A power-flow emulator approach for resilience assessment of repairable power grids subject to weather-induced failures and data deficiency
•Weather extreme conditions affect power grid failures/repairs and data is scarce.•A stochastic resilience framework is proposed for assess the weather-grid interaction.•A power-flow emulator is constructed to reduce the computational cost.•Imprecise probabilistic methodology is used to tackle lack...
Saved in:
Published in | Applied energy Vol. 210; pp. 339 - 350 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.01.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Weather extreme conditions affect power grid failures/repairs and data is scarce.•A stochastic resilience framework is proposed for assess the weather-grid interaction.•A power-flow emulator is constructed to reduce the computational cost.•Imprecise probabilistic methodology is used to tackle lack of data issues.•Most relevant weather-grid factors are identified by the global sensitivity analysis.
A generalised uncertainty quantification framework for resilience assessment of weather-coupled, repairable power grids is presented. The framework can be used to efficiently quantify both epistemic and aleatory uncertainty affecting grid-related and weather-related factors. The power grid simulator has been specifically designed to model interactions between severe weather conditions and grid dynamic states and behaviours, such as weather-induced failures or delays in components replacements. A resilience index is computed by adopting a novel algorithm which exploits a vectorised emulator of the power-flow solver to reduce the computational efforts. The resilience stochastic modelling framework is embedded into a non-intrusive generalised stochastic framework, which enables the analyst to quantify the effect of parameters imprecision. A modified version of the IEEE 24 nodes reliability test system has been used as representative case study. The surrogate-based model and the Power-Flow-based model are compared, and the results show similar accuracy but enhanced efficiency of the former. Global sensitivity of the resilience index to increasing imprecision in parameters of the probabilistic model has been analysed. The relevance of specific weather/grid uncertain factors is highlighted by global sensitivity analysis and the importance of dealing with imprecision in the information clearly emerges. |
---|---|
AbstractList | A generalised uncertainty quantification framework for resilience assessment of weather-coupled, repairable power grids is presented. The framework can be used to efficiently quantify both epistemic and aleatory uncertainty affecting grid-related and weather-related factors. The power grid simulator has been specifically designed to model interactions between severe weather conditions and grid dynamic states and behaviours, such as weather-induced failures or delays in components replacements. A resilience index is computed by adopting a novel algorithm which exploits a vectorised emulator of the power-flow solver to reduce the computational efforts. The resilience stochastic modelling framework is embedded into a non-intrusive generalised stochastic framework, which enables the analyst to quantify the effect of parameters imprecision. A modified version of the IEEE 24 nodes reliability test system has been used as representative case study. The surrogate-based model and the Power-Flow-based model are compared, and the results show similar accuracy but enhanced efficiency of the former. Global sensitivity of the resilience index to increasing imprecision in parameters of the probabilistic model has been analysed. The relevance of specific weather/grid uncertain factors is highlighted by global sensitivity analysis and the importance of dealing with imprecision in the information clearly emerges. •Weather extreme conditions affect power grid failures/repairs and data is scarce.•A stochastic resilience framework is proposed for assess the weather-grid interaction.•A power-flow emulator is constructed to reduce the computational cost.•Imprecise probabilistic methodology is used to tackle lack of data issues.•Most relevant weather-grid factors are identified by the global sensitivity analysis. A generalised uncertainty quantification framework for resilience assessment of weather-coupled, repairable power grids is presented. The framework can be used to efficiently quantify both epistemic and aleatory uncertainty affecting grid-related and weather-related factors. The power grid simulator has been specifically designed to model interactions between severe weather conditions and grid dynamic states and behaviours, such as weather-induced failures or delays in components replacements. A resilience index is computed by adopting a novel algorithm which exploits a vectorised emulator of the power-flow solver to reduce the computational efforts. The resilience stochastic modelling framework is embedded into a non-intrusive generalised stochastic framework, which enables the analyst to quantify the effect of parameters imprecision. A modified version of the IEEE 24 nodes reliability test system has been used as representative case study. The surrogate-based model and the Power-Flow-based model are compared, and the results show similar accuracy but enhanced efficiency of the former. Global sensitivity of the resilience index to increasing imprecision in parameters of the probabilistic model has been analysed. The relevance of specific weather/grid uncertain factors is highlighted by global sensitivity analysis and the importance of dealing with imprecision in the information clearly emerges. |
Author | Rocchetta, Roberto Patelli, Edoardo Zio, Enrico |
Author_xml | – sequence: 1 givenname: Roberto orcidid: 0000-0002-8117-8737 surname: Rocchetta fullname: Rocchetta, Roberto organization: Insititue for Risk and Uncertainty, Liverpool University, Liverpool, UK – sequence: 2 givenname: Enrico surname: Zio fullname: Zio, Enrico organization: Department of Energy, Politecnico di Milano, Milan, Italy – sequence: 3 givenname: Edoardo orcidid: 0000-0002-5007-7247 surname: Patelli fullname: Patelli, Edoardo email: edoardo.patelli@liverpool.ac.uk organization: Insititue for Risk and Uncertainty, Liverpool University, Liverpool, UK |
BackLink | https://centralesupelec.hal.science/hal-01786579$$DView record in HAL |
BookMark | eNqFkc9u1DAYxCNUJLaFV0A-wiFb_9k4icSBVQUUaSUucLa-2J-7XmXjYDtd7Sv0qXGa9sJlT5bHMyP5N9fF1eAHLIqPjK4ZZfL2sIYRBwwP5zWnrF7POpdvihVral62jDVXxYoKKksuWfuuuI7xQCnljNNV8bQloz9hKG3vTwSPUw_JBwLjGDzoPbH5EjC63uGgkUCMGOMRh0S8zQ8juABdj0sJeQjORBKn7oA6keTJCSHtc7sbzKTREAuun3IfgcEQAwmIQev0XH5-X7y10Ef88HLeFH--f_t9d1_ufv34ebfdlboSLJVWWi67mjGL0BmGvOs2DW6MEBpaI0A0tO7kprEd31hqGrAVY5XtOiGYrisQN8XnpXcPvRqDO0I4Kw9O3W93atYyxEZWdfvIsvfT4s04_k4Ykzq6qLHvYUA_RcVZJSRvRUsvWzPzqhZtI7P1y2LVwccY0CrtEiTnhxQyIMWompdVB_W6rJqXfdb5HJf_xV9_cTH4dQlixvvoMKj4jB6NC3kwZby7VPEP3ZvHHg |
CitedBy_id | crossref_primary_10_1111_risa_13995 crossref_primary_10_31857_S0002331024030012 crossref_primary_10_1109_ACCESS_2020_2984240 crossref_primary_10_1016_j_rser_2022_112185 crossref_primary_10_1016_j_ijepes_2019_105669 crossref_primary_10_1109_TPWRS_2022_3149983 crossref_primary_10_1016_j_ress_2021_107900 crossref_primary_10_1016_j_ress_2020_106817 crossref_primary_10_1080_23789689_2019_1708182 crossref_primary_10_1109_TSG_2019_2950844 crossref_primary_10_1016_j_envsoft_2023_105663 crossref_primary_10_1177_0954408918809596 crossref_primary_10_1016_j_apm_2020_08_066 crossref_primary_10_1109_TPWRS_2022_3194307 crossref_primary_10_1080_23789689_2019_1610600 crossref_primary_10_1016_j_apenergy_2019_02_017 crossref_primary_10_1016_j_ifacol_2022_09_595 crossref_primary_10_1016_j_apenergy_2018_09_089 crossref_primary_10_1016_j_ress_2023_109381 crossref_primary_10_1016_j_apenergy_2020_114520 crossref_primary_10_1109_JIOT_2020_3018687 crossref_primary_10_1080_00207543_2020_1841318 crossref_primary_10_1016_j_ress_2020_106800 crossref_primary_10_1016_j_epsr_2024_111263 crossref_primary_10_1016_j_rser_2021_111665 crossref_primary_10_1109_TSG_2022_3179593 crossref_primary_10_1016_j_rser_2020_110201 crossref_primary_10_1016_j_apenergy_2018_02_081 crossref_primary_10_1016_j_ijpe_2021_108373 crossref_primary_10_1109_TSG_2021_3114512 crossref_primary_10_1016_j_ijepes_2023_109397 crossref_primary_10_3390_en14061571 crossref_primary_10_1016_j_epsr_2019_02_014 crossref_primary_10_1109_JSYST_2024_3496754 crossref_primary_10_1016_j_ymssp_2021_107973 crossref_primary_10_1016_j_jnlssr_2022_02_002 crossref_primary_10_1016_j_rser_2022_112841 crossref_primary_10_1016_j_ress_2021_107443 crossref_primary_10_1007_s10994_023_06422_w crossref_primary_10_1016_j_ijepes_2017_11_047 crossref_primary_10_14483_22487638_18629 crossref_primary_10_1016_j_apenergy_2023_121558 crossref_primary_10_1016_j_apenergy_2019_02_055 crossref_primary_10_1109_JSYST_2022_3171240 crossref_primary_10_1109_TSG_2020_3008228 crossref_primary_10_1016_j_ijepes_2019_105718 crossref_primary_10_2514_1_J063083 crossref_primary_10_1002_eng2_12277 crossref_primary_10_1016_j_apenergy_2019_114062 crossref_primary_10_1016_j_epsr_2022_107915 crossref_primary_10_3390_sym14061182 crossref_primary_10_1016_j_susmat_2024_e01139 crossref_primary_10_1177_1748006X18808085 |
Cites_doi | 10.1016/0021-9045(90)90079-6 10.1016/j.compstruc.2014.07.006 10.1007/s004660000204 10.1002/etep.1908 10.1109/TPWRD.2010.2090363 10.1016/j.epsr.2016.03.019 10.1016/j.apenergy.2014.05.055 10.1016/j.rser.2014.05.063 10.1007/BF00889887 10.1016/j.cma.2004.03.019 10.1016/j.ijepes.2016.11.008 10.1016/S0927-0507(06)13018-2 10.1109/TNS.2006.871662 10.1016/j.ress.2014.11.013 10.1016/j.apenergy.2017.01.103 10.1016/0165-0114(87)90114-X 10.1016/j.jup.2016.10.007 10.1016/S0165-0114(02)00246-4 10.1016/j.ijepes.2012.03.044 10.1016/j.ejor.2014.12.047 10.1109/TPWRS.2004.825981 10.1016/j.ijepes.2013.11.039 10.1016/j.ress.2004.03.010 10.1016/j.cpc.2009.09.018 10.1016/S0893-6080(97)00015-4 10.1016/j.apenergy.2016.11.111 10.1016/S0378-7796(97)01162-0 10.1016/j.strusafe.2014.10.002 10.1016/j.ress.2007.03.038 10.1016/j.apenergy.2016.12.031 10.1201/9781315374987-424 10.1016/j.energy.2016.03.056 10.1016/j.simpat.2016.12.006 10.1016/j.ress.2012.11.002 10.1016/j.ejor.2015.06.032 10.1016/j.ijepes.2014.03.068 10.1016/j.apenergy.2016.10.086 10.1016/0888-613X(90)90022-T 10.1016/j.engappai.2016.10.012 10.1109/PMAPS.2014.6960673 10.1016/j.apenergy.2016.08.139 10.1109/59.709103 10.1016/j.segan.2016.04.002 10.1109/59.744545 10.1016/j.epsr.2015.06.012 10.1016/j.epsr.2014.12.022 10.1016/j.ymssp.2013.01.024 10.1109/TPAS.1979.319398 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC |
DOI | 10.1016/j.apenergy.2017.10.126 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
EndPage | 350 |
ExternalDocumentID | oai_HAL_hal_01786579v1 10_1016_j_apenergy_2017_10_126 S0306261917315738 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ ZY4 7S9 EFKBS L.6 1XC |
ID | FETCH-LOGICAL-c531t-f6f26b711feabd1e2bb48e4d33ca9d3a3807b648fb24f0d8af5115fbb331c75a3 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri May 09 12:13:34 EDT 2025 Sun Aug 24 04:10:22 EDT 2025 Mon Jul 21 09:54:57 EDT 2025 Tue Jul 01 02:53:20 EDT 2025 Thu Apr 24 23:20:47 EDT 2025 Fri Feb 23 02:45:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Severe weather Global sensitivity Load curtailing Power grids Artificial neural network Credal sets Resilience |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-f6f26b711feabd1e2bb48e4d33ca9d3a3807b648fb24f0d8af5115fbb331c75a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8117-8737 0000-0002-5007-7247 0000-0002-7108-637X |
PQID | 2000573986 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_01786579v1 proquest_miscellaneous_2153629390 proquest_miscellaneous_2000573986 crossref_citationtrail_10_1016_j_apenergy_2017_10_126 crossref_primary_10_1016_j_apenergy_2017_10_126 elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_10_126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-15 |
PublicationDateYYYYMMDD | 2018-01-15 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Applied energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Liu, Davidson, Apanasovich (b0050) 2008; 93 Zio (b0200) 2006; 53 Panteli, Mancarella (b0030) 2015; 127 Liao, Hsieh, Guo, Liu, Chu (b0170) 2015; 243 McKeown, Stella, Hall (b0085) 1997; 10 Tonon (b0220) 2004; 85 Aien, Rashidinejad, Fotuhi-Firuzabad (b0145) 2014; 37 Williamson, Downs (b0255) 1990; 4 Alvehag, Soder (b0060) 2011; 26 Karlsson, Johansson, Andler (b0230) 2010 Alvarez, Hurtado (b0235) 2014; 142 Zhong (b0165) 2012; 43 Ashraf, Gupta, Choudhary, Chakrabarti (b0105) 2017; 87 Panteli, Pickering, Wilkinson, Dawson, Mancarella (b0035) 2017 Saltelli, Annoni, Azzini, Campolongo, Ratto, Tarantola (b0070) 2010; 181 Hagan, Demuth, Beale (b0195) 1996 Beer, Ferson, Kreinovich (b0140) 2013; 37 Silva, dos Santos, Bottura, Oleskovicz (b0120) 2017; 57 Espinoza, Panteli, Mancarella, Rudnick (b0185) 2016; 136 Moens, Vandepitte (b0210) 2005; 194 Amjady, Ehsan (b0115) 1999; 14 Rocchetta, Li, Zio (b0055) 2015; 136 Cressie (b0100) 1990; 22 Patelli, Alvarez, Broggi, de Angelis (b0245) 2014; 12 Chen, Matoba, Inabe, Okabe (b0125) 1998; 13 R Madych, A Nelson (b0095) 1990; 60 Mena, Hennebel, Li, Zio (b0175) 2016; 106 Syrri, Mancarella (b0205) 2016; 7 Kundur, Paserba, Ajjarapu, Andersson, Bose, Canizares (b0005) 2004; 19 Mena R, Zio E, Hennebel M. Sensitivity analysis of a simulation model for evaluating renewable distributed generation on a power network. In: 2014 International conference on probabilistic methods applied to power systems (PMAPS), July 2014. p. 1–6. Moore, Lodwick (b0215) 2003; 135 Li, Zhang, Jiang, Chen, Bai, Cui (b0180) 2017; 192 Cadini, Agliardi, Zio (b0045) 2017; 185 Chen, Zhuang, Li, Wang, Zhao, Zhang (b0250) 2017; 189 Subcommittee (b0260) 1979; 98 Rocchetta R, Patelli E. Imprecise probabilistic framework for power grids risk assessment and sensitivity analysis. In: Risk, reliability and safety: innovating theory and practice; 2016. p. 2789–96. Borgonovo, Plischke (b0265) 2016; 248 Yuan, Li (b0010) 2015; 122 Abiri, Rashidi, Niknam, Salehi (b0015) 2014; 61 Li, Sansavini, Zio (b0155) 2013; 111 Wang, Xu, Xu, Li, Shafie-khah, Catalo (b0065) 2017; 193 Barton Russell R, Meckesheimer Martin. Chapter 18 metamodel-based simulation optimization. In: Henderson Shane G, Nelson Barry L, editors. Simulation, Handbooks in Operations Research and Management Science pages 535 – 574. Elsevier, 2006. Baghaee, Mirsalim, Gharehpetian, Talebi (b0110) 2017; 72 Matko, Golobi, Konti (b0040) 2017; 44 Panteli, Mancarella (b0025) 2015 Kumar, Samantaray, Joos (b0160) 2014; 57 Amrouche, Pivert (b0090) 2014; 130 Möller, Graf, Beer (b0225) 2000; 26 Moradkhani, Haghifam, Mohammadzadeh (b0135) 2015; 25 Nims, El-Keib, Smith (b0020) 1997; 43 Marco de Angelis, Edoardo Patelli, Michael Beer. Advanced line sampling for efficient robust reliability analysis. Struct Safety 2015;52(Part B):170-182 [Engineering Analyses with Vague and Imprecise Information]. Wang, Li, Wang, Peng, Jiang, Liu (b0130) 2017; 188 Dong, Shah (b0240) 1987; 24 Wang (10.1016/j.apenergy.2017.10.126_b0065) 2017; 193 Kundur (10.1016/j.apenergy.2017.10.126_b0005) 2004; 19 Abiri (10.1016/j.apenergy.2017.10.126_b0015) 2014; 61 Kumar (10.1016/j.apenergy.2017.10.126_b0160) 2014; 57 Yuan (10.1016/j.apenergy.2017.10.126_b0010) 2015; 122 Silva (10.1016/j.apenergy.2017.10.126_b0120) 2017; 57 Alvehag (10.1016/j.apenergy.2017.10.126_b0060) 2011; 26 Li (10.1016/j.apenergy.2017.10.126_b0155) 2013; 111 Ashraf (10.1016/j.apenergy.2017.10.126_b0105) 2017; 87 Dong (10.1016/j.apenergy.2017.10.126_b0240) 1987; 24 Amrouche (10.1016/j.apenergy.2017.10.126_b0090) 2014; 130 Möller (10.1016/j.apenergy.2017.10.126_b0225) 2000; 26 Aien (10.1016/j.apenergy.2017.10.126_b0145) 2014; 37 Panteli (10.1016/j.apenergy.2017.10.126_b0035) 2017 Moradkhani (10.1016/j.apenergy.2017.10.126_b0135) 2015; 25 R Madych (10.1016/j.apenergy.2017.10.126_b0095) 1990; 60 Nims (10.1016/j.apenergy.2017.10.126_b0020) 1997; 43 Cadini (10.1016/j.apenergy.2017.10.126_b0045) 2017; 185 Mena (10.1016/j.apenergy.2017.10.126_b0175) 2016; 106 Matko (10.1016/j.apenergy.2017.10.126_b0040) 2017; 44 Alvarez (10.1016/j.apenergy.2017.10.126_b0235) 2014; 142 Liu (10.1016/j.apenergy.2017.10.126_b0050) 2008; 93 Borgonovo (10.1016/j.apenergy.2017.10.126_b0265) 2016; 248 Wang (10.1016/j.apenergy.2017.10.126_b0130) 2017; 188 Liao (10.1016/j.apenergy.2017.10.126_b0170) 2015; 243 Moens (10.1016/j.apenergy.2017.10.126_b0210) 2005; 194 McKeown (10.1016/j.apenergy.2017.10.126_b0085) 1997; 10 Beer (10.1016/j.apenergy.2017.10.126_b0140) 2013; 37 10.1016/j.apenergy.2017.10.126_b0080 Cressie (10.1016/j.apenergy.2017.10.126_b0100) 1990; 22 Syrri (10.1016/j.apenergy.2017.10.126_b0205) 2016; 7 Rocchetta (10.1016/j.apenergy.2017.10.126_b0055) 2015; 136 Subcommittee (10.1016/j.apenergy.2017.10.126_b0260) 1979; 98 Zhong (10.1016/j.apenergy.2017.10.126_b0165) 2012; 43 Patelli (10.1016/j.apenergy.2017.10.126_b0245) 2014; 12 Amjady (10.1016/j.apenergy.2017.10.126_b0115) 1999; 14 Li (10.1016/j.apenergy.2017.10.126_b0180) 2017; 192 Tonon (10.1016/j.apenergy.2017.10.126_b0220) 2004; 85 Espinoza (10.1016/j.apenergy.2017.10.126_b0185) 2016; 136 Moore (10.1016/j.apenergy.2017.10.126_b0215) 2003; 135 10.1016/j.apenergy.2017.10.126_b0150 Zio (10.1016/j.apenergy.2017.10.126_b0200) 2006; 53 10.1016/j.apenergy.2017.10.126_b0075 Baghaee (10.1016/j.apenergy.2017.10.126_b0110) 2017; 72 Saltelli (10.1016/j.apenergy.2017.10.126_b0070) 2010; 181 Williamson (10.1016/j.apenergy.2017.10.126_b0255) 1990; 4 Panteli (10.1016/j.apenergy.2017.10.126_b0025) 2015 Panteli (10.1016/j.apenergy.2017.10.126_b0030) 2015; 127 10.1016/j.apenergy.2017.10.126_b0190 Chen (10.1016/j.apenergy.2017.10.126_b0125) 1998; 13 Hagan (10.1016/j.apenergy.2017.10.126_b0195) 1996 Karlsson (10.1016/j.apenergy.2017.10.126_b0230) 2010 Chen (10.1016/j.apenergy.2017.10.126_b0250) 2017; 189 |
References_xml | – volume: 22 start-page: 239 year: 1990 end-page: 252 ident: b0100 article-title: The origins of kriging publication-title: Math Geol – volume: 57 start-page: 11 year: 2014 end-page: 30 ident: b0160 article-title: A reliability assessment based graph theoretical approach for feeder routing in power distribution networks including distributed generations publication-title: Int J Electr Power Energy Syst – volume: 142 start-page: 54 year: 2014 end-page: 63 ident: b0235 article-title: An efficient method for the estimation of structural reliability intervals with random sets, dependence modeling and uncertain inputs publication-title: Comp Struct – volume: 130 start-page: 333 year: 2014 end-page: 341 ident: b0090 article-title: Artificial neural network based daily local forecasting for global solar radiation publication-title: Appl Energy – year: 2017 ident: b0035 article-title: Power system resilience to extreme weather: fragility modelling, probabilistic impact assessment, and adaptation measures publication-title: IEEE Trans Power Syst – volume: 93 start-page: 897 year: 2008 end-page: 912 ident: b0050 article-title: Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms publication-title: Reliab Eng Syst Safety – volume: 7 start-page: 1 year: 2016 end-page: 12 ident: b0205 article-title: Reliability and risk assessment of post-contingency demand response in smart distribution networks publication-title: Sustain Energy, Grids Netw – volume: 26 start-page: 547 year: 2000 end-page: 565 ident: b0225 article-title: Fuzzy structural analysis using publication-title: Comput Mech – volume: 12 start-page: 140 year: 2014 end-page: 169 ident: b0245 article-title: Uncertainty management in multidisciplinary design of critical safety systems publication-title: J Aerosp Inf Syst – volume: 189 start-page: 534 year: 2017 end-page: 554 ident: b0250 article-title: Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model publication-title: Appl Energy – volume: 13 start-page: 1084 year: 1998 end-page: 1089 ident: b0125 article-title: Surrogate constraint method for optimal power flow publication-title: IEEE Trans Power Syst – volume: 194 start-page: 1527 year: 2005 end-page: 1555 ident: b0210 article-title: A survey of non-probabilistic uncertainty treatment in finite element analysis publication-title: Comp Meth Appl Mech Eng – volume: 37 start-page: 4 year: 2013 end-page: 29 ident: b0140 article-title: Imprecise probabilities in engineering analyses publication-title: Mech Syst Sig Process – volume: 106 start-page: 712 year: 2016 end-page: 727 ident: b0175 article-title: A multi-objective optimization framework for risk-controlled integration of renewable generation into electric power systems publication-title: Energy – volume: 248 start-page: 869 year: 2016 end-page: 887 ident: b0265 article-title: Sensitivity analysis: a review of recent advances publication-title: Euro J Operat Res – volume: 135 start-page: 5 year: 2003 end-page: 9 ident: b0215 article-title: Interval analysis and fuzzy set theory publication-title: Fuzzy Sets Syst – volume: 192 start-page: 408 year: 2017 end-page: 419 ident: b0180 article-title: Optimal dispatch strategy for integrated energy systems with CCHP and wind power publication-title: Appl Energy – volume: 181 start-page: 259 year: 2010 end-page: 270 ident: b0070 article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index publication-title: Comp Phys Commun – volume: 72 start-page: 51 year: 2017 end-page: 68 ident: b0110 article-title: Application of RBF neural networks and unscented transformation in probabilistic power-flow of microgrids including correlated wind/PV units and plug-in hybrid electric vehicles publication-title: Simul Model Pract Theory – volume: 122 start-page: 65 year: 2015 end-page: 75 ident: b0010 article-title: Hybrid voltage stability assessment VSA for N-1 contingency publication-title: Electr Power Syst Res – year: 1996 ident: b0195 article-title: Neural Network Design – start-page: 80 year: 2010 end-page: 89 ident: b0230 article-title: An empirical comparison of bayesian and credal set theory for discrete state estimation – volume: 98 start-page: 2047 year: 1979 end-page: 2054 ident: b0260 article-title: IEEE reliability test system publication-title: IEEE Trans Power Apparat Syst PAS – volume: 61 start-page: 585 year: 2014 end-page: 593 ident: b0015 article-title: Optimal PMU placement method for complete topological observability of power system under various contingencies publication-title: Int J Electr Power Energy Syst – volume: 127 start-page: 259 year: 2015 end-page: 270 ident: b0030 article-title: Influence of extreme weather and climate change on the resilience of power systems: impacts and possible mitigation strategies publication-title: Electr Power Syst Res – volume: 185 start-page: 267 year: 2017 end-page: 279 ident: b0045 article-title: A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions publication-title: Appl Energy – start-page: 1 year: 2015 end-page: 10 ident: b0025 article-title: Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events publication-title: IEEE Syst J – volume: 193 start-page: 220 year: 2017 end-page: 231 ident: b0065 article-title: The values of market-based demand response on improving power system reliability under extreme circumstances publication-title: Appl Energy – volume: 37 start-page: 883 year: 2014 end-page: 895 ident: b0145 article-title: On possibilistic and probabilistic uncertainty assessment of power flow problem: a review and a new approach publication-title: Renew Sustain Energy Rev – volume: 10 start-page: 1455 year: 1997 end-page: 1463 ident: b0085 article-title: Some numerical aspects of the training problem for feed-forward neural nets publication-title: Neural Netw – volume: 60 start-page: 141 year: 1990 end-page: 156 ident: b0095 article-title: Polyharmonic cardinal splines publication-title: J Approx Theory – reference: Marco de Angelis, Edoardo Patelli, Michael Beer. Advanced line sampling for efficient robust reliability analysis. Struct Safety 2015;52(Part B):170-182 [Engineering Analyses with Vague and Imprecise Information]. – volume: 85 start-page: 169 year: 2004 end-page: 181 ident: b0220 article-title: Using random set theory to propagate epistemic uncertainty through a mechanical system publication-title: Reliab Eng Syst Safety – volume: 87 start-page: 43 year: 2017 end-page: 51 ident: b0105 article-title: Voltage stability monitoring of power systems using reduced network and artificial neural network publication-title: Int J Electr Power Energy Syst – volume: 14 start-page: 287 year: 1999 end-page: 292 ident: b0115 article-title: Evaluation of power systems reliability by an artificial neural network publication-title: IEEE Trans Power Syst – volume: 26 start-page: 910 year: 2011 end-page: 919 ident: b0060 article-title: A reliability model for distribution systems incorporating seasonal variations in severe weather publication-title: IEEE Trans Power Deliv – volume: 4 start-page: 89 year: 1990 end-page: 158 ident: b0255 article-title: Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds publication-title: Int J Approx Reason – volume: 44 start-page: 12 year: 2017 end-page: 24 ident: b0040 article-title: Reducing risks to electric power infrastructure due to extreme weather events by means of spatial planning: Case studies from slovenia publication-title: Utilities Policy – volume: 43 start-page: 1318 year: 2012 end-page: 1321 ident: b0165 article-title: Graph theory based expert system to form de-icing route in Changsha power grid publication-title: Int J Electr Power Energy Syst – volume: 111 start-page: 195 year: 2013 end-page: 205 ident: b0155 article-title: Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks publication-title: Reliab Eng Syst Safety – volume: 24 start-page: 65 year: 1987 end-page: 78 ident: b0240 article-title: Vertex method for computing functions of fuzzy variables publication-title: Fuzzy Sets Syst – volume: 25 start-page: 1452 year: 2015 end-page: 1465 ident: b0135 article-title: Failure rate estimation of overhead electric distribution lines considering data deficiency and population variability publication-title: Int Trans Electr Energy Syst – volume: 136 start-page: 352 year: 2016 end-page: 361 ident: b0185 article-title: Multi-phase assessment and adaptation of power systems resilience to natural hazards publication-title: Electr Power Syst Res – reference: Mena R, Zio E, Hennebel M. Sensitivity analysis of a simulation model for evaluating renewable distributed generation on a power network. In: 2014 International conference on probabilistic methods applied to power systems (PMAPS), July 2014. p. 1–6. – volume: 53 start-page: 1460 year: 2006 end-page: 1478 ident: b0200 article-title: A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes publication-title: IEEE Trans Nucl Sci – reference: Barton Russell R, Meckesheimer Martin. Chapter 18 metamodel-based simulation optimization. In: Henderson Shane G, Nelson Barry L, editors. Simulation, Handbooks in Operations Research and Management Science pages 535 – 574. Elsevier, 2006. – volume: 57 start-page: 50 year: 2017 end-page: 60 ident: b0120 article-title: Development and evaluation of a prototype for remote voltage monitoring based on artificial neural networks publication-title: Eng Appl Artif Intell – volume: 136 start-page: 47 year: 2015 end-page: 61 ident: b0055 article-title: Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions publication-title: Reliab Eng Syst Safety – volume: 19 start-page: 1387 year: 2004 end-page: 1401 ident: b0005 article-title: Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions publication-title: IEEE Trans Power Syst – volume: 43 start-page: 69 year: 1997 end-page: 76 ident: b0020 article-title: Contingency ranking for voltage stability using a genetic algorithm publication-title: Electr Power Syst Res – volume: 243 start-page: 985 year: 2015 end-page: 994 ident: b0170 article-title: Hybrid search for the optimal PMU placement problem on a power grid publication-title: Euro J Operat Res – volume: 188 start-page: 56 year: 2017 end-page: 70 ident: b0130 article-title: Deep learning based ensemble approach for probabilistic wind power forecasting publication-title: Appl Energy – reference: Rocchetta R, Patelli E. Imprecise probabilistic framework for power grids risk assessment and sensitivity analysis. In: Risk, reliability and safety: innovating theory and practice; 2016. p. 2789–96. – volume: 60 start-page: 141 issue: 2 year: 1990 ident: 10.1016/j.apenergy.2017.10.126_b0095 article-title: Polyharmonic cardinal splines publication-title: J Approx Theory doi: 10.1016/0021-9045(90)90079-6 – volume: 142 start-page: 54 year: 2014 ident: 10.1016/j.apenergy.2017.10.126_b0235 article-title: An efficient method for the estimation of structural reliability intervals with random sets, dependence modeling and uncertain inputs publication-title: Comp Struct doi: 10.1016/j.compstruc.2014.07.006 – volume: 26 start-page: 547 issue: 6 year: 2000 ident: 10.1016/j.apenergy.2017.10.126_b0225 article-title: Fuzzy structural analysis using α-level optimization publication-title: Comput Mech doi: 10.1007/s004660000204 – volume: 25 start-page: 1452 issue: 8 year: 2015 ident: 10.1016/j.apenergy.2017.10.126_b0135 article-title: Failure rate estimation of overhead electric distribution lines considering data deficiency and population variability publication-title: Int Trans Electr Energy Syst doi: 10.1002/etep.1908 – volume: 26 start-page: 910 issue: 2 year: 2011 ident: 10.1016/j.apenergy.2017.10.126_b0060 article-title: A reliability model for distribution systems incorporating seasonal variations in severe weather publication-title: IEEE Trans Power Deliv doi: 10.1109/TPWRD.2010.2090363 – volume: 136 start-page: 352 year: 2016 ident: 10.1016/j.apenergy.2017.10.126_b0185 article-title: Multi-phase assessment and adaptation of power systems resilience to natural hazards publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2016.03.019 – volume: 130 start-page: 333 year: 2014 ident: 10.1016/j.apenergy.2017.10.126_b0090 article-title: Artificial neural network based daily local forecasting for global solar radiation publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.05.055 – volume: 37 start-page: 883 year: 2014 ident: 10.1016/j.apenergy.2017.10.126_b0145 article-title: On possibilistic and probabilistic uncertainty assessment of power flow problem: a review and a new approach publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.05.063 – volume: 22 start-page: 239 issue: 3 year: 1990 ident: 10.1016/j.apenergy.2017.10.126_b0100 article-title: The origins of kriging publication-title: Math Geol doi: 10.1007/BF00889887 – volume: 194 start-page: 1527 issue: 12–16 year: 2005 ident: 10.1016/j.apenergy.2017.10.126_b0210 article-title: A survey of non-probabilistic uncertainty treatment in finite element analysis publication-title: Comp Meth Appl Mech Eng doi: 10.1016/j.cma.2004.03.019 – volume: 12 start-page: 140 issue: 1 year: 2014 ident: 10.1016/j.apenergy.2017.10.126_b0245 article-title: Uncertainty management in multidisciplinary design of critical safety systems publication-title: J Aerosp Inf Syst – volume: 87 start-page: 43 year: 2017 ident: 10.1016/j.apenergy.2017.10.126_b0105 article-title: Voltage stability monitoring of power systems using reduced network and artificial neural network publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2016.11.008 – ident: 10.1016/j.apenergy.2017.10.126_b0080 doi: 10.1016/S0927-0507(06)13018-2 – volume: 53 start-page: 1460 issue: 3 year: 2006 ident: 10.1016/j.apenergy.2017.10.126_b0200 article-title: A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes publication-title: IEEE Trans Nucl Sci doi: 10.1109/TNS.2006.871662 – volume: 136 start-page: 47 issue: 0 year: 2015 ident: 10.1016/j.apenergy.2017.10.126_b0055 article-title: Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions publication-title: Reliab Eng Syst Safety doi: 10.1016/j.ress.2014.11.013 – volume: 193 start-page: 220 year: 2017 ident: 10.1016/j.apenergy.2017.10.126_b0065 article-title: The values of market-based demand response on improving power system reliability under extreme circumstances publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.01.103 – volume: 24 start-page: 65 issue: 1 year: 1987 ident: 10.1016/j.apenergy.2017.10.126_b0240 article-title: Vertex method for computing functions of fuzzy variables publication-title: Fuzzy Sets Syst doi: 10.1016/0165-0114(87)90114-X – issue: 99 year: 2017 ident: 10.1016/j.apenergy.2017.10.126_b0035 article-title: Power system resilience to extreme weather: fragility modelling, probabilistic impact assessment, and adaptation measures publication-title: IEEE Trans Power Syst – volume: 44 start-page: 12 year: 2017 ident: 10.1016/j.apenergy.2017.10.126_b0040 article-title: Reducing risks to electric power infrastructure due to extreme weather events by means of spatial planning: Case studies from slovenia publication-title: Utilities Policy doi: 10.1016/j.jup.2016.10.007 – start-page: 80 year: 2010 ident: 10.1016/j.apenergy.2017.10.126_b0230 – volume: 135 start-page: 5 issue: 1 year: 2003 ident: 10.1016/j.apenergy.2017.10.126_b0215 article-title: Interval analysis and fuzzy set theory publication-title: Fuzzy Sets Syst doi: 10.1016/S0165-0114(02)00246-4 – volume: 43 start-page: 1318 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2017.10.126_b0165 article-title: Graph theory based expert system to form de-icing route in Changsha power grid publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.03.044 – volume: 243 start-page: 985 issue: 3 year: 2015 ident: 10.1016/j.apenergy.2017.10.126_b0170 article-title: Hybrid search for the optimal PMU placement problem on a power grid publication-title: Euro J Operat Res doi: 10.1016/j.ejor.2014.12.047 – volume: 19 start-page: 1387 issue: 3 year: 2004 ident: 10.1016/j.apenergy.2017.10.126_b0005 article-title: Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2004.825981 – volume: 57 start-page: 11 year: 2014 ident: 10.1016/j.apenergy.2017.10.126_b0160 article-title: A reliability assessment based graph theoretical approach for feeder routing in power distribution networks including distributed generations publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.11.039 – volume: 85 start-page: 169 issue: 13 year: 2004 ident: 10.1016/j.apenergy.2017.10.126_b0220 article-title: Using random set theory to propagate epistemic uncertainty through a mechanical system publication-title: Reliab Eng Syst Safety doi: 10.1016/j.ress.2004.03.010 – volume: 181 start-page: 259 issue: 2 year: 2010 ident: 10.1016/j.apenergy.2017.10.126_b0070 article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index publication-title: Comp Phys Commun doi: 10.1016/j.cpc.2009.09.018 – volume: 10 start-page: 1455 issue: 8 year: 1997 ident: 10.1016/j.apenergy.2017.10.126_b0085 article-title: Some numerical aspects of the training problem for feed-forward neural nets publication-title: Neural Netw doi: 10.1016/S0893-6080(97)00015-4 – volume: 188 start-page: 56 year: 2017 ident: 10.1016/j.apenergy.2017.10.126_b0130 article-title: Deep learning based ensemble approach for probabilistic wind power forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.111 – volume: 43 start-page: 69 issue: 1 year: 1997 ident: 10.1016/j.apenergy.2017.10.126_b0020 article-title: Contingency ranking for voltage stability using a genetic algorithm publication-title: Electr Power Syst Res doi: 10.1016/S0378-7796(97)01162-0 – ident: 10.1016/j.apenergy.2017.10.126_b0075 doi: 10.1016/j.strusafe.2014.10.002 – volume: 93 start-page: 897 issue: 6 year: 2008 ident: 10.1016/j.apenergy.2017.10.126_b0050 article-title: Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms publication-title: Reliab Eng Syst Safety doi: 10.1016/j.ress.2007.03.038 – volume: 189 start-page: 534 year: 2017 ident: 10.1016/j.apenergy.2017.10.126_b0250 article-title: Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.12.031 – ident: 10.1016/j.apenergy.2017.10.126_b0150 doi: 10.1201/9781315374987-424 – volume: 106 start-page: 712 year: 2016 ident: 10.1016/j.apenergy.2017.10.126_b0175 article-title: A multi-objective optimization framework for risk-controlled integration of renewable generation into electric power systems publication-title: Energy doi: 10.1016/j.energy.2016.03.056 – volume: 72 start-page: 51 year: 2017 ident: 10.1016/j.apenergy.2017.10.126_b0110 article-title: Application of RBF neural networks and unscented transformation in probabilistic power-flow of microgrids including correlated wind/PV units and plug-in hybrid electric vehicles publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2016.12.006 – volume: 111 start-page: 195 year: 2013 ident: 10.1016/j.apenergy.2017.10.126_b0155 article-title: Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks publication-title: Reliab Eng Syst Safety doi: 10.1016/j.ress.2012.11.002 – volume: 248 start-page: 869 issue: 3 year: 2016 ident: 10.1016/j.apenergy.2017.10.126_b0265 article-title: Sensitivity analysis: a review of recent advances publication-title: Euro J Operat Res doi: 10.1016/j.ejor.2015.06.032 – volume: 61 start-page: 585 year: 2014 ident: 10.1016/j.apenergy.2017.10.126_b0015 article-title: Optimal PMU placement method for complete topological observability of power system under various contingencies publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.03.068 – volume: 185 start-page: 267 issue: Part 1 year: 2017 ident: 10.1016/j.apenergy.2017.10.126_b0045 article-title: A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.10.086 – volume: 4 start-page: 89 issue: 2 year: 1990 ident: 10.1016/j.apenergy.2017.10.126_b0255 article-title: Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds publication-title: Int J Approx Reason doi: 10.1016/0888-613X(90)90022-T – volume: 57 start-page: 50 year: 2017 ident: 10.1016/j.apenergy.2017.10.126_b0120 article-title: Development and evaluation of a prototype for remote voltage monitoring based on artificial neural networks publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.10.012 – ident: 10.1016/j.apenergy.2017.10.126_b0190 doi: 10.1109/PMAPS.2014.6960673 – volume: 192 start-page: 408 year: 2017 ident: 10.1016/j.apenergy.2017.10.126_b0180 article-title: Optimal dispatch strategy for integrated energy systems with CCHP and wind power publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.139 – volume: 13 start-page: 1084 issue: 3 year: 1998 ident: 10.1016/j.apenergy.2017.10.126_b0125 article-title: Surrogate constraint method for optimal power flow publication-title: IEEE Trans Power Syst doi: 10.1109/59.709103 – year: 1996 ident: 10.1016/j.apenergy.2017.10.126_b0195 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2017.10.126_b0205 article-title: Reliability and risk assessment of post-contingency demand response in smart distribution networks publication-title: Sustain Energy, Grids Netw doi: 10.1016/j.segan.2016.04.002 – volume: 14 start-page: 287 issue: 1 year: 1999 ident: 10.1016/j.apenergy.2017.10.126_b0115 article-title: Evaluation of power systems reliability by an artificial neural network publication-title: IEEE Trans Power Syst doi: 10.1109/59.744545 – volume: 127 start-page: 259 year: 2015 ident: 10.1016/j.apenergy.2017.10.126_b0030 article-title: Influence of extreme weather and climate change on the resilience of power systems: impacts and possible mitigation strategies publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2015.06.012 – volume: 122 start-page: 65 year: 2015 ident: 10.1016/j.apenergy.2017.10.126_b0010 article-title: Hybrid voltage stability assessment VSA for N-1 contingency publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2014.12.022 – volume: 37 start-page: 4 issue: 12 year: 2013 ident: 10.1016/j.apenergy.2017.10.126_b0140 article-title: Imprecise probabilities in engineering analyses publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2013.01.024 – start-page: 1 issue: 99 year: 2015 ident: 10.1016/j.apenergy.2017.10.126_b0025 article-title: Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events publication-title: IEEE Syst J – volume: 98 start-page: 2047 issue: 6 year: 1979 ident: 10.1016/j.apenergy.2017.10.126_b0260 article-title: IEEE reliability test system publication-title: IEEE Trans Power Apparat Syst PAS doi: 10.1109/TPAS.1979.319398 |
SSID | ssj0002120 |
Score | 2.4816906 |
Snippet | •Weather extreme conditions affect power grid failures/repairs and data is scarce.•A stochastic resilience framework is proposed for assess the weather-grid... A generalised uncertainty quantification framework for resilience assessment of weather-coupled, repairable power grids is presented. The framework can be used... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 339 |
SubjectTerms | algorithms Artificial neural network case studies Credal sets Engineering Sciences Global sensitivity Load curtailing Power grids probabilistic models Resilience Severe weather stochastic processes uncertainty weather |
Title | A power-flow emulator approach for resilience assessment of repairable power grids subject to weather-induced failures and data deficiency |
URI | https://dx.doi.org/10.1016/j.apenergy.2017.10.126 https://www.proquest.com/docview/2000573986 https://www.proquest.com/docview/2153629390 https://centralesupelec.hal.science/hal-01786579 |
Volume | 210 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKucChooWKBVqZiqt3N_FXclxVrbZAe4FKvUV2bEOqJYk2u-2NH8CvZiYf24JEe-AYZyaJ4rH9nMx7Q8gHgUQeqzlzkUdR7dwzG9ucSYDmVucuTC0Shc8v1PxSfLySV1vkeODCYFplP_d3c3o7W_ctk_5tTuqimHxBtIv4P9I8kpoj4VcIjVE-_nmX5hH30oxgzND6Hkv4emxq3zLsMMVLj1utBfWvBerJd8yU_GvCbleh0xdkp4ePdNY94S7Z8uUeeX5PVHCP7J_ccdfAtB-8zUvya0ZrrInGwqK6pf4HFu6qlnRQFacAXylsvotF60DNRrOTVgFO1KZYIs-quwj9tixcQ5u1xQ85dFXR2w5MMtjkQ7g4GkyBKe8NNaWjmIhKnUe5CuR6viKXpydfj-esL8XAchikKxZUiJXVURS8sdCtsbUi8cJxnpvUcYOy9VaJJNhYhKlLTAAgJ4O1nEe5lobvk-2yKv1rQnXgQXIAXs5IYRX4e8GNtjz4qQoujIgc3n-W9zrlWC5jkQ0JadfZ0G8Z9lvbHqsRmWz86k6p41GPdOje7I-Yy2A5edT3COJhcyMU6Z7PPmfYBkaJkjq9iUbk_RAuGYxa_BVjSl-tGyz-iUqUaaIesIHFSAEaS6dv_uNB35JncIQJiyyS78j2arn2B4CjVvawHSiH5Ons7NP84jcXhCJu |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELba7QE4IChUbHkZxNXdTRzbyXFVtUrpdi-0Um-RHduQakmizW77H_jVzOSxFCTogavtSSzbM_M5mfmGkE8RJvIYxZkNHJJq546Z0ORMADQ3Krd-ajBR-GIh06vo87W43iHHQy4MhlX2tr-z6a217lsm_WpO6qKYfEG0i_g_UDwQise7ZA_ZqcSI7M3OztPF1iCHPTsjjGcocC9R-OZI165NssMoL3XU0i3Iv_mo3W8YLPmHzW4d0ekz8rRHkHTWTfI52XHlPnlyj1dwnxyc_Epfg6G9_jYvyI8ZrbEsGvPL6o6671i7q1rRgVicAoKlcP8ulq0A1VvaTlp56Kh1scJUq-4h9OuqsA1tNga_5dB1Re86PMngng8nxlKvC4x6b6guLcVYVGodMlZguudLcnV6cnmcsr4aA8tBT9fMSx9Ko4LAO21gZ0NjothFlvNcJ5ZrZK43Moq9CSM_tbH2gOWEN4bzIFdC8wMyKqvSvSJUee4FB-xltYiMBHkXca0M924qvfVjIob1z_KeqhwrZiyzISbtJhv2LcN9a9tDOSaTrVzdkXU8KJEM25v9duwy8CgPyn6E87B9EfJ0p7N5hm0wKJZCJbfBmHwYjksGiot_Y3Tpqk2D9T-RjDKJ5T_GgD-SAMiS6eF_TPQ9eZReXsyz-dni_DV5DD0Yv8gC8YaM1quNewuwam3e9WrzE-nYJR8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Power-Flow+Emulator+Approach+for+Resilience+Assessment+of+Repairable+Power+Grids+subject+to+Weather-Induced+Failures+and+Data+Deficiency&rft.jtitle=Applied+energy&rft.au=Rocchetta%2C+Roberto&rft.au=Patelli%2C+Edoardo&rft.au=Zio%2C+Enrico&rft.date=2018-01-15&rft.issn=0306-2619&rft_id=info:doi/10.1016%2Fj.apenergy.2017.10.126&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |