Tumor Infiltrating Lymphocyte (TIL) Therapy for Solid Tumor Treatment: Progressions and Challenges
Over the past decade, immunotherapy, especially cell-based immunotherapy, has provided new strategies for cancer therapy. Recent clinical studies demonstrated that adopting cell transfer of tumor-infiltrating lymphocytes (TILs) for advanced solid tumors showed good efficacy. TIL therapy is a type of...
Saved in:
Published in | Cancers Vol. 14; no. 17; p. 4160 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
27.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the past decade, immunotherapy, especially cell-based immunotherapy, has provided new strategies for cancer therapy. Recent clinical studies demonstrated that adopting cell transfer of tumor-infiltrating lymphocytes (TILs) for advanced solid tumors showed good efficacy. TIL therapy is a type of cell-based immunotherapy using the patient’s own immune cells from the microenvironment of the solid tumor to kill tumor cells. In this review, we provide a comprehensive summary of the current strategies and challenges in TIL isolation and generation. Moreover, the current clinical experience of TIL therapy is summarized and discussed, with an emphasis on lymphodepletion regimen, the use of interleukin-2, and related toxicity. Furthermore, we highlight the clinical trials where TIL therapy is used independently and in combination with other types of therapy for solid cancers. Finally, the limitations, future potential, and directions of TIL therapy for solid tumor treatment are also discussed. |
---|---|
AbstractList | Simple SummaryOver the past decade, cell-based immunotherapy has become a powerful strategy in solid cancer therapy. Tumor-infiltrating lymphocytes (TILs) are a group of intratumor lymphocytes. With the development of new technologies, the isolation and generation of TILs from tumor tissues have improved. Clinical use of TILs for solid tumor treatment showed good efficacy. In this review, we summarize the current strategies and challenges of TIL generation. We highlight the clinical trials where TIL therapy is used independently and in combination with other therapies for solid tumor treatment. Finally, the limitations, future potential, and directions of TIL therapy for solid tumor treatment are also discussed.AbstractOver the past decade, immunotherapy, especially cell-based immunotherapy, has provided new strategies for cancer therapy. Recent clinical studies demonstrated that adopting cell transfer of tumor-infiltrating lymphocytes (TILs) for advanced solid tumors showed good efficacy. TIL therapy is a type of cell-based immunotherapy using the patient’s own immune cells from the microenvironment of the solid tumor to kill tumor cells. In this review, we provide a comprehensive summary of the current strategies and challenges in TIL isolation and generation. Moreover, the current clinical experience of TIL therapy is summarized and discussed, with an emphasis on lymphodepletion regimen, the use of interleukin-2, and related toxicity. Furthermore, we highlight the clinical trials where TIL therapy is used independently and in combination with other types of therapy for solid cancers. Finally, the limitations, future potential, and directions of TIL therapy for solid tumor treatment are also discussed. Over the past decade, cell-based immunotherapy has become a powerful strategy in solid cancer therapy. Tumor-infiltrating lymphocytes (TILs) are a group of intratumor lymphocytes. With the development of new technologies, the isolation and generation of TILs from tumor tissues have improved. Clinical use of TILs for solid tumor treatment showed good efficacy. In this review, we summarize the current strategies and challenges of TIL generation. We highlight the clinical trials where TIL therapy is used independently and in combination with other therapies for solid tumor treatment. Finally, the limitations, future potential, and directions of TIL therapy for solid tumor treatment are also discussed. Over the past decade, immunotherapy, especially cell-based immunotherapy, has provided new strategies for cancer therapy. Recent clinical studies demonstrated that adopting cell transfer of tumor-infiltrating lymphocytes (TILs) for advanced solid tumors showed good efficacy. TIL therapy is a type of cell-based immunotherapy using the patient's own immune cells from the microenvironment of the solid tumor to kill tumor cells. In this review, we provide a comprehensive summary of the current strategies and challenges in TIL isolation and generation. Moreover, the current clinical experience of TIL therapy is summarized and discussed, with an emphasis on lymphodepletion regimen, the use of interleukin-2, and related toxicity. Furthermore, we highlight the clinical trials where TIL therapy is used independently and in combination with other types of therapy for solid cancers. Finally, the limitations, future potential, and directions of TIL therapy for solid tumor treatment are also discussed. Over the past decade, immunotherapy, especially cell-based immunotherapy, has provided new strategies for cancer therapy. Recent clinical studies demonstrated that adopting cell transfer of tumor-infiltrating lymphocytes (TILs) for advanced solid tumors showed good efficacy. TIL therapy is a type of cell-based immunotherapy using the patient's own immune cells from the microenvironment of the solid tumor to kill tumor cells. In this review, we provide a comprehensive summary of the current strategies and challenges in TIL isolation and generation. Moreover, the current clinical experience of TIL therapy is summarized and discussed, with an emphasis on lymphodepletion regimen, the use of interleukin-2, and related toxicity. Furthermore, we highlight the clinical trials where TIL therapy is used independently and in combination with other types of therapy for solid cancers. Finally, the limitations, future potential, and directions of TIL therapy for solid tumor treatment are also discussed.Over the past decade, immunotherapy, especially cell-based immunotherapy, has provided new strategies for cancer therapy. Recent clinical studies demonstrated that adopting cell transfer of tumor-infiltrating lymphocytes (TILs) for advanced solid tumors showed good efficacy. TIL therapy is a type of cell-based immunotherapy using the patient's own immune cells from the microenvironment of the solid tumor to kill tumor cells. In this review, we provide a comprehensive summary of the current strategies and challenges in TIL isolation and generation. Moreover, the current clinical experience of TIL therapy is summarized and discussed, with an emphasis on lymphodepletion regimen, the use of interleukin-2, and related toxicity. Furthermore, we highlight the clinical trials where TIL therapy is used independently and in combination with other types of therapy for solid cancers. Finally, the limitations, future potential, and directions of TIL therapy for solid tumor treatment are also discussed. Over the past decade, cell-based immunotherapy has become a powerful strategy in solid cancer therapy. Tumor-infiltrating lymphocytes (TILs) are a group of intratumor lymphocytes. With the development of new technologies, the isolation and generation of TILs from tumor tissues have improved. Clinical use of TILs for solid tumor treatment showed good efficacy. In this review, we summarize the current strategies and challenges of TIL generation. We highlight the clinical trials where TIL therapy is used independently and in combination with other therapies for solid tumor treatment. Finally, the limitations, future potential, and directions of TIL therapy for solid tumor treatment are also discussed. Over the past decade, immunotherapy, especially cell-based immunotherapy, has provided new strategies for cancer therapy. Recent clinical studies demonstrated that adopting cell transfer of tumor-infiltrating lymphocytes (TILs) for advanced solid tumors showed good efficacy. TIL therapy is a type of cell-based immunotherapy using the patient’s own immune cells from the microenvironment of the solid tumor to kill tumor cells. In this review, we provide a comprehensive summary of the current strategies and challenges in TIL isolation and generation. Moreover, the current clinical experience of TIL therapy is summarized and discussed, with an emphasis on lymphodepletion regimen, the use of interleukin-2, and related toxicity. Furthermore, we highlight the clinical trials where TIL therapy is used independently and in combination with other types of therapy for solid cancers. Finally, the limitations, future potential, and directions of TIL therapy for solid tumor treatment are also discussed. |
Audience | Academic |
Author | Sun, Yuhong Li, Mingxing Li, Jing Chen, Yu Li, Xiaobing Du, Fukuan Gu, Li Rao, Shuangfeng Wu, Xu Shen, Jing Li, Wanping Xiao, Zhangang Zhao, Yueshui Zhang, Zhuo Deng, Jian Guo, Sipeng Chen, Meijuan Wen, Qinglian |
AuthorAffiliation | 4 Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China 6 Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China 1 Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China 3 South Sichuan Institute of Translational Medicine, Luzhou 646000, China 2 Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China 5 Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China |
AuthorAffiliation_xml | – name: 6 Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China – name: 2 Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China – name: 3 South Sichuan Institute of Translational Medicine, Luzhou 646000, China – name: 5 Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China – name: 1 Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China – name: 4 Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China |
Author_xml | – sequence: 1 givenname: Yueshui orcidid: 0000-0002-1972-6130 surname: Zhao fullname: Zhao, Yueshui – sequence: 2 givenname: Jian surname: Deng fullname: Deng, Jian – sequence: 3 givenname: Shuangfeng surname: Rao fullname: Rao, Shuangfeng – sequence: 4 givenname: Sipeng surname: Guo fullname: Guo, Sipeng – sequence: 5 givenname: Jing surname: Shen fullname: Shen, Jing – sequence: 6 givenname: Fukuan surname: Du fullname: Du, Fukuan – sequence: 7 givenname: Xu surname: Wu fullname: Wu, Xu – sequence: 8 givenname: Yu surname: Chen fullname: Chen, Yu – sequence: 9 givenname: Mingxing surname: Li fullname: Li, Mingxing – sequence: 10 givenname: Meijuan surname: Chen fullname: Chen, Meijuan – sequence: 11 givenname: Xiaobing surname: Li fullname: Li, Xiaobing – sequence: 12 givenname: Wanping surname: Li fullname: Li, Wanping – sequence: 13 givenname: Li surname: Gu fullname: Gu, Li – sequence: 14 givenname: Yuhong surname: Sun fullname: Sun, Yuhong – sequence: 15 givenname: Zhuo surname: Zhang fullname: Zhang, Zhuo – sequence: 16 givenname: Qinglian surname: Wen fullname: Wen, Qinglian – sequence: 17 givenname: Zhangang surname: Xiao fullname: Xiao, Zhangang – sequence: 18 givenname: Jing surname: Li fullname: Li, Jing |
BookMark | eNp1ks1rFDEYxoO02Fp79jrgpR62zXc6HoSyaF1YUHA8h0zmndmUTLImM8L-92bZiu1ik8MbyO95kjdP3qCTEAMg9I7ga8ZqfGNNsJAy4URxIvErdE6xogspa37yZH2GLnN-wGUwRpRUr9EZk1gpWctz1DbzGFO1Cr3zUzKTC0O13o3bTbS7CaqrZrX-UDUbSGa7q_pC_ojeddVB1SQw0whh-lh9T3FIkLOLIVcmdNVyY7yHMEB-i0574zNcPtYL9PPL52b5dbH-dr9a3q0XVjAyLbpOEoVxZ4lRgikLXLSMcStKIZIR3Mue8VYUzKpO1mCVYtLSjrRtLXnPLtCng-92bkfobLlXMl5vkxtN2ulonH6-E9xGD_G3rrkQmNwWg6tHgxR_zZAnPbpswXsTIM5ZU0XorZC0pgV9f4Q-xDmF0t6eIlQwSvk_ajAetAt9LOfavam-U1wUssRQqOv_UGV2MDpbIi_RwHOBOAhsijkn6LV1U4ku7ttyXhOs9_9DH_2Pors50v19m5cUfwDrJb5A |
CitedBy_id | crossref_primary_10_1016_j_jep_2024_117733 crossref_primary_10_1016_j_intimp_2023_110981 crossref_primary_10_1038_s41422_023_00871_7 crossref_primary_10_1016_j_intimp_2023_110062 crossref_primary_10_1002_jgm_70000 crossref_primary_10_2147_IJN_S455213 crossref_primary_10_1038_s41401_024_01355_z crossref_primary_10_1039_D4NR01740D crossref_primary_10_1177_17588359241302021 crossref_primary_10_3390_cells13050451 crossref_primary_10_1007_s40291_024_00708_y crossref_primary_10_3389_fimmu_2025_1537947 crossref_primary_10_47183_mes_2024_26_4_87_97 crossref_primary_10_1002_mog2_92 crossref_primary_10_1158_2159_8290_CD_24_0827 crossref_primary_10_1002_pros_24597 crossref_primary_10_1038_s41698_024_00725_4 crossref_primary_10_3390_cimb45110576 crossref_primary_10_1002_bmm2_70003 crossref_primary_10_1007_s00262_024_03793_4 crossref_primary_10_1007_s00761_024_01592_1 crossref_primary_10_1016_j_cdev_2024_203904 crossref_primary_10_3390_jcm13216537 crossref_primary_10_3390_ijms252413569 crossref_primary_10_3390_ijms25179463 crossref_primary_10_1007_s12026_023_09376_2 crossref_primary_10_3389_fimmu_2024_1484535 crossref_primary_10_3390_vaccines11081354 crossref_primary_10_1016_j_soncn_2025_151841 crossref_primary_10_1016_j_mbm_2024_100068 crossref_primary_10_1007_s00018_024_05412_y crossref_primary_10_7759_cureus_68351 crossref_primary_10_3390_ijms25021266 crossref_primary_10_1016_j_intimp_2023_109882 crossref_primary_10_1186_s12935_024_03628_3 crossref_primary_10_3390_cancers14205168 crossref_primary_10_3389_fonc_2024_1336546 crossref_primary_10_1080_2162402X_2024_2392898 crossref_primary_10_3390_molecules29163891 crossref_primary_10_1007_s12672_024_01410_5 crossref_primary_10_1142_S021833902350047X crossref_primary_10_1021_acsnano_4c07306 crossref_primary_10_1007_s12672_024_00904_6 crossref_primary_10_3390_biology13050307 crossref_primary_10_3390_biology12111419 crossref_primary_10_1016_j_adcanc_2023_100107 crossref_primary_10_1080_19490976_2024_2341717 crossref_primary_10_3390_ijms26062716 crossref_primary_10_1038_s41577_024_01061_1 crossref_primary_10_3390_cancers15092536 crossref_primary_10_1177_15330338231204198 crossref_primary_10_34133_bmr_0015 crossref_primary_10_1002_mco2_368 crossref_primary_10_1016_j_canlet_2024_217281 crossref_primary_10_1016_j_dld_2024_08_003 crossref_primary_10_1111_imm_13793 crossref_primary_10_3389_fonc_2023_1216829 crossref_primary_10_3390_cancers15082287 crossref_primary_10_1007_s11684_023_1015_9 crossref_primary_10_1007_s12274_022_5254_x crossref_primary_10_1200_EDBK_431608 crossref_primary_10_1038_s41392_022_01270_x crossref_primary_10_1007_s40883_024_00338_0 crossref_primary_10_1186_s13046_025_03359_x crossref_primary_10_1016_j_critrevonc_2025_104671 crossref_primary_10_1080_17425247_2023_2241367 crossref_primary_10_1186_s12964_023_01430_8 crossref_primary_10_3389_fimmu_2024_1354313 crossref_primary_10_1016_j_beha_2025_101600 crossref_primary_10_3390_cancers16050911 crossref_primary_10_1007_s12094_024_03530_4 crossref_primary_10_3390_cancers15143733 crossref_primary_10_3390_vaccines13020128 |
Cites_doi | 10.1097/CJI.0b013e31818403d5 10.1002/med.21727 10.1097/CJI.0b013e3181fad2b0 10.1080/2162402X.2016.1252894 10.4049/jimmunol.0904114 10.1038/s41591-021-01462-y 10.1136/jitc-2020-000848 10.1097/CJI.0000000000000111 10.1158/1078-0432.CCR-13-0380 10.1200/JCO.2016.66.7220 10.1200/JCO.2008.16.5449 10.1158/1078-0432.CCR-10-0041 10.1093/annonc/mdz398 10.1200/JCO.1994.12.7.1475 10.1158/2326-6066.CIR-15-0215 10.1158/2326-6066.CIR-18-0095 10.1038/s41573-019-0038-z 10.1097/00002371-200307000-00005 10.1038/nature22396 10.1136/jitc-2019-000188 10.1158/1078-0432.CCR-15-1879 10.1038/s41590-020-00850-9 10.1126/science.1251102 10.1007/s00262-012-1245-1 10.3389/fimmu.2020.00340 10.1038/s41598-020-60738-4 10.1016/S1470-2045(17)30251-6 10.1126/science.aak9510 10.1007/s00262-019-02307-x 10.1158/1078-0432.CCR-17-0831 10.1371/journal.pone.0013940 10.1371/journal.pone.0051805 10.1158/1078-0432.CCR-18-2722 10.1016/j.cell.2017.01.017 10.1016/j.cell.2016.08.052 10.3389/fimmu.2019.01415 10.1182/blood-2006-11-056168 10.1016/j.molonc.2015.10.018 10.3389/fonc.2018.00044 10.1016/j.trecan.2020.05.009 10.1200/JCO.21.00612 10.1097/CJI.0b013e318177a4ba 10.1038/s41467-018-05072-0 10.1182/blood-2017-12-822569 10.1016/j.ccell.2022.01.002 10.1158/0008-5472.CAN-17-0236 10.1038/s41467-020-18570-x 10.1126/science.3489291 10.1016/j.jbo.2020.100332 10.1126/science.1076514 10.1038/nm.3161 10.3389/fimmu.2017.01211 10.1126/science.aaa4971 10.1080/2162402X.2018.1476816 10.3389/fimmu.2019.00128 10.1097/CJI.0000000000000230 10.1016/j.phrs.2018.08.019 10.1158/2326-6066.CIR-14-0239 10.1097/CJI.0b013e31824e801f 10.1177/0022034519882618 10.1056/NEJMoa1609279 10.1158/1078-0432.CCR-14-1934 10.1158/1078-0432.CCR-16-2680 10.1038/ni.3415 10.1007/s00262-019-02448-z 10.1182/blood-2008-12-195792 10.4161/onci.18851 10.1097/CJI.0b013e318209c94c 10.1093/intimm/dxaa046 10.1097/CJI.0b013e3181b88ffc 10.1186/s40425-016-0164-7 10.1097/CMR.0000000000000214 10.1111/j.1365-3083.2011.02640.x 10.1172/JCI73639 10.3389/fonc.2021.794183 10.18632/oncotarget.23007 10.1200/JCO.2014.58.9093 10.1093/jnci/86.15.1159 10.1089/hum.2007.0171 10.1038/s41467-021-22980-w 10.1016/j.ymthe.2018.06.001 10.1158/1078-0432.CCR-18-0573 10.1007/s00262-015-1691-7 10.1111/j.0105-2896.2006.00391.x 10.1038/s41417-020-0189-4 10.1182/blood-2007-09-113050 10.3389/fimmu.2018.02265 10.1136/jitc-2020-001743 10.1056/NEJM198812223192527 10.1371/journal.pone.0153053 10.1007/s00262-009-0792-6 10.1016/j.cell.2019.03.005 10.1080/14740338.2017.1382472 10.1172/JCI83871 10.1146/annurev-immunol-041015-055318 10.1126/scitranslmed.aav7431 10.1084/jem.20050732 10.1158/2326-6066.CIR-20-0270 10.1002/ajh.25418 10.1097/PPO.0b013e31824d4465 10.1007/978-1-4939-8979-9_7 10.1158/1078-0432.CCR-11-0116 10.1073/pnas.052676899 10.1038/s41586-018-0130-2 10.3389/fimmu.2018.02987 10.4049/jimmunol.174.5.2591 10.1158/1078-0432.CCR-13-0945 10.1189/jlb.0603272 10.1038/s41591-018-0040-8 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F 10.1186/1479-5876-10-169 10.1007/s00262-020-02804-4 10.1158/1078-0432.CCR-16-0906 10.1093/jnci/83.13.932 10.1158/1078-0432.CCR-12-1177 10.1084/jem.155.6.1823 10.4161/onci.26615 10.1158/1078-0432.CCR-10-1297 10.1038/nri1349 10.1158/1535-7163.MCT-14-0290 10.3390/ijms20061483 10.3390/cancers13164129 10.1007/s00262-011-1182-4 10.18632/oncotarget.27604 10.1038/ni.3775 10.1200/JCO.2019.37.15_suppl.2538 10.1056/NEJMoa1112302 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/cancers14174160 |
DatabaseName | CrossRef ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection Biological Sciences Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2072-6694 |
ExternalDocumentID | PMC9455018 A745271077 10_3390_cancers14174160 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81972643 – fundername: Luzhou Municipal People’s Government; Southwest Medical University grantid: 2019LZXNYDJ45 |
GroupedDBID | --- 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GUQSH GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM TUS PMFND 3V. 7T5 7TO 7XB 8FK H94 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c531t-dd61700dc1a7537ce45b334c55b316310f6f34b5d61c7d69ec7736c2d1bb964f3 |
IEDL.DBID | M48 |
ISSN | 2072-6694 |
IngestDate | Thu Aug 21 14:34:41 EDT 2025 Fri Jul 11 00:49:24 EDT 2025 Fri Jul 25 12:00:22 EDT 2025 Tue Jun 17 21:43:33 EDT 2025 Tue Jun 10 20:53:11 EDT 2025 Tue Jul 01 01:20:54 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-dd61700dc1a7537ce45b334c55b316310f6f34b5d61c7d69ec7736c2d1bb964f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-1972-6130 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers14174160 |
PMID | 36077696 |
PQID | 2711253224 |
PQPubID | 2032421 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9455018 proquest_miscellaneous_2712856292 proquest_journals_2711253224 gale_infotracmisc_A745271077 gale_infotracacademiconefile_A745271077 crossref_citationtrail_10_3390_cancers14174160 crossref_primary_10_3390_cancers14174160 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220827 |
PublicationDateYYYYMMDD | 2022-08-27 |
PublicationDate_xml | – month: 8 year: 2022 text: 20220827 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Cancers |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kalia (ref_76) 2018; 9 ref_94 Dudley (ref_70) 2008; 26 Robbins (ref_60) 2013; 19 Sharma (ref_22) 2017; 168 Lee (ref_21) 2017; 8 Dudley (ref_66) 2002; 298 Aebersold (ref_30) 1991; 83 Lotze (ref_73) 1981; 41 Peng (ref_100) 2020; 11 Rosenberg (ref_3) 1986; 233 Rosenberg (ref_4) 1988; 319 Ye (ref_53) 2014; 20 Dudley (ref_34) 2010; 16 Chowdhury (ref_92) 2018; 6 Feist (ref_114) 2021; 28 Chandran (ref_14) 2017; 18 Donia (ref_36) 2015; 9 Hossain (ref_127) 2021; 41 Carmona (ref_45) 2020; 11 Lozano (ref_51) 2017; 77 Creelan (ref_11) 2021; 27 Acquavella (ref_83) 2008; 31 Parkhurst (ref_59) 2017; 23 Tran (ref_9) 2014; 344 Subbiah (ref_102) 2020; 6 ref_25 Hofland (ref_123) 2018; 132 Gattinoni (ref_63) 2005; 202 ref_122 Veluchamy (ref_121) 2017; 7 Dudley (ref_24) 2003; 26 Wagner (ref_129) 2019; 177 Kverneland (ref_97) 2020; 11 Simoni (ref_42) 2018; 557 Mackay (ref_95) 2010; 184 Vitale (ref_118) 2019; 10 Marabondo (ref_82) 2017; 16 Yang (ref_90) 2015; 125 Sosman (ref_108) 2012; 366 Hsu (ref_88) 2021; 12 Hall (ref_98) 2016; 4 Ganesan (ref_41) 2017; 18 Salem (ref_64) 2010; 59 Ilieva (ref_106) 2014; 13 Rosenberg (ref_6) 2011; 17 Andersen (ref_86) 2016; 22 Ullenhag (ref_85) 2012; 61 (ref_27) 2019; 1913 Cheng (ref_72) 2002; 99 ref_81 Friese (ref_96) 2020; 10 Sarnaik (ref_15) 2021; 39 Rosenberg (ref_65) 1994; 86 Antony (ref_62) 2005; 174 Xiao (ref_40) 2019; 98 Grimm (ref_74) 1982; 155 Walboomers (ref_19) 1999; 189 Malek (ref_75) 2003; 74 Gros (ref_49) 2014; 124 Sloot (ref_107) 2016; 26 Draper (ref_8) 2015; 33 Santos (ref_113) 2020; 8 Mills (ref_126) 2021; 9 Heemskerk (ref_16) 2020; 8 Zacharakis (ref_7) 2018; 24 Jin (ref_61) 2012; 35 Heemskerk (ref_131) 2008; 19 Dafni (ref_13) 2019; 30 Khammari (ref_115) 2015; 64 Besser (ref_29) 2010; 16 Chacon (ref_57) 2015; 21 Deniger (ref_12) 2018; 24 Gordon (ref_47) 2017; 545 Kvistborg (ref_116) 2012; 1 Hinrichs (ref_78) 2008; 111 Schumacher (ref_117) 2015; 348 Klebanoff (ref_37) 2006; 211 Jazaeri (ref_18) 2019; 37 Kortekaas (ref_44) 2020; 8 Liu (ref_80) 2017; 6 Sapoznik (ref_130) 2012; 61 Meng (ref_79) 2016; 39 Prickett (ref_56) 2016; 4 Goff (ref_68) 2016; 34 Itzhaki (ref_55) 2017; 8 Donia (ref_33) 2012; 75 Wang (ref_89) 2020; 25 Besser (ref_5) 2013; 19 Santos (ref_71) 2018; 26 Liu (ref_77) 2021; 22 Poch (ref_26) 2018; 7 Bloemendal (ref_111) 2018; 9 McLane (ref_93) 2019; 37 Singer (ref_128) 2016; 166 Helman (ref_17) 2019; 25 Cooper (ref_105) 2013; 2 Martinez (ref_125) 2019; 10 Ellebaek (ref_84) 2012; 10 Itzhaki (ref_35) 2011; 34 ref_119 Wu (ref_28) 2012; 18 Tavera (ref_58) 2018; 41 Nissani (ref_69) 2021; 9 Liu (ref_124) 2022; 11 Ahmadzadeh (ref_46) 2009; 114 Peiffer (ref_109) 2021; 70 Deniger (ref_110) 2017; 23 Radvanyi (ref_38) 2012; 18 Duhen (ref_43) 2018; 9 Sebestyen (ref_120) 2020; 19 Wrzesinski (ref_67) 2010; 33 Schwartzentruber (ref_31) 1994; 12 Webb (ref_39) 2015; 3 Asrir (ref_132) 2022; 40 Wolfl (ref_52) 2007; 110 Nguyen (ref_87) 2019; 68 Chang (ref_23) 2016; 17 ref_103 Kuske (ref_104) 2018; 136 Mullinax (ref_99) 2018; 8 Spiess (ref_2) 1987; 79 Zhang (ref_112) 2020; 69 Pasetto (ref_20) 2017; 356 Tran (ref_32) 2008; 31 Mayoux (ref_101) 2020; 12 Forget (ref_54) 2017; 23 Feins (ref_1) 2019; 94 Kumar (ref_91) 2021; 33 Tran (ref_10) 2016; 375 Chen (ref_48) 2004; 4 Inozume (ref_50) 2010; 33 |
References_xml | – volume: 31 start-page: 742 year: 2008 ident: ref_32 article-title: Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy publication-title: J. Immunother. doi: 10.1097/CJI.0b013e31818403d5 – volume: 41 start-page: 156 year: 2021 ident: ref_127 article-title: Reinvigorating exhausted CD8(+) cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy publication-title: Med. Res. Rev. doi: 10.1002/med.21727 – volume: 33 start-page: 956 year: 2010 ident: ref_50 article-title: Selection of CD8+PD-1+ lymphocytes in fresh human melanomas enriches for tumor-reactive T cells publication-title: J. Immunother. doi: 10.1097/CJI.0b013e3181fad2b0 – volume: 6 start-page: e1252894 year: 2017 ident: ref_80 article-title: Tumor-infiltrating lymphocytes (TILs) from patients with glioma publication-title: Oncoimmunology doi: 10.1080/2162402X.2016.1252894 – volume: 184 start-page: 3442 year: 2010 ident: ref_95 article-title: Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma publication-title: J. Immunol. doi: 10.4049/jimmunol.0904114 – volume: 27 start-page: 1410 year: 2021 ident: ref_11 article-title: Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: A phase 1 trial publication-title: Nat. Med. doi: 10.1038/s41591-021-01462-y – volume: 8 start-page: e000848 year: 2020 ident: ref_16 article-title: Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: Boosting of neoantigen-specific T cell reactivity and long-term follow-up publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2020-000848 – volume: 7 start-page: e1375641 year: 2017 ident: ref_121 article-title: A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells publication-title: Oncoimmunology – volume: 39 start-page: 81 year: 2016 ident: ref_79 article-title: Expansion of Tumor-reactive T Cells From Patients With Pancreatic Cancer publication-title: J. Immunother. doi: 10.1097/CJI.0000000000000111 – volume: 19 start-page: 4792 year: 2013 ident: ref_5 article-title: Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: Intent-to-treat analysis and efficacy after failure to prior immunotherapies publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-0380 – volume: 34 start-page: 2389 year: 2016 ident: ref_68 article-title: Randomized, Prospective Evaluation Comparing Intensity of Lymphodepletion Before Adoptive Transfer of Tumor-Infiltrating Lymphocytes for Patients With Metastatic Melanoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2016.66.7220 – volume: 26 start-page: 5233 year: 2008 ident: ref_70 article-title: Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2008.16.5449 – volume: 16 start-page: 2646 year: 2010 ident: ref_29 article-title: Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-0041 – volume: 30 start-page: 1902 year: 2019 ident: ref_13 article-title: Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: A systematic review and meta-analysis publication-title: Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. doi: 10.1093/annonc/mdz398 – volume: 12 start-page: 1475 year: 1994 ident: ref_31 article-title: In vitro predictors of therapeutic response in melanoma patients receiving tumor-infiltrating lymphocytes and interleukin-2 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.1994.12.7.1475 – volume: 4 start-page: 669 year: 2016 ident: ref_56 article-title: Durable Complete Response from Metastatic Melanoma after Transfer of Autologous T Cells Recognizing 10 Mutated Tumor Antigens publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-15-0215 – volume: 6 start-page: 1375 year: 2018 ident: ref_92 article-title: PPAR-Induced Fatty Acid Oxidation in T Cells Increases the Number of Tumor-Reactive CD8+ T Cells and Facilitates Anti–PD-1 Therapy publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0095 – volume: 19 start-page: 169 year: 2020 ident: ref_120 article-title: Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0038-z – volume: 26 start-page: 332 year: 2003 ident: ref_24 article-title: Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients publication-title: J. Immunother. doi: 10.1097/00002371-200307000-00005 – volume: 545 start-page: 495 year: 2017 ident: ref_47 article-title: PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity publication-title: Nature doi: 10.1038/nature22396 – volume: 8 start-page: e000188 year: 2020 ident: ref_113 article-title: Oncolytic adenovirus shapes the ovarian tumor microenvironment for potent tumor-infiltrating lymphocyte tumor reactivity publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2019-000188 – volume: 22 start-page: 3734 year: 2016 ident: ref_86 article-title: Long-Lasting Complete Responses in Patients with Metastatic Melanoma after Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes and an Attenuated IL2 Regimen publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-1879 – volume: 22 start-page: 358 year: 2021 ident: ref_77 article-title: IL-2 regulates tumor-reactive CD8 T cell exhaustion by activating the aryl hydrocarbon receptor publication-title: Nat. Immunol. doi: 10.1038/s41590-020-00850-9 – volume: 344 start-page: 641 year: 2014 ident: ref_9 article-title: Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer publication-title: Science doi: 10.1126/science.1251102 – volume: 61 start-page: 1833 year: 2012 ident: ref_130 article-title: CXCR1 as a novel target for directing reactive T cells toward melanoma: Implications for adoptive cell transfer immunotherapy publication-title: Cancer Immunol. Immunother. CII doi: 10.1007/s00262-012-1245-1 – volume: 11 start-page: 340 year: 2020 ident: ref_45 article-title: Enhanced Phenotype Definition for Precision Isolation of Precursor Exhausted Tumor-Infiltrating CD8 T Cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00340 – volume: 10 start-page: 3914 year: 2020 ident: ref_96 article-title: CTLA-4 blockade boosts the expansion of tumor-reactive CD8+ tumor-infiltrating lymphocytes in ovarian cancer publication-title: Sci. Rep. doi: 10.1038/s41598-020-60738-4 – volume: 18 start-page: 792 year: 2017 ident: ref_14 article-title: Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: A single-centre, two-stage, single-arm, phase 2 study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(17)30251-6 – volume: 356 start-page: 200 year: 2017 ident: ref_20 article-title: Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer publication-title: Science doi: 10.1126/science.aak9510 – volume: 68 start-page: 773 year: 2019 ident: ref_87 article-title: Phase II clinical trial of adoptive cell therapy for patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and low-dose interleukin-2 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-019-02307-x – volume: 23 start-page: 7263 year: 2017 ident: ref_54 article-title: 4-1BB Agonist Focuses CD8 Tumor-Infiltrating T-Cell Growth into a Distinct Repertoire Capable of Tumor Recognition in Pancreatic Cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0831 – ident: ref_25 doi: 10.1371/journal.pone.0013940 – ident: ref_122 doi: 10.1371/journal.pone.0051805 – volume: 25 start-page: 1486 year: 2019 ident: ref_17 article-title: A Phase II Study of Tumor-infiltrating Lymphocyte Therapy for Human Papillomavirus-associated Epithelial Cancers publication-title: Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. doi: 10.1158/1078-0432.CCR-18-2722 – volume: 168 start-page: 707 year: 2017 ident: ref_22 article-title: Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy publication-title: Cell doi: 10.1016/j.cell.2017.01.017 – volume: 166 start-page: 1500 year: 2016 ident: ref_128 article-title: A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells publication-title: Cell doi: 10.1016/j.cell.2016.08.052 – volume: 10 start-page: 1415 year: 2019 ident: ref_118 article-title: An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01415 – volume: 110 start-page: 201 year: 2007 ident: ref_52 article-title: Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities publication-title: Blood doi: 10.1182/blood-2006-11-056168 – volume: 9 start-page: 1918 year: 2015 ident: ref_36 article-title: Tumor-infiltrating lymphocytes for the treatment of metastatic cancer publication-title: Mol. Oncol. doi: 10.1016/j.molonc.2015.10.018 – volume: 8 start-page: 44 year: 2018 ident: ref_99 article-title: Combination of Ipilimumab and Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes for Patients with Metastatic Melanoma publication-title: Front. Oncol. doi: 10.3389/fonc.2018.00044 – volume: 6 start-page: 797 year: 2020 ident: ref_102 article-title: Clinical Development of BRAF plus MEK Inhibitor Combinations publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.05.009 – volume: 39 start-page: 2656 year: 2021 ident: ref_15 article-title: Lifileucel, a Tumor-Infiltrating Lymphocyte Therapy, in Metastatic Melanoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.21.00612 – volume: 31 start-page: 569 year: 2008 ident: ref_83 article-title: Toxicity and activity of a twice daily high-dose bolus interleukin 2 regimen in patients with metastatic melanoma and metastatic renal cell cancer publication-title: J. Immunother. doi: 10.1097/CJI.0b013e318177a4ba – volume: 9 start-page: 2724 year: 2018 ident: ref_43 article-title: Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors publication-title: Nat. Commun. doi: 10.1038/s41467-018-05072-0 – volume: 41 start-page: 4420 year: 1981 ident: ref_73 article-title: Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor publication-title: Cancer Res. – volume: 132 start-page: 2260 year: 2018 ident: ref_123 article-title: Improving CLL Vγ9Vδ2-T-cell fitness for cellular therapy by ex vivo activation and ibrutinib publication-title: Blood doi: 10.1182/blood-2017-12-822569 – volume: 40 start-page: 318 year: 2022 ident: ref_132 article-title: Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.01.002 – volume: 77 start-page: 3672 year: 2017 ident: ref_51 article-title: Expansion of Tumor-Infiltrating CD8(+) T cells Expressing PD-1 Improves the Efficacy of Adoptive T-cell Therapy publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0236 – volume: 11 start-page: 4835 year: 2020 ident: ref_100 article-title: PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade publication-title: Nat. Commun. doi: 10.1038/s41467-020-18570-x – volume: 233 start-page: 1318 year: 1986 ident: ref_3 article-title: A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes publication-title: Science doi: 10.1126/science.3489291 – volume: 25 start-page: 100332 year: 2020 ident: ref_89 article-title: Adoptive transfer of TILs plus anti-PD1 therapy: An alternative combination therapy for treating metastatic osteosarcoma publication-title: J. Bone Oncol. doi: 10.1016/j.jbo.2020.100332 – ident: ref_81 – volume: 298 start-page: 850 year: 2002 ident: ref_66 article-title: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes publication-title: Science doi: 10.1126/science.1076514 – volume: 19 start-page: 747 year: 2013 ident: ref_60 article-title: Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells publication-title: Nat. Med. doi: 10.1038/nm.3161 – volume: 8 start-page: 1211 year: 2017 ident: ref_55 article-title: Selection of Shared and Neoantigen-Reactive T Cells for Adoptive Cell Therapy Based on CD137 Separation publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01211 – volume: 348 start-page: 69 year: 2015 ident: ref_117 article-title: Neoantigens in cancer immunotherapy publication-title: Science doi: 10.1126/science.aaa4971 – volume: 7 start-page: e1476816 year: 2018 ident: ref_26 article-title: Expansion of tumor infiltrating lymphocytes (TIL) from bladder cancer publication-title: Oncoimmunology doi: 10.1080/2162402X.2018.1476816 – volume: 10 start-page: 128 year: 2019 ident: ref_125 article-title: CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00128 – volume: 41 start-page: 399 year: 2018 ident: ref_58 article-title: Utilizing T-cell Activation Signals 1, 2, and 3 for Tumor-infiltrating Lymphocytes (TIL) Expansion: The Advantage Over the Sole Use of Interleukin-2 in Cutaneous and Uveal Melanoma publication-title: J. Immunother. doi: 10.1097/CJI.0000000000000230 – volume: 136 start-page: 151 year: 2018 ident: ref_104 article-title: Immunomodulatory effects of BRAF and MEK inhibitors: Implications for Melanoma therapy publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2018.08.019 – volume: 3 start-page: 926 year: 2015 ident: ref_39 article-title: PD-1 and CD103 Are Widely Coexpressed on Prognostically Favorable Intraepithelial CD8 T Cells in Human Ovarian Cancer publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-14-0239 – volume: 35 start-page: 283 year: 2012 ident: ref_61 article-title: Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment publication-title: J. Immunother. doi: 10.1097/CJI.0b013e31824e801f – volume: 98 start-page: 1480 year: 2019 ident: ref_40 article-title: CD103+ T and Dendritic Cells Indicate a Favorable Prognosis in Oral Cancer publication-title: J. Dent. Res. doi: 10.1177/0022034519882618 – volume: 375 start-page: 2255 year: 2016 ident: ref_10 article-title: T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1609279 – volume: 21 start-page: 611 year: 2015 ident: ref_57 article-title: Manipulating the tumor microenvironment ex vivo for enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-1934 – volume: 23 start-page: 2491 year: 2017 ident: ref_59 article-title: Isolation of T-Cell Receptors Specifically Reactive with Mutated Tumor-Associated Antigens from Tumor-Infiltrating Lymphocytes Based on CD137 Expression publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-2680 – volume: 17 start-page: 364 year: 2016 ident: ref_23 article-title: Emerging concepts of T cell metabolism as a target of immunotherapy publication-title: Nat. Immunol. doi: 10.1038/ni.3415 – volume: 69 start-page: 135 year: 2020 ident: ref_112 article-title: Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-adjuvant vaccines in mouse tumor models publication-title: Cancer Immunol. Immunother. CII doi: 10.1007/s00262-019-02448-z – volume: 114 start-page: 1537 year: 2009 ident: ref_46 article-title: Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired publication-title: Blood doi: 10.1182/blood-2008-12-195792 – volume: 1 start-page: 409 year: 2012 ident: ref_116 article-title: TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients publication-title: Oncoimmunology doi: 10.4161/onci.18851 – volume: 34 start-page: 212 year: 2011 ident: ref_35 article-title: Establishment and large-scale expansion of minimally cultured “young” tumor infiltrating lymphocytes for adoptive transfer therapy publication-title: J. Immunother. doi: 10.1097/CJI.0b013e318209c94c – volume: 33 start-page: 17 year: 2021 ident: ref_91 article-title: Immune metabolism in PD-1 blockade-based cancer immunotherapy publication-title: Int. Immunol. doi: 10.1093/intimm/dxaa046 – volume: 33 start-page: 1 year: 2010 ident: ref_67 article-title: Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells publication-title: J. Immunother. doi: 10.1097/CJI.0b013e3181b88ffc – volume: 4 start-page: 61 year: 2016 ident: ref_98 article-title: Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors publication-title: J. Immunother. Cancer doi: 10.1186/s40425-016-0164-7 – volume: 26 start-page: 83 year: 2016 ident: ref_107 article-title: BRAF inhibition for advanced locoregional BRAF V600E mutant melanoma: A potential neoadjuvant strategy publication-title: Melanoma Res. doi: 10.1097/CMR.0000000000000214 – volume: 75 start-page: 157 year: 2012 ident: ref_33 article-title: Characterization and comparison of ‘standard’ and ‘young’ tumour-infiltrating lymphocytes for adoptive cell therapy at a Danish translational research institution publication-title: Scand. J. Immunol. doi: 10.1111/j.1365-3083.2011.02640.x – volume: 124 start-page: 2246 year: 2014 ident: ref_49 article-title: PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors publication-title: J. Clin. Investig. doi: 10.1172/JCI73639 – volume: 11 start-page: 794183 year: 2022 ident: ref_124 article-title: TCR-T Immunotherapy: The Challenges and Solutions publication-title: Front. Oncol. doi: 10.3389/fonc.2021.794183 – volume: 8 start-page: 113345 year: 2017 ident: ref_21 article-title: Expansion of tumor-infiltrating lymphocytes and their potential for application as adoptive cell transfer therapy in human breast cancer publication-title: Oncotarget doi: 10.18632/oncotarget.23007 – volume: 33 start-page: 1543 year: 2015 ident: ref_8 article-title: Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. doi: 10.1200/JCO.2014.58.9093 – volume: 86 start-page: 1159 year: 1994 ident: ref_65 article-title: Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2 publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/86.15.1159 – volume: 19 start-page: 496 year: 2008 ident: ref_131 article-title: Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2 publication-title: Hum. Gene Ther. doi: 10.1089/hum.2007.0171 – volume: 12 start-page: 2768 year: 2021 ident: ref_88 article-title: A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy publication-title: Nat. Commun. doi: 10.1038/s41467-021-22980-w – volume: 26 start-page: 2243 year: 2018 ident: ref_71 article-title: Adenovirus Coding for Interleukin-2 and Tumor Necrosis Factor Alpha Replaces Lymphodepleting Chemotherapy in Adoptive T Cell Therapy publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.06.001 – volume: 24 start-page: 5562 year: 2018 ident: ref_12 article-title: T-cell Responses to TP53 "Hotspot" Mutations and Unique Neoantigens Expressed by Human Ovarian Cancers publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-0573 – volume: 64 start-page: 805 year: 2015 ident: ref_115 article-title: Adoptive T cell therapy combined with intralesional administrations of TG1042 (adenovirus expressing interferon-γ) in metastatic melanoma patients publication-title: Cancer Immunol. Immunother. CII doi: 10.1007/s00262-015-1691-7 – volume: 211 start-page: 214 year: 2006 ident: ref_37 article-title: CD8+ T-cell memory in tumor immunology and immunotherapy publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2006.00391.x – volume: 28 start-page: 98 year: 2021 ident: ref_114 article-title: Oncolytic virus promotes tumor-reactive infiltrating lymphocytes for adoptive cell therapy publication-title: Cancer Gene Ther. doi: 10.1038/s41417-020-0189-4 – volume: 111 start-page: 5326 year: 2008 ident: ref_78 article-title: IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy publication-title: Blood doi: 10.1182/blood-2007-09-113050 – volume: 9 start-page: 2265 year: 2018 ident: ref_111 article-title: Dendritic Cell Cancer Therapy: Vaccinating the Right Patient at the Right Time publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02265 – volume: 9 start-page: e001743 year: 2021 ident: ref_69 article-title: Comparison of non-myeloablative lymphodepleting preconditioning regimens in patients undergoing adoptive T cell therapy publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2020-001743 – volume: 9 start-page: 25151355211017119 year: 2021 ident: ref_126 article-title: Generating CAR T cells from tumor-infiltrating lymphocytes publication-title: Ther. Adv. Vaccines Immunother. – volume: 319 start-page: 1676 year: 1988 ident: ref_4 article-title: Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report publication-title: N. Engl. J. Med. doi: 10.1056/NEJM198812223192527 – ident: ref_94 doi: 10.1371/journal.pone.0153053 – volume: 59 start-page: 341 year: 2010 ident: ref_64 article-title: Dendritic cell recovery post-lymphodepletion: A potential mechanism for anti-cancer adoptive T cell therapy and vaccination publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-009-0792-6 – volume: 177 start-page: 1330 year: 2019 ident: ref_129 article-title: A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer publication-title: Cell doi: 10.1016/j.cell.2019.03.005 – volume: 16 start-page: 1347 year: 2017 ident: ref_82 article-title: High-dose interleukin-2 (IL-2) for the treatment of melanoma: Safety considerations and future directions publication-title: Expert Opin. Drug. Saf. doi: 10.1080/14740338.2017.1382472 – volume: 125 start-page: 3335 year: 2015 ident: ref_90 article-title: Cancer immunotherapy: Harnessing the immune system to battle cancer publication-title: J. Clin. Investig. doi: 10.1172/JCI83871 – volume: 37 start-page: 457 year: 2019 ident: ref_93 article-title: CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-041015-055318 – volume: 12 start-page: eaav7431 year: 2020 ident: ref_101 article-title: Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aav7431 – volume: 202 start-page: 907 year: 2005 ident: ref_63 article-title: Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells publication-title: J. Exp. Med. doi: 10.1084/jem.20050732 – volume: 8 start-page: 1311 year: 2020 ident: ref_44 article-title: CD39 Identifies the CD4 Tumor-Specific T-cell Population in Human Cancer publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-20-0270 – volume: 94 start-page: S3 year: 2019 ident: ref_1 article-title: An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer publication-title: Am. J. Hematol. doi: 10.1002/ajh.25418 – volume: 18 start-page: 160 year: 2012 ident: ref_28 article-title: Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: Current status and future outlook publication-title: Cancer J. doi: 10.1097/PPO.0b013e31824d4465 – volume: 1913 start-page: 105 year: 2019 ident: ref_27 article-title: Expansion of Tumor-Infiltrating Lymphocytes from Melanoma Tumors publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-8979-9_7 – volume: 17 start-page: 4550 year: 2011 ident: ref_6 article-title: Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-0116 – volume: 99 start-page: 3001 year: 2002 ident: ref_72 article-title: Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.052676899 – volume: 557 start-page: 575 year: 2018 ident: ref_42 article-title: Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates publication-title: Nature doi: 10.1038/s41586-018-0130-2 – volume: 9 start-page: 2987 year: 2018 ident: ref_76 article-title: Regulation of Effector and Memory CD8 T Cell Differentiation by IL-2-A Balancing Act publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02987 – volume: 174 start-page: 2591 year: 2005 ident: ref_62 article-title: CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells publication-title: J. Immunol. doi: 10.4049/jimmunol.174.5.2591 – volume: 20 start-page: 44 year: 2014 ident: ref_53 article-title: CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-0945 – volume: 74 start-page: 961 year: 2003 ident: ref_75 article-title: The main function of IL-2 is to promote the development of T regulatory cells publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0603272 – volume: 79 start-page: 1067 year: 1987 ident: ref_2 article-title: In vivo antitumor activity of tumor-infiltrating lymphocytes expanded in recombinant interleukin-2 publication-title: J. Natl. Cancer Inst. – volume: 24 start-page: 724 year: 2018 ident: ref_7 article-title: Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer publication-title: Nat. Med. doi: 10.1038/s41591-018-0040-8 – volume: 189 start-page: 12 year: 1999 ident: ref_19 article-title: Human papillomavirus is a necessary cause of invasive cervical cancer worldwide publication-title: J. Pathol. doi: 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F – volume: 10 start-page: 169 year: 2012 ident: ref_84 article-title: Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients publication-title: J. Transl. Med. doi: 10.1186/1479-5876-10-169 – volume: 70 start-page: 1635 year: 2021 ident: ref_109 article-title: BRAF and MEK inhibition in melanoma patients enables reprogramming of tumor infiltrating lymphocytes publication-title: Cancer Immunol. Immunother. CII doi: 10.1007/s00262-020-02804-4 – volume: 23 start-page: 351 year: 2017 ident: ref_110 article-title: A Pilot Trial of the Combination of Vemurafenib with Adoptive Cell Therapy in Patients with Metastatic Melanoma publication-title: Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. doi: 10.1158/1078-0432.CCR-16-0906 – volume: 83 start-page: 932 year: 1991 ident: ref_30 article-title: Lysis of autologous melanoma cells by tumor-infiltrating lymphocytes: Association with clinical response publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/83.13.932 – volume: 18 start-page: 6758 year: 2012 ident: ref_38 article-title: Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-12-1177 – volume: 155 start-page: 1823 year: 1982 ident: ref_74 article-title: Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes publication-title: J. Exp. Med. doi: 10.1084/jem.155.6.1823 – volume: 2 start-page: e26615 year: 2013 ident: ref_105 article-title: BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes publication-title: Oncoimmunology doi: 10.4161/onci.26615 – volume: 16 start-page: 6122 year: 2010 ident: ref_34 article-title: CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-1297 – volume: 4 start-page: 336 year: 2004 ident: ref_48 article-title: Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1349 – volume: 13 start-page: 2769 year: 2014 ident: ref_106 article-title: Effects of BRAF mutations and BRAF inhibition on immune responses to melanoma publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-14-0290 – ident: ref_103 doi: 10.3390/ijms20061483 – ident: ref_119 doi: 10.3390/cancers13164129 – volume: 61 start-page: 725 year: 2012 ident: ref_85 article-title: Adoptive T-cell therapy for malignant melanoma patients with TILs obtained by ultrasound-guided needle biopsy publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-011-1182-4 – volume: 11 start-page: 2092 year: 2020 ident: ref_97 article-title: Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancer publication-title: Oncotarget doi: 10.18632/oncotarget.27604 – volume: 18 start-page: 940 year: 2017 ident: ref_41 article-title: Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer publication-title: Nat. Immunol. doi: 10.1038/ni.3775 – volume: 37 start-page: 2538 year: 2019 ident: ref_18 article-title: Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2019.37.15_suppl.2538 – volume: 366 start-page: 707 year: 2012 ident: ref_108 article-title: Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1112302 |
SSID | ssj0000331767 |
Score | 2.5767937 |
SecondaryResourceType | review_article |
Snippet | Over the past decade, immunotherapy, especially cell-based immunotherapy, has provided new strategies for cancer therapy. Recent clinical studies demonstrated... Over the past decade, cell-based immunotherapy has become a powerful strategy in solid cancer therapy. Tumor-infiltrating lymphocytes (TILs) are a group of... Simple SummaryOver the past decade, cell-based immunotherapy has become a powerful strategy in solid cancer therapy. Tumor-infiltrating lymphocytes (TILs) are... |
SourceID | pubmedcentral proquest gale crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4160 |
SubjectTerms | Antigens Awards & honors Breast cancer Cancer Care and treatment Cervical cancer Cholangiocarcinoma Clinical trials Colorectal cancer Drug dosages Health aspects Human papillomavirus Immunotherapy Interleukin 2 Lymphocytes Medical research Melanoma Metastasis Microenvironments Patients Response rates Review Solid tumors Toxicity Tumor cells Tumor-infiltrating lymphocytes Tumors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkJcEOUhAqUyEhLlEJqHEydcUFu1alFbVZBKvUXx2IGVlqRsdg_998xsnKVZCU452E6ieXs8_gbgvc3qxBilfUvOwOfG234eo_QjTDS3PJLWcGrg4jI9vZZfb5Ibl3DrXFnlYBNXhtq0yDny_UhRZJCQ-Mkvt7997hrFp6uuhcZD2CITnGUT2Do8vrz6ts6yBDH5x1T1mD4x7e_3kYk570IZciwSjNzRplHeLJS853lOnsITFzKKg57H2_DANs_g0YU7FH8Oulj-aufirKmnsxUIbvNDnN8Rl1q8W1ixV5ydfxRFjx4gKEYV39vZ1Ih-VTEUmn8WV1yq1cN0dKJqjDgaGq10L-D65Lg4OvVd6wQfSakWvjEMtB4YDCvajyi0MtFxLDGhB0VgYVCndSx1QtNQmTS3qFScYmRCrfNU1vFLmDRtY1-BqJCDwipS2tQSM1J4stXGBpXKUp2ryoNPAwVLdLji3N5iVtL-gklebpDcg731gtseUuPfUz8wS0pWNnonVu7OAP0Zw1aVB0omJBiBUh7sjGaSkuB4eGBq6ZS0K_-KlAfv1sO8kgvPGtsuV3OijGLEPPJAjYRh_e8M0D0eaaY_V0DdOV8ZD7PX___4G3gc8Z2KgEyW2oHJYr60bynSWehdJ85_AInhASQ priority: 102 providerName: ProQuest |
Title | Tumor Infiltrating Lymphocyte (TIL) Therapy for Solid Tumor Treatment: Progressions and Challenges |
URI | https://www.proquest.com/docview/2711253224 https://www.proquest.com/docview/2712856292 https://pubmed.ncbi.nlm.nih.gov/PMC9455018 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0BfGlVKuYth4rCPUlNdlsskmhSC2ttfRK0Tu4ByFkP6IH16S9D-j9987k4zRH9SkPOxuW2d2Z3yS7vx_AexvnoTFSuRaTgUvC224SaOFyHSqSPBLW0KeB_nV0MRSXo3D0Rw6oceDs0dKO9KSG08nhw_3yE274Y6o4sWT_qMk_05kvfIIXWL9vYlqSJGfQb7B-FZYDTJWVoiz3JHejKBE11c9j7-hkqfVYvX5-8q-EdL4NWw2SZCf11L-AJ7Z4Cc_6zb_yHfgxWNyWU_a1yMeTihu3-Mmuljh5pV7OLRvUdAIMQSv7Xk7GhtX2g_bk-RG7obNbNW_HjGWFYaet8srsFQzPzwanF26jpeBq3GVz1xhiXveM9jMsUKS2IlRBIHSID4RkvpdHeSBUiGZamiixWsog0tz4SiWRyIPXsFGUhX0DLNOEEjMulcmFjjECYPA21stkHKlEZg4ctr5LdUM0TnoXkxQLDnJ2uuZsBz6sOtzVHBv_Nj2gyUhpPeA7ddZcIsCREY9VeiJFyBE0SenAfscSd43uNrfTmbaLLsUmxHsY4oQD71bN1JNOohW2XFQ2PEbQmHAHZGcZrMZOjN3dlmL8q2LuTugOuR_v_n9se_Cc0yULD2OY3IeN-XRh3yL0masebH4-u7751oOnX0Z-r1rgvwEOGwZz |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVIJeEE9hKLBIIMrBrR9rr42EUCmtEppEFbhSb8b7cIkU7BInQvlT_EZmYjvgSHDryYfd9WP325lv17PfALw0UR5oLaRt0BnYlHjbjn3FbU8FklIecaNpa2A0Dvvn_NNFcLEFv9qzMBRW2drElaHWpaI98gNPIDMIEH78_dUPm7JG0d_VNoVGDYtTs_yJS7bq3eAjju8rzzs5To76dpNVwFaIt7mtNWmQO1q5GVJ1oQwPpO9zFeAFyYnr5GHucxlgNSV0GBslhB8qT7tSxiHPfbzvDdjmPn5JD7Y_HI_PPq93dRwf_XEoag0h34-dA0WDN6tc7hL3cTrub9MJbAZm_uXpTu7A7YaissMaU3dhyxT34Oao-Ql_H2Sy-F7O2KDIJ9OV6G5xyYZLREWplnPD9pLB8A1LarUChpyYfSmnE83qVkkb2P6WnVFoWC0LUrGs0OyoTexSPYDza-nUh9ArysI8ApYpIqGZJ6TOuYrQwKBv0MbJRBTKWGQW7Lc9mKpGx5zSaUxTXM9Ql6cbXW7B3rrBVS3h8e-qr2lIUprceE-VNWcU8M1IJis9FDxAIDpCWLDbqYmTUnWL20FNG6NQpX8gbMGLdTG1pEC3wpSLVR0vQk4aexaIDhjW706C4N2SYvJtJQwe0xF1N3r8_4c_h1v9ZDRMh4Px6RPY8eg8h4PmUuxCbz5bmKfIsubyWQNtBl-vezb9Bp_6PVE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anTTxgriKwAAjgRgPobk4cYKE0NhWrayrKsikvYX4EqhUktG0Qv1r_DrOaZJCKsHbnvJgO4nsz-d8to-_A_DCRHmgtZC2QWdgU-JtO_YVtz0VSEp5xI2mrYHzcXh6wT9eBpc78Ku9C0Nhla1NXBtqXSraI-97AplBgPDj_bwJi5gcD95f_bApgxSdtLbpNGqInJnVT1y-Ve-GxzjWLz1vcJIcndpNhgFbIfYWttakR-5o5WZI24UyPJC-z1WADyQqrpOHuc9lgNWU0GFslBB-qDztShmHPPfxvTdgV9CqqAe7H07Gk0-bHR7HR98cilpPyPdjp69oIOeVy13iQU7HFW47hO0gzb-83uA23GroKjus8XUHdkxxF_bOmwP5eyCT5fdyzoZFPp2tBXiLr2y0QoSUarUw7CAZjl6zpFYuYMiP2edyNtWsbpW0Qe5v2YTCxGqJkIplhWZHbZKX6j5cXEunPoBeURbmIbBMESHNPCF1zlWExgb9hDZOJqJQxiKz4E3bg6lqNM0ptcYsxbUNdXm61eUWHGwaXNVyHv-u-oqGJKWJju9UWXNfAf-MJLPSQ8EDBKUjhAX7nZo4QVW3uB3UtDEQVfoHzhY83xRTSwp6K0y5XNfxIuSnsWeB6IBh8-8kDt4tKabf1iLhMV1Xd6NH___4M9jDWZSOhuOzx3DTo6sdDlpOsQ-9xXxpniDhWsinDbIZfLnuyfQbJklBhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Infiltrating+Lymphocyte+Therapy+for+Solid+Tumor+Treatment%3A+Progressions+and+Challenges&rft.jtitle=Cancers&rft.au=Zhao%2C+Yueshui&rft.au=Deng%2C+Jian&rft.au=Rao%2C+Shuangfeng&rft.au=Guo%2C+Sipeng&rft.date=2022-08-27&rft.pub=MDPI+AG&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=14&rft.issue=17&rft_id=info:doi/10.3390%2Fcancers14174160&rft.externalDocID=A745271077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |