An intranasally administrated SARS-CoV-2 beta variant subunit booster vaccine prevents beta variant replication in rhesus macaques

Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-C...

Full description

Saved in:
Bibliographic Details
Published inPNAS nexus Vol. 1; no. 3; p. pgac091
Main Authors Sui, Yongjun, Li, Jianping, Andersen, Hanne, Zhang, Roushu, Prabhu, Sunaina K, Hoang, Tanya, Venzon, David, Cook, Anthony, Brown, Renita, Teow, Elyse, Velasco, Jason, Pessaint, Laurent, Moore, Ian N, Lagenaur, Laurel, Talton, Jim, Breed, Matthew W, Kramer, Josh, Bock, Kevin W, Minai, Mahnaz, Nagata, Bianca M, Choo-Wosoba, Hyoyoung, Lewis, Mark G, Wang, Lai-Xi, Berzofsky, Jay A
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2022
Subjects
Online AccessGet full text
ISSN2752-6542
2752-6542
DOI10.1093/pnasnexus/pgac091

Cover

Loading…
Abstract Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.
AbstractList Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4 + and CD8 + T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.
Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to crossneutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL- 15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific [CD4.sup.+] and [CD8.sup.+] T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.
Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.
Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4 and CD8 T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.
Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.
Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to crossneutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL- 15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific [CD4.sup.+] and [CD8.sup.+] T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing. Keywords: SARS-CoV-2, beta variant, booster vaccine, adjuvanted subunit vaccine, intranasal mucosal vaccine
Audience Academic
Author Sui, Yongjun
Venzon, David
Nagata, Bianca M
Lewis, Mark G
Brown, Renita
Choo-Wosoba, Hyoyoung
Li, Jianping
Prabhu, Sunaina K
Berzofsky, Jay A
Talton, Jim
Breed, Matthew W
Hoang, Tanya
Cook, Anthony
Lagenaur, Laurel
Andersen, Hanne
Moore, Ian N
Wang, Lai-Xi
Pessaint, Laurent
Bock, Kevin W
Minai, Mahnaz
Kramer, Josh
Velasco, Jason
Zhang, Roushu
Teow, Elyse
Author_xml – sequence: 1
  givenname: Yongjun
  orcidid: 0000-0002-1568-4607
  surname: Sui
  fullname: Sui, Yongjun
  email: suiy@mail.nih.gov
– sequence: 2
  givenname: Jianping
  surname: Li
  fullname: Li, Jianping
– sequence: 3
  givenname: Hanne
  orcidid: 0000-0003-1103-9608
  surname: Andersen
  fullname: Andersen, Hanne
– sequence: 4
  givenname: Roushu
  surname: Zhang
  fullname: Zhang, Roushu
– sequence: 5
  givenname: Sunaina K
  orcidid: 0000-0003-0847-3059
  surname: Prabhu
  fullname: Prabhu, Sunaina K
– sequence: 6
  givenname: Tanya
  surname: Hoang
  fullname: Hoang, Tanya
– sequence: 7
  givenname: David
  orcidid: 0000-0002-8990-158X
  surname: Venzon
  fullname: Venzon, David
– sequence: 8
  givenname: Anthony
  surname: Cook
  fullname: Cook, Anthony
– sequence: 9
  givenname: Renita
  surname: Brown
  fullname: Brown, Renita
– sequence: 10
  givenname: Elyse
  surname: Teow
  fullname: Teow, Elyse
– sequence: 11
  givenname: Jason
  surname: Velasco
  fullname: Velasco, Jason
– sequence: 12
  givenname: Laurent
  surname: Pessaint
  fullname: Pessaint, Laurent
– sequence: 13
  givenname: Ian N
  surname: Moore
  fullname: Moore, Ian N
– sequence: 14
  givenname: Laurel
  surname: Lagenaur
  fullname: Lagenaur, Laurel
– sequence: 15
  givenname: Jim
  surname: Talton
  fullname: Talton, Jim
– sequence: 16
  givenname: Matthew W
  orcidid: 0000-0002-2286-1106
  surname: Breed
  fullname: Breed, Matthew W
– sequence: 17
  givenname: Josh
  surname: Kramer
  fullname: Kramer, Josh
– sequence: 18
  givenname: Kevin W
  orcidid: 0000-0001-9454-0937
  surname: Bock
  fullname: Bock, Kevin W
– sequence: 19
  givenname: Mahnaz
  surname: Minai
  fullname: Minai, Mahnaz
– sequence: 20
  givenname: Bianca M
  surname: Nagata
  fullname: Nagata, Bianca M
– sequence: 21
  givenname: Hyoyoung
  surname: Choo-Wosoba
  fullname: Choo-Wosoba, Hyoyoung
– sequence: 22
  givenname: Mark G
  orcidid: 0000-0001-7852-0135
  surname: Lewis
  fullname: Lewis, Mark G
– sequence: 23
  givenname: Lai-Xi
  orcidid: 0000-0003-4293-5819
  surname: Wang
  fullname: Wang, Lai-Xi
– sequence: 24
  givenname: Jay A
  orcidid: 0000-0002-0342-3194
  surname: Berzofsky
  fullname: Berzofsky, Jay A
  email: berzofsj@mail.nih.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35873792$$D View this record in MEDLINE/PubMed
BookMark eNqNUktr3DAQNiWlSdP8gF6KoZcc6kRPy74UlqWPQCDQtL0KWR5vFGzJleSlufaXV-5uttkQStFBYvQ95mPmZXZgnYUse43RGUY1PR-tChZ-TuF8XCmNavwsOyKCk6LkjBw8eB9mJyHcIoSIEBgz_iI7pLwSVNTkKPu1sLmx0aukpvr-LlftYKwJqRKhza8XX66LpftekLyBqPK18kbZmIepmayJeeNciOBTXWtjIR89rMHGsI_2MPZGq2jcbJb7GwhTyAel1Y8Jwqvseaf6ACfb-zj79vHD1-Xn4vLq08VycVloTnEsoNEEk6asVdeQkiDWARWo0xQhTATjLeMpHOdUUFAcN1WLK9pVjWBM4FZoepy93-iOUzNAq2GO3cvRm0H5O-mUkfs_1tzIlVvLmtScIJwETrcC3s2NRzmYoKHvlQU3BUnKmrFkyniCvn0EvXWTtymepLjGtGS0Lv-iVqoHaWznkq-eReVCiArTquSz7dkTqHRaGIxOS9GZVN8jvHkYdJfwfuoJgDcA7V0IHrodBCM5L5fcLZfcLlfiiEccbeKfkaZuTP9P5rsN003jfxj9BvKL6ZI
CitedBy_id crossref_primary_10_3389_fimmu_2022_933347
crossref_primary_10_1016_j_jaip_2022_10_002
crossref_primary_10_1016_j_vaccine_2023_11_059
crossref_primary_10_3389_fimmu_2023_1154496
crossref_primary_10_1038_s41392_022_01295_2
crossref_primary_10_3389_fimmu_2025_1514845
crossref_primary_10_1172_jci_insight_175800
crossref_primary_10_3389_fimmu_2024_1386243
crossref_primary_10_1016_j_biologicals_2023_101723
Cites_doi 10.1038/s41392-021-00611-6
10.1016/S1473-3099(21)00262-0
10.1038/nprot.2006.268
10.1038/s41467-020-18077-5
10.1016/j.chom.2020.12.010
10.1126/science.abf4063
10.7554/eLife.61312
10.1016/S0140-6736(21)02046-8
10.1038/s41586-022-04411-y
10.1056/NEJMc2112981
10.1016/j.sjbs.2021.04.008
10.1126/science.abc6284
10.1128/JVI.01225-20
10.1073/pnas.0911932107
10.1172/jci.insight.148494
10.1056/NEJMoa2114583
10.1038/s41467-021-25312-0
10.1056/NEJMoa2114228
10.1186/1742-4933-9-25
10.1016/j.vaccine.2021.11.001
10.1056/NEJMoa2024671
10.1016/S1473-3099(21)00681-2
10.1038/s41591-021-01527-y
10.1038/s41586-020-2607-z
10.1016/j.it.2014.06.002
10.1172/JCI122110
10.1038/s41586-021-03398-2
10.1016/j.cell.2021.12.046
10.1016/S0140-6736(21)02183-8
10.1056/NEJMoa2110345
10.1038/s41586-021-03402-9
10.1038/s41586-020-2608-y
10.1177/0300985815620628
10.1126/science.abj4176
10.1007/978-1-0716-1736-6_3
10.3390/v13030439
10.1016/j.chom.2021.03.009
10.1038/s41591-021-01285-x
10.3390/pathogens10020138
10.1016/S0140-6736(21)00432-3
10.1073/pnas.2101718118
10.1126/science.abj0299
10.2807/1560-7917.ES.2020.25.16.2000421
10.1146/annurev-immunol-031210-101317
10.1038/s41591-021-01575-4
10.1378/chest.119.1.196
10.1016/j.xcrm.2021.100354
10.15585/mmwr.mm7008e2
10.1038/s41467-020-17972-1
10.1038/s41586-021-03732-8
10.1038/mi.2011.37
10.1056/NEJMc2100362
10.1016/j.cell.2020.08.026
ContentType Journal Article
Copyright Published by Oxford University Press on behalf of the National Academy of Sciences 2022. 2022
Published by Oxford University Press on behalf of the National Academy of Sciences 2022.
COPYRIGHT 2022 Oxford University Press
Copyright_xml – notice: Published by Oxford University Press on behalf of the National Academy of Sciences 2022. 2022
– notice: Published by Oxford University Press on behalf of the National Academy of Sciences 2022.
– notice: COPYRIGHT 2022 Oxford University Press
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88I
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
7X8
5PM
DOI 10.1093/pnasnexus/pgac091
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection (ProQuest)
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Science Database (ProQuest)
Biological Science Database (Proquest)
Engineering Database (Proquest)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2752-6542
ExternalDocumentID PMC9295201
A778138651
35873792
10_1093_pnasnexus_pgac091
10.1093/pnasnexus/pgac091
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: Z01 BC-011941
GroupedDBID 0R~
53G
AAPXW
AAVAP
ABEJV
ABPTD
ABXVV
ALMA_UNASSIGNED_HOLDINGS
AMNDL
GROUPED_DOAJ
IAO
IHR
INH
ITC
M~E
NQS
OK1
ROX
RPM
TOX
7X7
88I
8FI
8FJ
AAYXX
ABGNP
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
FYUFA
GNUQQ
H13
HCIFZ
HMCUK
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PTHSS
PYCSY
UKHRP
NPM
PQGLB
PMFND
3V.
7XB
8FE
8FG
8FH
8FK
COVID
K9.
L6V
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c531t-ebc212b69afb26204fe370fc30012745d4514555373ea51b8d183f8b74471d7c3
IEDL.DBID BENPR
ISSN 2752-6542
IngestDate Thu Aug 21 18:37:00 EDT 2025
Fri Jul 11 05:24:32 EDT 2025
Fri Jul 25 11:43:15 EDT 2025
Tue Jun 17 22:23:08 EDT 2025
Tue Jun 10 21:14:33 EDT 2025
Mon Jul 21 05:58:39 EDT 2025
Tue Jul 01 01:02:31 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Tue Jan 21 07:39:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords SARS-CoV-2
adjuvanted subunit vaccine
booster vaccine
beta variant
intranasal mucosal vaccine
Language English
License This work is written by (a) US Government employee(s) and is in the public domain in the US.
Published by Oxford University Press on behalf of the National Academy of Sciences 2022.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-ebc212b69afb26204fe370fc30012745d4514555373ea51b8d183f8b74471d7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0342-3194
0000-0002-2286-1106
0000-0001-9454-0937
0000-0003-0847-3059
0000-0001-7852-0135
0000-0002-8990-158X
0000-0003-1103-9608
0000-0003-4293-5819
0000-0002-1568-4607
OpenAccessLink https://www.proquest.com/docview/3191364396?pq-origsite=%requestingapplication%
PMID 35873792
PQID 3191364396
PQPubID 7215252
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9295201
proquest_miscellaneous_2694418345
proquest_journals_3191364396
gale_infotracmisc_A778138651
gale_infotracacademiconefile_A778138651
pubmed_primary_35873792
crossref_primary_10_1093_pnasnexus_pgac091
crossref_citationtrail_10_1093_pnasnexus_pgac091
oup_primary_10_1093_pnasnexus_pgac091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Los Angeles
PublicationTitle PNAS nexus
PublicationTitleAlternate PNAS Nexus
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Sui (2023012714125049900_bib55) 2010; 107
Perera (2023012714125049900_bib53) 2020; 25
Ramanathan (2023012714125049900_bib7) 2021; 21
Wang (2023012714125049900_bib2) 2021; 593
Edara (2023012714125049900_bib8) 2021; 29
Keehner (2023012714125049900_bib36) 2021; 385
Sui (2023012714125049900_bib38) 2021; 10
Thomas (2023012714125049900_bib12) 2021; 385
Wu (2023012714125049900_bib24) 2020; 11
Feng (2023012714125049900_bib44) 2021; 12
van Doremalen (2023012714125049900_bib35) 2020; 586
Yu (2023012714125049900_bib37) 2020; 369
Canaday (2023012714125049900_bib13) 2021; 73
Mwenda (2023012714125049900_bib5) 2021; 70
Cerutti (2023012714125049900_bib29) 2011; 29
Wibmer (2023012714125049900_bib9) 2021; 27
Corbett (2023012714125049900_bib33) 2020; 383
Feng (2023012714125049900_bib26) 2020; 11
Sui (2023012714125049900_bib27) 2019; 129
Chumakov (2023012714125049900_bib52) 2021; 118
Simmons (2023012714125049900_bib49) 2016; 53
Singh (2023012714125049900_bib6) 2021; 13
Goldberg (2023012714125049900_bib11) 2021; 385
Alsayb (2023012714125049900_bib42) 2021; 28
Pegu (2023012714125049900_bib1) 2021; 373
Abdool Karim (2023012714125049900_bib4) 2021; 384
Cohen (2023012714125049900_bib41) 2021; 2
Mercado (2023012714125049900_bib34) 2020; 586
Weisblum (2023012714125049900_bib10) 2020; 9
Dan (2023012714125049900_bib43) 2021; 371
Wu (2023012714125049900_bib20) 2021; 39
Tartof (2023012714125049900_bib15) 2021; 398
Krause (2023012714125049900_bib19) 2021; 398
Viana (2023012714125049900_bib16) 2022; 603
Zeng (2023012714125049900_bib51) 2022; 22
Levin (2023012714125049900_bib14) 2021; 385
Tegally (2023012714125049900_bib3) 2021; 592
Iwamoto (2023012714125049900_bib31) 2022; 2380
Choi (2023012714125049900_bib21) 2021; 27
Hassan (2023012714125049900_bib23) 2020; 183
Voysey (2023012714125049900_bib50) 2021; 397
Fahy (2023012714125049900_bib46) 2001; 119
Dejnirattisai (2023012714125049900_bib17) 2022; 185
Levine-Tiefenbrun (2023012714125049900_bib45) 2021; 27
Xu (2023012714125049900_bib40) 2021; 6
Lamoreaux (2023012714125049900_bib54) 2006; 1
Johansen (2023012714125049900_bib28) 2011; 4
Yu (2023012714125049900_bib32) 2021; 596
Wilks (2023012714125049900_bib18) 2022
Ku (2023012714125049900_bib25) 2021; 29
Schmitt (2023012714125049900_bib30) 2014; 35
Corbett (2023012714125049900_bib39) 2021; 373
Sui (2023012714125049900_bib22) 2021; 6
Didier (2023012714125049900_bib48) 2012; 9
Musich (2023012714125049900_bib47) 2020; 94
References_xml – volume: 6
  start-page: 197
  year: 2021
  ident: 2023012714125049900_bib40
  article-title: Dynamics of neutralizing antibody responses to SARS-CoV-2 in patients with COVID-19: an observational study
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-021-00611-6
– volume: 21
  start-page: 1070
  year: 2021
  ident: 2023012714125049900_bib7
  article-title: SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(21)00262-0
– volume: 1
  start-page: 1507
  year: 2006
  ident: 2023012714125049900_bib54
  article-title: Intracellular cytokine optimization and standard operating procedure
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2006.268
– volume: 11
  start-page: 4207
  year: 2020
  ident: 2023012714125049900_bib26
  article-title: An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18077-5
– volume: 29
  start-page: 236
  year: 2021
  ident: 2023012714125049900_bib25
  article-title: Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.12.010
– volume: 371
  start-page: eabf4063
  year: 2021
  ident: 2023012714125049900_bib43
  article-title: Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection
  publication-title: Science
  doi: 10.1126/science.abf4063
– volume: 9
  start-page: e61312
  year: 2020
  ident: 2023012714125049900_bib10
  article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
  publication-title: Elife
  doi: 10.7554/eLife.61312
– volume: 398
  start-page: 1377
  year: 2021
  ident: 2023012714125049900_bib19
  article-title: Considerations in boosting COVID-19 vaccine immune responses
  publication-title: Lancet North Am Ed
  doi: 10.1016/S0140-6736(21)02046-8
– volume: 603
  start-page: 679
  year: 2022
  ident: 2023012714125049900_bib16
  article-title: Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa
  publication-title: Nature
  doi: 10.1038/s41586-022-04411-y
– volume: 385
  start-page: 1330
  year: 2021
  ident: 2023012714125049900_bib36
  article-title: Resurgence of SARS-CoV-2 infection in a highly vaccinated health system workforce
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2112981
– volume: 28
  start-page: 4010
  year: 2021
  ident: 2023012714125049900_bib42
  article-title: Prolonged humoral and cellular immunity in COVID-19-recovered patients
  publication-title: Saudi J Biol Sci
  doi: 10.1016/j.sjbs.2021.04.008
– volume: 369
  start-page: 806
  year: 2020
  ident: 2023012714125049900_bib37
  article-title: DNA vaccine protection against SARS-CoV-2 in rhesus macaques
  publication-title: Science
  doi: 10.1126/science.abc6284
– volume: 94
  year: 2020
  ident: 2023012714125049900_bib47
  article-title: A prime/boost vaccine regimen alters the rectal microbiome and impacts immune responses and viremia control post-simian immunodeficiency virus infection in male and female rhesus macaques
  publication-title: J Virol
  doi: 10.1128/JVI.01225-20
– volume: 107
  start-page: 9843
  year: 2010
  ident: 2023012714125049900_bib55
  article-title: Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0911932107
– volume: 6
  start-page: e148494
  year: 2021
  ident: 2023012714125049900_bib22
  article-title: Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.148494
– volume: 385
  start-page: e84
  year: 2021
  ident: 2023012714125049900_bib14
  article-title: Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2114583
– volume: 12
  start-page: 4984
  year: 2021
  ident: 2023012714125049900_bib44
  article-title: Protective humoral and cellular immune responses to SARS-CoV-2 persist up to 1 year after recovery
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25312-0
– volume: 73
  start-page: 35174389
  year: 2021
  ident: 2023012714125049900_bib13
  article-title: Significant reduction in vaccine-induced antibody levels and neutralization activity among healthcare workers and nursing home residents 6 months following coronavirus disease 2019 BNT162b2 mRNA vaccination
  publication-title: Clin Infect Dis
– volume: 385
  start-page: e85
  year: 2021
  ident: 2023012714125049900_bib11
  article-title: Waning immunity after the BNT162b2 vaccine in Israel
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2114228
– volume: 9
  start-page: 25
  year: 2012
  ident: 2023012714125049900_bib48
  article-title: Immune correlates of aging in outdoor-housed captive rhesus macaques (Macaca mulatta)
  publication-title: Immun Ageing
  doi: 10.1186/1742-4933-9-25
– volume: 39
  start-page: 7394
  year: 2021
  ident: 2023012714125049900_bib20
  article-title: Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2021.11.001
– volume: 383
  start-page: 1544
  year: 2020
  ident: 2023012714125049900_bib33
  article-title: Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2024671
– volume: 22
  start-page: 483
  year: 2022
  ident: 2023012714125049900_bib51
  article-title: Immunogenicity and safety of a third dose of CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: interim results from two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(21)00681-2
– volume: 27
  start-page: 2025
  year: 2021
  ident: 2023012714125049900_bib21
  article-title: Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01527-y
– volume: 586
  start-page: 583
  year: 2020
  ident: 2023012714125049900_bib34
  article-title: Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques
  publication-title: Nature
  doi: 10.1038/s41586-020-2607-z
– volume: 35
  start-page: 436
  year: 2014
  ident: 2023012714125049900_bib30
  article-title: Phenotype and functions of memory Tfh cells in human blood
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2014.06.002
– volume: 129
  start-page: 1314
  year: 2019
  ident: 2023012714125049900_bib27
  article-title: Mucosal vaccine efficacy against intrarectal SHIV is independent of anti-Env antibody response
  publication-title: J Clin Invest
  doi: 10.1172/JCI122110
– volume: 593
  start-page: 130
  year: 2021
  ident: 2023012714125049900_bib2
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
  doi: 10.1038/s41586-021-03398-2
– volume: 185
  start-page: 467
  year: 2022
  ident: 2023012714125049900_bib17
  article-title: SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses
  publication-title: Cell
  doi: 10.1016/j.cell.2021.12.046
– volume: 398
  start-page: 1407
  year: 2021
  ident: 2023012714125049900_bib15
  article-title: Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study
  publication-title: Lancet North Am Ed
  doi: 10.1016/S0140-6736(21)02183-8
– year: 2022
  ident: 2023012714125049900_bib18
  article-title: Mapping SARS-CoV-2 antigenic relationships and serological responses
  publication-title: bioRxiv
– volume: 385
  start-page: 1761
  year: 2021
  ident: 2023012714125049900_bib12
  article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2110345
– volume: 592
  start-page: 438
  year: 2021
  ident: 2023012714125049900_bib3
  article-title: Detection of a SARS-CoV-2 variant of concern in South Africa
  publication-title: Nature
  doi: 10.1038/s41586-021-03402-9
– volume: 586
  start-page: 578
  year: 2020
  ident: 2023012714125049900_bib35
  article-title: ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques
  publication-title: Nature
  doi: 10.1038/s41586-020-2608-y
– volume: 53
  start-page: 399
  year: 2016
  ident: 2023012714125049900_bib49
  article-title: Age-associated pathology in rhesus macaques (Macaca mulatta)
  publication-title: Vet Pathol
  doi: 10.1177/0300985815620628
– volume: 373
  start-page: 1372
  year: 2021
  ident: 2023012714125049900_bib1
  article-title: Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants
  publication-title: Science
  doi: 10.1126/science.abj4176
– volume: 2380
  start-page: 29
  year: 2022
  ident: 2023012714125049900_bib31
  article-title: Circulating T follicular helper subsets in human blood
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-1736-6_3
– volume: 13
  start-page: 439
  year: 2021
  ident: 2023012714125049900_bib6
  article-title: Structure-function analyses of new SARS-CoV-2 variants B.1.1.7, B.1.351 and B.1.1.28.1: clinical, diagnostic, therapeutic and public health implications
  publication-title: Viruses
  doi: 10.3390/v13030439
– volume: 29
  start-page: 516
  year: 2021
  ident: 2023012714125049900_bib8
  article-title: Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 SARS-CoV-2 variant
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.03.009
– volume: 27
  start-page: 622
  year: 2021
  ident: 2023012714125049900_bib9
  article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01285-x
– volume: 10
  start-page: 138
  year: 2021
  ident: 2023012714125049900_bib38
  article-title: Potential SARS-CoV-2 immune correlates of protection in infection and vaccine immunization
  publication-title: Pathogens
  doi: 10.3390/pathogens10020138
– volume: 397
  start-page: 881
  year: 2021
  ident: 2023012714125049900_bib50
  article-title: Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials
  publication-title: Lancet North Am Ed
  doi: 10.1016/S0140-6736(21)00432-3
– volume: 118
  start-page: e2101718118
  year: 2021
  ident: 2023012714125049900_bib52
  article-title: Old vaccines for new infections: exploiting innate immunity to control COVID-19 and prevent future pandemics
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2101718118
– volume: 373
  start-page: eabj0299
  year: 2021
  ident: 2023012714125049900_bib39
  article-title: Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates
  publication-title: Science
  doi: 10.1126/science.abj0299
– volume: 25
  start-page: 2000421
  year: 2020
  ident: 2023012714125049900_bib53
  article-title: Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020
  publication-title: Euro Surveill
  doi: 10.2807/1560-7917.ES.2020.25.16.2000421
– volume: 29
  start-page: 273
  year: 2011
  ident: 2023012714125049900_bib29
  article-title: Immunoglobulin responses at the mucosal interface
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-031210-101317
– volume: 27
  start-page: 2108
  year: 2021
  ident: 2023012714125049900_bib45
  article-title: Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01575-4
– volume: 119
  start-page: 196
  year: 2001
  ident: 2023012714125049900_bib46
  article-title: BAL and serum IgG levels in healthy asymptomatic HIV-infected patients
  publication-title: Chest
  doi: 10.1378/chest.119.1.196
– volume: 2
  start-page: 100354
  year: 2021
  ident: 2023012714125049900_bib41
  article-title: Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2021.100354
– volume: 70
  start-page: 280
  year: 2021
  ident: 2023012714125049900_bib5
  article-title: Detection of B.1.351 SARS-CoV-2 variant strain - Zambia, December 2020
  publication-title: Morb Mortal Wkly Rep
  doi: 10.15585/mmwr.mm7008e2
– volume: 11
  start-page: 4081
  year: 2020
  ident: 2023012714125049900_bib24
  article-title: A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17972-1
– volume: 596
  start-page: 423
  year: 2021
  ident: 2023012714125049900_bib32
  article-title: Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques
  publication-title: Nature
  doi: 10.1038/s41586-021-03732-8
– volume: 4
  start-page: 598
  year: 2011
  ident: 2023012714125049900_bib28
  article-title: Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2011.37
– volume: 384
  start-page: 1866
  year: 2021
  ident: 2023012714125049900_bib4
  article-title: New SARS-CoV-2 variants - clinical, public health, and vaccine implications
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2100362
– volume: 183
  start-page: 169
  year: 2020
  ident: 2023012714125049900_bib23
  article-title: A sngle-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.026
SSID ssj0002771145
Score 2.2482808
Snippet Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage pgac091
SubjectTerms Antibodies
Biological, Health, and Medical Sciences
Bronchus
CD4 antigen
CD8 antigen
COVID-19
Drug delivery systems
Drugs
Effectiveness
Humoral immunity
Immune system
Immunity
Immunization
Immunoglobulin A
Immunoglobulin G
Lavage
Lymphocytes
Lymphocytes T
Methods
Nose
Pandemics
Peripheral blood mononuclear cells
Proteins
Replication
Respiratory tract
Severe acute respiratory syndrome coronavirus 2
Spike protein
Vaccines
Vehicles
Viral diseases
Title An intranasally administrated SARS-CoV-2 beta variant subunit booster vaccine prevents beta variant replication in rhesus macaques
URI https://www.ncbi.nlm.nih.gov/pubmed/35873792
https://www.proquest.com/docview/3191364396
https://www.proquest.com/docview/2694418345
https://pubmed.ncbi.nlm.nih.gov/PMC9295201
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdYd-GCGJ-BUhkJxIdktYnjOD6hMq1MSAy0D9RbZDvONqmkXdNM4spfznuJmy0cJi45xC-xY7-vvGf_HiFvkig1YSILpkNlWKySnCkwc8wiupLNTa6ajO63o-TwLP46F3MfcKv8tsqtTmwUdb60GCMfA6uEHM1n8ml1xbBqFGZXfQmNHbILKjgVA7L7-eDox3EXZYmkBIdfbNOZio9XpUaUyboar861naiwZ5C8Wu6ddbvlcv67c_KWKZo9JA-8D0mn7aLvkXuufET2vJRW9L2Hkv7wmPyZlvQS3wHD0YvFb6pvsHJdTk-mxydsf_mTRdS4jabX8OMMM02r2tQg6hQ8cMRRgPsW8-901eI9VX3qtety4NAZXV-4qq7oL201ftYTcjY7ON0_ZL7qArMgjxvmjIW5NInShWnQ6gvH5aSwvMlSxyKPBYKbCy650yI0aQ5aoUiNjMHO5dLyp2RQLkv3nFDRFPwzk0KaBB2V1OVSKS2xuH2cuzAgk-3UZ9ZDkmNljEXWpsZ51q1W5lcrIB-7R1YtHsddxO9wPTOUVXiv1f7IAYwOUa-yqZRpiEVPgXLYowQZs73mt8AR_9PhcMszmdcFVXbDuQF53TVjD7i_rXRLeB7PE8cwj7EIyLOWxbreuEgllyoKiOwxX0eACOH9lvLyokEKB99XgIf34u5hvST3IzzU0WxCHpLBZl27V-BqbcyI7Mi5hGs6-zLysjVqwhajJi4G19Pv87-T8TPG
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALojwDCxiJiocU7ebhOD4gtJRWW9quUB-ot2A7Dq20ZMNmA-qVH8RvZCZx0oZDxaXX9cT2Zp7OeL4h5GXkx8qLeOZKTyg3FFHqCnBzrkZ0JZ2qVNQZ3f1pNDkOP52wkxXyp62FwWuVrU2sDXU61_iNfAii4gXoPqP3xQ8Xu0ZhdrVtodGIxa45_wVHtvLdzkfg74bvb28dbU5c21XA1SBvS9coDeZaRUJmqkZjz0zAR5kO6ixsyNKQIXg3C3hgJPNUnILUZ7HiIdjxlOsA5r1B1iDMEKBFax-2pp8Puq86PudwwGBt-lQEwyKXiGpZlcPim9Qj4fUcoHUDvdq6SyHuvzc1L7m-7Tvkto1Z6bgRsnWyYvK7ZN1ahZK-ttDVb-6R3-OcnuEcsB05m51TeYHNa1J6OD44dDfnX1yfKrOU9Ccc1IGztKxUBaaFQsSPuA3wu8Z8Py0afKmyT70wXc4dFqOLU1NWJf0utcS_dZ8cXws_HpDVfJ6bR4SyusGgGmVcRRgYxSblQkg4h_siTI3nkFH76hNtIdCxE8csaVLxQdJxK7Hccsjb7pGiwf-4ivgV8jNB2wDzamlLHGB3iLKVjDmPPWyyCpSDHiXotO4Nb4BE_M-Cg1ZmEmt7yuRCUxzyohvGFfA-XW7m8DzWL4fwHkPmkIeNiHWrBSzmARe-Q3hP-DoCRCTvj-RnpzUyOcTaDCLKx1dv6zm5OTna30v2dqa7T8gtHwtK6gvQA7K6XFTmKYR5S_XM6hYlX69bnf8CoQZp5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intranasally+administrated+SARS-CoV-2+beta+variant+subunit+booster+vaccine+prevents+beta+variant+replication+in+rhesus+macaques&rft.jtitle=PNAS+nexus&rft.au=Sui%2C+Yongjun&rft.au=Li%2C+Jianping&rft.au=Andersen%2C+Hanne&rft.au=Zhang%2C+Roushu&rft.date=2022-07-01&rft.pub=Oxford+University+Press&rft.eissn=2752-6542&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1093%2Fpnasnexus%2Fpgac091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2752-6542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2752-6542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2752-6542&client=summon