Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading
[Display omitted] In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovi...
Saved in:
Published in | Acta biomaterialia Vol. 42; pp. 296 - 307 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m3). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff.
Collagen fibrils—nanoscale biological cables—are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa. |
---|---|
AbstractList | [Display omitted]
In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m3). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff.
Collagen fibrils—nanoscale biological cables—are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa. In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m(3)). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff.UNLABELLEDIn this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m(3)). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff.Collagen fibrils-nanoscale biological cables-are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa.STATEMENT OF SIGNIFICANCECollagen fibrils-nanoscale biological cables-are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa. In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m(3)). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff. Collagen fibrils-nanoscale biological cables-are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa. In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1 plus or minus 2.7 degree C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5 plus or minus 1.9 vs. 3.5 plus or minus 1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6 plus or minus 8.1 vs. 23.1 plus or minus 7.7MPa) and tougher (14.3 plus or minus 3.6 vs. 6.8 plus or minus 3.4MJ/m3). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff. Statement of Significance Collagen fibrils-nanoscale biological cables-are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa. |
Author | Herod, Tyler W. Chambers, Neil C. Veres, Samuel P. |
Author_xml | – sequence: 1 givenname: Tyler W. surname: Herod fullname: Herod, Tyler W. organization: School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada – sequence: 2 givenname: Neil C. surname: Chambers fullname: Chambers, Neil C. organization: Division of Engineering, Saint Mary’s University, Halifax, Nova Scotia, Canada – sequence: 3 givenname: Samuel P. surname: Veres fullname: Veres, Samuel P. email: sam.veres@smu.ca organization: School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27321189$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU2LHCEQhiXskv1I_kEIHnPpidW2rZ1DIAybD1jIZXMWW6snDj06UXth2T-_DjN7ySEbKLCqfN6i9L0iZyEGJOQdsBUw6D9uV8aW0cdVW6sVqwHyFbkEJVUjRa_Oai67tpGshwtylfOWMa6gVa_JRSt5C6CGS_K4jvNsNhjo5Mfk50x9TZdgi4_BzPMDdT4XX2taMLgYMv1t7rF2pwmTDxuaS1psWZKZacK8rwRmWuIJp2nZ10ukJjg6meI3C9I5Glelb8j5ZOaMb0_nNfn19eZu_b25_fntx_rLbWMFh9K4AZmYJteJFnFUnYOJcQbGWbRdPxglestGGLlA1TJpleDDgLI2hRS8G_g1-XCcu0_xz4K56J3PFuu7A8Yla1Bc9J2E-isvozAA77o6-D9Qwfu6i6ro-xO6jDt0ep_8zqQH_WxDBT4dAZtizgknbX0xBwtKMn7WwPTBc73VR8_1wXPNasBh5-4v8fP8F2SfjzKsX3_vMelsPQaLzie0Rbvo_z3gCQQDyWI |
CitedBy_id | crossref_primary_10_1016_j_ijnonlinmec_2024_104751 crossref_primary_10_1002_jor_24134 crossref_primary_10_1021_acsami_3c00689 crossref_primary_10_1016_j_jmps_2022_104911 crossref_primary_10_1016_j_jmbbm_2021_104582 crossref_primary_10_1039_D2NA00514J crossref_primary_10_1126_sciadv_aba2795 crossref_primary_10_1016_j_actbio_2017_04_011 crossref_primary_10_1016_j_mbplus_2023_100129 crossref_primary_10_1111_evj_13331 crossref_primary_10_3390_md18070370 crossref_primary_10_1021_acs_analchem_4c02883 crossref_primary_10_1016_j_matbio_2024_12_001 crossref_primary_10_1016_j_jbiomech_2023_111545 crossref_primary_10_1038_s41598_018_22741_8 crossref_primary_10_1016_j_actbio_2020_09_056 crossref_primary_10_1016_j_actbio_2021_07_045 crossref_primary_10_1016_j_jmbbm_2016_10_007 crossref_primary_10_1152_japplphysiol_00430_2018 crossref_primary_10_1016_j_actbio_2020_04_022 crossref_primary_10_1080_03008207_2018_1449837 crossref_primary_10_1002_gamm_201900014 crossref_primary_10_1016_j_ijsolstr_2022_111628 crossref_primary_10_1111_joa_12913 crossref_primary_10_1126_sciadv_ade7375 crossref_primary_10_1016_j_jbiomech_2017_01_029 crossref_primary_10_1021_acs_langmuir_4c01215 crossref_primary_10_1007_s00586_019_06223_7 crossref_primary_10_1016_j_jmbbm_2020_104134 crossref_primary_10_1016_j_actbio_2022_11_018 crossref_primary_10_1021_acs_jpcb_9b05006 crossref_primary_10_1002_jor_23629 crossref_primary_10_3389_fbioe_2022_925033 crossref_primary_10_1039_C9NR02644D crossref_primary_10_1016_j_jmbbm_2020_103889 crossref_primary_10_5606_tftrd_2021_5118 crossref_primary_10_1002_term_2701 crossref_primary_10_3389_fbioe_2021_644595 crossref_primary_10_1002_jor_26060 crossref_primary_10_1016_j_actbio_2018_03_010 crossref_primary_10_3390_ma15082753 crossref_primary_10_1115_1_4041575 crossref_primary_10_1016_j_actbio_2020_10_008 crossref_primary_10_1039_D0SM01830A crossref_primary_10_1016_j_jmbbm_2024_106467 crossref_primary_10_1080_03008207_2018_1504929 crossref_primary_10_1002_jor_25961 crossref_primary_10_1016_j_jmbbm_2019_05_002 crossref_primary_10_3390_ma15134444 crossref_primary_10_3390_md17030169 crossref_primary_10_1002_jor_24309 crossref_primary_10_1016_j_actbio_2024_10_011 crossref_primary_10_1002_marc_202300204 crossref_primary_10_1007_s00402_020_03384_9 crossref_primary_10_1098_rsif_2021_0421 crossref_primary_10_1111_sms_12978 crossref_primary_10_3390_app12157836 crossref_primary_10_1002_pamm_201710066 crossref_primary_10_1039_C9SM00832B crossref_primary_10_2139_ssrn_4138919 crossref_primary_10_1115_1_4053795 crossref_primary_10_1016_j_matbio_2022_11_006 crossref_primary_10_1016_j_msec_2019_110105 crossref_primary_10_1002_jor_24067 crossref_primary_10_1007_s40430_024_05068_6 crossref_primary_10_1016_j_jbiomech_2020_109720 crossref_primary_10_1126_sciadv_abc0496 crossref_primary_10_1080_03008207_2021_1925663 crossref_primary_10_1115_1_4050031 crossref_primary_10_3390_md16050161 crossref_primary_10_1073_pnas_1920062117 crossref_primary_10_1016_j_jmbbm_2021_104854 crossref_primary_10_1016_j_jbiomech_2019_109321 |
Cites_doi | 10.2106/JBJS.H.00831 10.3109/03008207809152283 10.1016/S0020-7683(00)00174-8 10.1152/ajpheart.01173.2008 10.1016/8756-3282(95)00328-B 10.1016/S0021-9150(98)00130-0 10.1111/j.1365-2613.2007.00552.x 10.1115/1.3138537 10.3109/03008208509152393 10.1016/j.bpj.2012.05.022 10.1073/pnas.61.2.708 10.1152/japplphysiol.00944.2009 10.1016/S0945-053X(98)90017-8 10.1007/978-0-387-73906-9_4 10.1098/rsif.2012.0362 10.1038/220280a0 10.1074/jbc.M109.077503 10.1111/joa.12164 10.1007/s10439-005-5777-9 10.1016/j.jbiomech.2012.06.006 10.1177/0363546504271986 10.7554/eLife.05958 10.1016/j.matbio.2009.08.002 10.1007/s10439-010-9976-7 10.1016/S0006-3495(99)77476-X 10.1186/s12891-015-0645-8 10.1007/s10439-007-9375-x 10.1007/b103828 10.1007/s10439-015-1308-5 10.1016/j.actbio.2013.05.004 10.1098/rstb.2001.1033 10.1016/0956-7151(95)00001-C 10.1016/S0006-355X(99)80019-5 10.1016/0005-2795(68)90216-X 10.1016/S0006-355X(98)00016-X 10.1016/j.jmps.2003.09.026 10.1016/j.jbiomech.2014.10.029 10.1002/jor.20218 10.1177/0363546504270454 10.1002/jor.22460 10.1083/jcb.107.5.1995 10.3109/03008207.2010.551569 10.3109/03008208209160271 10.1111/j.1600-0838.2005.00439.x 10.1016/1350-4533(95)91882-H 10.1016/S0047-6374(98)00119-5 10.1002/jor.1100010305 10.2746/042516403776148327 10.1177/0363546514568087 10.1111/j.1469-7998.1986.tb03646.x 10.1111/sae.12028 10.1302/0301-620X.86B5.14747 10.1371/journal.pone.0110948 10.1097/01.jsm.0000165347.55638.23 10.1111/j.1469-7998.1988.tb02432.x 10.2460/ajvr.1989.50.07.1089 10.1002/jor.21132 10.1177/0954411913509977 10.1016/S0305-0491(98)00024-8 10.1136/bjsports-2011-090342 10.1016/j.matbio.2013.07.003 10.1073/pnas.0502718103 10.3109/03008209709160225 10.1177/0363546511413370 10.1080/03008200802610040 10.1002/jor.22292 10.1016/j.jmb.2004.12.001 10.1130/0016-7606(1973)84<1289:KFVARP>2.0.CO;2 |
ContentType | Journal Article |
Copyright | 2016 Acta Materialia Inc. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Acta Materialia Inc. – notice: Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M |
DOI | 10.1016/j.actbio.2016.06.017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 307 |
ExternalDocumentID | 27321189 10_1016_j_actbio_2016_06_017 S174270611630294X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABGSF ABJNI ABMAC ABNUV ABUDA ABXRA ABYKQ ACDAQ ACGFS ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SEW SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M |
ID | FETCH-LOGICAL-c531t-d9e05ffd452eeb84d1f0301adcec469a856c0b1b35e8207c85399e76c05753493 |
IEDL.DBID | .~1 |
ISSN | 1742-7061 1878-7568 |
IngestDate | Fri Jul 11 00:33:22 EDT 2025 Thu Jul 10 19:16:25 EDT 2025 Fri Jul 11 01:31:25 EDT 2025 Mon Jul 21 05:39:38 EDT 2025 Thu Jul 03 08:35:47 EDT 2025 Thu Apr 24 22:55:08 EDT 2025 Fri Feb 23 02:39:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mechanics Collagen fibril Damage Structure-function Tendon |
Language | English |
License | Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-d9e05ffd452eeb84d1f0301adcec469a856c0b1b35e8207c85399e76c05753493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27321189 |
PQID | 1815365398 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1835647127 proquest_miscellaneous_1819134475 proquest_miscellaneous_1815365398 pubmed_primary_27321189 crossref_citationtrail_10_1016_j_actbio_2016_06_017 crossref_primary_10_1016_j_actbio_2016_06_017 elsevier_sciencedirect_doi_10_1016_j_actbio_2016_06_017 |
PublicationCentury | 2000 |
PublicationDate | 2016-09-15 |
PublicationDateYYYYMMDD | 2016-09-15 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Acta biomaterialia |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | de Jonge, van den Berg, de Vos, van der Heide, Weir, Verhaar, Bierma-Zeinstra, Tol (b0320) 2011; 45 Screen, Shelton, Chhaya, Kayser, Bader, Lee (b0065) 2005; 33 Birch (b0125) 2007; 88 Ker, Alexander, Bennett (b0145) 1988; 216 Veres, Harrison, Lee (b0160) 2013; 31 Veres, Harrison, Lee (b0260) 2014; 33 Stephens, Nunamaker, Butterweck (b0185) 1989; 50 Veres, Harrison, Lee (b0115) 2012; 31 Naimark, Waldman, Anderson, Suzuki, Pereira, Lee (b0220) 1998; 35 Birch, Worboys, Eissa, Jackson, Strassburg, Clegg (b0290) 2008; 27 Keene, Engvall, Glanville (b0295) 1988; 107 Fung, Sereysky, Basta-Pljakic, Laudier, Huq, Jepsen, Schaffler, Flatow (b0100) 2010; 38 Haut (b0020) 1985; 107 Avery, Bailey (b0180) 2008 Eyre, Wu (b0015) 2005; 247 Lee, Pereira, Abdulla, Naimark, Crawford (b0155) 1995; 17 Aldous, Veres, Jahangir, Lee (b0165) 2009; 296 Hansen, Haraldsson, Aagaard, Kovanen, Avery, Qvortrup, Larsen, Krogsgaard, Kjaer, Magnusson (b0255) 2010; 108 Pinnell, Martin (b0235) 1968; 61 Pingel, Lu, Starborg, Fredberg, Langberg, Nedergaard, Weis, Eyre, Kjaer, Kadler (b0360) 2014; 224 Shepherd, Legerlotz, Demirci, Klemt, Riley, Screen (b0150) 2014; 228 Patterson-Kane, Parry, Birch, Goodship, Firth (b0200) 1997; 36 Le Lous, Cohen-Solal, Allain, Bonaventure, Maroteaux (b0215) 1985; 13 Sparavalo, Bray, Brock-Fisher, Easton, Guinard, Wells, Lee, Veres (b0365) 2015 Moran, Liu, Shih (b0285) 1995; 43 Amiel, Frank, Harwood, Fronek, Akeson (b0050) 1984; 1 Fessel, Li, Diederich, Guizar-Sicairos, Schneider, Sell, Monnier, Snedeker (b0090) 2014; 9 Willett, Labow, Avery, Lee (b0040) 2007; 35 Kastelic, Galeski, Baer (b0055) 1978; 6 Grant, Yapp, Chen, Czernuszka, Thompson (b0080) 2015; 43 Lian, Engebretsen, Bahr (b0330) 2005; 33 Tashjian, Farnham, Albright (b0340) 2009; 91 Bailey, Paul, Knott (b0210) 1998; 106 Brennan-Pierce, MacAskill, Price, Lee (b0225) 2014; 24 Miles, Ghelashvili (b0030) 1999; 76 Le Lous, Allain, Cohen-Solal, Maroteaux (b0205) 1982; 9 Mokone, Gajjar, September (b0355) 2005; 33 Thorpe, Klemt, Riley, Birch, Clegg, Screen (b0140) 2013; 9 Rumian, Wallace, Birch (b0045) 2007; 25 Kastelic, Baer (b0085) 1980; 34 Biewener (b0195) 1998; 120 Zwerver, Bredeweg, van den Akker-Scheek (b0315) 2011; 39 Svensson, Hassenkam, Hansen, Kjaer, Magnusson (b0060) 2011; 52 Wadee, Hunt, Peletier (b0270) 2004; 52 Mokone, Schwellnus, Noakes, Collins (b0350) 2006; 16 Veres, Lee (b0265) 2012; 102 Bailey, Lister (b0230) 1968; 220 Orgel, Irving, Miller, Wess (b0010) 2006; 103 Bailey (b0175) 1968; 160 Faill (b0275) 1973; 84 Sanders, Maradit Kremers, Bryan, Ransom, Smith, Morrey (b0310) 2015; 43 Toppi, Fairley, Cicuttini, Cook, Davis, Bell, Hanna, Wang (b0335) 2015; 16 Kalson, Lu, Taylor, Starborg, Holmes, Kadler (b0005) 2015; 4 Miller, Connizzo, Feeney, Soslowsky (b0110) 2012; 45 Littlewood, May, Walters (b0305) 2013; 5 Dimery, Alexander, Ker (b0190) 1986; 210 Kujala, Sarna, Kaprio (b0325) 2005; 15 Sun, Andarawis-Puri, Li, Fung, Lee, Wang, Basta-Pljakic, Leong, Sereysky, Ros, Klug, Braman, Schaffler, Jepsen, Flatow (b0095) 2010; 28 Miles, Avery, Rodin, Bailey (b0035) 2005; 346 Thorpe, Udeze, Birch, Clegg, Screen (b0135) 2012; 9 Oxlund, Barckman, Ortoft, Andreassen (b0250) 1995; 17 Fessel, Snedeker (b0070) 2009; 28 Wells, Adamson, Langille, Lee (b0170) 1998; 35 Vogler, Kyriakides (b0280) 2001; 38 Waggett, Ralphs, Kwan, Woodnutt, Benjamin (b0300) 1998; 16 Brüel, Ortoft, Oxlund (b0245) 1998; 140 Harvie, Ostlere, Teh (b0345) 2004; 86-B Hansen, Hassenkam, Svensson, Aagaard, Trappe, Haraldsson, Kjaer, Magnusson (b0025) 2009; 50 Connizzo, Sarver, Han, Soslowsky (b0105) 2014; 47 Thorpe, Streeter, Pinchbeck, Goodship, Clegg, Birch (b0130) 2010; 285 Puxkandl, Zizak, Paris, Keckes, Tesch, Bernstorff, Purslow, Fratzl (b0240) 2002; 357 Torp, Baer, Friedman (b0075) 1975; 26 Batson, Paramour, Smith, Birch, Patterson-Kane, Goodship (b0120) 2003; 35 Fung (10.1016/j.actbio.2016.06.017_b0100) 2010; 38 Puxkandl (10.1016/j.actbio.2016.06.017_b0240) 2002; 357 Batson (10.1016/j.actbio.2016.06.017_b0120) 2003; 35 Le Lous (10.1016/j.actbio.2016.06.017_b0215) 1985; 13 Miles (10.1016/j.actbio.2016.06.017_b0035) 2005; 346 Patterson-Kane (10.1016/j.actbio.2016.06.017_b0200) 1997; 36 Birch (10.1016/j.actbio.2016.06.017_b0125) 2007; 88 Hansen (10.1016/j.actbio.2016.06.017_b0255) 2010; 108 Littlewood (10.1016/j.actbio.2016.06.017_b0305) 2013; 5 Birch (10.1016/j.actbio.2016.06.017_b0290) 2008; 27 Screen (10.1016/j.actbio.2016.06.017_b0065) 2005; 33 Sparavalo (10.1016/j.actbio.2016.06.017_b0365) 2015 Stephens (10.1016/j.actbio.2016.06.017_b0185) 1989; 50 Veres (10.1016/j.actbio.2016.06.017_b0115) 2012; 31 Lian (10.1016/j.actbio.2016.06.017_b0330) 2005; 33 Wells (10.1016/j.actbio.2016.06.017_b0170) 1998; 35 Fessel (10.1016/j.actbio.2016.06.017_b0090) 2014; 9 Sanders (10.1016/j.actbio.2016.06.017_b0310) 2015; 43 Pingel (10.1016/j.actbio.2016.06.017_b0360) 2014; 224 Eyre (10.1016/j.actbio.2016.06.017_b0015) 2005; 247 Kujala (10.1016/j.actbio.2016.06.017_b0325) 2005; 15 Moran (10.1016/j.actbio.2016.06.017_b0285) 1995; 43 Bailey (10.1016/j.actbio.2016.06.017_b0230) 1968; 220 Connizzo (10.1016/j.actbio.2016.06.017_b0105) 2014; 47 Faill (10.1016/j.actbio.2016.06.017_b0275) 1973; 84 Lee (10.1016/j.actbio.2016.06.017_b0155) 1995; 17 Zwerver (10.1016/j.actbio.2016.06.017_b0315) 2011; 39 Shepherd (10.1016/j.actbio.2016.06.017_b0150) 2014; 228 Bailey (10.1016/j.actbio.2016.06.017_b0210) 1998; 106 Keene (10.1016/j.actbio.2016.06.017_b0295) 1988; 107 Miles (10.1016/j.actbio.2016.06.017_b0030) 1999; 76 Veres (10.1016/j.actbio.2016.06.017_b0265) 2012; 102 Kastelic (10.1016/j.actbio.2016.06.017_b0085) 1980; 34 Oxlund (10.1016/j.actbio.2016.06.017_b0250) 1995; 17 Vogler (10.1016/j.actbio.2016.06.017_b0280) 2001; 38 Torp (10.1016/j.actbio.2016.06.017_b0075) 1975; 26 Mokone (10.1016/j.actbio.2016.06.017_b0350) 2006; 16 Avery (10.1016/j.actbio.2016.06.017_b0180) 2008 Ker (10.1016/j.actbio.2016.06.017_b0145) 1988; 216 Dimery (10.1016/j.actbio.2016.06.017_b0190) 1986; 210 Biewener (10.1016/j.actbio.2016.06.017_b0195) 1998; 120 Le Lous (10.1016/j.actbio.2016.06.017_b0205) 1982; 9 Brüel (10.1016/j.actbio.2016.06.017_b0245) 1998; 140 Thorpe (10.1016/j.actbio.2016.06.017_b0140) 2013; 9 Haut (10.1016/j.actbio.2016.06.017_b0020) 1985; 107 Svensson (10.1016/j.actbio.2016.06.017_b0060) 2011; 52 Aldous (10.1016/j.actbio.2016.06.017_b0165) 2009; 296 de Jonge (10.1016/j.actbio.2016.06.017_b0320) 2011; 45 Thorpe (10.1016/j.actbio.2016.06.017_b0130) 2010; 285 Toppi (10.1016/j.actbio.2016.06.017_b0335) 2015; 16 Wadee (10.1016/j.actbio.2016.06.017_b0270) 2004; 52 Harvie (10.1016/j.actbio.2016.06.017_b0345) 2004; 86-B Miller (10.1016/j.actbio.2016.06.017_b0110) 2012; 45 Fessel (10.1016/j.actbio.2016.06.017_b0070) 2009; 28 Pinnell (10.1016/j.actbio.2016.06.017_b0235) 1968; 61 Bailey (10.1016/j.actbio.2016.06.017_b0175) 1968; 160 Naimark (10.1016/j.actbio.2016.06.017_b0220) 1998; 35 Mokone (10.1016/j.actbio.2016.06.017_b0355) 2005; 33 Tashjian (10.1016/j.actbio.2016.06.017_b0340) 2009; 91 Thorpe (10.1016/j.actbio.2016.06.017_b0135) 2012; 9 Orgel (10.1016/j.actbio.2016.06.017_b0010) 2006; 103 Hansen (10.1016/j.actbio.2016.06.017_b0025) 2009; 50 Grant (10.1016/j.actbio.2016.06.017_b0080) 2015; 43 Veres (10.1016/j.actbio.2016.06.017_b0260) 2014; 33 Kalson (10.1016/j.actbio.2016.06.017_b0005) 2015; 4 Sun (10.1016/j.actbio.2016.06.017_b0095) 2010; 28 Waggett (10.1016/j.actbio.2016.06.017_b0300) 1998; 16 Brennan-Pierce (10.1016/j.actbio.2016.06.017_b0225) 2014; 24 Willett (10.1016/j.actbio.2016.06.017_b0040) 2007; 35 Veres (10.1016/j.actbio.2016.06.017_b0160) 2013; 31 Rumian (10.1016/j.actbio.2016.06.017_b0045) 2007; 25 Kastelic (10.1016/j.actbio.2016.06.017_b0055) 1978; 6 Amiel (10.1016/j.actbio.2016.06.017_b0050) 1984; 1 |
References_xml | – volume: 28 start-page: 1380 year: 2010 end-page: 1386 ident: b0095 article-title: Cycle-dependent matrix remodeling gene expression response in fatigue-loaded rat patellar tendons publication-title: J. Orthop. Res. – volume: 27 start-page: 182 year: 2008 end-page: 189 ident: b0290 article-title: Matrix metabolism rate differs in functionally distinct tendons publication-title: Matrix Biol. – volume: 86-B start-page: 696 year: 2004 end-page: 700 ident: b0345 article-title: Genetic influences in the aetiology of tears of the rotator cuff publication-title: J. Bone Joint Surg. Bm. – volume: 107 start-page: 166 year: 1985 ident: b0020 article-title: The effect of a lathyritic diet on the sensitivity of tendon to strain rate publication-title: J. Biomech. Eng. – volume: 17 start-page: 115 year: 1995 end-page: 121 ident: b0155 article-title: A multi-sample denaturation temperature tester for collagenous biomaterials publication-title: Med. Eng. Phys. – volume: 33 start-page: 54 year: 2014 end-page: 59 ident: b0260 article-title: Mechanically overloading collagen fibrils uncoils collagen molecules, placing them in a stable, denatured state publication-title: Matrix Biol. – volume: 38 start-page: 2639 year: 2001 end-page: 2651 ident: b0280 article-title: On the initiation and growth of kink bands in fiber composites: Part I. experiments publication-title: Int. J. Solids Struct. – volume: 45 start-page: 1026 year: 2011 end-page: 1028 ident: b0320 article-title: Incidence of midportion Achilles tendinopathy in the general population publication-title: Br. J. Sports Med. – volume: 103 start-page: 9001 year: 2006 end-page: 9005 ident: b0010 article-title: Microfibrillar structure of type I collagen in situ publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 247 start-page: 207 year: 2005 end-page: 229 ident: b0015 article-title: Collagen cross-links publication-title: Top. Curr. Chem. – volume: 31 start-page: 731 year: 2012 end-page: 737 ident: b0115 article-title: Repeated subrupture overload causes progression of nanoscaled discrete plasticity damage in tendon collagen fibrils publication-title: J. Orthop. Res. – volume: 9 start-page: 253 year: 1982 end-page: 262 ident: b0205 article-title: The rate of collagen maturation in rat and human skin publication-title: Connect Tissue Res. – volume: 16 start-page: 19 year: 2006 end-page: 26 ident: b0350 article-title: The COL5A1 gene and Achilles tendon pathology publication-title: Scand. J. Med. Sci. Sports – volume: 17 start-page: 365S year: 1995 end-page: 371S ident: b0250 article-title: Reduced concentrations of collagen cross-links are associated with reduced strength of bone publication-title: Bone – volume: 210 start-page: 415 year: 1986 end-page: 425 ident: b0190 article-title: Elastic extension of leg tendons in the locomotion of horses (Equus caballus) publication-title: J. Zool. – volume: 216 start-page: 309 year: 1988 end-page: 324 ident: b0145 article-title: Why are mammalian tendons so thick? publication-title: J. Zool. – volume: 33 start-page: 561 year: 2005 end-page: 567 ident: b0330 article-title: Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study publication-title: Am. J. Sports Med. – volume: 107 start-page: 1995 year: 1988 end-page: 2006 ident: b0295 article-title: Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network publication-title: J. Cell Biol. – volume: 50 start-page: 211 year: 2009 end-page: 222 ident: b0025 article-title: Glutaraldehyde cross-linking of tendon—mechanical effects at the level of the tendon fascicle and fibril publication-title: Connect Tissue Res. – volume: 13 start-page: 145 year: 1985 end-page: 155 ident: b0215 article-title: Age related evolution of stable collagen reticulation in human skin publication-title: Connect Tissue Res. – volume: 43 start-page: 2477 year: 2015 end-page: 2486 ident: b0080 article-title: The mechanical, structural, and compositional changes of tendon exposed to elastase publication-title: Ann. Biomed. Eng. – volume: 35 start-page: 1961 year: 2007 end-page: 1972 ident: b0040 article-title: Increased proteolysis of collagen in an in vitro tensile overload tendon model publication-title: Ann. Biomed. Eng. – volume: 31 start-page: 1907 year: 2013 end-page: 1913 ident: b0160 article-title: Cross-link stabilization does not affect the response of collagen molecules, fibrils, or tendons to tensile overload publication-title: J. Orthop. Res. – volume: 52 start-page: 415 year: 2011 end-page: 421 ident: b0060 article-title: Tensile force transmission in human patellar tendon fascicles is not mediated by glycosaminoglycans publication-title: Connect Tissue Res. – volume: 45 start-page: 2061 year: 2012 end-page: 2065 ident: b0110 article-title: Characterizing local collagen fiber re-alignment and crimp behavior throughout mechanical testing in a mature mouse supraspinatus tendon model publication-title: J. Biomech. – volume: 106 start-page: 1 year: 1998 end-page: 56 ident: b0210 article-title: Mechanisms of maturation and ageing of collagen publication-title: Mech. Ageing Dev. – volume: 16 start-page: 457 year: 1998 end-page: 470 ident: b0300 article-title: Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon publication-title: Matrix Biol. – volume: 357 start-page: 191 year: 2002 end-page: 197 ident: b0240 article-title: Viscoelastic properties of collagen: synchrotron radiation investigations and structural model publication-title: Philos. Trans. R. Soc. London, Ser. B – volume: 228 start-page: 49 year: 2014 end-page: 59 ident: b0150 article-title: Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour publication-title: Proc. Inst. Mech. Eng. H – volume: 39 start-page: 1984 year: 2011 end-page: 1988 ident: b0315 article-title: Prevalence of Jumper’s knee among nonelite athletes from different sports: a cross-sectional survey publication-title: Am. J. Sports Med. – volume: 16 start-page: 184 year: 2015 ident: b0335 article-title: Factors associated with magnetic resonance imaging defined patellar tendinopathy in community-based middle-aged women: a prospective cohort study publication-title: BMC Musculoskelet. Disord. – volume: 15 start-page: 133 year: 2005 end-page: 135 ident: b0325 article-title: Cumulative incidence of achilles tendon rupture and tendinopathy in male former elite athletes publication-title: Clin. J. Sport Med. – volume: 34 start-page: 397 year: 1980 ident: b0085 article-title: Deformation in tendon collagen publication-title: Symp. Soc. Exp. Biol. – volume: 6 start-page: 11 year: 1978 end-page: 23 ident: b0055 article-title: The multicomposite structure of tendon publication-title: Connect Tissue Res. – volume: 91 start-page: 1136 year: 2009 end-page: 1142 ident: b0340 article-title: Evidence for an inherited predisposition contributing to the risk for rotator cuff disease publication-title: J. Bone Joint Surg. Am. – volume: 36 start-page: 253 year: 1997 end-page: 260 ident: b0200 article-title: An age-related study of morphology and cross-link composition of collagen fibrils in the digital flexor tendons of young thoroughbred horses publication-title: Connect Tissue Res. – volume: 84 start-page: 1289 year: 1973 end-page: 1314 ident: b0275 article-title: Kink-band folding, Valley and Ridge Province, Pennsylvania publication-title: Geol. Soc. Am. Bull. – volume: 4 year: 2015 ident: b0005 article-title: A structure-based extracellular matrix expansion mechanism of fibrous tissue growth publication-title: eLife – volume: 220 start-page: 280 year: 1968 end-page: 281 ident: b0230 article-title: Thermally labile cross-links in native collagen publication-title: Nature – year: 2015 ident: b0365 article-title: Structural differences between distinct tendon types arise during fetal development publication-title: Biomedical Engineering Society, Library of Annual Meeting Abstracts – volume: 88 start-page: 241 year: 2007 end-page: 248 ident: b0125 article-title: Tendon matrix composition and turnover in relation to functional requirements publication-title: Int. J. Exp. Pathol. – volume: 140 start-page: 135 year: 1998 end-page: 145 ident: b0245 article-title: Inhibition of cross-links in collagen is associated with reduced stiffness of the aorta in young rats publication-title: Atherosclerosis – volume: 108 start-page: 47 year: 2010 end-page: 52 ident: b0255 article-title: Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology publication-title: J. Appl. Physiol. – volume: 33 start-page: 1016 year: 2005 end-page: 1021 ident: b0355 article-title: The guanine-thymine dinucleotide repeat polymorphism within the tenascin-C gene is associated with Achilles tendon injuries publication-title: Am. J. Sports Med. – volume: 76 start-page: 3243 year: 1999 end-page: 3252 ident: b0030 article-title: Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers publication-title: Biophys. J. – start-page: 81 year: 2008 end-page: 110 ident: b0180 article-title: Restraining cross-links responsible for the mechanical properties of collagen fibers: natural and artificial publication-title: Collagen – volume: 102 start-page: 2876 year: 2012 end-page: 2884 ident: b0265 article-title: Designed to fail: a novel mode of collagen fibril disruption and its relevance to tissue toughness publication-title: Biophys. J. – volume: 24 start-page: 1659 year: 2014 end-page: 1671 ident: b0225 article-title: Riboflavin-sensitized photo-crosslinking of collagen using a dental curing light publication-title: Biomed. Mater. Eng. – volume: 9 start-page: 7948 year: 2013 end-page: 7956 ident: b0140 article-title: Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return publication-title: Acta Biomater. – volume: 9 start-page: 3108 year: 2012 end-page: 3117 ident: b0135 article-title: Specialization of tendon mechanical properties results from interfascicular differences publication-title: J. R. Soc. Interface – volume: 5 start-page: 256 year: 2013 end-page: 265 ident: b0305 article-title: Epidemiology of rotator cuff tendinopathy: a systematic review publication-title: Shoulder Elbow – volume: 1 start-page: 257 year: 1984 end-page: 265 ident: b0050 article-title: Tendons and ligaments: a morphological and biochemical comparison publication-title: J. Orthop. Res. – volume: 346 start-page: 551 year: 2005 end-page: 556 ident: b0035 article-title: The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres publication-title: J. Mol. Biol. – volume: 26 start-page: 223 year: 1975 end-page: 250 ident: b0075 article-title: Effects of age and of mechanical deformation on the ultrastructure of tendon publication-title: Colston Papers – volume: 47 start-page: 3794 year: 2014 end-page: 3798 ident: b0105 article-title: In situ fibril stretch and sliding is location-dependent in mouse supraspinatus tendons publication-title: J. Biomech. – volume: 50 start-page: 1089 year: 1989 end-page: 1095 ident: b0185 article-title: Application of a Hall-effect transducer for measurement of tendon strains in horses publication-title: Am. J. Vet. Res. – volume: 35 start-page: 314 year: 2003 end-page: 318 ident: b0120 article-title: Are the material properties and matrix composition of equine flexor and extensor tendons determined by their functions? publication-title: Equine Vet. J. – volume: 52 start-page: 1071 year: 2004 end-page: 1091 ident: b0270 article-title: Kink band instability in layered structures publication-title: J. Mech. Phys. Solids – volume: 35 start-page: 399 year: 1998 end-page: 414 ident: b0170 article-title: Thermomechanical analysis of collagen crosslinking in the developing ovine thoracic aorta publication-title: Biorheology – volume: 35 start-page: 1 year: 1998 end-page: 16 ident: b0220 article-title: Thermomechanical analysis of collagen crosslinking in the developing lamb pericardium publication-title: Biorheology – volume: 9 year: 2014 ident: b0090 article-title: Advanced glycation end-products reduce collagen molecular sliding to affect collagen fibril damage mechanisms but not stiffness publication-title: PLoS One – volume: 224 start-page: 548 year: 2014 end-page: 555 ident: b0360 article-title: 3-D ultrastructure and collagen composition of healthy and overloaded human tendon: evidence of tenocyte and matrix buckling publication-title: J. Anat. – volume: 296 start-page: H1898 year: 2009 end-page: H1906 ident: b0165 article-title: Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 285 start-page: 15674 year: 2010 end-page: 15681 ident: b0130 article-title: Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging publication-title: J. Biol. Chem. – volume: 160 start-page: 447 year: 1968 end-page: 453 ident: b0175 article-title: Intermediate labile intermolecular crosslinks in collagen fibres publication-title: Biochim. Biophys. Acta – volume: 61 start-page: 708 year: 1968 end-page: 716 ident: b0235 article-title: The cross-linking of collagen and elastin: enzymatic conversion of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an extract from bone publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 120 start-page: 73 year: 1998 end-page: 87 ident: b0195 article-title: Muscle-tendon stresses and elastic energy storage during locomotion in the horse publication-title: Comp. Biochem. Physiol. B: Biochem. Mol. Biol. – volume: 28 start-page: 503 year: 2009 end-page: 510 ident: b0070 article-title: Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon publication-title: Matrix Biol. – volume: 43 start-page: 1066 year: 2015 end-page: 1071 ident: b0310 article-title: The epidemiology and health care burden of tennis elbow: a population-based study publication-title: Am. J. Sports Med. – volume: 38 start-page: 1741 year: 2010 end-page: 1751 ident: b0100 article-title: Second harmonic generation imaging and fourier transform spectral analysis reveal damage in fatigue-loaded tendons publication-title: Ann. Biomed. Eng. – volume: 33 start-page: 1090 year: 2005 end-page: 1099 ident: b0065 article-title: The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles publication-title: Ann. Biomed. Eng. – volume: 43 start-page: 2943 year: 1995 end-page: 2958 ident: b0285 article-title: Kink band formation and band broadening in fiber composites under compressive loading publication-title: Acta Metall. Mater. – volume: 25 start-page: 458 year: 2007 end-page: 464 ident: b0045 article-title: Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features—a comparative study in an ovine model publication-title: J. Orthop. Res. – volume: 91 start-page: 1136 year: 2009 ident: 10.1016/j.actbio.2016.06.017_b0340 article-title: Evidence for an inherited predisposition contributing to the risk for rotator cuff disease publication-title: J. Bone Joint Surg. Am. doi: 10.2106/JBJS.H.00831 – volume: 6 start-page: 11 year: 1978 ident: 10.1016/j.actbio.2016.06.017_b0055 article-title: The multicomposite structure of tendon publication-title: Connect Tissue Res. doi: 10.3109/03008207809152283 – volume: 38 start-page: 2639 year: 2001 ident: 10.1016/j.actbio.2016.06.017_b0280 article-title: On the initiation and growth of kink bands in fiber composites: Part I. experiments publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(00)00174-8 – volume: 24 start-page: 1659 year: 2014 ident: 10.1016/j.actbio.2016.06.017_b0225 article-title: Riboflavin-sensitized photo-crosslinking of collagen using a dental curing light publication-title: Biomed. Mater. Eng. – volume: 296 start-page: H1898 year: 2009 ident: 10.1016/j.actbio.2016.06.017_b0165 article-title: Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01173.2008 – volume: 17 start-page: 365S year: 1995 ident: 10.1016/j.actbio.2016.06.017_b0250 article-title: Reduced concentrations of collagen cross-links are associated with reduced strength of bone publication-title: Bone doi: 10.1016/8756-3282(95)00328-B – volume: 140 start-page: 135 year: 1998 ident: 10.1016/j.actbio.2016.06.017_b0245 article-title: Inhibition of cross-links in collagen is associated with reduced stiffness of the aorta in young rats publication-title: Atherosclerosis doi: 10.1016/S0021-9150(98)00130-0 – volume: 88 start-page: 241 year: 2007 ident: 10.1016/j.actbio.2016.06.017_b0125 article-title: Tendon matrix composition and turnover in relation to functional requirements publication-title: Int. J. Exp. Pathol. doi: 10.1111/j.1365-2613.2007.00552.x – volume: 107 start-page: 166 year: 1985 ident: 10.1016/j.actbio.2016.06.017_b0020 article-title: The effect of a lathyritic diet on the sensitivity of tendon to strain rate publication-title: J. Biomech. Eng. doi: 10.1115/1.3138537 – volume: 13 start-page: 145 year: 1985 ident: 10.1016/j.actbio.2016.06.017_b0215 article-title: Age related evolution of stable collagen reticulation in human skin publication-title: Connect Tissue Res. doi: 10.3109/03008208509152393 – volume: 102 start-page: 2876 year: 2012 ident: 10.1016/j.actbio.2016.06.017_b0265 article-title: Designed to fail: a novel mode of collagen fibril disruption and its relevance to tissue toughness publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.05.022 – volume: 61 start-page: 708 year: 1968 ident: 10.1016/j.actbio.2016.06.017_b0235 article-title: The cross-linking of collagen and elastin: enzymatic conversion of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an extract from bone publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.61.2.708 – volume: 108 start-page: 47 year: 2010 ident: 10.1016/j.actbio.2016.06.017_b0255 article-title: Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00944.2009 – volume: 16 start-page: 457 year: 1998 ident: 10.1016/j.actbio.2016.06.017_b0300 article-title: Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon publication-title: Matrix Biol. doi: 10.1016/S0945-053X(98)90017-8 – start-page: 81 year: 2008 ident: 10.1016/j.actbio.2016.06.017_b0180 article-title: Restraining cross-links responsible for the mechanical properties of collagen fibers: natural and artificial publication-title: Collagen doi: 10.1007/978-0-387-73906-9_4 – volume: 9 start-page: 3108 year: 2012 ident: 10.1016/j.actbio.2016.06.017_b0135 article-title: Specialization of tendon mechanical properties results from interfascicular differences publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0362 – volume: 220 start-page: 280 year: 1968 ident: 10.1016/j.actbio.2016.06.017_b0230 article-title: Thermally labile cross-links in native collagen publication-title: Nature doi: 10.1038/220280a0 – volume: 285 start-page: 15674 year: 2010 ident: 10.1016/j.actbio.2016.06.017_b0130 article-title: Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.077503 – volume: 224 start-page: 548 year: 2014 ident: 10.1016/j.actbio.2016.06.017_b0360 article-title: 3-D ultrastructure and collagen composition of healthy and overloaded human tendon: evidence of tenocyte and matrix buckling publication-title: J. Anat. doi: 10.1111/joa.12164 – volume: 26 start-page: 223 year: 1975 ident: 10.1016/j.actbio.2016.06.017_b0075 article-title: Effects of age and of mechanical deformation on the ultrastructure of tendon publication-title: Colston Papers – volume: 33 start-page: 1090 year: 2005 ident: 10.1016/j.actbio.2016.06.017_b0065 article-title: The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-005-5777-9 – volume: 27 start-page: 182 year: 2008 ident: 10.1016/j.actbio.2016.06.017_b0290 article-title: Matrix metabolism rate differs in functionally distinct tendons publication-title: Matrix Biol. – volume: 34 start-page: 397 year: 1980 ident: 10.1016/j.actbio.2016.06.017_b0085 article-title: Deformation in tendon collagen publication-title: Symp. Soc. Exp. Biol. – volume: 45 start-page: 2061 year: 2012 ident: 10.1016/j.actbio.2016.06.017_b0110 article-title: Characterizing local collagen fiber re-alignment and crimp behavior throughout mechanical testing in a mature mouse supraspinatus tendon model publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.06.006 – volume: 33 start-page: 1016 year: 2005 ident: 10.1016/j.actbio.2016.06.017_b0355 article-title: The guanine-thymine dinucleotide repeat polymorphism within the tenascin-C gene is associated with Achilles tendon injuries publication-title: Am. J. Sports Med. doi: 10.1177/0363546504271986 – volume: 4 year: 2015 ident: 10.1016/j.actbio.2016.06.017_b0005 article-title: A structure-based extracellular matrix expansion mechanism of fibrous tissue growth publication-title: eLife doi: 10.7554/eLife.05958 – volume: 28 start-page: 503 year: 2009 ident: 10.1016/j.actbio.2016.06.017_b0070 article-title: Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon publication-title: Matrix Biol. doi: 10.1016/j.matbio.2009.08.002 – volume: 38 start-page: 1741 year: 2010 ident: 10.1016/j.actbio.2016.06.017_b0100 article-title: Second harmonic generation imaging and fourier transform spectral analysis reveal damage in fatigue-loaded tendons publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-9976-7 – year: 2015 ident: 10.1016/j.actbio.2016.06.017_b0365 article-title: Structural differences between distinct tendon types arise during fetal development – volume: 76 start-page: 3243 year: 1999 ident: 10.1016/j.actbio.2016.06.017_b0030 article-title: Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77476-X – volume: 16 start-page: 184 year: 2015 ident: 10.1016/j.actbio.2016.06.017_b0335 article-title: Factors associated with magnetic resonance imaging defined patellar tendinopathy in community-based middle-aged women: a prospective cohort study publication-title: BMC Musculoskelet. Disord. doi: 10.1186/s12891-015-0645-8 – volume: 35 start-page: 1961 year: 2007 ident: 10.1016/j.actbio.2016.06.017_b0040 article-title: Increased proteolysis of collagen in an in vitro tensile overload tendon model publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-007-9375-x – volume: 247 start-page: 207 year: 2005 ident: 10.1016/j.actbio.2016.06.017_b0015 article-title: Collagen cross-links publication-title: Top. Curr. Chem. doi: 10.1007/b103828 – volume: 43 start-page: 2477 year: 2015 ident: 10.1016/j.actbio.2016.06.017_b0080 article-title: The mechanical, structural, and compositional changes of tendon exposed to elastase publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1308-5 – volume: 9 start-page: 7948 year: 2013 ident: 10.1016/j.actbio.2016.06.017_b0140 article-title: Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.05.004 – volume: 357 start-page: 191 year: 2002 ident: 10.1016/j.actbio.2016.06.017_b0240 article-title: Viscoelastic properties of collagen: synchrotron radiation investigations and structural model publication-title: Philos. Trans. R. Soc. London, Ser. B doi: 10.1098/rstb.2001.1033 – volume: 43 start-page: 2943 year: 1995 ident: 10.1016/j.actbio.2016.06.017_b0285 article-title: Kink band formation and band broadening in fiber composites under compressive loading publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(95)00001-C – volume: 35 start-page: 399 year: 1998 ident: 10.1016/j.actbio.2016.06.017_b0170 article-title: Thermomechanical analysis of collagen crosslinking in the developing ovine thoracic aorta publication-title: Biorheology doi: 10.1016/S0006-355X(99)80019-5 – volume: 160 start-page: 447 year: 1968 ident: 10.1016/j.actbio.2016.06.017_b0175 article-title: Intermediate labile intermolecular crosslinks in collagen fibres publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2795(68)90216-X – volume: 35 start-page: 1 year: 1998 ident: 10.1016/j.actbio.2016.06.017_b0220 article-title: Thermomechanical analysis of collagen crosslinking in the developing lamb pericardium publication-title: Biorheology doi: 10.1016/S0006-355X(98)00016-X – volume: 52 start-page: 1071 year: 2004 ident: 10.1016/j.actbio.2016.06.017_b0270 article-title: Kink band instability in layered structures publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2003.09.026 – volume: 47 start-page: 3794 year: 2014 ident: 10.1016/j.actbio.2016.06.017_b0105 article-title: In situ fibril stretch and sliding is location-dependent in mouse supraspinatus tendons publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.10.029 – volume: 25 start-page: 458 year: 2007 ident: 10.1016/j.actbio.2016.06.017_b0045 article-title: Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features—a comparative study in an ovine model publication-title: J. Orthop. Res. doi: 10.1002/jor.20218 – volume: 33 start-page: 561 year: 2005 ident: 10.1016/j.actbio.2016.06.017_b0330 article-title: Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study publication-title: Am. J. Sports Med. doi: 10.1177/0363546504270454 – volume: 31 start-page: 1907 year: 2013 ident: 10.1016/j.actbio.2016.06.017_b0160 article-title: Cross-link stabilization does not affect the response of collagen molecules, fibrils, or tendons to tensile overload publication-title: J. Orthop. Res. doi: 10.1002/jor.22460 – volume: 107 start-page: 1995 year: 1988 ident: 10.1016/j.actbio.2016.06.017_b0295 article-title: Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network publication-title: J. Cell Biol. doi: 10.1083/jcb.107.5.1995 – volume: 52 start-page: 415 year: 2011 ident: 10.1016/j.actbio.2016.06.017_b0060 article-title: Tensile force transmission in human patellar tendon fascicles is not mediated by glycosaminoglycans publication-title: Connect Tissue Res. doi: 10.3109/03008207.2010.551569 – volume: 9 start-page: 253 year: 1982 ident: 10.1016/j.actbio.2016.06.017_b0205 article-title: The rate of collagen maturation in rat and human skin publication-title: Connect Tissue Res. doi: 10.3109/03008208209160271 – volume: 16 start-page: 19 year: 2006 ident: 10.1016/j.actbio.2016.06.017_b0350 article-title: The COL5A1 gene and Achilles tendon pathology publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/j.1600-0838.2005.00439.x – volume: 17 start-page: 115 year: 1995 ident: 10.1016/j.actbio.2016.06.017_b0155 article-title: A multi-sample denaturation temperature tester for collagenous biomaterials publication-title: Med. Eng. Phys. doi: 10.1016/1350-4533(95)91882-H – volume: 106 start-page: 1 year: 1998 ident: 10.1016/j.actbio.2016.06.017_b0210 article-title: Mechanisms of maturation and ageing of collagen publication-title: Mech. Ageing Dev. doi: 10.1016/S0047-6374(98)00119-5 – volume: 1 start-page: 257 year: 1984 ident: 10.1016/j.actbio.2016.06.017_b0050 article-title: Tendons and ligaments: a morphological and biochemical comparison publication-title: J. Orthop. Res. doi: 10.1002/jor.1100010305 – volume: 35 start-page: 314 year: 2003 ident: 10.1016/j.actbio.2016.06.017_b0120 article-title: Are the material properties and matrix composition of equine flexor and extensor tendons determined by their functions? publication-title: Equine Vet. J. doi: 10.2746/042516403776148327 – volume: 43 start-page: 1066 year: 2015 ident: 10.1016/j.actbio.2016.06.017_b0310 article-title: The epidemiology and health care burden of tennis elbow: a population-based study publication-title: Am. J. Sports Med. doi: 10.1177/0363546514568087 – volume: 210 start-page: 415 year: 1986 ident: 10.1016/j.actbio.2016.06.017_b0190 article-title: Elastic extension of leg tendons in the locomotion of horses (Equus caballus) publication-title: J. Zool. doi: 10.1111/j.1469-7998.1986.tb03646.x – volume: 5 start-page: 256 year: 2013 ident: 10.1016/j.actbio.2016.06.017_b0305 article-title: Epidemiology of rotator cuff tendinopathy: a systematic review publication-title: Shoulder Elbow doi: 10.1111/sae.12028 – volume: 86-B start-page: 696 year: 2004 ident: 10.1016/j.actbio.2016.06.017_b0345 article-title: Genetic influences in the aetiology of tears of the rotator cuff publication-title: J. Bone Joint Surg. Bm. doi: 10.1302/0301-620X.86B5.14747 – volume: 9 year: 2014 ident: 10.1016/j.actbio.2016.06.017_b0090 article-title: Advanced glycation end-products reduce collagen molecular sliding to affect collagen fibril damage mechanisms but not stiffness publication-title: PLoS One doi: 10.1371/journal.pone.0110948 – volume: 15 start-page: 133 year: 2005 ident: 10.1016/j.actbio.2016.06.017_b0325 article-title: Cumulative incidence of achilles tendon rupture and tendinopathy in male former elite athletes publication-title: Clin. J. Sport Med. doi: 10.1097/01.jsm.0000165347.55638.23 – volume: 216 start-page: 309 year: 1988 ident: 10.1016/j.actbio.2016.06.017_b0145 article-title: Why are mammalian tendons so thick? publication-title: J. Zool. doi: 10.1111/j.1469-7998.1988.tb02432.x – volume: 50 start-page: 1089 year: 1989 ident: 10.1016/j.actbio.2016.06.017_b0185 article-title: Application of a Hall-effect transducer for measurement of tendon strains in horses publication-title: Am. J. Vet. Res. doi: 10.2460/ajvr.1989.50.07.1089 – volume: 28 start-page: 1380 year: 2010 ident: 10.1016/j.actbio.2016.06.017_b0095 article-title: Cycle-dependent matrix remodeling gene expression response in fatigue-loaded rat patellar tendons publication-title: J. Orthop. Res. doi: 10.1002/jor.21132 – volume: 228 start-page: 49 year: 2014 ident: 10.1016/j.actbio.2016.06.017_b0150 article-title: Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour publication-title: Proc. Inst. Mech. Eng. H doi: 10.1177/0954411913509977 – volume: 120 start-page: 73 year: 1998 ident: 10.1016/j.actbio.2016.06.017_b0195 article-title: Muscle-tendon stresses and elastic energy storage during locomotion in the horse publication-title: Comp. Biochem. Physiol. B: Biochem. Mol. Biol. doi: 10.1016/S0305-0491(98)00024-8 – volume: 45 start-page: 1026 year: 2011 ident: 10.1016/j.actbio.2016.06.017_b0320 article-title: Incidence of midportion Achilles tendinopathy in the general population publication-title: Br. J. Sports Med. doi: 10.1136/bjsports-2011-090342 – volume: 33 start-page: 54 year: 2014 ident: 10.1016/j.actbio.2016.06.017_b0260 article-title: Mechanically overloading collagen fibrils uncoils collagen molecules, placing them in a stable, denatured state publication-title: Matrix Biol. doi: 10.1016/j.matbio.2013.07.003 – volume: 103 start-page: 9001 year: 2006 ident: 10.1016/j.actbio.2016.06.017_b0010 article-title: Microfibrillar structure of type I collagen in situ publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0502718103 – volume: 36 start-page: 253 year: 1997 ident: 10.1016/j.actbio.2016.06.017_b0200 article-title: An age-related study of morphology and cross-link composition of collagen fibrils in the digital flexor tendons of young thoroughbred horses publication-title: Connect Tissue Res. doi: 10.3109/03008209709160225 – volume: 39 start-page: 1984 year: 2011 ident: 10.1016/j.actbio.2016.06.017_b0315 article-title: Prevalence of Jumper’s knee among nonelite athletes from different sports: a cross-sectional survey publication-title: Am. J. Sports Med. doi: 10.1177/0363546511413370 – volume: 50 start-page: 211 year: 2009 ident: 10.1016/j.actbio.2016.06.017_b0025 article-title: Glutaraldehyde cross-linking of tendon—mechanical effects at the level of the tendon fascicle and fibril publication-title: Connect Tissue Res. doi: 10.1080/03008200802610040 – volume: 31 start-page: 731 year: 2012 ident: 10.1016/j.actbio.2016.06.017_b0115 article-title: Repeated subrupture overload causes progression of nanoscaled discrete plasticity damage in tendon collagen fibrils publication-title: J. Orthop. Res. doi: 10.1002/jor.22292 – volume: 346 start-page: 551 year: 2005 ident: 10.1016/j.actbio.2016.06.017_b0035 article-title: The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.12.001 – volume: 84 start-page: 1289 year: 1973 ident: 10.1016/j.actbio.2016.06.017_b0275 article-title: Kink-band folding, Valley and Ridge Province, Pennsylvania publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1973)84<1289:KFVARP>2.0.CO;2 |
SSID | ssj0038128 |
Score | 2.4622068 |
Snippet | [Display omitted]
In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of... In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 296 |
SubjectTerms | Animals Assessments Biomechanical Phenomena Calorimetry, Differential Scanning Cattle Collagen fibril Collagens Crosslinking Damage Fatigue failure Fatigue strength Fibrillar Collagens - chemistry Fibrillar Collagens - metabolism Fibrillar Collagens - ultrastructure Flexors Isometric Contraction Mechanics Muscle Fatigue Rupture Scanning electron microscopy Structure-function Temperature Tendon Tendons Tendons - pathology Tendons - physiopathology Tendons - ultrastructure Weight-Bearing |
Title | Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading |
URI | https://dx.doi.org/10.1016/j.actbio.2016.06.017 https://www.ncbi.nlm.nih.gov/pubmed/27321189 https://www.proquest.com/docview/1815365398 https://www.proquest.com/docview/1819134475 https://www.proquest.com/docview/1835647127 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBYhvbSH0nfTR1Bhr2piS7LkYwgNaUtz6QZyE5IttSnBDnksLAv723fGskML7QZ6s834OaOZT_I3M4RcBFfwkHLLHBeCCRcylqfBMaxlp622acIxOfnbIpsvxZeVXPXItMuFQVpl6_ujT2-8dXtk1H7N0Xa9Hn0HLJ0qCEeAKMZpLlaYwS4UWvnH2xPNAwJS018VhRlKd-lzDcfLFge3xhTAJGuqeDZty_4anv4FP5swNHtCHrf4kU7iIz4lPV89I49-qyr4nNzgYgC4iYoG5PNv9nQNmxC_4rLf5pqWOLBhn-ICOJgd_WmvPI29UuASNBaVxYIcdBc5tH5PD3UrTnfHLf53oLYqaQDN_jh6uqkbMv4Lspx9upzOWdtjgRUw-g6szP1YhlAKmXrvtCiTgJMkWxa-gJmz1TIrxi5xXHrACqrQWMnWKzgIOI-LnL8k_aqu_GtCc1EiuFKg9QCTGq-dDOMATsLqVJUqDAjvPq0p2gLk2AdjYzqm2S8TFWJQIQYJd4kaEHY6axsLcJyRV53WzB-GZCBGnDnzQ6dkA2MMf5zYytfHvQEUJDnW8NX3yiCJQSh5nwyXGaCBFO71KlrR6Z0ARsJcXOdv_vv535KHuIdklkS-I30wFf8eENPBDZshMSQPJp-_zhd3hxEXvw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8rDtYdoYMPbpSXu12sR24jxW1VAZ0JeB1DfLTmwoqtKKtkiIf567OEFD2kDaWz7O-brz3c_O-XcAP4IrRUiF5U5IyaULGS_S4Dhx2WmrbZoIWpx8OsnG5_LXVE23YNSthaG0ytb3R5_eeOv2SL_9mv3lbNb_jVg6zTEcIaIYpIWcvoBtYqdSPdgeHh2PJ51DxpjUlFgleU4NuhV0TZqXLdduRqsAk6wh8mwql_01Qv0LgTaR6PAtvGkhJBvGp3wHW77egdd_EAu-hzuaD0BPUbNAKf3zFZvhJoawOPM3v2UV9W3cZzQHjpbHLu2NZ7FcCl6CRV5Z4uRg1zGN1q_YetGKs-vNkn49MFtXLKByLzaezRdNPv4unB_-PBuNeVtmgZfYAde8KvxAhVBJlXrvtKySQOMkW5W-xMGz1SorBy5xQnmEC3mpiczW53gQoZ6QhdiDXr2o_QdghawIX-Wo-IDjGq-dCoOAfsLqNK_ycACi-7SmbDnIqRTG3HTJZlcmKsSQQgzl3CX5AfCHVsvIwfGMfN5pzTyyJYNh4pmW3zslG-xm9O_E1n6xWRkEQkoQja9-UobyGNAEn5IRKkNAkOK99qMVPbwTIkkcjuvi438__zd4OT47PTEnR5PjT_CKzlBuS6I-Qw_Nxn9BALV2X9sOcg8H1hpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collagen+fibrils+in+functionally+distinct+tendons+have+differing+structural+responses+to+tendon+rupture+and+fatigue+loading&rft.jtitle=Acta+biomaterialia&rft.au=Herod%2C+Tyler+W&rft.au=Chambers%2C+Neil+C&rft.au=Veres%2C+Samuel+P&rft.date=2016-09-15&rft.issn=1742-7061&rft.volume=42&rft.spage=296&rft.epage=307&rft_id=info:doi/10.1016%2Fj.actbio.2016.06.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |