A power-flow emulator approach for resilience assessment of repairable power grids subject to weather-induced failures and data deficiency

•Weather extreme conditions affect power grid failures/repairs and data is scarce.•A stochastic resilience framework is proposed for assess the weather-grid interaction.•A power-flow emulator is constructed to reduce the computational cost.•Imprecise probabilistic methodology is used to tackle lack...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 210; pp. 339 - 350
Main Authors Rocchetta, Roberto, Zio, Enrico, Patelli, Edoardo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.01.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Weather extreme conditions affect power grid failures/repairs and data is scarce.•A stochastic resilience framework is proposed for assess the weather-grid interaction.•A power-flow emulator is constructed to reduce the computational cost.•Imprecise probabilistic methodology is used to tackle lack of data issues.•Most relevant weather-grid factors are identified by the global sensitivity analysis. A generalised uncertainty quantification framework for resilience assessment of weather-coupled, repairable power grids is presented. The framework can be used to efficiently quantify both epistemic and aleatory uncertainty affecting grid-related and weather-related factors. The power grid simulator has been specifically designed to model interactions between severe weather conditions and grid dynamic states and behaviours, such as weather-induced failures or delays in components replacements. A resilience index is computed by adopting a novel algorithm which exploits a vectorised emulator of the power-flow solver to reduce the computational efforts. The resilience stochastic modelling framework is embedded into a non-intrusive generalised stochastic framework, which enables the analyst to quantify the effect of parameters imprecision. A modified version of the IEEE 24 nodes reliability test system has been used as representative case study. The surrogate-based model and the Power-Flow-based model are compared, and the results show similar accuracy but enhanced efficiency of the former. Global sensitivity of the resilience index to increasing imprecision in parameters of the probabilistic model has been analysed. The relevance of specific weather/grid uncertain factors is highlighted by global sensitivity analysis and the importance of dealing with imprecision in the information clearly emerges.
AbstractList A generalised uncertainty quantification framework for resilience assessment of weather-coupled, repairable power grids is presented. The framework can be used to efficiently quantify both epistemic and aleatory uncertainty affecting grid-related and weather-related factors. The power grid simulator has been specifically designed to model interactions between severe weather conditions and grid dynamic states and behaviours, such as weather-induced failures or delays in components replacements. A resilience index is computed by adopting a novel algorithm which exploits a vectorised emulator of the power-flow solver to reduce the computational efforts. The resilience stochastic modelling framework is embedded into a non-intrusive generalised stochastic framework, which enables the analyst to quantify the effect of parameters imprecision. A modified version of the IEEE 24 nodes reliability test system has been used as representative case study. The surrogate-based model and the Power-Flow-based model are compared, and the results show similar accuracy but enhanced efficiency of the former. Global sensitivity of the resilience index to increasing imprecision in parameters of the probabilistic model has been analysed. The relevance of specific weather/grid uncertain factors is highlighted by global sensitivity analysis and the importance of dealing with imprecision in the information clearly emerges.
•Weather extreme conditions affect power grid failures/repairs and data is scarce.•A stochastic resilience framework is proposed for assess the weather-grid interaction.•A power-flow emulator is constructed to reduce the computational cost.•Imprecise probabilistic methodology is used to tackle lack of data issues.•Most relevant weather-grid factors are identified by the global sensitivity analysis. A generalised uncertainty quantification framework for resilience assessment of weather-coupled, repairable power grids is presented. The framework can be used to efficiently quantify both epistemic and aleatory uncertainty affecting grid-related and weather-related factors. The power grid simulator has been specifically designed to model interactions between severe weather conditions and grid dynamic states and behaviours, such as weather-induced failures or delays in components replacements. A resilience index is computed by adopting a novel algorithm which exploits a vectorised emulator of the power-flow solver to reduce the computational efforts. The resilience stochastic modelling framework is embedded into a non-intrusive generalised stochastic framework, which enables the analyst to quantify the effect of parameters imprecision. A modified version of the IEEE 24 nodes reliability test system has been used as representative case study. The surrogate-based model and the Power-Flow-based model are compared, and the results show similar accuracy but enhanced efficiency of the former. Global sensitivity of the resilience index to increasing imprecision in parameters of the probabilistic model has been analysed. The relevance of specific weather/grid uncertain factors is highlighted by global sensitivity analysis and the importance of dealing with imprecision in the information clearly emerges.
Author Rocchetta, Roberto
Patelli, Edoardo
Zio, Enrico
Author_xml – sequence: 1
  givenname: Roberto
  orcidid: 0000-0002-8117-8737
  surname: Rocchetta
  fullname: Rocchetta, Roberto
  organization: Insititue for Risk and Uncertainty, Liverpool University, Liverpool, UK
– sequence: 2
  givenname: Enrico
  surname: Zio
  fullname: Zio, Enrico
  organization: Department of Energy, Politecnico di Milano, Milan, Italy
– sequence: 3
  givenname: Edoardo
  orcidid: 0000-0002-5007-7247
  surname: Patelli
  fullname: Patelli, Edoardo
  email: edoardo.patelli@liverpool.ac.uk
  organization: Insititue for Risk and Uncertainty, Liverpool University, Liverpool, UK
BackLink https://centralesupelec.hal.science/hal-01786579$$DView record in HAL
BookMark eNqFkc9u1DAYxCNUJLaFV0A-wiFb_9k4icSBVQUUaSUucLa-2J-7XmXjYDtd7Sv0qXGa9sJlT5bHMyP5N9fF1eAHLIqPjK4ZZfL2sIYRBwwP5zWnrF7POpdvihVral62jDVXxYoKKksuWfuuuI7xQCnljNNV8bQloz9hKG3vTwSPUw_JBwLjGDzoPbH5EjC63uGgkUCMGOMRh0S8zQ8juABdj0sJeQjORBKn7oA6keTJCSHtc7sbzKTREAuun3IfgcEQAwmIQev0XH5-X7y10Ef88HLeFH--f_t9d1_ufv34ebfdlboSLJVWWi67mjGL0BmGvOs2DW6MEBpaI0A0tO7kprEd31hqGrAVY5XtOiGYrisQN8XnpXcPvRqDO0I4Kw9O3W93atYyxEZWdfvIsvfT4s04_k4Ykzq6qLHvYUA_RcVZJSRvRUsvWzPzqhZtI7P1y2LVwccY0CrtEiTnhxQyIMWompdVB_W6rJqXfdb5HJf_xV9_cTH4dQlixvvoMKj4jB6NC3kwZby7VPEP3ZvHHg
CitedBy_id crossref_primary_10_1111_risa_13995
crossref_primary_10_31857_S0002331024030012
crossref_primary_10_1109_ACCESS_2020_2984240
crossref_primary_10_1016_j_rser_2022_112185
crossref_primary_10_1016_j_ijepes_2019_105669
crossref_primary_10_1109_TPWRS_2022_3149983
crossref_primary_10_1016_j_ress_2021_107900
crossref_primary_10_1016_j_ress_2020_106817
crossref_primary_10_1080_23789689_2019_1708182
crossref_primary_10_1109_TSG_2019_2950844
crossref_primary_10_1016_j_envsoft_2023_105663
crossref_primary_10_1177_0954408918809596
crossref_primary_10_1016_j_apm_2020_08_066
crossref_primary_10_1109_TPWRS_2022_3194307
crossref_primary_10_1080_23789689_2019_1610600
crossref_primary_10_1016_j_apenergy_2019_02_017
crossref_primary_10_1016_j_ifacol_2022_09_595
crossref_primary_10_1016_j_apenergy_2018_09_089
crossref_primary_10_1016_j_ress_2023_109381
crossref_primary_10_1016_j_apenergy_2020_114520
crossref_primary_10_1109_JIOT_2020_3018687
crossref_primary_10_1080_00207543_2020_1841318
crossref_primary_10_1016_j_ress_2020_106800
crossref_primary_10_1016_j_epsr_2024_111263
crossref_primary_10_1016_j_rser_2021_111665
crossref_primary_10_1109_TSG_2022_3179593
crossref_primary_10_1016_j_rser_2020_110201
crossref_primary_10_1016_j_apenergy_2018_02_081
crossref_primary_10_1016_j_ijpe_2021_108373
crossref_primary_10_1109_TSG_2021_3114512
crossref_primary_10_1016_j_ijepes_2023_109397
crossref_primary_10_3390_en14061571
crossref_primary_10_1016_j_epsr_2019_02_014
crossref_primary_10_1109_JSYST_2024_3496754
crossref_primary_10_1016_j_ymssp_2021_107973
crossref_primary_10_1016_j_jnlssr_2022_02_002
crossref_primary_10_1016_j_rser_2022_112841
crossref_primary_10_1016_j_ress_2021_107443
crossref_primary_10_1007_s10994_023_06422_w
crossref_primary_10_1016_j_ijepes_2017_11_047
crossref_primary_10_14483_22487638_18629
crossref_primary_10_1016_j_apenergy_2023_121558
crossref_primary_10_1016_j_apenergy_2019_02_055
crossref_primary_10_1109_JSYST_2022_3171240
crossref_primary_10_1109_TSG_2020_3008228
crossref_primary_10_1016_j_ijepes_2019_105718
crossref_primary_10_2514_1_J063083
crossref_primary_10_1002_eng2_12277
crossref_primary_10_1016_j_apenergy_2019_114062
crossref_primary_10_1016_j_epsr_2022_107915
crossref_primary_10_3390_sym14061182
crossref_primary_10_1016_j_susmat_2024_e01139
crossref_primary_10_1177_1748006X18808085
Cites_doi 10.1016/0021-9045(90)90079-6
10.1016/j.compstruc.2014.07.006
10.1007/s004660000204
10.1002/etep.1908
10.1109/TPWRD.2010.2090363
10.1016/j.epsr.2016.03.019
10.1016/j.apenergy.2014.05.055
10.1016/j.rser.2014.05.063
10.1007/BF00889887
10.1016/j.cma.2004.03.019
10.1016/j.ijepes.2016.11.008
10.1016/S0927-0507(06)13018-2
10.1109/TNS.2006.871662
10.1016/j.ress.2014.11.013
10.1016/j.apenergy.2017.01.103
10.1016/0165-0114(87)90114-X
10.1016/j.jup.2016.10.007
10.1016/S0165-0114(02)00246-4
10.1016/j.ijepes.2012.03.044
10.1016/j.ejor.2014.12.047
10.1109/TPWRS.2004.825981
10.1016/j.ijepes.2013.11.039
10.1016/j.ress.2004.03.010
10.1016/j.cpc.2009.09.018
10.1016/S0893-6080(97)00015-4
10.1016/j.apenergy.2016.11.111
10.1016/S0378-7796(97)01162-0
10.1016/j.strusafe.2014.10.002
10.1016/j.ress.2007.03.038
10.1016/j.apenergy.2016.12.031
10.1201/9781315374987-424
10.1016/j.energy.2016.03.056
10.1016/j.simpat.2016.12.006
10.1016/j.ress.2012.11.002
10.1016/j.ejor.2015.06.032
10.1016/j.ijepes.2014.03.068
10.1016/j.apenergy.2016.10.086
10.1016/0888-613X(90)90022-T
10.1016/j.engappai.2016.10.012
10.1109/PMAPS.2014.6960673
10.1016/j.apenergy.2016.08.139
10.1109/59.709103
10.1016/j.segan.2016.04.002
10.1109/59.744545
10.1016/j.epsr.2015.06.012
10.1016/j.epsr.2014.12.022
10.1016/j.ymssp.2013.01.024
10.1109/TPAS.1979.319398
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
DOI 10.1016/j.apenergy.2017.10.126
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 350
ExternalDocumentID oai_HAL_hal_01786579v1
10_1016_j_apenergy_2017_10_126
S0306261917315738
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
ZY4
7S9
EFKBS
L.6
1XC
ID FETCH-LOGICAL-c531t-f6f26b711feabd1e2bb48e4d33ca9d3a3807b648fb24f0d8af5115fbb331c75a3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri May 09 12:13:34 EDT 2025
Sun Aug 24 04:10:22 EDT 2025
Mon Jul 21 09:54:57 EDT 2025
Tue Jul 01 02:53:20 EDT 2025
Thu Apr 24 23:20:47 EDT 2025
Fri Feb 23 02:45:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Severe weather
Global sensitivity
Load curtailing
Power grids
Artificial neural network
Credal sets
Resilience
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-f6f26b711feabd1e2bb48e4d33ca9d3a3807b648fb24f0d8af5115fbb331c75a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8117-8737
0000-0002-5007-7247
0000-0002-7108-637X
PQID 2000573986
PQPubID 24069
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_01786579v1
proquest_miscellaneous_2153629390
proquest_miscellaneous_2000573986
crossref_citationtrail_10_1016_j_apenergy_2017_10_126
crossref_primary_10_1016_j_apenergy_2017_10_126
elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_10_126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-15
PublicationDateYYYYMMDD 2018-01-15
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Liu, Davidson, Apanasovich (b0050) 2008; 93
Zio (b0200) 2006; 53
Panteli, Mancarella (b0030) 2015; 127
Liao, Hsieh, Guo, Liu, Chu (b0170) 2015; 243
McKeown, Stella, Hall (b0085) 1997; 10
Tonon (b0220) 2004; 85
Aien, Rashidinejad, Fotuhi-Firuzabad (b0145) 2014; 37
Williamson, Downs (b0255) 1990; 4
Alvehag, Soder (b0060) 2011; 26
Karlsson, Johansson, Andler (b0230) 2010
Alvarez, Hurtado (b0235) 2014; 142
Zhong (b0165) 2012; 43
Ashraf, Gupta, Choudhary, Chakrabarti (b0105) 2017; 87
Panteli, Pickering, Wilkinson, Dawson, Mancarella (b0035) 2017
Saltelli, Annoni, Azzini, Campolongo, Ratto, Tarantola (b0070) 2010; 181
Hagan, Demuth, Beale (b0195) 1996
Beer, Ferson, Kreinovich (b0140) 2013; 37
Silva, dos Santos, Bottura, Oleskovicz (b0120) 2017; 57
Espinoza, Panteli, Mancarella, Rudnick (b0185) 2016; 136
Moens, Vandepitte (b0210) 2005; 194
Amjady, Ehsan (b0115) 1999; 14
Rocchetta, Li, Zio (b0055) 2015; 136
Cressie (b0100) 1990; 22
Patelli, Alvarez, Broggi, de Angelis (b0245) 2014; 12
Chen, Matoba, Inabe, Okabe (b0125) 1998; 13
R Madych, A Nelson (b0095) 1990; 60
Mena, Hennebel, Li, Zio (b0175) 2016; 106
Syrri, Mancarella (b0205) 2016; 7
Kundur, Paserba, Ajjarapu, Andersson, Bose, Canizares (b0005) 2004; 19
Mena R, Zio E, Hennebel M. Sensitivity analysis of a simulation model for evaluating renewable distributed generation on a power network. In: 2014 International conference on probabilistic methods applied to power systems (PMAPS), July 2014. p. 1–6.
Moore, Lodwick (b0215) 2003; 135
Li, Zhang, Jiang, Chen, Bai, Cui (b0180) 2017; 192
Cadini, Agliardi, Zio (b0045) 2017; 185
Chen, Zhuang, Li, Wang, Zhao, Zhang (b0250) 2017; 189
Subcommittee (b0260) 1979; 98
Rocchetta R, Patelli E. Imprecise probabilistic framework for power grids risk assessment and sensitivity analysis. In: Risk, reliability and safety: innovating theory and practice; 2016. p. 2789–96.
Borgonovo, Plischke (b0265) 2016; 248
Yuan, Li (b0010) 2015; 122
Abiri, Rashidi, Niknam, Salehi (b0015) 2014; 61
Li, Sansavini, Zio (b0155) 2013; 111
Wang, Xu, Xu, Li, Shafie-khah, Catalo (b0065) 2017; 193
Barton Russell R, Meckesheimer Martin. Chapter 18 metamodel-based simulation optimization. In: Henderson Shane G, Nelson Barry L, editors. Simulation, Handbooks in Operations Research and Management Science pages 535 – 574. Elsevier, 2006.
Baghaee, Mirsalim, Gharehpetian, Talebi (b0110) 2017; 72
Matko, Golobi, Konti (b0040) 2017; 44
Panteli, Mancarella (b0025) 2015
Kumar, Samantaray, Joos (b0160) 2014; 57
Amrouche, Pivert (b0090) 2014; 130
Möller, Graf, Beer (b0225) 2000; 26
Moradkhani, Haghifam, Mohammadzadeh (b0135) 2015; 25
Nims, El-Keib, Smith (b0020) 1997; 43
Marco de Angelis, Edoardo Patelli, Michael Beer. Advanced line sampling for efficient robust reliability analysis. Struct Safety 2015;52(Part B):170-182 [Engineering Analyses with Vague and Imprecise Information].
Wang, Li, Wang, Peng, Jiang, Liu (b0130) 2017; 188
Dong, Shah (b0240) 1987; 24
Wang (10.1016/j.apenergy.2017.10.126_b0065) 2017; 193
Kundur (10.1016/j.apenergy.2017.10.126_b0005) 2004; 19
Abiri (10.1016/j.apenergy.2017.10.126_b0015) 2014; 61
Kumar (10.1016/j.apenergy.2017.10.126_b0160) 2014; 57
Yuan (10.1016/j.apenergy.2017.10.126_b0010) 2015; 122
Silva (10.1016/j.apenergy.2017.10.126_b0120) 2017; 57
Alvehag (10.1016/j.apenergy.2017.10.126_b0060) 2011; 26
Li (10.1016/j.apenergy.2017.10.126_b0155) 2013; 111
Ashraf (10.1016/j.apenergy.2017.10.126_b0105) 2017; 87
Dong (10.1016/j.apenergy.2017.10.126_b0240) 1987; 24
Amrouche (10.1016/j.apenergy.2017.10.126_b0090) 2014; 130
Möller (10.1016/j.apenergy.2017.10.126_b0225) 2000; 26
Aien (10.1016/j.apenergy.2017.10.126_b0145) 2014; 37
Panteli (10.1016/j.apenergy.2017.10.126_b0035) 2017
Moradkhani (10.1016/j.apenergy.2017.10.126_b0135) 2015; 25
R Madych (10.1016/j.apenergy.2017.10.126_b0095) 1990; 60
Nims (10.1016/j.apenergy.2017.10.126_b0020) 1997; 43
Cadini (10.1016/j.apenergy.2017.10.126_b0045) 2017; 185
Mena (10.1016/j.apenergy.2017.10.126_b0175) 2016; 106
Matko (10.1016/j.apenergy.2017.10.126_b0040) 2017; 44
Alvarez (10.1016/j.apenergy.2017.10.126_b0235) 2014; 142
Liu (10.1016/j.apenergy.2017.10.126_b0050) 2008; 93
Borgonovo (10.1016/j.apenergy.2017.10.126_b0265) 2016; 248
Wang (10.1016/j.apenergy.2017.10.126_b0130) 2017; 188
Liao (10.1016/j.apenergy.2017.10.126_b0170) 2015; 243
Moens (10.1016/j.apenergy.2017.10.126_b0210) 2005; 194
McKeown (10.1016/j.apenergy.2017.10.126_b0085) 1997; 10
Beer (10.1016/j.apenergy.2017.10.126_b0140) 2013; 37
10.1016/j.apenergy.2017.10.126_b0080
Cressie (10.1016/j.apenergy.2017.10.126_b0100) 1990; 22
Syrri (10.1016/j.apenergy.2017.10.126_b0205) 2016; 7
Rocchetta (10.1016/j.apenergy.2017.10.126_b0055) 2015; 136
Subcommittee (10.1016/j.apenergy.2017.10.126_b0260) 1979; 98
Zhong (10.1016/j.apenergy.2017.10.126_b0165) 2012; 43
Patelli (10.1016/j.apenergy.2017.10.126_b0245) 2014; 12
Amjady (10.1016/j.apenergy.2017.10.126_b0115) 1999; 14
Li (10.1016/j.apenergy.2017.10.126_b0180) 2017; 192
Tonon (10.1016/j.apenergy.2017.10.126_b0220) 2004; 85
Espinoza (10.1016/j.apenergy.2017.10.126_b0185) 2016; 136
Moore (10.1016/j.apenergy.2017.10.126_b0215) 2003; 135
10.1016/j.apenergy.2017.10.126_b0150
Zio (10.1016/j.apenergy.2017.10.126_b0200) 2006; 53
10.1016/j.apenergy.2017.10.126_b0075
Baghaee (10.1016/j.apenergy.2017.10.126_b0110) 2017; 72
Saltelli (10.1016/j.apenergy.2017.10.126_b0070) 2010; 181
Williamson (10.1016/j.apenergy.2017.10.126_b0255) 1990; 4
Panteli (10.1016/j.apenergy.2017.10.126_b0025) 2015
Panteli (10.1016/j.apenergy.2017.10.126_b0030) 2015; 127
10.1016/j.apenergy.2017.10.126_b0190
Chen (10.1016/j.apenergy.2017.10.126_b0125) 1998; 13
Hagan (10.1016/j.apenergy.2017.10.126_b0195) 1996
Karlsson (10.1016/j.apenergy.2017.10.126_b0230) 2010
Chen (10.1016/j.apenergy.2017.10.126_b0250) 2017; 189
References_xml – volume: 22
  start-page: 239
  year: 1990
  end-page: 252
  ident: b0100
  article-title: The origins of kriging
  publication-title: Math Geol
– volume: 57
  start-page: 11
  year: 2014
  end-page: 30
  ident: b0160
  article-title: A reliability assessment based graph theoretical approach for feeder routing in power distribution networks including distributed generations
  publication-title: Int J Electr Power Energy Syst
– volume: 142
  start-page: 54
  year: 2014
  end-page: 63
  ident: b0235
  article-title: An efficient method for the estimation of structural reliability intervals with random sets, dependence modeling and uncertain inputs
  publication-title: Comp Struct
– volume: 130
  start-page: 333
  year: 2014
  end-page: 341
  ident: b0090
  article-title: Artificial neural network based daily local forecasting for global solar radiation
  publication-title: Appl Energy
– year: 2017
  ident: b0035
  article-title: Power system resilience to extreme weather: fragility modelling, probabilistic impact assessment, and adaptation measures
  publication-title: IEEE Trans Power Syst
– volume: 93
  start-page: 897
  year: 2008
  end-page: 912
  ident: b0050
  article-title: Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms
  publication-title: Reliab Eng Syst Safety
– volume: 7
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0205
  article-title: Reliability and risk assessment of post-contingency demand response in smart distribution networks
  publication-title: Sustain Energy, Grids Netw
– volume: 26
  start-page: 547
  year: 2000
  end-page: 565
  ident: b0225
  article-title: Fuzzy structural analysis using
  publication-title: Comput Mech
– volume: 12
  start-page: 140
  year: 2014
  end-page: 169
  ident: b0245
  article-title: Uncertainty management in multidisciplinary design of critical safety systems
  publication-title: J Aerosp Inf Syst
– volume: 189
  start-page: 534
  year: 2017
  end-page: 554
  ident: b0250
  article-title: Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model
  publication-title: Appl Energy
– volume: 13
  start-page: 1084
  year: 1998
  end-page: 1089
  ident: b0125
  article-title: Surrogate constraint method for optimal power flow
  publication-title: IEEE Trans Power Syst
– volume: 194
  start-page: 1527
  year: 2005
  end-page: 1555
  ident: b0210
  article-title: A survey of non-probabilistic uncertainty treatment in finite element analysis
  publication-title: Comp Meth Appl Mech Eng
– volume: 37
  start-page: 4
  year: 2013
  end-page: 29
  ident: b0140
  article-title: Imprecise probabilities in engineering analyses
  publication-title: Mech Syst Sig Process
– volume: 106
  start-page: 712
  year: 2016
  end-page: 727
  ident: b0175
  article-title: A multi-objective optimization framework for risk-controlled integration of renewable generation into electric power systems
  publication-title: Energy
– volume: 248
  start-page: 869
  year: 2016
  end-page: 887
  ident: b0265
  article-title: Sensitivity analysis: a review of recent advances
  publication-title: Euro J Operat Res
– volume: 135
  start-page: 5
  year: 2003
  end-page: 9
  ident: b0215
  article-title: Interval analysis and fuzzy set theory
  publication-title: Fuzzy Sets Syst
– volume: 192
  start-page: 408
  year: 2017
  end-page: 419
  ident: b0180
  article-title: Optimal dispatch strategy for integrated energy systems with CCHP and wind power
  publication-title: Appl Energy
– volume: 181
  start-page: 259
  year: 2010
  end-page: 270
  ident: b0070
  article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
  publication-title: Comp Phys Commun
– volume: 72
  start-page: 51
  year: 2017
  end-page: 68
  ident: b0110
  article-title: Application of RBF neural networks and unscented transformation in probabilistic power-flow of microgrids including correlated wind/PV units and plug-in hybrid electric vehicles
  publication-title: Simul Model Pract Theory
– volume: 122
  start-page: 65
  year: 2015
  end-page: 75
  ident: b0010
  article-title: Hybrid voltage stability assessment VSA for N-1 contingency
  publication-title: Electr Power Syst Res
– year: 1996
  ident: b0195
  article-title: Neural Network Design
– start-page: 80
  year: 2010
  end-page: 89
  ident: b0230
  article-title: An empirical comparison of bayesian and credal set theory for discrete state estimation
– volume: 98
  start-page: 2047
  year: 1979
  end-page: 2054
  ident: b0260
  article-title: IEEE reliability test system
  publication-title: IEEE Trans Power Apparat Syst PAS
– volume: 61
  start-page: 585
  year: 2014
  end-page: 593
  ident: b0015
  article-title: Optimal PMU placement method for complete topological observability of power system under various contingencies
  publication-title: Int J Electr Power Energy Syst
– volume: 127
  start-page: 259
  year: 2015
  end-page: 270
  ident: b0030
  article-title: Influence of extreme weather and climate change on the resilience of power systems: impacts and possible mitigation strategies
  publication-title: Electr Power Syst Res
– volume: 185
  start-page: 267
  year: 2017
  end-page: 279
  ident: b0045
  article-title: A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions
  publication-title: Appl Energy
– start-page: 1
  year: 2015
  end-page: 10
  ident: b0025
  article-title: Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events
  publication-title: IEEE Syst J
– volume: 193
  start-page: 220
  year: 2017
  end-page: 231
  ident: b0065
  article-title: The values of market-based demand response on improving power system reliability under extreme circumstances
  publication-title: Appl Energy
– volume: 37
  start-page: 883
  year: 2014
  end-page: 895
  ident: b0145
  article-title: On possibilistic and probabilistic uncertainty assessment of power flow problem: a review and a new approach
  publication-title: Renew Sustain Energy Rev
– volume: 10
  start-page: 1455
  year: 1997
  end-page: 1463
  ident: b0085
  article-title: Some numerical aspects of the training problem for feed-forward neural nets
  publication-title: Neural Netw
– volume: 60
  start-page: 141
  year: 1990
  end-page: 156
  ident: b0095
  article-title: Polyharmonic cardinal splines
  publication-title: J Approx Theory
– reference: Marco de Angelis, Edoardo Patelli, Michael Beer. Advanced line sampling for efficient robust reliability analysis. Struct Safety 2015;52(Part B):170-182 [Engineering Analyses with Vague and Imprecise Information].
– volume: 85
  start-page: 169
  year: 2004
  end-page: 181
  ident: b0220
  article-title: Using random set theory to propagate epistemic uncertainty through a mechanical system
  publication-title: Reliab Eng Syst Safety
– volume: 87
  start-page: 43
  year: 2017
  end-page: 51
  ident: b0105
  article-title: Voltage stability monitoring of power systems using reduced network and artificial neural network
  publication-title: Int J Electr Power Energy Syst
– volume: 14
  start-page: 287
  year: 1999
  end-page: 292
  ident: b0115
  article-title: Evaluation of power systems reliability by an artificial neural network
  publication-title: IEEE Trans Power Syst
– volume: 26
  start-page: 910
  year: 2011
  end-page: 919
  ident: b0060
  article-title: A reliability model for distribution systems incorporating seasonal variations in severe weather
  publication-title: IEEE Trans Power Deliv
– volume: 4
  start-page: 89
  year: 1990
  end-page: 158
  ident: b0255
  article-title: Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds
  publication-title: Int J Approx Reason
– volume: 44
  start-page: 12
  year: 2017
  end-page: 24
  ident: b0040
  article-title: Reducing risks to electric power infrastructure due to extreme weather events by means of spatial planning: Case studies from slovenia
  publication-title: Utilities Policy
– volume: 43
  start-page: 1318
  year: 2012
  end-page: 1321
  ident: b0165
  article-title: Graph theory based expert system to form de-icing route in Changsha power grid
  publication-title: Int J Electr Power Energy Syst
– volume: 111
  start-page: 195
  year: 2013
  end-page: 205
  ident: b0155
  article-title: Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks
  publication-title: Reliab Eng Syst Safety
– volume: 24
  start-page: 65
  year: 1987
  end-page: 78
  ident: b0240
  article-title: Vertex method for computing functions of fuzzy variables
  publication-title: Fuzzy Sets Syst
– volume: 25
  start-page: 1452
  year: 2015
  end-page: 1465
  ident: b0135
  article-title: Failure rate estimation of overhead electric distribution lines considering data deficiency and population variability
  publication-title: Int Trans Electr Energy Syst
– volume: 136
  start-page: 352
  year: 2016
  end-page: 361
  ident: b0185
  article-title: Multi-phase assessment and adaptation of power systems resilience to natural hazards
  publication-title: Electr Power Syst Res
– reference: Mena R, Zio E, Hennebel M. Sensitivity analysis of a simulation model for evaluating renewable distributed generation on a power network. In: 2014 International conference on probabilistic methods applied to power systems (PMAPS), July 2014. p. 1–6.
– volume: 53
  start-page: 1460
  year: 2006
  end-page: 1478
  ident: b0200
  article-title: A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes
  publication-title: IEEE Trans Nucl Sci
– reference: Barton Russell R, Meckesheimer Martin. Chapter 18 metamodel-based simulation optimization. In: Henderson Shane G, Nelson Barry L, editors. Simulation, Handbooks in Operations Research and Management Science pages 535 – 574. Elsevier, 2006.
– volume: 57
  start-page: 50
  year: 2017
  end-page: 60
  ident: b0120
  article-title: Development and evaluation of a prototype for remote voltage monitoring based on artificial neural networks
  publication-title: Eng Appl Artif Intell
– volume: 136
  start-page: 47
  year: 2015
  end-page: 61
  ident: b0055
  article-title: Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions
  publication-title: Reliab Eng Syst Safety
– volume: 19
  start-page: 1387
  year: 2004
  end-page: 1401
  ident: b0005
  article-title: Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions
  publication-title: IEEE Trans Power Syst
– volume: 43
  start-page: 69
  year: 1997
  end-page: 76
  ident: b0020
  article-title: Contingency ranking for voltage stability using a genetic algorithm
  publication-title: Electr Power Syst Res
– volume: 243
  start-page: 985
  year: 2015
  end-page: 994
  ident: b0170
  article-title: Hybrid search for the optimal PMU placement problem on a power grid
  publication-title: Euro J Operat Res
– volume: 188
  start-page: 56
  year: 2017
  end-page: 70
  ident: b0130
  article-title: Deep learning based ensemble approach for probabilistic wind power forecasting
  publication-title: Appl Energy
– reference: Rocchetta R, Patelli E. Imprecise probabilistic framework for power grids risk assessment and sensitivity analysis. In: Risk, reliability and safety: innovating theory and practice; 2016. p. 2789–96.
– volume: 60
  start-page: 141
  issue: 2
  year: 1990
  ident: 10.1016/j.apenergy.2017.10.126_b0095
  article-title: Polyharmonic cardinal splines
  publication-title: J Approx Theory
  doi: 10.1016/0021-9045(90)90079-6
– volume: 142
  start-page: 54
  year: 2014
  ident: 10.1016/j.apenergy.2017.10.126_b0235
  article-title: An efficient method for the estimation of structural reliability intervals with random sets, dependence modeling and uncertain inputs
  publication-title: Comp Struct
  doi: 10.1016/j.compstruc.2014.07.006
– volume: 26
  start-page: 547
  issue: 6
  year: 2000
  ident: 10.1016/j.apenergy.2017.10.126_b0225
  article-title: Fuzzy structural analysis using α-level optimization
  publication-title: Comput Mech
  doi: 10.1007/s004660000204
– volume: 25
  start-page: 1452
  issue: 8
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.126_b0135
  article-title: Failure rate estimation of overhead electric distribution lines considering data deficiency and population variability
  publication-title: Int Trans Electr Energy Syst
  doi: 10.1002/etep.1908
– volume: 26
  start-page: 910
  issue: 2
  year: 2011
  ident: 10.1016/j.apenergy.2017.10.126_b0060
  article-title: A reliability model for distribution systems incorporating seasonal variations in severe weather
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/TPWRD.2010.2090363
– volume: 136
  start-page: 352
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.126_b0185
  article-title: Multi-phase assessment and adaptation of power systems resilience to natural hazards
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2016.03.019
– volume: 130
  start-page: 333
  year: 2014
  ident: 10.1016/j.apenergy.2017.10.126_b0090
  article-title: Artificial neural network based daily local forecasting for global solar radiation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.05.055
– volume: 37
  start-page: 883
  year: 2014
  ident: 10.1016/j.apenergy.2017.10.126_b0145
  article-title: On possibilistic and probabilistic uncertainty assessment of power flow problem: a review and a new approach
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.05.063
– volume: 22
  start-page: 239
  issue: 3
  year: 1990
  ident: 10.1016/j.apenergy.2017.10.126_b0100
  article-title: The origins of kriging
  publication-title: Math Geol
  doi: 10.1007/BF00889887
– volume: 194
  start-page: 1527
  issue: 12–16
  year: 2005
  ident: 10.1016/j.apenergy.2017.10.126_b0210
  article-title: A survey of non-probabilistic uncertainty treatment in finite element analysis
  publication-title: Comp Meth Appl Mech Eng
  doi: 10.1016/j.cma.2004.03.019
– volume: 12
  start-page: 140
  issue: 1
  year: 2014
  ident: 10.1016/j.apenergy.2017.10.126_b0245
  article-title: Uncertainty management in multidisciplinary design of critical safety systems
  publication-title: J Aerosp Inf Syst
– volume: 87
  start-page: 43
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.126_b0105
  article-title: Voltage stability monitoring of power systems using reduced network and artificial neural network
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.11.008
– ident: 10.1016/j.apenergy.2017.10.126_b0080
  doi: 10.1016/S0927-0507(06)13018-2
– volume: 53
  start-page: 1460
  issue: 3
  year: 2006
  ident: 10.1016/j.apenergy.2017.10.126_b0200
  article-title: A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/TNS.2006.871662
– volume: 136
  start-page: 47
  issue: 0
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.126_b0055
  article-title: Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions
  publication-title: Reliab Eng Syst Safety
  doi: 10.1016/j.ress.2014.11.013
– volume: 193
  start-page: 220
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.126_b0065
  article-title: The values of market-based demand response on improving power system reliability under extreme circumstances
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.103
– volume: 24
  start-page: 65
  issue: 1
  year: 1987
  ident: 10.1016/j.apenergy.2017.10.126_b0240
  article-title: Vertex method for computing functions of fuzzy variables
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/0165-0114(87)90114-X
– issue: 99
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.126_b0035
  article-title: Power system resilience to extreme weather: fragility modelling, probabilistic impact assessment, and adaptation measures
  publication-title: IEEE Trans Power Syst
– volume: 44
  start-page: 12
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.126_b0040
  article-title: Reducing risks to electric power infrastructure due to extreme weather events by means of spatial planning: Case studies from slovenia
  publication-title: Utilities Policy
  doi: 10.1016/j.jup.2016.10.007
– start-page: 80
  year: 2010
  ident: 10.1016/j.apenergy.2017.10.126_b0230
– volume: 135
  start-page: 5
  issue: 1
  year: 2003
  ident: 10.1016/j.apenergy.2017.10.126_b0215
  article-title: Interval analysis and fuzzy set theory
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/S0165-0114(02)00246-4
– volume: 43
  start-page: 1318
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2017.10.126_b0165
  article-title: Graph theory based expert system to form de-icing route in Changsha power grid
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.03.044
– volume: 243
  start-page: 985
  issue: 3
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.126_b0170
  article-title: Hybrid search for the optimal PMU placement problem on a power grid
  publication-title: Euro J Operat Res
  doi: 10.1016/j.ejor.2014.12.047
– volume: 19
  start-page: 1387
  issue: 3
  year: 2004
  ident: 10.1016/j.apenergy.2017.10.126_b0005
  article-title: Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2004.825981
– volume: 57
  start-page: 11
  year: 2014
  ident: 10.1016/j.apenergy.2017.10.126_b0160
  article-title: A reliability assessment based graph theoretical approach for feeder routing in power distribution networks including distributed generations
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.11.039
– volume: 85
  start-page: 169
  issue: 13
  year: 2004
  ident: 10.1016/j.apenergy.2017.10.126_b0220
  article-title: Using random set theory to propagate epistemic uncertainty through a mechanical system
  publication-title: Reliab Eng Syst Safety
  doi: 10.1016/j.ress.2004.03.010
– volume: 181
  start-page: 259
  issue: 2
  year: 2010
  ident: 10.1016/j.apenergy.2017.10.126_b0070
  article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
  publication-title: Comp Phys Commun
  doi: 10.1016/j.cpc.2009.09.018
– volume: 10
  start-page: 1455
  issue: 8
  year: 1997
  ident: 10.1016/j.apenergy.2017.10.126_b0085
  article-title: Some numerical aspects of the training problem for feed-forward neural nets
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(97)00015-4
– volume: 188
  start-page: 56
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.126_b0130
  article-title: Deep learning based ensemble approach for probabilistic wind power forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.111
– volume: 43
  start-page: 69
  issue: 1
  year: 1997
  ident: 10.1016/j.apenergy.2017.10.126_b0020
  article-title: Contingency ranking for voltage stability using a genetic algorithm
  publication-title: Electr Power Syst Res
  doi: 10.1016/S0378-7796(97)01162-0
– ident: 10.1016/j.apenergy.2017.10.126_b0075
  doi: 10.1016/j.strusafe.2014.10.002
– volume: 93
  start-page: 897
  issue: 6
  year: 2008
  ident: 10.1016/j.apenergy.2017.10.126_b0050
  article-title: Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms
  publication-title: Reliab Eng Syst Safety
  doi: 10.1016/j.ress.2007.03.038
– volume: 189
  start-page: 534
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.126_b0250
  article-title: Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.031
– ident: 10.1016/j.apenergy.2017.10.126_b0150
  doi: 10.1201/9781315374987-424
– volume: 106
  start-page: 712
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.126_b0175
  article-title: A multi-objective optimization framework for risk-controlled integration of renewable generation into electric power systems
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.056
– volume: 72
  start-page: 51
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.126_b0110
  article-title: Application of RBF neural networks and unscented transformation in probabilistic power-flow of microgrids including correlated wind/PV units and plug-in hybrid electric vehicles
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2016.12.006
– volume: 111
  start-page: 195
  year: 2013
  ident: 10.1016/j.apenergy.2017.10.126_b0155
  article-title: Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks
  publication-title: Reliab Eng Syst Safety
  doi: 10.1016/j.ress.2012.11.002
– volume: 248
  start-page: 869
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.126_b0265
  article-title: Sensitivity analysis: a review of recent advances
  publication-title: Euro J Operat Res
  doi: 10.1016/j.ejor.2015.06.032
– volume: 61
  start-page: 585
  year: 2014
  ident: 10.1016/j.apenergy.2017.10.126_b0015
  article-title: Optimal PMU placement method for complete topological observability of power system under various contingencies
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.03.068
– volume: 185
  start-page: 267
  issue: Part 1
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.126_b0045
  article-title: A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.10.086
– volume: 4
  start-page: 89
  issue: 2
  year: 1990
  ident: 10.1016/j.apenergy.2017.10.126_b0255
  article-title: Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds
  publication-title: Int J Approx Reason
  doi: 10.1016/0888-613X(90)90022-T
– volume: 57
  start-page: 50
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.126_b0120
  article-title: Development and evaluation of a prototype for remote voltage monitoring based on artificial neural networks
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.10.012
– ident: 10.1016/j.apenergy.2017.10.126_b0190
  doi: 10.1109/PMAPS.2014.6960673
– volume: 192
  start-page: 408
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.126_b0180
  article-title: Optimal dispatch strategy for integrated energy systems with CCHP and wind power
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.139
– volume: 13
  start-page: 1084
  issue: 3
  year: 1998
  ident: 10.1016/j.apenergy.2017.10.126_b0125
  article-title: Surrogate constraint method for optimal power flow
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.709103
– year: 1996
  ident: 10.1016/j.apenergy.2017.10.126_b0195
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.126_b0205
  article-title: Reliability and risk assessment of post-contingency demand response in smart distribution networks
  publication-title: Sustain Energy, Grids Netw
  doi: 10.1016/j.segan.2016.04.002
– volume: 14
  start-page: 287
  issue: 1
  year: 1999
  ident: 10.1016/j.apenergy.2017.10.126_b0115
  article-title: Evaluation of power systems reliability by an artificial neural network
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.744545
– volume: 127
  start-page: 259
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.126_b0030
  article-title: Influence of extreme weather and climate change on the resilience of power systems: impacts and possible mitigation strategies
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2015.06.012
– volume: 122
  start-page: 65
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.126_b0010
  article-title: Hybrid voltage stability assessment VSA for N-1 contingency
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2014.12.022
– volume: 37
  start-page: 4
  issue: 12
  year: 2013
  ident: 10.1016/j.apenergy.2017.10.126_b0140
  article-title: Imprecise probabilities in engineering analyses
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2013.01.024
– start-page: 1
  issue: 99
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.126_b0025
  article-title: Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events
  publication-title: IEEE Syst J
– volume: 98
  start-page: 2047
  issue: 6
  year: 1979
  ident: 10.1016/j.apenergy.2017.10.126_b0260
  article-title: IEEE reliability test system
  publication-title: IEEE Trans Power Apparat Syst PAS
  doi: 10.1109/TPAS.1979.319398
SSID ssj0002120
Score 2.4816906
Snippet •Weather extreme conditions affect power grid failures/repairs and data is scarce.•A stochastic resilience framework is proposed for assess the weather-grid...
A generalised uncertainty quantification framework for resilience assessment of weather-coupled, repairable power grids is presented. The framework can be used...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 339
SubjectTerms algorithms
Artificial neural network
case studies
Credal sets
Engineering Sciences
Global sensitivity
Load curtailing
Power grids
probabilistic models
Resilience
Severe weather
stochastic processes
uncertainty
weather
Title A power-flow emulator approach for resilience assessment of repairable power grids subject to weather-induced failures and data deficiency
URI https://dx.doi.org/10.1016/j.apenergy.2017.10.126
https://www.proquest.com/docview/2000573986
https://www.proquest.com/docview/2153629390
https://centralesupelec.hal.science/hal-01786579
Volume 210
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKucChooWKBVqZiqt3N_FXclxVrbZAe4FKvUV2bEOqJYk2u-2NH8CvZiYf24JEe-AYZyaJ4rH9nMx7Q8gHgUQeqzlzkUdR7dwzG9ucSYDmVucuTC0Shc8v1PxSfLySV1vkeODCYFplP_d3c3o7W_ctk_5tTuqimHxBtIv4P9I8kpoj4VcIjVE-_nmX5hH30oxgzND6Hkv4emxq3zLsMMVLj1utBfWvBerJd8yU_GvCbleh0xdkp4ePdNY94S7Z8uUeeX5PVHCP7J_ccdfAtB-8zUvya0ZrrInGwqK6pf4HFu6qlnRQFacAXylsvotF60DNRrOTVgFO1KZYIs-quwj9tixcQ5u1xQ85dFXR2w5MMtjkQ7g4GkyBKe8NNaWjmIhKnUe5CuR6viKXpydfj-esL8XAchikKxZUiJXVURS8sdCtsbUi8cJxnpvUcYOy9VaJJNhYhKlLTAAgJ4O1nEe5lobvk-2yKv1rQnXgQXIAXs5IYRX4e8GNtjz4qQoujIgc3n-W9zrlWC5jkQ0JadfZ0G8Z9lvbHqsRmWz86k6p41GPdOje7I-Yy2A5edT3COJhcyMU6Z7PPmfYBkaJkjq9iUbk_RAuGYxa_BVjSl-tGyz-iUqUaaIesIHFSAEaS6dv_uNB35JncIQJiyyS78j2arn2B4CjVvawHSiH5Ons7NP84jcXhCJu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELba7QE4IChUbHkZxNXdTRzbyXFVtUrpdi-0Um-RHduQakmizW77H_jVzOSxFCTogavtSSzbM_M5mfmGkE8RJvIYxZkNHJJq546Z0ORMADQ3Krd-ajBR-GIh06vo87W43iHHQy4MhlX2tr-z6a217lsm_WpO6qKYfEG0i_g_UDwQise7ZA_ZqcSI7M3OztPF1iCHPTsjjGcocC9R-OZI165NssMoL3XU0i3Iv_mo3W8YLPmHzW4d0ekz8rRHkHTWTfI52XHlPnlyj1dwnxyc_Epfg6G9_jYvyI8ZrbEsGvPL6o6671i7q1rRgVicAoKlcP8ulq0A1VvaTlp56Kh1scJUq-4h9OuqsA1tNga_5dB1Re86PMngng8nxlKvC4x6b6guLcVYVGodMlZguudLcnV6cnmcsr4aA8tBT9fMSx9Ko4LAO21gZ0NjothFlvNcJ5ZrZK43Moq9CSM_tbH2gOWEN4bzIFdC8wMyKqvSvSJUee4FB-xltYiMBHkXca0M924qvfVjIob1z_KeqhwrZiyzISbtJhv2LcN9a9tDOSaTrVzdkXU8KJEM25v9duwy8CgPyn6E87B9EfJ0p7N5hm0wKJZCJbfBmHwYjksGiot_Y3Tpqk2D9T-RjDKJ5T_GgD-SAMiS6eF_TPQ9eZReXsyz-dni_DV5DD0Yv8gC8YaM1quNewuwam3e9WrzE-nYJR8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Power-Flow+Emulator+Approach+for+Resilience+Assessment+of+Repairable+Power+Grids+subject+to+Weather-Induced+Failures+and+Data+Deficiency&rft.jtitle=Applied+energy&rft.au=Rocchetta%2C+Roberto&rft.au=Patelli%2C+Edoardo&rft.au=Zio%2C+Enrico&rft.date=2018-01-15&rft.issn=0306-2619&rft_id=info:doi/10.1016%2Fj.apenergy.2017.10.126&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon