Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading

[Display omitted] In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovi...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 42; pp. 296 - 307
Main Authors Herod, Tyler W., Chambers, Neil C., Veres, Samuel P.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m3). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff. Collagen fibrils—nanoscale biological cables—are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa.
AbstractList [Display omitted] In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m3). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff. Collagen fibrils—nanoscale biological cables—are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa.
In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m(3)). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff.UNLABELLEDIn this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m(3)). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff.Collagen fibrils-nanoscale biological cables-are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa.STATEMENT OF SIGNIFICANCECollagen fibrils-nanoscale biological cables-are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa.
In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m(3)). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff. Collagen fibrils-nanoscale biological cables-are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa.
In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1 plus or minus 2.7 degree C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5 plus or minus 1.9 vs. 3.5 plus or minus 1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6 plus or minus 8.1 vs. 23.1 plus or minus 7.7MPa) and tougher (14.3 plus or minus 3.6 vs. 6.8 plus or minus 3.4MJ/m3). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff. Statement of Significance Collagen fibrils-nanoscale biological cables-are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa.
Author Herod, Tyler W.
Chambers, Neil C.
Veres, Samuel P.
Author_xml – sequence: 1
  givenname: Tyler W.
  surname: Herod
  fullname: Herod, Tyler W.
  organization: School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
– sequence: 2
  givenname: Neil C.
  surname: Chambers
  fullname: Chambers, Neil C.
  organization: Division of Engineering, Saint Mary’s University, Halifax, Nova Scotia, Canada
– sequence: 3
  givenname: Samuel P.
  surname: Veres
  fullname: Veres, Samuel P.
  email: sam.veres@smu.ca
  organization: School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27321189$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2LHCEQhiXskv1I_kEIHnPpidW2rZ1DIAybD1jIZXMWW6snDj06UXth2T-_DjN7ySEbKLCqfN6i9L0iZyEGJOQdsBUw6D9uV8aW0cdVW6sVqwHyFbkEJVUjRa_Oai67tpGshwtylfOWMa6gVa_JRSt5C6CGS_K4jvNsNhjo5Mfk50x9TZdgi4_BzPMDdT4XX2taMLgYMv1t7rF2pwmTDxuaS1psWZKZacK8rwRmWuIJp2nZ10ukJjg6meI3C9I5Glelb8j5ZOaMb0_nNfn19eZu_b25_fntx_rLbWMFh9K4AZmYJteJFnFUnYOJcQbGWbRdPxglestGGLlA1TJpleDDgLI2hRS8G_g1-XCcu0_xz4K56J3PFuu7A8Yla1Bc9J2E-isvozAA77o6-D9Qwfu6i6ro-xO6jDt0ep_8zqQH_WxDBT4dAZtizgknbX0xBwtKMn7WwPTBc73VR8_1wXPNasBh5-4v8fP8F2SfjzKsX3_vMelsPQaLzie0Rbvo_z3gCQQDyWI
CitedBy_id crossref_primary_10_1016_j_ijnonlinmec_2024_104751
crossref_primary_10_1002_jor_24134
crossref_primary_10_1021_acsami_3c00689
crossref_primary_10_1016_j_jmps_2022_104911
crossref_primary_10_1016_j_jmbbm_2021_104582
crossref_primary_10_1039_D2NA00514J
crossref_primary_10_1126_sciadv_aba2795
crossref_primary_10_1016_j_actbio_2017_04_011
crossref_primary_10_1016_j_mbplus_2023_100129
crossref_primary_10_1111_evj_13331
crossref_primary_10_3390_md18070370
crossref_primary_10_1021_acs_analchem_4c02883
crossref_primary_10_1016_j_matbio_2024_12_001
crossref_primary_10_1016_j_jbiomech_2023_111545
crossref_primary_10_1038_s41598_018_22741_8
crossref_primary_10_1016_j_actbio_2020_09_056
crossref_primary_10_1016_j_actbio_2021_07_045
crossref_primary_10_1016_j_jmbbm_2016_10_007
crossref_primary_10_1152_japplphysiol_00430_2018
crossref_primary_10_1016_j_actbio_2020_04_022
crossref_primary_10_1080_03008207_2018_1449837
crossref_primary_10_1002_gamm_201900014
crossref_primary_10_1016_j_ijsolstr_2022_111628
crossref_primary_10_1111_joa_12913
crossref_primary_10_1126_sciadv_ade7375
crossref_primary_10_1016_j_jbiomech_2017_01_029
crossref_primary_10_1021_acs_langmuir_4c01215
crossref_primary_10_1007_s00586_019_06223_7
crossref_primary_10_1016_j_jmbbm_2020_104134
crossref_primary_10_1016_j_actbio_2022_11_018
crossref_primary_10_1021_acs_jpcb_9b05006
crossref_primary_10_1002_jor_23629
crossref_primary_10_3389_fbioe_2022_925033
crossref_primary_10_1039_C9NR02644D
crossref_primary_10_1016_j_jmbbm_2020_103889
crossref_primary_10_5606_tftrd_2021_5118
crossref_primary_10_1002_term_2701
crossref_primary_10_3389_fbioe_2021_644595
crossref_primary_10_1002_jor_26060
crossref_primary_10_1016_j_actbio_2018_03_010
crossref_primary_10_3390_ma15082753
crossref_primary_10_1115_1_4041575
crossref_primary_10_1016_j_actbio_2020_10_008
crossref_primary_10_1039_D0SM01830A
crossref_primary_10_1016_j_jmbbm_2024_106467
crossref_primary_10_1080_03008207_2018_1504929
crossref_primary_10_1002_jor_25961
crossref_primary_10_1016_j_jmbbm_2019_05_002
crossref_primary_10_3390_ma15134444
crossref_primary_10_3390_md17030169
crossref_primary_10_1002_jor_24309
crossref_primary_10_1016_j_actbio_2024_10_011
crossref_primary_10_1002_marc_202300204
crossref_primary_10_1007_s00402_020_03384_9
crossref_primary_10_1098_rsif_2021_0421
crossref_primary_10_1111_sms_12978
crossref_primary_10_3390_app12157836
crossref_primary_10_1002_pamm_201710066
crossref_primary_10_1039_C9SM00832B
crossref_primary_10_2139_ssrn_4138919
crossref_primary_10_1115_1_4053795
crossref_primary_10_1016_j_matbio_2022_11_006
crossref_primary_10_1016_j_msec_2019_110105
crossref_primary_10_1002_jor_24067
crossref_primary_10_1007_s40430_024_05068_6
crossref_primary_10_1016_j_jbiomech_2020_109720
crossref_primary_10_1126_sciadv_abc0496
crossref_primary_10_1080_03008207_2021_1925663
crossref_primary_10_1115_1_4050031
crossref_primary_10_3390_md16050161
crossref_primary_10_1073_pnas_1920062117
crossref_primary_10_1016_j_jmbbm_2021_104854
crossref_primary_10_1016_j_jbiomech_2019_109321
Cites_doi 10.2106/JBJS.H.00831
10.3109/03008207809152283
10.1016/S0020-7683(00)00174-8
10.1152/ajpheart.01173.2008
10.1016/8756-3282(95)00328-B
10.1016/S0021-9150(98)00130-0
10.1111/j.1365-2613.2007.00552.x
10.1115/1.3138537
10.3109/03008208509152393
10.1016/j.bpj.2012.05.022
10.1073/pnas.61.2.708
10.1152/japplphysiol.00944.2009
10.1016/S0945-053X(98)90017-8
10.1007/978-0-387-73906-9_4
10.1098/rsif.2012.0362
10.1038/220280a0
10.1074/jbc.M109.077503
10.1111/joa.12164
10.1007/s10439-005-5777-9
10.1016/j.jbiomech.2012.06.006
10.1177/0363546504271986
10.7554/eLife.05958
10.1016/j.matbio.2009.08.002
10.1007/s10439-010-9976-7
10.1016/S0006-3495(99)77476-X
10.1186/s12891-015-0645-8
10.1007/s10439-007-9375-x
10.1007/b103828
10.1007/s10439-015-1308-5
10.1016/j.actbio.2013.05.004
10.1098/rstb.2001.1033
10.1016/0956-7151(95)00001-C
10.1016/S0006-355X(99)80019-5
10.1016/0005-2795(68)90216-X
10.1016/S0006-355X(98)00016-X
10.1016/j.jmps.2003.09.026
10.1016/j.jbiomech.2014.10.029
10.1002/jor.20218
10.1177/0363546504270454
10.1002/jor.22460
10.1083/jcb.107.5.1995
10.3109/03008207.2010.551569
10.3109/03008208209160271
10.1111/j.1600-0838.2005.00439.x
10.1016/1350-4533(95)91882-H
10.1016/S0047-6374(98)00119-5
10.1002/jor.1100010305
10.2746/042516403776148327
10.1177/0363546514568087
10.1111/j.1469-7998.1986.tb03646.x
10.1111/sae.12028
10.1302/0301-620X.86B5.14747
10.1371/journal.pone.0110948
10.1097/01.jsm.0000165347.55638.23
10.1111/j.1469-7998.1988.tb02432.x
10.2460/ajvr.1989.50.07.1089
10.1002/jor.21132
10.1177/0954411913509977
10.1016/S0305-0491(98)00024-8
10.1136/bjsports-2011-090342
10.1016/j.matbio.2013.07.003
10.1073/pnas.0502718103
10.3109/03008209709160225
10.1177/0363546511413370
10.1080/03008200802610040
10.1002/jor.22292
10.1016/j.jmb.2004.12.001
10.1130/0016-7606(1973)84<1289:KFVARP>2.0.CO;2
ContentType Journal Article
Copyright 2016 Acta Materialia Inc.
Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 Acta Materialia Inc.
– notice: Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
DOI 10.1016/j.actbio.2016.06.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Materials Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 307
ExternalDocumentID 27321189
10_1016_j_actbio_2016_06_017
S174270611630294X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SEW
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
ID FETCH-LOGICAL-c531t-d9e05ffd452eeb84d1f0301adcec469a856c0b1b35e8207c85399e76c05753493
IEDL.DBID .~1
ISSN 1742-7061
1878-7568
IngestDate Fri Jul 11 00:33:22 EDT 2025
Thu Jul 10 19:16:25 EDT 2025
Fri Jul 11 01:31:25 EDT 2025
Mon Jul 21 05:39:38 EDT 2025
Thu Jul 03 08:35:47 EDT 2025
Thu Apr 24 22:55:08 EDT 2025
Fri Feb 23 02:39:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mechanics
Collagen fibril
Damage
Structure-function
Tendon
Language English
License Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-d9e05ffd452eeb84d1f0301adcec469a856c0b1b35e8207c85399e76c05753493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27321189
PQID 1815365398
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1835647127
proquest_miscellaneous_1819134475
proquest_miscellaneous_1815365398
pubmed_primary_27321189
crossref_citationtrail_10_1016_j_actbio_2016_06_017
crossref_primary_10_1016_j_actbio_2016_06_017
elsevier_sciencedirect_doi_10_1016_j_actbio_2016_06_017
PublicationCentury 2000
PublicationDate 2016-09-15
PublicationDateYYYYMMDD 2016-09-15
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References de Jonge, van den Berg, de Vos, van der Heide, Weir, Verhaar, Bierma-Zeinstra, Tol (b0320) 2011; 45
Screen, Shelton, Chhaya, Kayser, Bader, Lee (b0065) 2005; 33
Birch (b0125) 2007; 88
Ker, Alexander, Bennett (b0145) 1988; 216
Veres, Harrison, Lee (b0160) 2013; 31
Veres, Harrison, Lee (b0260) 2014; 33
Stephens, Nunamaker, Butterweck (b0185) 1989; 50
Veres, Harrison, Lee (b0115) 2012; 31
Naimark, Waldman, Anderson, Suzuki, Pereira, Lee (b0220) 1998; 35
Birch, Worboys, Eissa, Jackson, Strassburg, Clegg (b0290) 2008; 27
Keene, Engvall, Glanville (b0295) 1988; 107
Fung, Sereysky, Basta-Pljakic, Laudier, Huq, Jepsen, Schaffler, Flatow (b0100) 2010; 38
Haut (b0020) 1985; 107
Avery, Bailey (b0180) 2008
Eyre, Wu (b0015) 2005; 247
Lee, Pereira, Abdulla, Naimark, Crawford (b0155) 1995; 17
Aldous, Veres, Jahangir, Lee (b0165) 2009; 296
Hansen, Haraldsson, Aagaard, Kovanen, Avery, Qvortrup, Larsen, Krogsgaard, Kjaer, Magnusson (b0255) 2010; 108
Pinnell, Martin (b0235) 1968; 61
Pingel, Lu, Starborg, Fredberg, Langberg, Nedergaard, Weis, Eyre, Kjaer, Kadler (b0360) 2014; 224
Shepherd, Legerlotz, Demirci, Klemt, Riley, Screen (b0150) 2014; 228
Patterson-Kane, Parry, Birch, Goodship, Firth (b0200) 1997; 36
Le Lous, Cohen-Solal, Allain, Bonaventure, Maroteaux (b0215) 1985; 13
Sparavalo, Bray, Brock-Fisher, Easton, Guinard, Wells, Lee, Veres (b0365) 2015
Moran, Liu, Shih (b0285) 1995; 43
Amiel, Frank, Harwood, Fronek, Akeson (b0050) 1984; 1
Fessel, Li, Diederich, Guizar-Sicairos, Schneider, Sell, Monnier, Snedeker (b0090) 2014; 9
Willett, Labow, Avery, Lee (b0040) 2007; 35
Kastelic, Galeski, Baer (b0055) 1978; 6
Grant, Yapp, Chen, Czernuszka, Thompson (b0080) 2015; 43
Lian, Engebretsen, Bahr (b0330) 2005; 33
Tashjian, Farnham, Albright (b0340) 2009; 91
Bailey, Paul, Knott (b0210) 1998; 106
Brennan-Pierce, MacAskill, Price, Lee (b0225) 2014; 24
Miles, Ghelashvili (b0030) 1999; 76
Le Lous, Allain, Cohen-Solal, Maroteaux (b0205) 1982; 9
Mokone, Gajjar, September (b0355) 2005; 33
Thorpe, Klemt, Riley, Birch, Clegg, Screen (b0140) 2013; 9
Rumian, Wallace, Birch (b0045) 2007; 25
Kastelic, Baer (b0085) 1980; 34
Biewener (b0195) 1998; 120
Zwerver, Bredeweg, van den Akker-Scheek (b0315) 2011; 39
Svensson, Hassenkam, Hansen, Kjaer, Magnusson (b0060) 2011; 52
Wadee, Hunt, Peletier (b0270) 2004; 52
Mokone, Schwellnus, Noakes, Collins (b0350) 2006; 16
Veres, Lee (b0265) 2012; 102
Bailey, Lister (b0230) 1968; 220
Orgel, Irving, Miller, Wess (b0010) 2006; 103
Bailey (b0175) 1968; 160
Faill (b0275) 1973; 84
Sanders, Maradit Kremers, Bryan, Ransom, Smith, Morrey (b0310) 2015; 43
Toppi, Fairley, Cicuttini, Cook, Davis, Bell, Hanna, Wang (b0335) 2015; 16
Kalson, Lu, Taylor, Starborg, Holmes, Kadler (b0005) 2015; 4
Miller, Connizzo, Feeney, Soslowsky (b0110) 2012; 45
Littlewood, May, Walters (b0305) 2013; 5
Dimery, Alexander, Ker (b0190) 1986; 210
Kujala, Sarna, Kaprio (b0325) 2005; 15
Sun, Andarawis-Puri, Li, Fung, Lee, Wang, Basta-Pljakic, Leong, Sereysky, Ros, Klug, Braman, Schaffler, Jepsen, Flatow (b0095) 2010; 28
Miles, Avery, Rodin, Bailey (b0035) 2005; 346
Thorpe, Udeze, Birch, Clegg, Screen (b0135) 2012; 9
Oxlund, Barckman, Ortoft, Andreassen (b0250) 1995; 17
Fessel, Snedeker (b0070) 2009; 28
Wells, Adamson, Langille, Lee (b0170) 1998; 35
Vogler, Kyriakides (b0280) 2001; 38
Waggett, Ralphs, Kwan, Woodnutt, Benjamin (b0300) 1998; 16
Brüel, Ortoft, Oxlund (b0245) 1998; 140
Harvie, Ostlere, Teh (b0345) 2004; 86-B
Hansen, Hassenkam, Svensson, Aagaard, Trappe, Haraldsson, Kjaer, Magnusson (b0025) 2009; 50
Connizzo, Sarver, Han, Soslowsky (b0105) 2014; 47
Thorpe, Streeter, Pinchbeck, Goodship, Clegg, Birch (b0130) 2010; 285
Puxkandl, Zizak, Paris, Keckes, Tesch, Bernstorff, Purslow, Fratzl (b0240) 2002; 357
Torp, Baer, Friedman (b0075) 1975; 26
Batson, Paramour, Smith, Birch, Patterson-Kane, Goodship (b0120) 2003; 35
Fung (10.1016/j.actbio.2016.06.017_b0100) 2010; 38
Puxkandl (10.1016/j.actbio.2016.06.017_b0240) 2002; 357
Batson (10.1016/j.actbio.2016.06.017_b0120) 2003; 35
Le Lous (10.1016/j.actbio.2016.06.017_b0215) 1985; 13
Miles (10.1016/j.actbio.2016.06.017_b0035) 2005; 346
Patterson-Kane (10.1016/j.actbio.2016.06.017_b0200) 1997; 36
Birch (10.1016/j.actbio.2016.06.017_b0125) 2007; 88
Hansen (10.1016/j.actbio.2016.06.017_b0255) 2010; 108
Littlewood (10.1016/j.actbio.2016.06.017_b0305) 2013; 5
Birch (10.1016/j.actbio.2016.06.017_b0290) 2008; 27
Screen (10.1016/j.actbio.2016.06.017_b0065) 2005; 33
Sparavalo (10.1016/j.actbio.2016.06.017_b0365) 2015
Stephens (10.1016/j.actbio.2016.06.017_b0185) 1989; 50
Veres (10.1016/j.actbio.2016.06.017_b0115) 2012; 31
Lian (10.1016/j.actbio.2016.06.017_b0330) 2005; 33
Wells (10.1016/j.actbio.2016.06.017_b0170) 1998; 35
Fessel (10.1016/j.actbio.2016.06.017_b0090) 2014; 9
Sanders (10.1016/j.actbio.2016.06.017_b0310) 2015; 43
Pingel (10.1016/j.actbio.2016.06.017_b0360) 2014; 224
Eyre (10.1016/j.actbio.2016.06.017_b0015) 2005; 247
Kujala (10.1016/j.actbio.2016.06.017_b0325) 2005; 15
Moran (10.1016/j.actbio.2016.06.017_b0285) 1995; 43
Bailey (10.1016/j.actbio.2016.06.017_b0230) 1968; 220
Connizzo (10.1016/j.actbio.2016.06.017_b0105) 2014; 47
Faill (10.1016/j.actbio.2016.06.017_b0275) 1973; 84
Lee (10.1016/j.actbio.2016.06.017_b0155) 1995; 17
Zwerver (10.1016/j.actbio.2016.06.017_b0315) 2011; 39
Shepherd (10.1016/j.actbio.2016.06.017_b0150) 2014; 228
Bailey (10.1016/j.actbio.2016.06.017_b0210) 1998; 106
Keene (10.1016/j.actbio.2016.06.017_b0295) 1988; 107
Miles (10.1016/j.actbio.2016.06.017_b0030) 1999; 76
Veres (10.1016/j.actbio.2016.06.017_b0265) 2012; 102
Kastelic (10.1016/j.actbio.2016.06.017_b0085) 1980; 34
Oxlund (10.1016/j.actbio.2016.06.017_b0250) 1995; 17
Vogler (10.1016/j.actbio.2016.06.017_b0280) 2001; 38
Torp (10.1016/j.actbio.2016.06.017_b0075) 1975; 26
Mokone (10.1016/j.actbio.2016.06.017_b0350) 2006; 16
Avery (10.1016/j.actbio.2016.06.017_b0180) 2008
Ker (10.1016/j.actbio.2016.06.017_b0145) 1988; 216
Dimery (10.1016/j.actbio.2016.06.017_b0190) 1986; 210
Biewener (10.1016/j.actbio.2016.06.017_b0195) 1998; 120
Le Lous (10.1016/j.actbio.2016.06.017_b0205) 1982; 9
Brüel (10.1016/j.actbio.2016.06.017_b0245) 1998; 140
Thorpe (10.1016/j.actbio.2016.06.017_b0140) 2013; 9
Haut (10.1016/j.actbio.2016.06.017_b0020) 1985; 107
Svensson (10.1016/j.actbio.2016.06.017_b0060) 2011; 52
Aldous (10.1016/j.actbio.2016.06.017_b0165) 2009; 296
de Jonge (10.1016/j.actbio.2016.06.017_b0320) 2011; 45
Thorpe (10.1016/j.actbio.2016.06.017_b0130) 2010; 285
Toppi (10.1016/j.actbio.2016.06.017_b0335) 2015; 16
Wadee (10.1016/j.actbio.2016.06.017_b0270) 2004; 52
Harvie (10.1016/j.actbio.2016.06.017_b0345) 2004; 86-B
Miller (10.1016/j.actbio.2016.06.017_b0110) 2012; 45
Fessel (10.1016/j.actbio.2016.06.017_b0070) 2009; 28
Pinnell (10.1016/j.actbio.2016.06.017_b0235) 1968; 61
Bailey (10.1016/j.actbio.2016.06.017_b0175) 1968; 160
Naimark (10.1016/j.actbio.2016.06.017_b0220) 1998; 35
Mokone (10.1016/j.actbio.2016.06.017_b0355) 2005; 33
Tashjian (10.1016/j.actbio.2016.06.017_b0340) 2009; 91
Thorpe (10.1016/j.actbio.2016.06.017_b0135) 2012; 9
Orgel (10.1016/j.actbio.2016.06.017_b0010) 2006; 103
Hansen (10.1016/j.actbio.2016.06.017_b0025) 2009; 50
Grant (10.1016/j.actbio.2016.06.017_b0080) 2015; 43
Veres (10.1016/j.actbio.2016.06.017_b0260) 2014; 33
Kalson (10.1016/j.actbio.2016.06.017_b0005) 2015; 4
Sun (10.1016/j.actbio.2016.06.017_b0095) 2010; 28
Waggett (10.1016/j.actbio.2016.06.017_b0300) 1998; 16
Brennan-Pierce (10.1016/j.actbio.2016.06.017_b0225) 2014; 24
Willett (10.1016/j.actbio.2016.06.017_b0040) 2007; 35
Veres (10.1016/j.actbio.2016.06.017_b0160) 2013; 31
Rumian (10.1016/j.actbio.2016.06.017_b0045) 2007; 25
Kastelic (10.1016/j.actbio.2016.06.017_b0055) 1978; 6
Amiel (10.1016/j.actbio.2016.06.017_b0050) 1984; 1
References_xml – volume: 28
  start-page: 1380
  year: 2010
  end-page: 1386
  ident: b0095
  article-title: Cycle-dependent matrix remodeling gene expression response in fatigue-loaded rat patellar tendons
  publication-title: J. Orthop. Res.
– volume: 27
  start-page: 182
  year: 2008
  end-page: 189
  ident: b0290
  article-title: Matrix metabolism rate differs in functionally distinct tendons
  publication-title: Matrix Biol.
– volume: 86-B
  start-page: 696
  year: 2004
  end-page: 700
  ident: b0345
  article-title: Genetic influences in the aetiology of tears of the rotator cuff
  publication-title: J. Bone Joint Surg. Bm.
– volume: 107
  start-page: 166
  year: 1985
  ident: b0020
  article-title: The effect of a lathyritic diet on the sensitivity of tendon to strain rate
  publication-title: J. Biomech. Eng.
– volume: 17
  start-page: 115
  year: 1995
  end-page: 121
  ident: b0155
  article-title: A multi-sample denaturation temperature tester for collagenous biomaterials
  publication-title: Med. Eng. Phys.
– volume: 33
  start-page: 54
  year: 2014
  end-page: 59
  ident: b0260
  article-title: Mechanically overloading collagen fibrils uncoils collagen molecules, placing them in a stable, denatured state
  publication-title: Matrix Biol.
– volume: 38
  start-page: 2639
  year: 2001
  end-page: 2651
  ident: b0280
  article-title: On the initiation and growth of kink bands in fiber composites: Part I. experiments
  publication-title: Int. J. Solids Struct.
– volume: 45
  start-page: 1026
  year: 2011
  end-page: 1028
  ident: b0320
  article-title: Incidence of midportion Achilles tendinopathy in the general population
  publication-title: Br. J. Sports Med.
– volume: 103
  start-page: 9001
  year: 2006
  end-page: 9005
  ident: b0010
  article-title: Microfibrillar structure of type I collagen in situ
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 247
  start-page: 207
  year: 2005
  end-page: 229
  ident: b0015
  article-title: Collagen cross-links
  publication-title: Top. Curr. Chem.
– volume: 31
  start-page: 731
  year: 2012
  end-page: 737
  ident: b0115
  article-title: Repeated subrupture overload causes progression of nanoscaled discrete plasticity damage in tendon collagen fibrils
  publication-title: J. Orthop. Res.
– volume: 9
  start-page: 253
  year: 1982
  end-page: 262
  ident: b0205
  article-title: The rate of collagen maturation in rat and human skin
  publication-title: Connect Tissue Res.
– volume: 16
  start-page: 19
  year: 2006
  end-page: 26
  ident: b0350
  article-title: The COL5A1 gene and Achilles tendon pathology
  publication-title: Scand. J. Med. Sci. Sports
– volume: 17
  start-page: 365S
  year: 1995
  end-page: 371S
  ident: b0250
  article-title: Reduced concentrations of collagen cross-links are associated with reduced strength of bone
  publication-title: Bone
– volume: 210
  start-page: 415
  year: 1986
  end-page: 425
  ident: b0190
  article-title: Elastic extension of leg tendons in the locomotion of horses (Equus caballus)
  publication-title: J. Zool.
– volume: 216
  start-page: 309
  year: 1988
  end-page: 324
  ident: b0145
  article-title: Why are mammalian tendons so thick?
  publication-title: J. Zool.
– volume: 33
  start-page: 561
  year: 2005
  end-page: 567
  ident: b0330
  article-title: Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study
  publication-title: Am. J. Sports Med.
– volume: 107
  start-page: 1995
  year: 1988
  end-page: 2006
  ident: b0295
  article-title: Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network
  publication-title: J. Cell Biol.
– volume: 50
  start-page: 211
  year: 2009
  end-page: 222
  ident: b0025
  article-title: Glutaraldehyde cross-linking of tendon—mechanical effects at the level of the tendon fascicle and fibril
  publication-title: Connect Tissue Res.
– volume: 13
  start-page: 145
  year: 1985
  end-page: 155
  ident: b0215
  article-title: Age related evolution of stable collagen reticulation in human skin
  publication-title: Connect Tissue Res.
– volume: 43
  start-page: 2477
  year: 2015
  end-page: 2486
  ident: b0080
  article-title: The mechanical, structural, and compositional changes of tendon exposed to elastase
  publication-title: Ann. Biomed. Eng.
– volume: 35
  start-page: 1961
  year: 2007
  end-page: 1972
  ident: b0040
  article-title: Increased proteolysis of collagen in an in vitro tensile overload tendon model
  publication-title: Ann. Biomed. Eng.
– volume: 31
  start-page: 1907
  year: 2013
  end-page: 1913
  ident: b0160
  article-title: Cross-link stabilization does not affect the response of collagen molecules, fibrils, or tendons to tensile overload
  publication-title: J. Orthop. Res.
– volume: 52
  start-page: 415
  year: 2011
  end-page: 421
  ident: b0060
  article-title: Tensile force transmission in human patellar tendon fascicles is not mediated by glycosaminoglycans
  publication-title: Connect Tissue Res.
– volume: 45
  start-page: 2061
  year: 2012
  end-page: 2065
  ident: b0110
  article-title: Characterizing local collagen fiber re-alignment and crimp behavior throughout mechanical testing in a mature mouse supraspinatus tendon model
  publication-title: J. Biomech.
– volume: 106
  start-page: 1
  year: 1998
  end-page: 56
  ident: b0210
  article-title: Mechanisms of maturation and ageing of collagen
  publication-title: Mech. Ageing Dev.
– volume: 16
  start-page: 457
  year: 1998
  end-page: 470
  ident: b0300
  article-title: Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon
  publication-title: Matrix Biol.
– volume: 357
  start-page: 191
  year: 2002
  end-page: 197
  ident: b0240
  article-title: Viscoelastic properties of collagen: synchrotron radiation investigations and structural model
  publication-title: Philos. Trans. R. Soc. London, Ser. B
– volume: 228
  start-page: 49
  year: 2014
  end-page: 59
  ident: b0150
  article-title: Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour
  publication-title: Proc. Inst. Mech. Eng. H
– volume: 39
  start-page: 1984
  year: 2011
  end-page: 1988
  ident: b0315
  article-title: Prevalence of Jumper’s knee among nonelite athletes from different sports: a cross-sectional survey
  publication-title: Am. J. Sports Med.
– volume: 16
  start-page: 184
  year: 2015
  ident: b0335
  article-title: Factors associated with magnetic resonance imaging defined patellar tendinopathy in community-based middle-aged women: a prospective cohort study
  publication-title: BMC Musculoskelet. Disord.
– volume: 15
  start-page: 133
  year: 2005
  end-page: 135
  ident: b0325
  article-title: Cumulative incidence of achilles tendon rupture and tendinopathy in male former elite athletes
  publication-title: Clin. J. Sport Med.
– volume: 34
  start-page: 397
  year: 1980
  ident: b0085
  article-title: Deformation in tendon collagen
  publication-title: Symp. Soc. Exp. Biol.
– volume: 6
  start-page: 11
  year: 1978
  end-page: 23
  ident: b0055
  article-title: The multicomposite structure of tendon
  publication-title: Connect Tissue Res.
– volume: 91
  start-page: 1136
  year: 2009
  end-page: 1142
  ident: b0340
  article-title: Evidence for an inherited predisposition contributing to the risk for rotator cuff disease
  publication-title: J. Bone Joint Surg. Am.
– volume: 36
  start-page: 253
  year: 1997
  end-page: 260
  ident: b0200
  article-title: An age-related study of morphology and cross-link composition of collagen fibrils in the digital flexor tendons of young thoroughbred horses
  publication-title: Connect Tissue Res.
– volume: 84
  start-page: 1289
  year: 1973
  end-page: 1314
  ident: b0275
  article-title: Kink-band folding, Valley and Ridge Province, Pennsylvania
  publication-title: Geol. Soc. Am. Bull.
– volume: 4
  year: 2015
  ident: b0005
  article-title: A structure-based extracellular matrix expansion mechanism of fibrous tissue growth
  publication-title: eLife
– volume: 220
  start-page: 280
  year: 1968
  end-page: 281
  ident: b0230
  article-title: Thermally labile cross-links in native collagen
  publication-title: Nature
– year: 2015
  ident: b0365
  article-title: Structural differences between distinct tendon types arise during fetal development
  publication-title: Biomedical Engineering Society, Library of Annual Meeting Abstracts
– volume: 88
  start-page: 241
  year: 2007
  end-page: 248
  ident: b0125
  article-title: Tendon matrix composition and turnover in relation to functional requirements
  publication-title: Int. J. Exp. Pathol.
– volume: 140
  start-page: 135
  year: 1998
  end-page: 145
  ident: b0245
  article-title: Inhibition of cross-links in collagen is associated with reduced stiffness of the aorta in young rats
  publication-title: Atherosclerosis
– volume: 108
  start-page: 47
  year: 2010
  end-page: 52
  ident: b0255
  article-title: Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology
  publication-title: J. Appl. Physiol.
– volume: 33
  start-page: 1016
  year: 2005
  end-page: 1021
  ident: b0355
  article-title: The guanine-thymine dinucleotide repeat polymorphism within the tenascin-C gene is associated with Achilles tendon injuries
  publication-title: Am. J. Sports Med.
– volume: 76
  start-page: 3243
  year: 1999
  end-page: 3252
  ident: b0030
  article-title: Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers
  publication-title: Biophys. J.
– start-page: 81
  year: 2008
  end-page: 110
  ident: b0180
  article-title: Restraining cross-links responsible for the mechanical properties of collagen fibers: natural and artificial
  publication-title: Collagen
– volume: 102
  start-page: 2876
  year: 2012
  end-page: 2884
  ident: b0265
  article-title: Designed to fail: a novel mode of collagen fibril disruption and its relevance to tissue toughness
  publication-title: Biophys. J.
– volume: 24
  start-page: 1659
  year: 2014
  end-page: 1671
  ident: b0225
  article-title: Riboflavin-sensitized photo-crosslinking of collagen using a dental curing light
  publication-title: Biomed. Mater. Eng.
– volume: 9
  start-page: 7948
  year: 2013
  end-page: 7956
  ident: b0140
  article-title: Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return
  publication-title: Acta Biomater.
– volume: 9
  start-page: 3108
  year: 2012
  end-page: 3117
  ident: b0135
  article-title: Specialization of tendon mechanical properties results from interfascicular differences
  publication-title: J. R. Soc. Interface
– volume: 5
  start-page: 256
  year: 2013
  end-page: 265
  ident: b0305
  article-title: Epidemiology of rotator cuff tendinopathy: a systematic review
  publication-title: Shoulder Elbow
– volume: 1
  start-page: 257
  year: 1984
  end-page: 265
  ident: b0050
  article-title: Tendons and ligaments: a morphological and biochemical comparison
  publication-title: J. Orthop. Res.
– volume: 346
  start-page: 551
  year: 2005
  end-page: 556
  ident: b0035
  article-title: The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres
  publication-title: J. Mol. Biol.
– volume: 26
  start-page: 223
  year: 1975
  end-page: 250
  ident: b0075
  article-title: Effects of age and of mechanical deformation on the ultrastructure of tendon
  publication-title: Colston Papers
– volume: 47
  start-page: 3794
  year: 2014
  end-page: 3798
  ident: b0105
  article-title: In situ fibril stretch and sliding is location-dependent in mouse supraspinatus tendons
  publication-title: J. Biomech.
– volume: 50
  start-page: 1089
  year: 1989
  end-page: 1095
  ident: b0185
  article-title: Application of a Hall-effect transducer for measurement of tendon strains in horses
  publication-title: Am. J. Vet. Res.
– volume: 35
  start-page: 314
  year: 2003
  end-page: 318
  ident: b0120
  article-title: Are the material properties and matrix composition of equine flexor and extensor tendons determined by their functions?
  publication-title: Equine Vet. J.
– volume: 52
  start-page: 1071
  year: 2004
  end-page: 1091
  ident: b0270
  article-title: Kink band instability in layered structures
  publication-title: J. Mech. Phys. Solids
– volume: 35
  start-page: 399
  year: 1998
  end-page: 414
  ident: b0170
  article-title: Thermomechanical analysis of collagen crosslinking in the developing ovine thoracic aorta
  publication-title: Biorheology
– volume: 35
  start-page: 1
  year: 1998
  end-page: 16
  ident: b0220
  article-title: Thermomechanical analysis of collagen crosslinking in the developing lamb pericardium
  publication-title: Biorheology
– volume: 9
  year: 2014
  ident: b0090
  article-title: Advanced glycation end-products reduce collagen molecular sliding to affect collagen fibril damage mechanisms but not stiffness
  publication-title: PLoS One
– volume: 224
  start-page: 548
  year: 2014
  end-page: 555
  ident: b0360
  article-title: 3-D ultrastructure and collagen composition of healthy and overloaded human tendon: evidence of tenocyte and matrix buckling
  publication-title: J. Anat.
– volume: 296
  start-page: H1898
  year: 2009
  end-page: H1906
  ident: b0165
  article-title: Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 285
  start-page: 15674
  year: 2010
  end-page: 15681
  ident: b0130
  article-title: Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging
  publication-title: J. Biol. Chem.
– volume: 160
  start-page: 447
  year: 1968
  end-page: 453
  ident: b0175
  article-title: Intermediate labile intermolecular crosslinks in collagen fibres
  publication-title: Biochim. Biophys. Acta
– volume: 61
  start-page: 708
  year: 1968
  end-page: 716
  ident: b0235
  article-title: The cross-linking of collagen and elastin: enzymatic conversion of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an extract from bone
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 120
  start-page: 73
  year: 1998
  end-page: 87
  ident: b0195
  article-title: Muscle-tendon stresses and elastic energy storage during locomotion in the horse
  publication-title: Comp. Biochem. Physiol. B: Biochem. Mol. Biol.
– volume: 28
  start-page: 503
  year: 2009
  end-page: 510
  ident: b0070
  article-title: Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon
  publication-title: Matrix Biol.
– volume: 43
  start-page: 1066
  year: 2015
  end-page: 1071
  ident: b0310
  article-title: The epidemiology and health care burden of tennis elbow: a population-based study
  publication-title: Am. J. Sports Med.
– volume: 38
  start-page: 1741
  year: 2010
  end-page: 1751
  ident: b0100
  article-title: Second harmonic generation imaging and fourier transform spectral analysis reveal damage in fatigue-loaded tendons
  publication-title: Ann. Biomed. Eng.
– volume: 33
  start-page: 1090
  year: 2005
  end-page: 1099
  ident: b0065
  article-title: The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles
  publication-title: Ann. Biomed. Eng.
– volume: 43
  start-page: 2943
  year: 1995
  end-page: 2958
  ident: b0285
  article-title: Kink band formation and band broadening in fiber composites under compressive loading
  publication-title: Acta Metall. Mater.
– volume: 25
  start-page: 458
  year: 2007
  end-page: 464
  ident: b0045
  article-title: Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features—a comparative study in an ovine model
  publication-title: J. Orthop. Res.
– volume: 91
  start-page: 1136
  year: 2009
  ident: 10.1016/j.actbio.2016.06.017_b0340
  article-title: Evidence for an inherited predisposition contributing to the risk for rotator cuff disease
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/JBJS.H.00831
– volume: 6
  start-page: 11
  year: 1978
  ident: 10.1016/j.actbio.2016.06.017_b0055
  article-title: The multicomposite structure of tendon
  publication-title: Connect Tissue Res.
  doi: 10.3109/03008207809152283
– volume: 38
  start-page: 2639
  year: 2001
  ident: 10.1016/j.actbio.2016.06.017_b0280
  article-title: On the initiation and growth of kink bands in fiber composites: Part I. experiments
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(00)00174-8
– volume: 24
  start-page: 1659
  year: 2014
  ident: 10.1016/j.actbio.2016.06.017_b0225
  article-title: Riboflavin-sensitized photo-crosslinking of collagen using a dental curing light
  publication-title: Biomed. Mater. Eng.
– volume: 296
  start-page: H1898
  year: 2009
  ident: 10.1016/j.actbio.2016.06.017_b0165
  article-title: Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01173.2008
– volume: 17
  start-page: 365S
  year: 1995
  ident: 10.1016/j.actbio.2016.06.017_b0250
  article-title: Reduced concentrations of collagen cross-links are associated with reduced strength of bone
  publication-title: Bone
  doi: 10.1016/8756-3282(95)00328-B
– volume: 140
  start-page: 135
  year: 1998
  ident: 10.1016/j.actbio.2016.06.017_b0245
  article-title: Inhibition of cross-links in collagen is associated with reduced stiffness of the aorta in young rats
  publication-title: Atherosclerosis
  doi: 10.1016/S0021-9150(98)00130-0
– volume: 88
  start-page: 241
  year: 2007
  ident: 10.1016/j.actbio.2016.06.017_b0125
  article-title: Tendon matrix composition and turnover in relation to functional requirements
  publication-title: Int. J. Exp. Pathol.
  doi: 10.1111/j.1365-2613.2007.00552.x
– volume: 107
  start-page: 166
  year: 1985
  ident: 10.1016/j.actbio.2016.06.017_b0020
  article-title: The effect of a lathyritic diet on the sensitivity of tendon to strain rate
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138537
– volume: 13
  start-page: 145
  year: 1985
  ident: 10.1016/j.actbio.2016.06.017_b0215
  article-title: Age related evolution of stable collagen reticulation in human skin
  publication-title: Connect Tissue Res.
  doi: 10.3109/03008208509152393
– volume: 102
  start-page: 2876
  year: 2012
  ident: 10.1016/j.actbio.2016.06.017_b0265
  article-title: Designed to fail: a novel mode of collagen fibril disruption and its relevance to tissue toughness
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2012.05.022
– volume: 61
  start-page: 708
  year: 1968
  ident: 10.1016/j.actbio.2016.06.017_b0235
  article-title: The cross-linking of collagen and elastin: enzymatic conversion of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an extract from bone
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.61.2.708
– volume: 108
  start-page: 47
  year: 2010
  ident: 10.1016/j.actbio.2016.06.017_b0255
  article-title: Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00944.2009
– volume: 16
  start-page: 457
  year: 1998
  ident: 10.1016/j.actbio.2016.06.017_b0300
  article-title: Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon
  publication-title: Matrix Biol.
  doi: 10.1016/S0945-053X(98)90017-8
– start-page: 81
  year: 2008
  ident: 10.1016/j.actbio.2016.06.017_b0180
  article-title: Restraining cross-links responsible for the mechanical properties of collagen fibers: natural and artificial
  publication-title: Collagen
  doi: 10.1007/978-0-387-73906-9_4
– volume: 9
  start-page: 3108
  year: 2012
  ident: 10.1016/j.actbio.2016.06.017_b0135
  article-title: Specialization of tendon mechanical properties results from interfascicular differences
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0362
– volume: 220
  start-page: 280
  year: 1968
  ident: 10.1016/j.actbio.2016.06.017_b0230
  article-title: Thermally labile cross-links in native collagen
  publication-title: Nature
  doi: 10.1038/220280a0
– volume: 285
  start-page: 15674
  year: 2010
  ident: 10.1016/j.actbio.2016.06.017_b0130
  article-title: Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.077503
– volume: 224
  start-page: 548
  year: 2014
  ident: 10.1016/j.actbio.2016.06.017_b0360
  article-title: 3-D ultrastructure and collagen composition of healthy and overloaded human tendon: evidence of tenocyte and matrix buckling
  publication-title: J. Anat.
  doi: 10.1111/joa.12164
– volume: 26
  start-page: 223
  year: 1975
  ident: 10.1016/j.actbio.2016.06.017_b0075
  article-title: Effects of age and of mechanical deformation on the ultrastructure of tendon
  publication-title: Colston Papers
– volume: 33
  start-page: 1090
  year: 2005
  ident: 10.1016/j.actbio.2016.06.017_b0065
  article-title: The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-005-5777-9
– volume: 27
  start-page: 182
  year: 2008
  ident: 10.1016/j.actbio.2016.06.017_b0290
  article-title: Matrix metabolism rate differs in functionally distinct tendons
  publication-title: Matrix Biol.
– volume: 34
  start-page: 397
  year: 1980
  ident: 10.1016/j.actbio.2016.06.017_b0085
  article-title: Deformation in tendon collagen
  publication-title: Symp. Soc. Exp. Biol.
– volume: 45
  start-page: 2061
  year: 2012
  ident: 10.1016/j.actbio.2016.06.017_b0110
  article-title: Characterizing local collagen fiber re-alignment and crimp behavior throughout mechanical testing in a mature mouse supraspinatus tendon model
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.06.006
– volume: 33
  start-page: 1016
  year: 2005
  ident: 10.1016/j.actbio.2016.06.017_b0355
  article-title: The guanine-thymine dinucleotide repeat polymorphism within the tenascin-C gene is associated with Achilles tendon injuries
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546504271986
– volume: 4
  year: 2015
  ident: 10.1016/j.actbio.2016.06.017_b0005
  article-title: A structure-based extracellular matrix expansion mechanism of fibrous tissue growth
  publication-title: eLife
  doi: 10.7554/eLife.05958
– volume: 28
  start-page: 503
  year: 2009
  ident: 10.1016/j.actbio.2016.06.017_b0070
  article-title: Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2009.08.002
– volume: 38
  start-page: 1741
  year: 2010
  ident: 10.1016/j.actbio.2016.06.017_b0100
  article-title: Second harmonic generation imaging and fourier transform spectral analysis reveal damage in fatigue-loaded tendons
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-9976-7
– year: 2015
  ident: 10.1016/j.actbio.2016.06.017_b0365
  article-title: Structural differences between distinct tendon types arise during fetal development
– volume: 76
  start-page: 3243
  year: 1999
  ident: 10.1016/j.actbio.2016.06.017_b0030
  article-title: Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77476-X
– volume: 16
  start-page: 184
  year: 2015
  ident: 10.1016/j.actbio.2016.06.017_b0335
  article-title: Factors associated with magnetic resonance imaging defined patellar tendinopathy in community-based middle-aged women: a prospective cohort study
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/s12891-015-0645-8
– volume: 35
  start-page: 1961
  year: 2007
  ident: 10.1016/j.actbio.2016.06.017_b0040
  article-title: Increased proteolysis of collagen in an in vitro tensile overload tendon model
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-007-9375-x
– volume: 247
  start-page: 207
  year: 2005
  ident: 10.1016/j.actbio.2016.06.017_b0015
  article-title: Collagen cross-links
  publication-title: Top. Curr. Chem.
  doi: 10.1007/b103828
– volume: 43
  start-page: 2477
  year: 2015
  ident: 10.1016/j.actbio.2016.06.017_b0080
  article-title: The mechanical, structural, and compositional changes of tendon exposed to elastase
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1308-5
– volume: 9
  start-page: 7948
  year: 2013
  ident: 10.1016/j.actbio.2016.06.017_b0140
  article-title: Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.05.004
– volume: 357
  start-page: 191
  year: 2002
  ident: 10.1016/j.actbio.2016.06.017_b0240
  article-title: Viscoelastic properties of collagen: synchrotron radiation investigations and structural model
  publication-title: Philos. Trans. R. Soc. London, Ser. B
  doi: 10.1098/rstb.2001.1033
– volume: 43
  start-page: 2943
  year: 1995
  ident: 10.1016/j.actbio.2016.06.017_b0285
  article-title: Kink band formation and band broadening in fiber composites under compressive loading
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(95)00001-C
– volume: 35
  start-page: 399
  year: 1998
  ident: 10.1016/j.actbio.2016.06.017_b0170
  article-title: Thermomechanical analysis of collagen crosslinking in the developing ovine thoracic aorta
  publication-title: Biorheology
  doi: 10.1016/S0006-355X(99)80019-5
– volume: 160
  start-page: 447
  year: 1968
  ident: 10.1016/j.actbio.2016.06.017_b0175
  article-title: Intermediate labile intermolecular crosslinks in collagen fibres
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2795(68)90216-X
– volume: 35
  start-page: 1
  year: 1998
  ident: 10.1016/j.actbio.2016.06.017_b0220
  article-title: Thermomechanical analysis of collagen crosslinking in the developing lamb pericardium
  publication-title: Biorheology
  doi: 10.1016/S0006-355X(98)00016-X
– volume: 52
  start-page: 1071
  year: 2004
  ident: 10.1016/j.actbio.2016.06.017_b0270
  article-title: Kink band instability in layered structures
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2003.09.026
– volume: 47
  start-page: 3794
  year: 2014
  ident: 10.1016/j.actbio.2016.06.017_b0105
  article-title: In situ fibril stretch and sliding is location-dependent in mouse supraspinatus tendons
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.10.029
– volume: 25
  start-page: 458
  year: 2007
  ident: 10.1016/j.actbio.2016.06.017_b0045
  article-title: Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features—a comparative study in an ovine model
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20218
– volume: 33
  start-page: 561
  year: 2005
  ident: 10.1016/j.actbio.2016.06.017_b0330
  article-title: Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546504270454
– volume: 31
  start-page: 1907
  year: 2013
  ident: 10.1016/j.actbio.2016.06.017_b0160
  article-title: Cross-link stabilization does not affect the response of collagen molecules, fibrils, or tendons to tensile overload
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22460
– volume: 107
  start-page: 1995
  year: 1988
  ident: 10.1016/j.actbio.2016.06.017_b0295
  article-title: Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.107.5.1995
– volume: 52
  start-page: 415
  year: 2011
  ident: 10.1016/j.actbio.2016.06.017_b0060
  article-title: Tensile force transmission in human patellar tendon fascicles is not mediated by glycosaminoglycans
  publication-title: Connect Tissue Res.
  doi: 10.3109/03008207.2010.551569
– volume: 9
  start-page: 253
  year: 1982
  ident: 10.1016/j.actbio.2016.06.017_b0205
  article-title: The rate of collagen maturation in rat and human skin
  publication-title: Connect Tissue Res.
  doi: 10.3109/03008208209160271
– volume: 16
  start-page: 19
  year: 2006
  ident: 10.1016/j.actbio.2016.06.017_b0350
  article-title: The COL5A1 gene and Achilles tendon pathology
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/j.1600-0838.2005.00439.x
– volume: 17
  start-page: 115
  year: 1995
  ident: 10.1016/j.actbio.2016.06.017_b0155
  article-title: A multi-sample denaturation temperature tester for collagenous biomaterials
  publication-title: Med. Eng. Phys.
  doi: 10.1016/1350-4533(95)91882-H
– volume: 106
  start-page: 1
  year: 1998
  ident: 10.1016/j.actbio.2016.06.017_b0210
  article-title: Mechanisms of maturation and ageing of collagen
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/S0047-6374(98)00119-5
– volume: 1
  start-page: 257
  year: 1984
  ident: 10.1016/j.actbio.2016.06.017_b0050
  article-title: Tendons and ligaments: a morphological and biochemical comparison
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100010305
– volume: 35
  start-page: 314
  year: 2003
  ident: 10.1016/j.actbio.2016.06.017_b0120
  article-title: Are the material properties and matrix composition of equine flexor and extensor tendons determined by their functions?
  publication-title: Equine Vet. J.
  doi: 10.2746/042516403776148327
– volume: 43
  start-page: 1066
  year: 2015
  ident: 10.1016/j.actbio.2016.06.017_b0310
  article-title: The epidemiology and health care burden of tennis elbow: a population-based study
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546514568087
– volume: 210
  start-page: 415
  year: 1986
  ident: 10.1016/j.actbio.2016.06.017_b0190
  article-title: Elastic extension of leg tendons in the locomotion of horses (Equus caballus)
  publication-title: J. Zool.
  doi: 10.1111/j.1469-7998.1986.tb03646.x
– volume: 5
  start-page: 256
  year: 2013
  ident: 10.1016/j.actbio.2016.06.017_b0305
  article-title: Epidemiology of rotator cuff tendinopathy: a systematic review
  publication-title: Shoulder Elbow
  doi: 10.1111/sae.12028
– volume: 86-B
  start-page: 696
  year: 2004
  ident: 10.1016/j.actbio.2016.06.017_b0345
  article-title: Genetic influences in the aetiology of tears of the rotator cuff
  publication-title: J. Bone Joint Surg. Bm.
  doi: 10.1302/0301-620X.86B5.14747
– volume: 9
  year: 2014
  ident: 10.1016/j.actbio.2016.06.017_b0090
  article-title: Advanced glycation end-products reduce collagen molecular sliding to affect collagen fibril damage mechanisms but not stiffness
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0110948
– volume: 15
  start-page: 133
  year: 2005
  ident: 10.1016/j.actbio.2016.06.017_b0325
  article-title: Cumulative incidence of achilles tendon rupture and tendinopathy in male former elite athletes
  publication-title: Clin. J. Sport Med.
  doi: 10.1097/01.jsm.0000165347.55638.23
– volume: 216
  start-page: 309
  year: 1988
  ident: 10.1016/j.actbio.2016.06.017_b0145
  article-title: Why are mammalian tendons so thick?
  publication-title: J. Zool.
  doi: 10.1111/j.1469-7998.1988.tb02432.x
– volume: 50
  start-page: 1089
  year: 1989
  ident: 10.1016/j.actbio.2016.06.017_b0185
  article-title: Application of a Hall-effect transducer for measurement of tendon strains in horses
  publication-title: Am. J. Vet. Res.
  doi: 10.2460/ajvr.1989.50.07.1089
– volume: 28
  start-page: 1380
  year: 2010
  ident: 10.1016/j.actbio.2016.06.017_b0095
  article-title: Cycle-dependent matrix remodeling gene expression response in fatigue-loaded rat patellar tendons
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.21132
– volume: 228
  start-page: 49
  year: 2014
  ident: 10.1016/j.actbio.2016.06.017_b0150
  article-title: Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour
  publication-title: Proc. Inst. Mech. Eng. H
  doi: 10.1177/0954411913509977
– volume: 120
  start-page: 73
  year: 1998
  ident: 10.1016/j.actbio.2016.06.017_b0195
  article-title: Muscle-tendon stresses and elastic energy storage during locomotion in the horse
  publication-title: Comp. Biochem. Physiol. B: Biochem. Mol. Biol.
  doi: 10.1016/S0305-0491(98)00024-8
– volume: 45
  start-page: 1026
  year: 2011
  ident: 10.1016/j.actbio.2016.06.017_b0320
  article-title: Incidence of midportion Achilles tendinopathy in the general population
  publication-title: Br. J. Sports Med.
  doi: 10.1136/bjsports-2011-090342
– volume: 33
  start-page: 54
  year: 2014
  ident: 10.1016/j.actbio.2016.06.017_b0260
  article-title: Mechanically overloading collagen fibrils uncoils collagen molecules, placing them in a stable, denatured state
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2013.07.003
– volume: 103
  start-page: 9001
  year: 2006
  ident: 10.1016/j.actbio.2016.06.017_b0010
  article-title: Microfibrillar structure of type I collagen in situ
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0502718103
– volume: 36
  start-page: 253
  year: 1997
  ident: 10.1016/j.actbio.2016.06.017_b0200
  article-title: An age-related study of morphology and cross-link composition of collagen fibrils in the digital flexor tendons of young thoroughbred horses
  publication-title: Connect Tissue Res.
  doi: 10.3109/03008209709160225
– volume: 39
  start-page: 1984
  year: 2011
  ident: 10.1016/j.actbio.2016.06.017_b0315
  article-title: Prevalence of Jumper’s knee among nonelite athletes from different sports: a cross-sectional survey
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546511413370
– volume: 50
  start-page: 211
  year: 2009
  ident: 10.1016/j.actbio.2016.06.017_b0025
  article-title: Glutaraldehyde cross-linking of tendon—mechanical effects at the level of the tendon fascicle and fibril
  publication-title: Connect Tissue Res.
  doi: 10.1080/03008200802610040
– volume: 31
  start-page: 731
  year: 2012
  ident: 10.1016/j.actbio.2016.06.017_b0115
  article-title: Repeated subrupture overload causes progression of nanoscaled discrete plasticity damage in tendon collagen fibrils
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22292
– volume: 346
  start-page: 551
  year: 2005
  ident: 10.1016/j.actbio.2016.06.017_b0035
  article-title: The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.12.001
– volume: 84
  start-page: 1289
  year: 1973
  ident: 10.1016/j.actbio.2016.06.017_b0275
  article-title: Kink-band folding, Valley and Ridge Province, Pennsylvania
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/0016-7606(1973)84<1289:KFVARP>2.0.CO;2
SSID ssj0038128
Score 2.4622068
Snippet [Display omitted] In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of...
In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 296
SubjectTerms Animals
Assessments
Biomechanical Phenomena
Calorimetry, Differential Scanning
Cattle
Collagen fibril
Collagens
Crosslinking
Damage
Fatigue failure
Fatigue strength
Fibrillar Collagens - chemistry
Fibrillar Collagens - metabolism
Fibrillar Collagens - ultrastructure
Flexors
Isometric Contraction
Mechanics
Muscle Fatigue
Rupture
Scanning electron microscopy
Structure-function
Temperature
Tendon
Tendons
Tendons - pathology
Tendons - physiopathology
Tendons - ultrastructure
Weight-Bearing
Title Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading
URI https://dx.doi.org/10.1016/j.actbio.2016.06.017
https://www.ncbi.nlm.nih.gov/pubmed/27321189
https://www.proquest.com/docview/1815365398
https://www.proquest.com/docview/1819134475
https://www.proquest.com/docview/1835647127
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBYhvbSH0nfTR1Bhr2piS7LkYwgNaUtz6QZyE5IttSnBDnksLAv723fGskML7QZ6s834OaOZT_I3M4RcBFfwkHLLHBeCCRcylqfBMaxlp622acIxOfnbIpsvxZeVXPXItMuFQVpl6_ujT2-8dXtk1H7N0Xa9Hn0HLJ0qCEeAKMZpLlaYwS4UWvnH2xPNAwJS018VhRlKd-lzDcfLFge3xhTAJGuqeDZty_4anv4FP5swNHtCHrf4kU7iIz4lPV89I49-qyr4nNzgYgC4iYoG5PNv9nQNmxC_4rLf5pqWOLBhn-ICOJgd_WmvPI29UuASNBaVxYIcdBc5tH5PD3UrTnfHLf53oLYqaQDN_jh6uqkbMv4Lspx9upzOWdtjgRUw-g6szP1YhlAKmXrvtCiTgJMkWxa-gJmz1TIrxi5xXHrACqrQWMnWKzgIOI-LnL8k_aqu_GtCc1EiuFKg9QCTGq-dDOMATsLqVJUqDAjvPq0p2gLk2AdjYzqm2S8TFWJQIQYJd4kaEHY6axsLcJyRV53WzB-GZCBGnDnzQ6dkA2MMf5zYytfHvQEUJDnW8NX3yiCJQSh5nwyXGaCBFO71KlrR6Z0ARsJcXOdv_vv535KHuIdklkS-I30wFf8eENPBDZshMSQPJp-_zhd3hxEXvw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8rDtYdoYMPbpSXu12sR24jxW1VAZ0JeB1DfLTmwoqtKKtkiIf567OEFD2kDaWz7O-brz3c_O-XcAP4IrRUiF5U5IyaULGS_S4Dhx2WmrbZoIWpx8OsnG5_LXVE23YNSthaG0ytb3R5_eeOv2SL_9mv3lbNb_jVg6zTEcIaIYpIWcvoBtYqdSPdgeHh2PJ51DxpjUlFgleU4NuhV0TZqXLdduRqsAk6wh8mwql_01Qv0LgTaR6PAtvGkhJBvGp3wHW77egdd_EAu-hzuaD0BPUbNAKf3zFZvhJoawOPM3v2UV9W3cZzQHjpbHLu2NZ7FcCl6CRV5Z4uRg1zGN1q_YetGKs-vNkn49MFtXLKByLzaezRdNPv4unB_-PBuNeVtmgZfYAde8KvxAhVBJlXrvtKySQOMkW5W-xMGz1SorBy5xQnmEC3mpiczW53gQoZ6QhdiDXr2o_QdghawIX-Wo-IDjGq-dCoOAfsLqNK_ycACi-7SmbDnIqRTG3HTJZlcmKsSQQgzl3CX5AfCHVsvIwfGMfN5pzTyyJYNh4pmW3zslG-xm9O_E1n6xWRkEQkoQja9-UobyGNAEn5IRKkNAkOK99qMVPbwTIkkcjuvi438__zd4OT47PTEnR5PjT_CKzlBuS6I-Qw_Nxn9BALV2X9sOcg8H1hpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collagen+fibrils+in+functionally+distinct+tendons+have+differing+structural+responses+to+tendon+rupture+and+fatigue+loading&rft.jtitle=Acta+biomaterialia&rft.au=Herod%2C+Tyler+W&rft.au=Chambers%2C+Neil+C&rft.au=Veres%2C+Samuel+P&rft.date=2016-09-15&rft.issn=1742-7061&rft.volume=42&rft.spage=296&rft.epage=307&rft_id=info:doi/10.1016%2Fj.actbio.2016.06.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon