An intranasally administrated SARS-CoV-2 beta variant subunit booster vaccine prevents beta variant replication in rhesus macaques
Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-C...
Saved in:
Published in | PNAS nexus Vol. 1; no. 3; p. pgac091 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2752-6542 2752-6542 |
DOI | 10.1093/pnasnexus/pgac091 |
Cover
Loading…
Abstract | Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing. |
---|---|
AbstractList | Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4
+
and CD8
+
T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing. Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to crossneutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL- 15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific [CD4.sup.+] and [CD8.sup.+] T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing. Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing. Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4 and CD8 T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing. Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing. Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to crossneutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL- 15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific [CD4.sup.+] and [CD8.sup.+] T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing. Keywords: SARS-CoV-2, beta variant, booster vaccine, adjuvanted subunit vaccine, intranasal mucosal vaccine |
Audience | Academic |
Author | Sui, Yongjun Venzon, David Nagata, Bianca M Lewis, Mark G Brown, Renita Choo-Wosoba, Hyoyoung Li, Jianping Prabhu, Sunaina K Berzofsky, Jay A Talton, Jim Breed, Matthew W Hoang, Tanya Cook, Anthony Lagenaur, Laurel Andersen, Hanne Moore, Ian N Wang, Lai-Xi Pessaint, Laurent Bock, Kevin W Minai, Mahnaz Kramer, Josh Velasco, Jason Zhang, Roushu Teow, Elyse |
Author_xml | – sequence: 1 givenname: Yongjun orcidid: 0000-0002-1568-4607 surname: Sui fullname: Sui, Yongjun email: suiy@mail.nih.gov – sequence: 2 givenname: Jianping surname: Li fullname: Li, Jianping – sequence: 3 givenname: Hanne orcidid: 0000-0003-1103-9608 surname: Andersen fullname: Andersen, Hanne – sequence: 4 givenname: Roushu surname: Zhang fullname: Zhang, Roushu – sequence: 5 givenname: Sunaina K orcidid: 0000-0003-0847-3059 surname: Prabhu fullname: Prabhu, Sunaina K – sequence: 6 givenname: Tanya surname: Hoang fullname: Hoang, Tanya – sequence: 7 givenname: David orcidid: 0000-0002-8990-158X surname: Venzon fullname: Venzon, David – sequence: 8 givenname: Anthony surname: Cook fullname: Cook, Anthony – sequence: 9 givenname: Renita surname: Brown fullname: Brown, Renita – sequence: 10 givenname: Elyse surname: Teow fullname: Teow, Elyse – sequence: 11 givenname: Jason surname: Velasco fullname: Velasco, Jason – sequence: 12 givenname: Laurent surname: Pessaint fullname: Pessaint, Laurent – sequence: 13 givenname: Ian N surname: Moore fullname: Moore, Ian N – sequence: 14 givenname: Laurel surname: Lagenaur fullname: Lagenaur, Laurel – sequence: 15 givenname: Jim surname: Talton fullname: Talton, Jim – sequence: 16 givenname: Matthew W orcidid: 0000-0002-2286-1106 surname: Breed fullname: Breed, Matthew W – sequence: 17 givenname: Josh surname: Kramer fullname: Kramer, Josh – sequence: 18 givenname: Kevin W orcidid: 0000-0001-9454-0937 surname: Bock fullname: Bock, Kevin W – sequence: 19 givenname: Mahnaz surname: Minai fullname: Minai, Mahnaz – sequence: 20 givenname: Bianca M surname: Nagata fullname: Nagata, Bianca M – sequence: 21 givenname: Hyoyoung surname: Choo-Wosoba fullname: Choo-Wosoba, Hyoyoung – sequence: 22 givenname: Mark G orcidid: 0000-0001-7852-0135 surname: Lewis fullname: Lewis, Mark G – sequence: 23 givenname: Lai-Xi orcidid: 0000-0003-4293-5819 surname: Wang fullname: Wang, Lai-Xi – sequence: 24 givenname: Jay A orcidid: 0000-0002-0342-3194 surname: Berzofsky fullname: Berzofsky, Jay A email: berzofsj@mail.nih.gov |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35873792$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUktr3DAQNiWlSdP8gF6KoZcc6kRPy74UlqWPQCDQtL0KWR5vFGzJleSlufaXV-5uttkQStFBYvQ95mPmZXZgnYUse43RGUY1PR-tChZ-TuF8XCmNavwsOyKCk6LkjBw8eB9mJyHcIoSIEBgz_iI7pLwSVNTkKPu1sLmx0aukpvr-LlftYKwJqRKhza8XX66LpftekLyBqPK18kbZmIepmayJeeNciOBTXWtjIR89rMHGsI_2MPZGq2jcbJb7GwhTyAel1Y8Jwqvseaf6ACfb-zj79vHD1-Xn4vLq08VycVloTnEsoNEEk6asVdeQkiDWARWo0xQhTATjLeMpHOdUUFAcN1WLK9pVjWBM4FZoepy93-iOUzNAq2GO3cvRm0H5O-mUkfs_1tzIlVvLmtScIJwETrcC3s2NRzmYoKHvlQU3BUnKmrFkyniCvn0EvXWTtymepLjGtGS0Lv-iVqoHaWznkq-eReVCiArTquSz7dkTqHRaGIxOS9GZVN8jvHkYdJfwfuoJgDcA7V0IHrodBCM5L5fcLZfcLlfiiEccbeKfkaZuTP9P5rsN003jfxj9BvKL6ZI |
CitedBy_id | crossref_primary_10_3389_fimmu_2022_933347 crossref_primary_10_1016_j_jaip_2022_10_002 crossref_primary_10_1016_j_vaccine_2023_11_059 crossref_primary_10_3389_fimmu_2023_1154496 crossref_primary_10_1038_s41392_022_01295_2 crossref_primary_10_3389_fimmu_2025_1514845 crossref_primary_10_1172_jci_insight_175800 crossref_primary_10_3389_fimmu_2024_1386243 crossref_primary_10_1016_j_biologicals_2023_101723 |
Cites_doi | 10.1038/s41392-021-00611-6 10.1016/S1473-3099(21)00262-0 10.1038/nprot.2006.268 10.1038/s41467-020-18077-5 10.1016/j.chom.2020.12.010 10.1126/science.abf4063 10.7554/eLife.61312 10.1016/S0140-6736(21)02046-8 10.1038/s41586-022-04411-y 10.1056/NEJMc2112981 10.1016/j.sjbs.2021.04.008 10.1126/science.abc6284 10.1128/JVI.01225-20 10.1073/pnas.0911932107 10.1172/jci.insight.148494 10.1056/NEJMoa2114583 10.1038/s41467-021-25312-0 10.1056/NEJMoa2114228 10.1186/1742-4933-9-25 10.1016/j.vaccine.2021.11.001 10.1056/NEJMoa2024671 10.1016/S1473-3099(21)00681-2 10.1038/s41591-021-01527-y 10.1038/s41586-020-2607-z 10.1016/j.it.2014.06.002 10.1172/JCI122110 10.1038/s41586-021-03398-2 10.1016/j.cell.2021.12.046 10.1016/S0140-6736(21)02183-8 10.1056/NEJMoa2110345 10.1038/s41586-021-03402-9 10.1038/s41586-020-2608-y 10.1177/0300985815620628 10.1126/science.abj4176 10.1007/978-1-0716-1736-6_3 10.3390/v13030439 10.1016/j.chom.2021.03.009 10.1038/s41591-021-01285-x 10.3390/pathogens10020138 10.1016/S0140-6736(21)00432-3 10.1073/pnas.2101718118 10.1126/science.abj0299 10.2807/1560-7917.ES.2020.25.16.2000421 10.1146/annurev-immunol-031210-101317 10.1038/s41591-021-01575-4 10.1378/chest.119.1.196 10.1016/j.xcrm.2021.100354 10.15585/mmwr.mm7008e2 10.1038/s41467-020-17972-1 10.1038/s41586-021-03732-8 10.1038/mi.2011.37 10.1056/NEJMc2100362 10.1016/j.cell.2020.08.026 |
ContentType | Journal Article |
Copyright | Published by Oxford University Press on behalf of the National Academy of Sciences 2022. 2022 Published by Oxford University Press on behalf of the National Academy of Sciences 2022. COPYRIGHT 2022 Oxford University Press |
Copyright_xml | – notice: Published by Oxford University Press on behalf of the National Academy of Sciences 2022. 2022 – notice: Published by Oxford University Press on behalf of the National Academy of Sciences 2022. – notice: COPYRIGHT 2022 Oxford University Press |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88I 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M2P M7P M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U 7X8 5PM |
DOI | 10.1093/pnasnexus/pgac091 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection (ProQuest) Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Science Database (ProQuest) Biological Science Database (Proquest) Engineering Database (Proquest) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2752-6542 |
ExternalDocumentID | PMC9295201 A778138651 35873792 10_1093_pnasnexus_pgac091 10.1093/pnasnexus/pgac091 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: Z01 BC-011941 |
GroupedDBID | 0R~ 53G AAPXW AAVAP ABEJV ABPTD ABXVV ALMA_UNASSIGNED_HOLDINGS AMNDL GROUPED_DOAJ IAO IHR INH ITC M~E NQS OK1 ROX RPM TOX 7X7 88I 8FI 8FJ AAYXX ABGNP ABJCF ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR CCPQU CITATION DWQXO FYUFA GNUQQ H13 HCIFZ HMCUK M2P M7P M7S PATMY PCBAR PHGZM PHGZT PIMPY PTHSS PYCSY UKHRP NPM PQGLB PMFND 3V. 7XB 8FE 8FG 8FH 8FK COVID K9. L6V LK8 PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c531t-ebc212b69afb26204fe370fc30012745d4514555373ea51b8d183f8b74471d7c3 |
IEDL.DBID | BENPR |
ISSN | 2752-6542 |
IngestDate | Thu Aug 21 18:37:00 EDT 2025 Fri Jul 11 05:24:32 EDT 2025 Fri Jul 25 11:43:15 EDT 2025 Tue Jun 17 22:23:08 EDT 2025 Tue Jun 10 21:14:33 EDT 2025 Mon Jul 21 05:58:39 EDT 2025 Tue Jul 01 01:02:31 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Tue Jan 21 07:39:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | SARS-CoV-2 adjuvanted subunit vaccine booster vaccine beta variant intranasal mucosal vaccine |
Language | English |
License | This work is written by (a) US Government employee(s) and is in the public domain in the US. Published by Oxford University Press on behalf of the National Academy of Sciences 2022. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-ebc212b69afb26204fe370fc30012745d4514555373ea51b8d183f8b74471d7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0342-3194 0000-0002-2286-1106 0000-0001-9454-0937 0000-0003-0847-3059 0000-0001-7852-0135 0000-0002-8990-158X 0000-0003-1103-9608 0000-0003-4293-5819 0000-0002-1568-4607 |
OpenAccessLink | https://www.proquest.com/docview/3191364396?pq-origsite=%requestingapplication% |
PMID | 35873792 |
PQID | 3191364396 |
PQPubID | 7215252 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9295201 proquest_miscellaneous_2694418345 proquest_journals_3191364396 gale_infotracmisc_A778138651 gale_infotracacademiconefile_A778138651 pubmed_primary_35873792 crossref_primary_10_1093_pnasnexus_pgac091 crossref_citationtrail_10_1093_pnasnexus_pgac091 oup_primary_10_1093_pnasnexus_pgac091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Los Angeles |
PublicationTitle | PNAS nexus |
PublicationTitleAlternate | PNAS Nexus |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Sui (2023012714125049900_bib55) 2010; 107 Perera (2023012714125049900_bib53) 2020; 25 Ramanathan (2023012714125049900_bib7) 2021; 21 Wang (2023012714125049900_bib2) 2021; 593 Edara (2023012714125049900_bib8) 2021; 29 Keehner (2023012714125049900_bib36) 2021; 385 Sui (2023012714125049900_bib38) 2021; 10 Thomas (2023012714125049900_bib12) 2021; 385 Wu (2023012714125049900_bib24) 2020; 11 Feng (2023012714125049900_bib44) 2021; 12 van Doremalen (2023012714125049900_bib35) 2020; 586 Yu (2023012714125049900_bib37) 2020; 369 Canaday (2023012714125049900_bib13) 2021; 73 Mwenda (2023012714125049900_bib5) 2021; 70 Cerutti (2023012714125049900_bib29) 2011; 29 Wibmer (2023012714125049900_bib9) 2021; 27 Corbett (2023012714125049900_bib33) 2020; 383 Feng (2023012714125049900_bib26) 2020; 11 Sui (2023012714125049900_bib27) 2019; 129 Chumakov (2023012714125049900_bib52) 2021; 118 Simmons (2023012714125049900_bib49) 2016; 53 Singh (2023012714125049900_bib6) 2021; 13 Goldberg (2023012714125049900_bib11) 2021; 385 Alsayb (2023012714125049900_bib42) 2021; 28 Pegu (2023012714125049900_bib1) 2021; 373 Abdool Karim (2023012714125049900_bib4) 2021; 384 Cohen (2023012714125049900_bib41) 2021; 2 Mercado (2023012714125049900_bib34) 2020; 586 Weisblum (2023012714125049900_bib10) 2020; 9 Dan (2023012714125049900_bib43) 2021; 371 Wu (2023012714125049900_bib20) 2021; 39 Tartof (2023012714125049900_bib15) 2021; 398 Krause (2023012714125049900_bib19) 2021; 398 Viana (2023012714125049900_bib16) 2022; 603 Zeng (2023012714125049900_bib51) 2022; 22 Levin (2023012714125049900_bib14) 2021; 385 Tegally (2023012714125049900_bib3) 2021; 592 Iwamoto (2023012714125049900_bib31) 2022; 2380 Choi (2023012714125049900_bib21) 2021; 27 Hassan (2023012714125049900_bib23) 2020; 183 Voysey (2023012714125049900_bib50) 2021; 397 Fahy (2023012714125049900_bib46) 2001; 119 Dejnirattisai (2023012714125049900_bib17) 2022; 185 Levine-Tiefenbrun (2023012714125049900_bib45) 2021; 27 Xu (2023012714125049900_bib40) 2021; 6 Lamoreaux (2023012714125049900_bib54) 2006; 1 Johansen (2023012714125049900_bib28) 2011; 4 Yu (2023012714125049900_bib32) 2021; 596 Wilks (2023012714125049900_bib18) 2022 Ku (2023012714125049900_bib25) 2021; 29 Schmitt (2023012714125049900_bib30) 2014; 35 Corbett (2023012714125049900_bib39) 2021; 373 Sui (2023012714125049900_bib22) 2021; 6 Didier (2023012714125049900_bib48) 2012; 9 Musich (2023012714125049900_bib47) 2020; 94 |
References_xml | – volume: 6 start-page: 197 year: 2021 ident: 2023012714125049900_bib40 article-title: Dynamics of neutralizing antibody responses to SARS-CoV-2 in patients with COVID-19: an observational study publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-021-00611-6 – volume: 21 start-page: 1070 year: 2021 ident: 2023012714125049900_bib7 article-title: SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(21)00262-0 – volume: 1 start-page: 1507 year: 2006 ident: 2023012714125049900_bib54 article-title: Intracellular cytokine optimization and standard operating procedure publication-title: Nat Protoc doi: 10.1038/nprot.2006.268 – volume: 11 start-page: 4207 year: 2020 ident: 2023012714125049900_bib26 article-title: An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques publication-title: Nat Commun doi: 10.1038/s41467-020-18077-5 – volume: 29 start-page: 236 year: 2021 ident: 2023012714125049900_bib25 article-title: Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.12.010 – volume: 371 start-page: eabf4063 year: 2021 ident: 2023012714125049900_bib43 article-title: Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection publication-title: Science doi: 10.1126/science.abf4063 – volume: 9 start-page: e61312 year: 2020 ident: 2023012714125049900_bib10 article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants publication-title: Elife doi: 10.7554/eLife.61312 – volume: 398 start-page: 1377 year: 2021 ident: 2023012714125049900_bib19 article-title: Considerations in boosting COVID-19 vaccine immune responses publication-title: Lancet North Am Ed doi: 10.1016/S0140-6736(21)02046-8 – volume: 603 start-page: 679 year: 2022 ident: 2023012714125049900_bib16 article-title: Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa publication-title: Nature doi: 10.1038/s41586-022-04411-y – volume: 385 start-page: 1330 year: 2021 ident: 2023012714125049900_bib36 article-title: Resurgence of SARS-CoV-2 infection in a highly vaccinated health system workforce publication-title: N Engl J Med doi: 10.1056/NEJMc2112981 – volume: 28 start-page: 4010 year: 2021 ident: 2023012714125049900_bib42 article-title: Prolonged humoral and cellular immunity in COVID-19-recovered patients publication-title: Saudi J Biol Sci doi: 10.1016/j.sjbs.2021.04.008 – volume: 369 start-page: 806 year: 2020 ident: 2023012714125049900_bib37 article-title: DNA vaccine protection against SARS-CoV-2 in rhesus macaques publication-title: Science doi: 10.1126/science.abc6284 – volume: 94 year: 2020 ident: 2023012714125049900_bib47 article-title: A prime/boost vaccine regimen alters the rectal microbiome and impacts immune responses and viremia control post-simian immunodeficiency virus infection in male and female rhesus macaques publication-title: J Virol doi: 10.1128/JVI.01225-20 – volume: 107 start-page: 9843 year: 2010 ident: 2023012714125049900_bib55 article-title: Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0911932107 – volume: 6 start-page: e148494 year: 2021 ident: 2023012714125049900_bib22 article-title: Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques publication-title: JCI Insight doi: 10.1172/jci.insight.148494 – volume: 385 start-page: e84 year: 2021 ident: 2023012714125049900_bib14 article-title: Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months publication-title: N Engl J Med doi: 10.1056/NEJMoa2114583 – volume: 12 start-page: 4984 year: 2021 ident: 2023012714125049900_bib44 article-title: Protective humoral and cellular immune responses to SARS-CoV-2 persist up to 1 year after recovery publication-title: Nat Commun doi: 10.1038/s41467-021-25312-0 – volume: 73 start-page: 35174389 year: 2021 ident: 2023012714125049900_bib13 article-title: Significant reduction in vaccine-induced antibody levels and neutralization activity among healthcare workers and nursing home residents 6 months following coronavirus disease 2019 BNT162b2 mRNA vaccination publication-title: Clin Infect Dis – volume: 385 start-page: e85 year: 2021 ident: 2023012714125049900_bib11 article-title: Waning immunity after the BNT162b2 vaccine in Israel publication-title: N Engl J Med doi: 10.1056/NEJMoa2114228 – volume: 9 start-page: 25 year: 2012 ident: 2023012714125049900_bib48 article-title: Immune correlates of aging in outdoor-housed captive rhesus macaques (Macaca mulatta) publication-title: Immun Ageing doi: 10.1186/1742-4933-9-25 – volume: 39 start-page: 7394 year: 2021 ident: 2023012714125049900_bib20 article-title: Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice publication-title: Vaccine doi: 10.1016/j.vaccine.2021.11.001 – volume: 383 start-page: 1544 year: 2020 ident: 2023012714125049900_bib33 article-title: Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates publication-title: N Engl J Med doi: 10.1056/NEJMoa2024671 – volume: 22 start-page: 483 year: 2022 ident: 2023012714125049900_bib51 article-title: Immunogenicity and safety of a third dose of CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: interim results from two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(21)00681-2 – volume: 27 start-page: 2025 year: 2021 ident: 2023012714125049900_bib21 article-title: Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis publication-title: Nat Med doi: 10.1038/s41591-021-01527-y – volume: 586 start-page: 583 year: 2020 ident: 2023012714125049900_bib34 article-title: Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques publication-title: Nature doi: 10.1038/s41586-020-2607-z – volume: 35 start-page: 436 year: 2014 ident: 2023012714125049900_bib30 article-title: Phenotype and functions of memory Tfh cells in human blood publication-title: Trends Immunol doi: 10.1016/j.it.2014.06.002 – volume: 129 start-page: 1314 year: 2019 ident: 2023012714125049900_bib27 article-title: Mucosal vaccine efficacy against intrarectal SHIV is independent of anti-Env antibody response publication-title: J Clin Invest doi: 10.1172/JCI122110 – volume: 593 start-page: 130 year: 2021 ident: 2023012714125049900_bib2 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature doi: 10.1038/s41586-021-03398-2 – volume: 185 start-page: 467 year: 2022 ident: 2023012714125049900_bib17 article-title: SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses publication-title: Cell doi: 10.1016/j.cell.2021.12.046 – volume: 398 start-page: 1407 year: 2021 ident: 2023012714125049900_bib15 article-title: Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study publication-title: Lancet North Am Ed doi: 10.1016/S0140-6736(21)02183-8 – year: 2022 ident: 2023012714125049900_bib18 article-title: Mapping SARS-CoV-2 antigenic relationships and serological responses publication-title: bioRxiv – volume: 385 start-page: 1761 year: 2021 ident: 2023012714125049900_bib12 article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months publication-title: N Engl J Med doi: 10.1056/NEJMoa2110345 – volume: 592 start-page: 438 year: 2021 ident: 2023012714125049900_bib3 article-title: Detection of a SARS-CoV-2 variant of concern in South Africa publication-title: Nature doi: 10.1038/s41586-021-03402-9 – volume: 586 start-page: 578 year: 2020 ident: 2023012714125049900_bib35 article-title: ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques publication-title: Nature doi: 10.1038/s41586-020-2608-y – volume: 53 start-page: 399 year: 2016 ident: 2023012714125049900_bib49 article-title: Age-associated pathology in rhesus macaques (Macaca mulatta) publication-title: Vet Pathol doi: 10.1177/0300985815620628 – volume: 373 start-page: 1372 year: 2021 ident: 2023012714125049900_bib1 article-title: Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants publication-title: Science doi: 10.1126/science.abj4176 – volume: 2380 start-page: 29 year: 2022 ident: 2023012714125049900_bib31 article-title: Circulating T follicular helper subsets in human blood publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-1736-6_3 – volume: 13 start-page: 439 year: 2021 ident: 2023012714125049900_bib6 article-title: Structure-function analyses of new SARS-CoV-2 variants B.1.1.7, B.1.351 and B.1.1.28.1: clinical, diagnostic, therapeutic and public health implications publication-title: Viruses doi: 10.3390/v13030439 – volume: 29 start-page: 516 year: 2021 ident: 2023012714125049900_bib8 article-title: Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 SARS-CoV-2 variant publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.03.009 – volume: 27 start-page: 622 year: 2021 ident: 2023012714125049900_bib9 article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma publication-title: Nat Med doi: 10.1038/s41591-021-01285-x – volume: 10 start-page: 138 year: 2021 ident: 2023012714125049900_bib38 article-title: Potential SARS-CoV-2 immune correlates of protection in infection and vaccine immunization publication-title: Pathogens doi: 10.3390/pathogens10020138 – volume: 397 start-page: 881 year: 2021 ident: 2023012714125049900_bib50 article-title: Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials publication-title: Lancet North Am Ed doi: 10.1016/S0140-6736(21)00432-3 – volume: 118 start-page: e2101718118 year: 2021 ident: 2023012714125049900_bib52 article-title: Old vaccines for new infections: exploiting innate immunity to control COVID-19 and prevent future pandemics publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2101718118 – volume: 373 start-page: eabj0299 year: 2021 ident: 2023012714125049900_bib39 article-title: Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates publication-title: Science doi: 10.1126/science.abj0299 – volume: 25 start-page: 2000421 year: 2020 ident: 2023012714125049900_bib53 article-title: Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020 publication-title: Euro Surveill doi: 10.2807/1560-7917.ES.2020.25.16.2000421 – volume: 29 start-page: 273 year: 2011 ident: 2023012714125049900_bib29 article-title: Immunoglobulin responses at the mucosal interface publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-031210-101317 – volume: 27 start-page: 2108 year: 2021 ident: 2023012714125049900_bib45 article-title: Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2 publication-title: Nat Med doi: 10.1038/s41591-021-01575-4 – volume: 119 start-page: 196 year: 2001 ident: 2023012714125049900_bib46 article-title: BAL and serum IgG levels in healthy asymptomatic HIV-infected patients publication-title: Chest doi: 10.1378/chest.119.1.196 – volume: 2 start-page: 100354 year: 2021 ident: 2023012714125049900_bib41 article-title: Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2021.100354 – volume: 70 start-page: 280 year: 2021 ident: 2023012714125049900_bib5 article-title: Detection of B.1.351 SARS-CoV-2 variant strain - Zambia, December 2020 publication-title: Morb Mortal Wkly Rep doi: 10.15585/mmwr.mm7008e2 – volume: 11 start-page: 4081 year: 2020 ident: 2023012714125049900_bib24 article-title: A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge publication-title: Nat Commun doi: 10.1038/s41467-020-17972-1 – volume: 596 start-page: 423 year: 2021 ident: 2023012714125049900_bib32 article-title: Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques publication-title: Nature doi: 10.1038/s41586-021-03732-8 – volume: 4 start-page: 598 year: 2011 ident: 2023012714125049900_bib28 article-title: Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity publication-title: Mucosal Immunol doi: 10.1038/mi.2011.37 – volume: 384 start-page: 1866 year: 2021 ident: 2023012714125049900_bib4 article-title: New SARS-CoV-2 variants - clinical, public health, and vaccine implications publication-title: N Engl J Med doi: 10.1056/NEJMc2100362 – volume: 183 start-page: 169 year: 2020 ident: 2023012714125049900_bib23 article-title: A sngle-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2020.08.026 |
SSID | ssj0002771145 |
Score | 2.2482808 |
Snippet | Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and... |
SourceID | pubmedcentral proquest gale pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | pgac091 |
SubjectTerms | Antibodies Biological, Health, and Medical Sciences Bronchus CD4 antigen CD8 antigen COVID-19 Drug delivery systems Drugs Effectiveness Humoral immunity Immune system Immunity Immunization Immunoglobulin A Immunoglobulin G Lavage Lymphocytes Lymphocytes T Methods Nose Pandemics Peripheral blood mononuclear cells Proteins Replication Respiratory tract Severe acute respiratory syndrome coronavirus 2 Spike protein Vaccines Vehicles Viral diseases |
Title | An intranasally administrated SARS-CoV-2 beta variant subunit booster vaccine prevents beta variant replication in rhesus macaques |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35873792 https://www.proquest.com/docview/3191364396 https://www.proquest.com/docview/2694418345 https://pubmed.ncbi.nlm.nih.gov/PMC9295201 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdYd-GCGJ-BUhkJxIdktYnjOD6hMq1MSAy0D9RbZDvONqmkXdNM4spfznuJmy0cJi45xC-xY7-vvGf_HiFvkig1YSILpkNlWKySnCkwc8wiupLNTa6ajO63o-TwLP46F3MfcKv8tsqtTmwUdb60GCMfA6uEHM1n8ml1xbBqFGZXfQmNHbILKjgVA7L7-eDox3EXZYmkBIdfbNOZio9XpUaUyboar861naiwZ5C8Wu6ddbvlcv67c_KWKZo9JA-8D0mn7aLvkXuufET2vJRW9L2Hkv7wmPyZlvQS3wHD0YvFb6pvsHJdTk-mxydsf_mTRdS4jabX8OMMM02r2tQg6hQ8cMRRgPsW8-901eI9VX3qtety4NAZXV-4qq7oL201ftYTcjY7ON0_ZL7qArMgjxvmjIW5NInShWnQ6gvH5aSwvMlSxyKPBYKbCy650yI0aQ5aoUiNjMHO5dLyp2RQLkv3nFDRFPwzk0KaBB2V1OVSKS2xuH2cuzAgk-3UZ9ZDkmNljEXWpsZ51q1W5lcrIB-7R1YtHsddxO9wPTOUVXiv1f7IAYwOUa-yqZRpiEVPgXLYowQZs73mt8AR_9PhcMszmdcFVXbDuQF53TVjD7i_rXRLeB7PE8cwj7EIyLOWxbreuEgllyoKiOwxX0eACOH9lvLyokEKB99XgIf34u5hvST3IzzU0WxCHpLBZl27V-BqbcyI7Mi5hGs6-zLysjVqwhajJi4G19Pv87-T8TPG |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALojwDCxiJiocU7ebhOD4gtJRWW9quUB-ot2A7Dq20ZMNmA-qVH8RvZCZx0oZDxaXX9cT2Zp7OeL4h5GXkx8qLeOZKTyg3FFHqCnBzrkZ0JZ2qVNQZ3f1pNDkOP52wkxXyp62FwWuVrU2sDXU61_iNfAii4gXoPqP3xQ8Xu0ZhdrVtodGIxa45_wVHtvLdzkfg74bvb28dbU5c21XA1SBvS9coDeZaRUJmqkZjz0zAR5kO6ixsyNKQIXg3C3hgJPNUnILUZ7HiIdjxlOsA5r1B1iDMEKBFax-2pp8Puq86PudwwGBt-lQEwyKXiGpZlcPim9Qj4fUcoHUDvdq6SyHuvzc1L7m-7Tvkto1Z6bgRsnWyYvK7ZN1ahZK-ttDVb-6R3-OcnuEcsB05m51TeYHNa1J6OD44dDfnX1yfKrOU9Ccc1IGztKxUBaaFQsSPuA3wu8Z8Py0afKmyT70wXc4dFqOLU1NWJf0utcS_dZ8cXws_HpDVfJ6bR4SyusGgGmVcRRgYxSblQkg4h_siTI3nkFH76hNtIdCxE8csaVLxQdJxK7Hccsjb7pGiwf-4ivgV8jNB2wDzamlLHGB3iLKVjDmPPWyyCpSDHiXotO4Nb4BE_M-Cg1ZmEmt7yuRCUxzyohvGFfA-XW7m8DzWL4fwHkPmkIeNiHWrBSzmARe-Q3hP-DoCRCTvj-RnpzUyOcTaDCLKx1dv6zm5OTna30v2dqa7T8gtHwtK6gvQA7K6XFTmKYR5S_XM6hYlX69bnf8CoQZp5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intranasally+administrated+SARS-CoV-2+beta+variant+subunit+booster+vaccine+prevents+beta+variant+replication+in+rhesus+macaques&rft.jtitle=PNAS+nexus&rft.au=Sui%2C+Yongjun&rft.au=Li%2C+Jianping&rft.au=Andersen%2C+Hanne&rft.au=Zhang%2C+Roushu&rft.date=2022-07-01&rft.pub=Oxford+University+Press&rft.eissn=2752-6542&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1093%2Fpnasnexus%2Fpgac091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2752-6542&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2752-6542&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2752-6542&client=summon |