM6kir8DHZX66W1RNCNbgk4Db4Mo40T30u_Zr7istKCq1jlYyJ19-_4otJyVL8RXpjMjX3eRhgn1l3QBQVAht34NAPYyDB5IzJEcipUA224DwhRAY8xzEhAWB1PiaHvQQLayi-FmHQFb4UoXh680t_Rm5vn65Dsr9Zt9UR4OCNfG5V8SfmM7YQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+Fracture+Toughness+of+Additively+Manufactured+and+Thermo-Mechanically+Treated+Ti6Al4V&rft.jtitle=Materials+transactions&rft.au=Sahu%2C+Vivek+K.&rft.au=Chandrakar%2C+Shirish&rft.au=Jha%2C+Sumit&rft.au=Gurao%2C+N.P.&rft.date=2025-05-01&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=66&rft.issue=5&rft.spage=532&rft.epage=541&rft_id=info:doi/10.2320%2Fmatertrans.MT-MC2024006&rft.externalDBID=n%2Fa&rft.externalDocID=10_2320_matertrans_MT_MC2024006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon