ZebRA: An overview of retinoic acid signaling during zebrafish development
Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and organogenesis. Many studies performed in mammalian or avian models have successfully undertaken the investigation of the role played by RA during embryoge...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1849; no. 2; pp. 73 - 83 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and organogenesis. Many studies performed in mammalian or avian models have successfully undertaken the investigation of the role played by RA during embryogenesis.
Since the early 1980s, the zebrafish (Danio rerio) has emerged as a powerful developmental model to study the in vivo role of RA during embryogenesis. Unlike mammalian models, zebrafish embryogenesis is external, not only allowing the observation of the translucent embryo from the earliest steps but also providing an easily accessible system for pharmacological treatment or genetic approaches. Therefore, zebrafish research largely participates in deciphering the role of RA during development.
This review aims at illustrating different concepts of RA signaling based on the research performed on zebrafish. Indeed, RA action relies on a multitude of cross-talk with other signaling pathways and requires a coordinated, dynamic and fine-regulation of its level and activity in both temporal and spatial dimensions. This review also highlights major advances that have been discovered using zebrafish such as the observation of the RA gradient in vivo for the first time, the effects of RA signaling in brain patterning, its role in establishing left–right asymmetry and its effects on the development of a variety of organs and tissues including the heart, blood, bone and fat.
This review demonstrates that the zebrafish is a convenient and powerful model to study retinoic acid signaling during vertebrate embryogenesis. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
•We reviewed the biology of RA signaling in the zebrafish model.•We reviewed the latest advances in RA signaling in patterning and left right asymmetry.•We reviewed the gradient action of retinoic acid in zebrafish.•We reviewed the effect of retinoic acid signaling during zebrafish embryogenesis. |
---|---|
AbstractList | Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and organogenesis. Many studies performed in mammalian or avian models have successfully undertaken the investigation of the role played by RA during embryogenesis. Since the early 1980s, the zebrafish (Danio rerio) has emerged as a powerful developmental model to study the in vivo role of RA during embryogenesis. Unlike mammalian models, zebrafish embryogenesis is external, not only allowing the observation of the translucent embryo from the earliest steps but also providing an easily accessible system for pharmacological treatment or genetic approaches. Therefore, zebrafish research largely participates in deciphering the role of RA during development. This review aims at illustrating different concepts of RA signaling based on the research performed on zebrafish. Indeed, RA action relies on a multitude of cross-talk with other signaling pathways and requires a coordinated, dynamic and fine-regulation of its level and activity in both temporal and spatial dimensions. This review also highlights major advances that have been discovered using zebrafish such as the observation of the RA gradient in vivo for the first time, the effects of RA signaling in brain patterning, its role in establishing left-right asymmetry and its effects on the development of a variety of organs and tissues including the heart, blood, bone and fat. This review demonstrates that the zebrafish is a convenient and powerful model to study retinoic acid signaling during vertebrate embryogenesis. This article is part of a Special Issue entitled: Nuclear receptors in animal development. Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and organogenesis. Many studies performed in mammalian or avian models have successfully undertaken the investigation of the role played by RA during embryogenesis. Since the early 1980s, the zebrafish (Danio rerio) has emerged as a powerful developmental model to study the in vivo role of RA during embryogenesis. Unlike mammalian models, zebrafish embryogenesis is external, not only allowing the observation of the translucent embryo from the earliest steps but also providing an easily accessible system for pharmacological treatment or genetic approaches. Therefore, zebrafish research largely participates in deciphering the role of RA during development. This review aims at illustrating different concepts of RA signaling based on the research performed on zebrafish. Indeed, RA action relies on a multitude of cross-talk with other signaling pathways and requires a coordinated, dynamic and fine-regulation of its level and activity in both temporal and spatial dimensions. This review also highlights major advances that have been discovered using zebrafish such as the observation of the RA gradient in vivo for the first time, the effects of RA signaling in brain patterning, its role in establishing left-right asymmetry and its effects on the development of a variety of organs and tissues including the heart, blood, bone and fat. This review demonstrates that the zebrafish is a convenient and powerful model to study retinoic acid signaling during vertebrate embryogenesis. This article is part of a Special Issue entitled: Nuclear receptors in animal development. Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and organogenesis. Many studies performed in mammalian or avian models have successfully undertaken the investigation of the role played by RA during embryogenesis. Since the early 1980s, the zebrafish (Danio rerio) has emerged as a powerful developmental model to study the in vivo role of RA during embryogenesis. Unlike mammalian models, zebrafish embryogenesis is external, not only allowing the observation of the translucent embryo from the earliest steps but also providing an easily accessible system for pharmacological treatment or genetic approaches. Therefore, zebrafish research largely participates in deciphering the role of RA during development. This review aims at illustrating different concepts of RA signaling based on the research performed on zebrafish. Indeed, RA action relies on a multitude of cross-talk with other signaling pathways and requires a coordinated, dynamic and fine-regulation of its level and activity in both temporal and spatial dimensions. This review also highlights major advances that have been discovered using zebrafish such as the observation of the RA gradient in vivo for the first time, the effects of RA signaling in brain patterning, its role in establishing left-right asymmetry and its effects on the development of a variety of organs and tissues including the heart, blood, bone and fat. This review demonstrates that the zebrafish is a convenient and powerful model to study retinoic acid signaling during vertebrate embryogenesis. This article is part of a Special Issue entitled: Nuclear receptors in animal development.Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and organogenesis. Many studies performed in mammalian or avian models have successfully undertaken the investigation of the role played by RA during embryogenesis. Since the early 1980s, the zebrafish (Danio rerio) has emerged as a powerful developmental model to study the in vivo role of RA during embryogenesis. Unlike mammalian models, zebrafish embryogenesis is external, not only allowing the observation of the translucent embryo from the earliest steps but also providing an easily accessible system for pharmacological treatment or genetic approaches. Therefore, zebrafish research largely participates in deciphering the role of RA during development. This review aims at illustrating different concepts of RA signaling based on the research performed on zebrafish. Indeed, RA action relies on a multitude of cross-talk with other signaling pathways and requires a coordinated, dynamic and fine-regulation of its level and activity in both temporal and spatial dimensions. This review also highlights major advances that have been discovered using zebrafish such as the observation of the RA gradient in vivo for the first time, the effects of RA signaling in brain patterning, its role in establishing left-right asymmetry and its effects on the development of a variety of organs and tissues including the heart, blood, bone and fat. This review demonstrates that the zebrafish is a convenient and powerful model to study retinoic acid signaling during vertebrate embryogenesis. This article is part of a Special Issue entitled: Nuclear receptors in animal development. Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and organogenesis. Many studies performed in mammalian or avian models have successfully undertaken the investigation of the role played by RA during embryogenesis. Since the early 1980s, the zebrafish (Danio rerio) has emerged as a powerful developmental model to study the in vivo role of RA during embryogenesis. Unlike mammalian models, zebrafish embryogenesis is external, not only allowing the observation of the translucent embryo from the earliest steps but also providing an easily accessible system for pharmacological treatment or genetic approaches. Therefore, zebrafish research largely participates in deciphering the role of RA during development. This review aims at illustrating different concepts of RA signaling based on the research performed on zebrafish. Indeed, RA action relies on a multitude of cross-talk with other signaling pathways and requires a coordinated, dynamic and fine-regulation of its level and activity in both temporal and spatial dimensions. This review also highlights major advances that have been discovered using zebrafish such as the observation of the RA gradient in vivo for the first time, the effects of RA signaling in brain patterning, its role in establishing left–right asymmetry and its effects on the development of a variety of organs and tissues including the heart, blood, bone and fat. This review demonstrates that the zebrafish is a convenient and powerful model to study retinoic acid signaling during vertebrate embryogenesis. This article is part of a Special Issue entitled: Nuclear receptors in animal development. •We reviewed the biology of RA signaling in the zebrafish model.•We reviewed the latest advances in RA signaling in patterning and left right asymmetry.•We reviewed the gradient action of retinoic acid in zebrafish.•We reviewed the effect of retinoic acid signaling during zebrafish embryogenesis. |
Author | Gibert, Yann Laudet, Vincent Fraher, Daniel Samarut, Eric |
Author_xml | – sequence: 1 givenname: Eric surname: Samarut fullname: Samarut, Eric organization: Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Lyon 1, Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France – sequence: 2 givenname: Daniel surname: Fraher fullname: Fraher, Daniel organization: Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin School of Medicine, 75 Pigdons Road, Waurn Ponds, VIC 3217, Australia – sequence: 3 givenname: Vincent surname: Laudet fullname: Laudet, Vincent organization: Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Lyon 1, Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France – sequence: 4 givenname: Yann surname: Gibert fullname: Gibert, Yann email: y.gibert@deakin.edu.au organization: Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin School of Medicine, 75 Pigdons Road, Waurn Ponds, VIC 3217, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24928143$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URB_wDxDKkk3CtZ3YcRdIo4pXValSBRs2lh83g0eJPdiZQfDryTCFRRfA6tzFd87ifufkJKaIhDyn0FCg4tWmsdas89QwoG0DXQMcHpEz2ktRt5zBya-7rRVX6pScl7IBEJQBPCGnrFWspy0_I9ef0d6tLqtVrNIe8z7gtyoNVcY5xBRcZVzwVQnraMYQ15Xf5UP8QJvNEMqXyuMex7SdMM5PyePBjAWf3ecF-fT2zcer9_XN7bsPV6ub2nWczrUH6vpBWQRLJe2dk4LKAaRUINFyJlvlrZFGKUmlc4PoqBWsZd6LDvre8gvy8ri7zenrDsusp1AcjqOJmHZFU6Eko33HxX-gArjiHeUL-uIe3dkJvd7mMJn8Xf9-1QK0R8DlVErG4Q9CQR-M6I0-GtEHIxo6vRhZapcPai7MZg4pztmE8V_l18cyLv9c3GRdXMDo0IeMbtY-hb8P_ARBj6dW |
CitedBy_id | crossref_primary_10_1016_j_aquatox_2020_105733 crossref_primary_10_1016_j_aqrep_2024_102460 crossref_primary_10_1242_dev_129189 crossref_primary_10_1186_s43682_024_00030_y crossref_primary_10_1016_j_reprotox_2023_108404 crossref_primary_10_1016_j_neuro_2015_10_001 crossref_primary_10_1002_dvg_23091 crossref_primary_10_1371_journal_pone_0143825 crossref_primary_10_18632_oncotarget_13500 crossref_primary_10_1530_JME_17_0031 crossref_primary_10_1002_dvdy_723 crossref_primary_10_1016_j_cbi_2025_111413 crossref_primary_10_3390_biom10091278 crossref_primary_10_3390_biomedicines11041180 crossref_primary_10_3389_fcell_2022_844619 crossref_primary_10_1186_s12302_020_00428_0 crossref_primary_10_1242_dev_178590 crossref_primary_10_24857_rgsa_v18n4_169 crossref_primary_10_1016_j_tox_2023_153461 crossref_primary_10_1016_j_toxlet_2023_07_005 crossref_primary_10_1007_s00018_018_2974_x crossref_primary_10_3390_molecules22030454 crossref_primary_10_1016_j_reprotox_2022_11_001 crossref_primary_10_1016_j_scitotenv_2021_147981 crossref_primary_10_3390_nu9020159 crossref_primary_10_1002_dvg_23460 crossref_primary_10_1080_23262133_2016_1232678 crossref_primary_10_1093_toxsci_kfz169 crossref_primary_10_1016_j_ydbio_2021_03_012 crossref_primary_10_1016_j_chemosphere_2017_01_036 crossref_primary_10_1016_j_envres_2020_109923 crossref_primary_10_1016_j_ygcen_2018_08_015 crossref_primary_10_3389_fcell_2023_1282273 crossref_primary_10_3390_biom9100567 crossref_primary_10_1016_j_aquatox_2022_106151 crossref_primary_10_1016_j_mod_2018_11_001 crossref_primary_10_1016_j_aquatox_2024_107143 crossref_primary_10_3390_jdb7020011 crossref_primary_10_1016_j_chemosphere_2024_142835 crossref_primary_10_1016_j_ygcen_2020_113685 crossref_primary_10_3389_fcell_2019_00342 crossref_primary_10_1002_dvg_23278 crossref_primary_10_1016_j_neuro_2017_05_011 crossref_primary_10_1371_journal_pgen_1006936 crossref_primary_10_1016_j_aquatox_2016_08_003 |
Cites_doi | 10.1242/dev.040048 10.1242/dev.021238 10.3177/jnsv.54.347 10.1038/330444a0 10.1242/dev.127.2.225 10.1247/csf.26.227 10.1182/blood-2009-10-249557 10.1111/j.1432-0436.1982.tb01279.x 10.1111/j.1365-2710.2008.00935.x 10.1083/jcb.200211117 10.4161/cam.4.4.12962 10.1083/jcb.200204060 10.1093/hmg/ddt179 10.1038/nature03512 10.1128/MCB.16.4.1567 10.1016/S0925-4773(96)00616-8 10.1016/j.ydbio.2012.09.001 10.1016/j.ydbio.2005.06.019 10.1016/S0925-4773(99)00202-6 10.1038/nrg819 10.1002/cbin.10005 10.1210/me.2013-1358 10.1242/dev.042150 10.1194/jlr.M800590-JLR200 10.1038/sj.onc.1207943 10.1016/j.ydbio.2008.09.022 10.1242/dev.122.11.3409 10.1074/jbc.M408830200 10.1002/jmor.1065 10.1021/bi0619268 10.2337/db11-1620 10.1096/fj.12-209304 10.1016/j.mod.2004.02.008 10.1101/cshperspect.a000869 10.1002/jcp.20115 10.2337/diabetes.53.4.882 10.1006/dbio.1997.8795 10.2174/0929867311320190005 10.1006/scdb.1998.0278 10.1242/dev.122.1.195 10.1002/dvdy.10387 10.1126/science.1108363 10.1002/tera.1420070310 10.1007/s00018-012-0985-6 10.1101/gad.908801 10.1126/science.1060418 10.1038/nrn1221 10.1371/journal.pone.0008261 10.1016/j.ydbio.2011.04.018 10.1371/journal.pgen.0030188 10.1016/j.ydbio.2004.11.023 10.1096/fj.07-8739com 10.1016/j.ydbio.2004.03.033 10.1242/dev.044164 10.1016/j.ydbio.2009.04.011 10.1016/j.ydbio.2005.07.015 10.1002/jss.400140214 10.1242/dev.02438 10.1016/j.ydbio.2006.11.035 10.1016/0012-1606(92)90094-W 10.1242/dev.00423 10.3945/jn.109.112730 10.1016/j.ydbio.2004.08.017 10.1002/dvdy.20905 10.1038/35047564 10.1038/330624a0 10.1371/journal.pbio.0050304 10.1007/BF00636333 10.1038/418037a 10.1242/dev.02706 10.1016/S1043-6618(03)00035-5 10.1038/sj.ijo.0802613 10.1371/journal.pone.0030865 10.1016/S0959-437X(02)00325-8 10.1074/jbc.M111.244327 10.1016/j.ydbio.2012.11.022 10.1096/fj.09-147488 10.1016/j.exphem.2005.06.013 10.1016/0303-7207(94)90123-6 10.1016/j.ydbio.2011.09.010 10.1016/S0960-9822(02)00929-6 10.1242/dev.129.12.2851 10.1128/MCB.17.3.1552 10.1006/dbio.2001.0485 10.1016/j.cell.2013.08.055 10.1038/nature03488 10.1016/j.ydbio.2006.11.021 10.1210/en.2006-0760 10.1002/dvdy.21695 10.1016/j.ydbio.2011.07.022 10.1016/j.gep.2007.12.007 10.1242/dev.00437 10.1126/science.1101573 10.1016/j.gep.2007.11.003 10.1242/dev.128.16.3081 10.1161/01.RES.77.2.216 10.1182/blood-2010-01-263335 10.1101/cshperspect.a000802 10.1371/journal.pgen.0020102 10.1242/dev.024034 10.1002/dvdy.20128 10.1002/1521-1878(200101)23:1<54::AID-BIES1007>3.3.CO;2-X 10.1017/S0007114508967568 10.1002/bdrc.20012 10.1006/dbio.1998.8911 10.1371/journal.pgen.0030189 10.1242/dev.02204 10.1002/(SICI)1097-4687(199608)229:2<121::AID-JMOR1>3.0.CO;2-4 10.1016/j.devcel.2008.09.009 10.1038/nature01657 10.1046/j.1432-0436.1998.6330115.x 10.1002/dvdy.21838 10.1038/nature12037 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. Copyright © 2014 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Copyright © 2014 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 8FD F1W FR3 H95 L.G P64 RC3 7X8 |
DOI | 10.1016/j.bbagrm.2014.05.030 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Technology Research Database Nucleic Acids Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1876-4320 |
EndPage | 83 |
ExternalDocumentID | 24928143 10_1016_j_bbagrm_2014_05_030 S1874939914001527 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AGCQF AGRNS AIIUN ANKPU BNPGV CITATION SSH -~X .55 .GJ 1RT 3O- 5RE AAQXK AAYJJ ABEFU ABJNI AHHHB AI. AKRWK ASPBG AVWKF AZFZN CGR CUY CVF ECM EIF F5P FGOYB G-2 HLW H~9 K-O LX3 MVM NPM OHT R2- RIG SBG TWZ UHS VH1 WH7 WUQ X7M XJT Y6R YYP ZE2 ZGI ~KM 7TM 8FD F1W FR3 H95 L.G P64 RC3 7X8 |
ID | FETCH-LOGICAL-c531t-d01c8f9be0b1718cc7617f077907eb32749dba7a99717ccf651b6242dd65088b3 |
IEDL.DBID | .~1 |
ISSN | 1874-9399 0006-3002 |
IngestDate | Fri Jul 11 02:47:44 EDT 2025 Fri Jul 11 10:58:40 EDT 2025 Thu Apr 03 07:05:04 EDT 2025 Tue Jul 01 03:02:25 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Fri Feb 23 02:25:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Zebrafish RAR Embryogenesis Retinoic acid Organogenesis |
Language | English |
License | Copyright © 2014 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-d01c8f9be0b1718cc7617f077907eb32749dba7a99717ccf651b6242dd65088b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
PMID | 24928143 |
PQID | 1660393513 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1697218536 proquest_miscellaneous_1660393513 pubmed_primary_24928143 crossref_primary_10_1016_j_bbagrm_2014_05_030 crossref_citationtrail_10_1016_j_bbagrm_2014_05_030 elsevier_sciencedirect_doi_10_1016_j_bbagrm_2014_05_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Laue, Jänicke, Plaster, Sonntag, Hammerschmidt (bb0085) 2008; 135 Papan, Campos-Ortega (bb0315) 1993; 203 Davidson, Zon (bb0300) 2004; 23 Villanueva, Glavic, Ruiz, Mayor (bb0340) 2002; 241 Reijntjes, Blentic, Gale, Maden (bb0050) 2005; 285 Felipe, Bonet, Ribot, Palou (bb0495) 2004; 53 Waxman, Keegan, Roberts, Poss, Yelon (bb0265) 2008; 15 Kronenberg (bb0400) 2003; 423 Petkovich, Brand, Krust, Chambon (bb0010) 1987; 330 Wingert, Selleck, Yu, Song, Chen, Song, Zhou, Thisse, Thisse, McMahon (bb0560) 2007; 3 Minoux, Rijli (bb0355) 2010; 137 Ribes, Wang, Dolle, Niederreither (bb0120) 2006; 133 Pittlik, Domingues, Meyer, Begemann (bb0020) 2008; 8 Yutzey, Bader (bb0240) 1995; 77 Bird, Mabee (bb0405) 2003; 228 Alexa, Choe, Hirsch, Etheridge, Laver, Sagerstrom (bb0110) 2009; 4 Molotkova, Molotkov, Duester (bb0130) 2007; 303 Keegan, Feldman, Begemann, Ingham, Yelon (bb0260) 2005; 307 Iba, Chiba, Yamashita, Ishii, Sawada (bb0445) 2001; 26 Stainier (bb0230) 2001; 2 Spoorendonk, Peterson-Maduro, Renn, Trowe, Kranenbarg, Winkler, Schulte-Merker (bb0075) 2008; 135 Chen, Napoli (bb0280) 2008; 22 Schwarz, Reginato, Shao, Krakow, Lazar (bb0485) 1997; 17 Grandel, Lun, Rauch, Rhinn, Piotrowski, Houart, Sordino, Kuchler, Schulte-Merker, Geisler, Holder, Wilson, Brand (bb0070) 2002; 129 Papalopulu, Kintner (bb0165) 1996; 122 Kochhar (bb0425) 1973; 7 Song, Nacamuli, Xia, Bari, Shi, Fang, Longaker (bb0440) 2005; 202 Ragland, Raible (bb0350) 2004; 276 Garnaas, Cutting, Meyers, Kelsey, Harris, North, Goessling (bb0205) 2012; 372 Linville, Radtke, Waxman, Yelon, Schilling (bb0090) 2009; 325 Ellies, Langille, Martin, Akimenko, Ekker (bb0375) 1997; 61 Shimozono, Iimura, Kitaguchi, Higashijima, Miyawaki (bb0180) 2013; 496 Gibert, Bernard, Debiais-Thibaud, Bourrat, Joly, Pottin, Meyer, Retaux, Stock, Jackman, Seritrakul, Begemann, Laudet (bb0390) 2010; 24 Witten, Hansen, Hall (bb0415) 2001; 250 Koide, Downes, Chandraratna, Blumberg, Umesono (bb0025) 2001; 15 West, Mehra (bb0005) 2010; 140 Skillington, Choy, Derynck (bb0435) 2002; 159 Farber, Pack, Ho, Johnson, Wagner, Dosch, Mullins, Hendrickson, Hendrickson, Halpern (bb0540) 2001; 292 ZULET, Puchau, Hermsdorff, Navarro, Martinez (bb0510) 2008; 54 Gibert, Gajewski, Meyer, Begemann (bb0555) 2006; 133 Maves, Kimmel (bb0150) 2005; 285 Seritrakul, Samarut, Lama, Gibert, Laudet, Jackman (bb0370) 2012; 26 Knecht, Bronner-Fraser (bb0320) 2002; 3 Reifers, Walsh, Leger, Stainier, Brand (bb0275) 2000; 127 Kuri-Harcuch (bb0460) 1982; 23 Dobbs-McAuliffe, Zhao, Linney (bb0040) 2004; 121 Hsia, Zon (bb0305) 2005; 33 White, Schilling (bb0175) 2008; 237 Patatanian, Thompson (bb0515) 2008; 33 Moss, Xavier-Neto, Shapiro, Nayeem, McCaffery, Drager, Rosenthal (bb0255) 1998; 199 Liang, Zhang, Bao, Zhang, Xu, Gao, Zhao (bb0045) 2008; 8 Flynn, Trent, Rawls (bb0530) 2009; 50 Bakkers, Verhoeven, Abdelilah-Seyfried (bb0235) 2009; 330 Emoto, Wada, Okamoto, Kudo, Imai (bb0080) 2005; 278 Kawakami, Raya, Raya, Rodriguez-Esteban, Izpisua Belmonte (bb0195) 2005; 435 Yu, Liu, Miao, Yin, Lu, Lv, Ding, Deng (bb0290) 2010; 116 de Jong, Davidson, Wang, Palis, Opara, Pugach, Daley, Zon (bb0295) 2010; 116 Nadauld, Sandoval, Chidester, Yost, Jones (bb0570) 2004; 279 Vermot, Gallego Llamas, Fraulob, Niederreither, Chambon, Dolle (bb0185) 2005; 308 Hirokawa, Tanaka, Okada (bb0215) 2009; 1 Bonstein, Elias, Frank (bb0345) 1998; 193 Safonova, Darimont, Amri, Grimaldi, Ailhaud, Reichert, Shroot (bb0470) 1994; 104 White, Nie, Lander, Schilling (bb0160) 2007; 5 Liang, Jia, Li, Li, Zhao (bb0310) 2012; 7 Cohen-Tanugi, Forest (bb0450) 1998; 63 Sedova, Seda, Krenova, Kren, Kazdova (bb0520) 2004; 28 Begemann, Marx, Mebus, Meyer, Bastmeyer (bb0115) 2004; 271 Aybar, Mayor (bb0335) 2002; 12 Sorrell, Waxman (bb0270) 2011; 358 Klymkowsky, Rossi, Artinger (bb0330) 2010; 4 Xue, Schwarz, Chawla, Lazar (bb0490) 1996; 16 Halilagic, Ribes, Ghyselinck, Zile, Dolle, Studer (bb0135) 2007; 303 Mic, Molotkov, Molotkova, Duester (bb0125) 2004; 231 Gongal, March, Holly, Pillay, Berry-Wynne, Kagechika, Waskiewicz (bb0145) 2011; 355 Chanda, Ditadi, Iscove, Keller (bb0285) 2013; 155 Li, Kelsh, Croucher, Roehl (bb0455) 2010; 137 Hernandez, Putzke, Myers, Margaretha, Moens (bb0170) 2007; 134 Berry, DeSantis, Soltanian, Croniger, Noy (bb0500) 2012; 61 Redonnet, Ferrand, Bairras, Higueret, Noël-Suberville, Cassand, Atgié (bb0525) 2008; 100 Li, Felber, Elks, Croucher, Roehl (bb0420) 2009; 238 Stafford, Prince (bb0565) 2002; 12 Hyatt, Schmitt, Marsh-Armstrong, McCaffery, Drager, Dowling (bb0575) 1996; 122 Matsui, Bessho (bb0225) 2012; 69 Vermot, Pourquie (bb0190) 2005; 435 Gazit, Ebner, Kahn, Derynck (bb0430) 1993; 7 Morikawa, Hanada, Hirota, Nonaka, Ikeda (bb0475) 2013; 37 Qian, Yao, Jing, He, Xiao, Zhang, Meng, Zhu, Xu, Mo (bb0210) 2013; 374 Yahyavi, Abouzeid, Gawdat, de Preux, Xiao, Bardakjian, Schneider, Choi, Jorgenson, Baier, El Sada, Schorderet, Slavotinek (bb0095) 2013; 22 Hammond, Schulte-Merker (bb0410) 2009; 136 Weston, Blumberg, Underhill (bb0030) 2003; 161 Schlegel, Stainier (bb0545) 2006; 45 Aulehla, Pourquie (bb0155) 2010; 2 Nguyen, Schmid, Trout, Connors, Ekker, Mullins (bb0325) 1998 Halilagic, Zile, Studer (bb0140) 2003; 130 Mercader, Ribot, Murano, Felipe, Cinti, Bonet, Palou (bb0505) 2006; 147 Kopinke, Sasine, Swift, Stephens, Piotrowski (bb0365) 2006; 235 Bertrand, Thisse, Tavares, Sachs, Chaumot, Bardet, Escriva, Duffraisse, Marchand, Safi, Thisse, Laudet (bb0035) 2007; 3 Lampert, Holzschuh, Hessel, Driever, Vogt, von Lintig (bb0055) 2003; 130 Graham, Smith (bb0380) 2001; 23 Gibert, Trengove, Ward (bb0100) 2013; 20 Yelon, Stainier (bb0250) 1999; 10 Cubbage, Mabee (bb0395) 1996; 229 Gale, Zile, Maden (bb0105) 1999; 89 Begemann, Schilling, Rauch, Geisler, Ingham (bb0065) 2001; 128 Escriva, Bertrand, Germain, Robinson-Rechavi, Umbhauer, Cartry, Duffraisse, Holland, Gronemeyer, Laudet (bb0060) 2006; 2 Huang, Ma, Liu, Zhang, Luo (bb0200) 2011; 286 Miletich, Sharpe (bb0385) 2004; 72 Murray, Russell (bb0465) 1980; 14 Santagati, Rijli (bb0360) 2003; 4 Giguere, Ong, Segui, Evans (bb0015) 1987; 330 Phillips, Vernochet, Dani (bb0480) 2003; 47 Samarut, Gaudin, Hughes, Gillet, de Bernard, Jouve, Buffat, Allot, Lecompte, Berekelya, Rochette-Egly, Laudet (bb0550) 2014; 28 Stainier, Fishman (bb0245) 1992; 153 Carten, Bradford, Farber (bb0535) 2011; 360 Essner, Vogan, Wagner, Tabin, Yost, Brueckner (bb0220) 2002; 418 Papan (10.1016/j.bbagrm.2014.05.030_bb0315) 1993; 203 Kopinke (10.1016/j.bbagrm.2014.05.030_bb0365) 2006; 235 Stafford (10.1016/j.bbagrm.2014.05.030_bb0565) 2002; 12 Ribes (10.1016/j.bbagrm.2014.05.030_bb0120) 2006; 133 Moss (10.1016/j.bbagrm.2014.05.030_bb0255) 1998; 199 Essner (10.1016/j.bbagrm.2014.05.030_bb0220) 2002; 418 Gongal (10.1016/j.bbagrm.2014.05.030_bb0145) 2011; 355 Villanueva (10.1016/j.bbagrm.2014.05.030_bb0340) 2002; 241 Seritrakul (10.1016/j.bbagrm.2014.05.030_bb0370) 2012; 26 Xue (10.1016/j.bbagrm.2014.05.030_bb0490) 1996; 16 Kochhar (10.1016/j.bbagrm.2014.05.030_bb0425) 1973; 7 Safonova (10.1016/j.bbagrm.2014.05.030_bb0470) 1994; 104 Bird (10.1016/j.bbagrm.2014.05.030_bb0405) 2003; 228 Samarut (10.1016/j.bbagrm.2014.05.030_bb0550) 2014; 28 Phillips (10.1016/j.bbagrm.2014.05.030_bb0480) 2003; 47 Vermot (10.1016/j.bbagrm.2014.05.030_bb0185) 2005; 308 Matsui (10.1016/j.bbagrm.2014.05.030_bb0225) 2012; 69 Berry (10.1016/j.bbagrm.2014.05.030_bb0500) 2012; 61 Sorrell (10.1016/j.bbagrm.2014.05.030_bb0270) 2011; 358 Cohen-Tanugi (10.1016/j.bbagrm.2014.05.030_bb0450) 1998; 63 Kuri-Harcuch (10.1016/j.bbagrm.2014.05.030_bb0460) 1982; 23 Maves (10.1016/j.bbagrm.2014.05.030_bb0150) 2005; 285 Alexa (10.1016/j.bbagrm.2014.05.030_bb0110) 2009; 4 Reijntjes (10.1016/j.bbagrm.2014.05.030_bb0050) 2005; 285 Cubbage (10.1016/j.bbagrm.2014.05.030_bb0395) 1996; 229 Skillington (10.1016/j.bbagrm.2014.05.030_bb0435) 2002; 159 Morikawa (10.1016/j.bbagrm.2014.05.030_bb0475) 2013; 37 Song (10.1016/j.bbagrm.2014.05.030_bb0440) 2005; 202 Hammond (10.1016/j.bbagrm.2014.05.030_bb0410) 2009; 136 Nguyen (10.1016/j.bbagrm.2014.05.030_bb0325) 1998 Carten (10.1016/j.bbagrm.2014.05.030_bb0535) 2011; 360 Knecht (10.1016/j.bbagrm.2014.05.030_bb0320) 2002; 3 Chanda (10.1016/j.bbagrm.2014.05.030_bb0285) 2013; 155 Graham (10.1016/j.bbagrm.2014.05.030_bb0380) 2001; 23 Halilagic (10.1016/j.bbagrm.2014.05.030_bb0135) 2007; 303 Gazit (10.1016/j.bbagrm.2014.05.030_bb0430) 1993; 7 Liang (10.1016/j.bbagrm.2014.05.030_bb0310) 2012; 7 Papalopulu (10.1016/j.bbagrm.2014.05.030_bb0165) 1996; 122 Redonnet (10.1016/j.bbagrm.2014.05.030_bb0525) 2008; 100 Gale (10.1016/j.bbagrm.2014.05.030_bb0105) 1999; 89 Waxman (10.1016/j.bbagrm.2014.05.030_bb0265) 2008; 15 Giguere (10.1016/j.bbagrm.2014.05.030_bb0015) 1987; 330 Aybar (10.1016/j.bbagrm.2014.05.030_bb0335) 2002; 12 Bertrand (10.1016/j.bbagrm.2014.05.030_bb0035) 2007; 3 Miletich (10.1016/j.bbagrm.2014.05.030_bb0385) 2004; 72 Klymkowsky (10.1016/j.bbagrm.2014.05.030_bb0330) 2010; 4 Wingert (10.1016/j.bbagrm.2014.05.030_bb0560) 2007; 3 Linville (10.1016/j.bbagrm.2014.05.030_bb0090) 2009; 325 Schlegel (10.1016/j.bbagrm.2014.05.030_bb0545) 2006; 45 Santagati (10.1016/j.bbagrm.2014.05.030_bb0360) 2003; 4 Mic (10.1016/j.bbagrm.2014.05.030_bb0125) 2004; 231 Li (10.1016/j.bbagrm.2014.05.030_bb0455) 2010; 137 Minoux (10.1016/j.bbagrm.2014.05.030_bb0355) 2010; 137 Aulehla (10.1016/j.bbagrm.2014.05.030_bb0155) 2010; 2 ZULET (10.1016/j.bbagrm.2014.05.030_bb0510) 2008; 54 Kawakami (10.1016/j.bbagrm.2014.05.030_bb0195) 2005; 435 Huang (10.1016/j.bbagrm.2014.05.030_bb0200) 2011; 286 Garnaas (10.1016/j.bbagrm.2014.05.030_bb0205) 2012; 372 Bonstein (10.1016/j.bbagrm.2014.05.030_bb0345) 1998; 193 Ragland (10.1016/j.bbagrm.2014.05.030_bb0350) 2004; 276 Flynn (10.1016/j.bbagrm.2014.05.030_bb0530) 2009; 50 Halilagic (10.1016/j.bbagrm.2014.05.030_bb0140) 2003; 130 Weston (10.1016/j.bbagrm.2014.05.030_bb0030) 2003; 161 de Jong (10.1016/j.bbagrm.2014.05.030_bb0295) 2010; 116 Laue (10.1016/j.bbagrm.2014.05.030_bb0085) 2008; 135 Lampert (10.1016/j.bbagrm.2014.05.030_bb0055) 2003; 130 Hernandez (10.1016/j.bbagrm.2014.05.030_bb0170) 2007; 134 Dobbs-McAuliffe (10.1016/j.bbagrm.2014.05.030_bb0040) 2004; 121 Begemann (10.1016/j.bbagrm.2014.05.030_bb0115) 2004; 271 Escriva (10.1016/j.bbagrm.2014.05.030_bb0060) 2006; 2 Yu (10.1016/j.bbagrm.2014.05.030_bb0290) 2010; 116 Reifers (10.1016/j.bbagrm.2014.05.030_bb0275) 2000; 127 Koide (10.1016/j.bbagrm.2014.05.030_bb0025) 2001; 15 Sedova (10.1016/j.bbagrm.2014.05.030_bb0520) 2004; 28 Hyatt (10.1016/j.bbagrm.2014.05.030_bb0575) 1996; 122 Keegan (10.1016/j.bbagrm.2014.05.030_bb0260) 2005; 307 Begemann (10.1016/j.bbagrm.2014.05.030_bb0065) 2001; 128 White (10.1016/j.bbagrm.2014.05.030_bb0175) 2008; 237 Shimozono (10.1016/j.bbagrm.2014.05.030_bb0180) 2013; 496 Murray (10.1016/j.bbagrm.2014.05.030_bb0465) 1980; 14 Gibert (10.1016/j.bbagrm.2014.05.030_bb0555) 2006; 133 Li (10.1016/j.bbagrm.2014.05.030_bb0420) 2009; 238 Patatanian (10.1016/j.bbagrm.2014.05.030_bb0515) 2008; 33 Grandel (10.1016/j.bbagrm.2014.05.030_bb0070) 2002; 129 Mercader (10.1016/j.bbagrm.2014.05.030_bb0505) 2006; 147 Qian (10.1016/j.bbagrm.2014.05.030_bb0210) 2013; 374 Chen (10.1016/j.bbagrm.2014.05.030_bb0280) 2008; 22 Liang (10.1016/j.bbagrm.2014.05.030_bb0045) 2008; 8 Kronenberg (10.1016/j.bbagrm.2014.05.030_bb0400) 2003; 423 Bakkers (10.1016/j.bbagrm.2014.05.030_bb0235) 2009; 330 Ellies (10.1016/j.bbagrm.2014.05.030_bb0375) 1997; 61 Pittlik (10.1016/j.bbagrm.2014.05.030_bb0020) 2008; 8 Spoorendonk (10.1016/j.bbagrm.2014.05.030_bb0075) 2008; 135 Petkovich (10.1016/j.bbagrm.2014.05.030_bb0010) 1987; 330 Vermot (10.1016/j.bbagrm.2014.05.030_bb0190) 2005; 435 West (10.1016/j.bbagrm.2014.05.030_bb0005) 2010; 140 Felipe (10.1016/j.bbagrm.2014.05.030_bb0495) 2004; 53 Stainier (10.1016/j.bbagrm.2014.05.030_bb0230) 2001; 2 Farber (10.1016/j.bbagrm.2014.05.030_bb0540) 2001; 292 Iba (10.1016/j.bbagrm.2014.05.030_bb0445) 2001; 26 Yutzey (10.1016/j.bbagrm.2014.05.030_bb0240) 1995; 77 Molotkova (10.1016/j.bbagrm.2014.05.030_bb0130) 2007; 303 Schwarz (10.1016/j.bbagrm.2014.05.030_bb0485) 1997; 17 Hirokawa (10.1016/j.bbagrm.2014.05.030_bb0215) 2009; 1 Yelon (10.1016/j.bbagrm.2014.05.030_bb0250) 1999; 10 Yahyavi (10.1016/j.bbagrm.2014.05.030_bb0095) 2013; 22 Gibert (10.1016/j.bbagrm.2014.05.030_bb0100) 2013; 20 Gibert (10.1016/j.bbagrm.2014.05.030_bb0390) 2010; 24 Hsia (10.1016/j.bbagrm.2014.05.030_bb0305) 2005; 33 Witten (10.1016/j.bbagrm.2014.05.030_bb0415) 2001; 250 Nadauld (10.1016/j.bbagrm.2014.05.030_bb0570) 2004; 279 Stainier (10.1016/j.bbagrm.2014.05.030_bb0245) 1992; 153 Davidson (10.1016/j.bbagrm.2014.05.030_bb0300) 2004; 23 Emoto (10.1016/j.bbagrm.2014.05.030_bb0080) 2005; 278 White (10.1016/j.bbagrm.2014.05.030_bb0160) 2007; 5 |
References_xml | – volume: 128 start-page: 3081 year: 2001 end-page: 3094 ident: bb0065 article-title: The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain publication-title: Development – volume: 235 start-page: 2695 year: 2006 end-page: 2709 ident: bb0365 article-title: Retinoic acid is required for endodermal pouch morphogenesis and not for pharyngeal endoderm specification publication-title: Dev. Dyn. – volume: 72 start-page: 200 year: 2004 end-page: 212 ident: bb0385 article-title: Neural crest contribution to mammalian tooth formation publication-title: Birth Defects Res. C Embryo Today Rev – volume: 330 start-page: 444 year: 1987 end-page: 450 ident: bb0010 article-title: A human retinoic acid receptor which belongs to the family of nuclear receptors publication-title: Nature – volume: 3 start-page: e188 year: 2007 ident: bb0035 article-title: Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression publication-title: PLoS Genet. – volume: 308 start-page: 563 year: 2005 end-page: 566 ident: bb0185 article-title: Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo publication-title: Science – volume: 7 start-page: e30865 year: 2012 ident: bb0310 article-title: Retinoic acid signaling plays a restrictive role in zebrafish primitive myelopoiesis publication-title: PLoS One – volume: 276 start-page: 16 year: 2004 end-page: 30 ident: bb0350 article-title: Signals derived from the underlying mesoderm are dispensable for zebrafish neural crest induction publication-title: Dev. Biol. – volume: 23 start-page: 164 year: 1982 end-page: 169 ident: bb0460 article-title: Differentiation of 3 T3-F442A cells into adipocytes is inhibited by retinoic acid publication-title: Differentiation – volume: 54 start-page: 347 year: 2008 end-page: 352 ident: bb0510 article-title: Vitamin A intake is inversely related with adiposity in healthy young adults publication-title: J. Nutr. Sci. Vitaminol. – volume: 50 start-page: 1641 year: 2009 end-page: 1652 ident: bb0530 article-title: Ontogeny and nutritional control of adipogenesis in zebrafish ( publication-title: J. Lipid Res. – volume: 330 start-page: 213 year: 2009 end-page: 220 ident: bb0235 article-title: Shaping the zebrafish heart: from left–right axis specification to epithelial tissue morphogenesis publication-title: Dev. Biol. – volume: 435 start-page: 165 year: 2005 end-page: 171 ident: bb0195 article-title: Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo publication-title: Nature – volume: 228 start-page: 337 year: 2003 end-page: 357 ident: bb0405 article-title: Developmental morphology of the axial skeleton of the zebrafish, publication-title: Dev. Dyn. – volume: 271 start-page: 119 year: 2004 end-page: 129 ident: bb0115 article-title: Beyond the neckless phenotype: influence of reduced retinoic acid signaling on motor neuron development in the zebrafish hindbrain publication-title: Dev. Biol. – volume: 241 start-page: 289 year: 2002 end-page: 301 ident: bb0340 article-title: Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction publication-title: Dev. Biol. – volume: 122 start-page: 195 year: 1996 end-page: 204 ident: bb0575 article-title: Retinoic acid establishes ventral retinal characteristics publication-title: Development – volume: 7 start-page: 189 year: 1993 end-page: 198 ident: bb0430 article-title: Modulation of expression and cell surface binding of members of the transforming growth factor-beta superfamily during retinoic acid-induced osteoblastic differentiation of multipotential mesenchymal cells publication-title: Mol. Endocrinol. – volume: 53 start-page: 882 year: 2004 end-page: 889 ident: bb0495 article-title: Modulation of resistin expression by retinoic acid and vitamin A status publication-title: Diabetes – volume: 127 start-page: 225 year: 2000 end-page: 235 ident: bb0275 article-title: Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar) publication-title: Development – volume: 133 start-page: 351 year: 2006 end-page: 361 ident: bb0120 article-title: Retinaldehyde dehydrogenase 2 (RALDH2)-mediated retinoic acid synthesis regulates early mouse embryonic forebrain development by controlling FGF and sonic hedgehog signaling publication-title: Development – volume: 116 start-page: 201 year: 2010 end-page: 209 ident: bb0295 article-title: Interaction of retinoic acid and scl controls primitive blood development publication-title: Blood – volume: 4 start-page: 806 year: 2003 end-page: 818 ident: bb0360 article-title: Cranial neural crest and the building of the vertebrate head publication-title: Nat. Rev. Neurosci. – volume: 121 start-page: 339 year: 2004 end-page: 350 ident: bb0040 article-title: Feedback mechanisms regulate retinoic acid production and degradation in the zebrafish embryo publication-title: Mech. Dev. – volume: 63 start-page: 115 year: 1998 end-page: 123 ident: bb0450 article-title: Retinoic acid suppresses the osteogenic differentiation capacity of murine osteoblast-like 3/A/1D–1M cell cultures publication-title: Differentiation – volume: 104 start-page: 201 year: 1994 end-page: 211 ident: bb0470 article-title: Retinoids are positive effectors of adipose cell differentiation publication-title: Mol. Cell. Endocrinol. – volume: 4 start-page: 595 year: 2010 end-page: 608 ident: bb0330 article-title: Mechanisms driving neural crest induction and migration in the zebrafish and publication-title: Cell Adhes. Migr. – volume: 237 start-page: 2775 year: 2008 end-page: 2790 ident: bb0175 article-title: How degrading: Cyp26s in hindbrain development publication-title: Dev. Dyn. – volume: 202 start-page: 255 year: 2005 end-page: 262 ident: bb0440 article-title: High‐dose retinoic acid modulates rat calvarial osteoblast biology publication-title: J. Cell. Physiol. – start-page: 103 year: 1998 end-page: 110 ident: bb0325 article-title: Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2/swirl pathway of genes publication-title: Dev. Biol. – volume: 129 start-page: 2851 year: 2002 end-page: 2865 ident: bb0070 article-title: Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior–posterior axis of the CNS and to induce a pectoral fin bud publication-title: Development – volume: 231 start-page: 270 year: 2004 end-page: 277 ident: bb0125 article-title: Raldh2 expression in optic vesicle generates a retinoic acid signal needed for invagination of retina during optic cup formation publication-title: Dev. Dyn. – volume: 135 start-page: 3765 year: 2008 end-page: 3774 ident: bb0075 article-title: Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton publication-title: Development – volume: 1 start-page: a000802 year: 2009 ident: bb0215 article-title: Left–right determination: involvement of molecular motor KIF3, cilia, and nodal flow publication-title: Cold Spring Harb. Perspect. Biol. – volume: 199 start-page: 55 year: 1998 end-page: 71 ident: bb0255 article-title: Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart publication-title: Dev. Biol. – volume: 26 start-page: 5014 year: 2012 end-page: 5024 ident: bb0370 article-title: Retinoic acid expands the evolutionarily reduced dentition of zebrafish publication-title: FASEB J. – volume: 24 start-page: 3298 year: 2010 end-page: 3309 ident: bb0390 article-title: Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling publication-title: FASEB J. – volume: 278 start-page: 415 year: 2005 end-page: 427 ident: bb0080 article-title: Retinoic acid-metabolizing enzyme Cyp26a1 is essential for determining territories of hindbrain and spinal cord in zebrafish publication-title: Dev. Biol. – volume: 229 start-page: 121 year: 1996 end-page: 160 ident: bb0395 article-title: Development of the cranium and paired fins in the zebrafish publication-title: J. Morphol. – volume: 28 start-page: 260 year: 2014 end-page: 272 ident: bb0550 article-title: Retinoic acid receptor subtype-specific transcriptotypes in the early zebrafish embryo publication-title: Mol. Endocrinol. – volume: 20 start-page: 2458 year: 2013 end-page: 2466 ident: bb0100 article-title: Zebrafish as a genetic model in pre-clinical drug testing and screening publication-title: Curr. Med. Chem. – volume: 372 start-page: 178 year: 2012 end-page: 189 ident: bb0205 article-title: Rargb regulates organ laterality in a zebrafish model of right atrial isomerism publication-title: Dev. Biol. – volume: 279 start-page: 51581 year: 2004 end-page: 51589 ident: bb0570 article-title: Adenomatous polyposis coli control of retinoic acid biosynthesis is critical for zebrafish intestinal development and differentiation publication-title: J. Biol. Chem. – volume: 4 start-page: e8261 year: 2009 ident: bb0110 article-title: Maternal and zygotic aldh1a2 activity is required for pancreas development in zebrafish publication-title: PLoS One – volume: 358 start-page: 44 year: 2011 end-page: 55 ident: bb0270 article-title: Restraint of Fgf8 signaling by retinoic acid signaling is required for proper heart and forelimb formation publication-title: Dev. Biol. – volume: 61 start-page: 1112 year: 2012 end-page: 1121 ident: bb0500 article-title: Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity publication-title: Diabetes – volume: 325 start-page: 60 year: 2009 end-page: 70 ident: bb0090 article-title: Combinatorial roles for zebrafish retinoic acid receptors in the hindbrain, limbs and pharyngeal arches publication-title: Dev. Biol. – volume: 12 start-page: 452 year: 2002 end-page: 458 ident: bb0335 article-title: Early induction of neural crest cells: lessons learned from frog, fish and chick publication-title: Curr. Opin. Genet. Dev. – volume: 330 start-page: 624 year: 1987 end-page: 629 ident: bb0015 article-title: Identification of a receptor for the morphogen retinoic acid publication-title: Nature – volume: 69 start-page: 3069 year: 2012 end-page: 3077 ident: bb0225 article-title: Left–right asymmetry in zebrafish publication-title: Cell. Mol. Life Sci. – volume: 203 start-page: 178 year: 1993 end-page: 186 ident: bb0315 article-title: On the formation of the neural keel and neural tube in the zebrafish publication-title: Roux's Arch. Dev. Biol. – volume: 286 start-page: 28533 year: 2011 end-page: 28543 ident: bb0200 article-title: Retinoic acid signaling sequentially controls visceral and heart laterality in zebrafish publication-title: J. Biol. Chem. – volume: 26 start-page: 227 year: 2001 end-page: 233 ident: bb0445 article-title: Phase-independent inhibition by retinoic acid of mineralization correlated with loss of tetranectin expression in a human osteoblastic cell line publication-title: Cell Struct. Funct. – volume: 116 start-page: 4786 year: 2010 end-page: 4794 ident: bb0290 article-title: Retinoic acid enhances the generation of hematopoietic progenitors from human embryonic stem cell-derived hemato-vascular precursors publication-title: Blood – volume: 23 start-page: 7233 year: 2004 end-page: 7246 ident: bb0300 article-title: The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis publication-title: Oncogene – volume: 285 start-page: 593 year: 2005 end-page: 605 ident: bb0150 article-title: Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid publication-title: Dev. Biol. – volume: 8 start-page: 248 year: 2008 end-page: 253 ident: bb0045 article-title: Expressions of Raldh3 and Raldh4 during zebrafish early development publication-title: Gene Expr. Patterns – volume: 10 start-page: 93 year: 1999 end-page: 98 ident: bb0250 article-title: Patterning during organogenesis: genetic analysis of cardiac chamber formation publication-title: Semin. Cell Dev. Biol. – volume: 135 start-page: 3775 year: 2008 end-page: 3787 ident: bb0085 article-title: Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development publication-title: Development – volume: 418 start-page: 37 year: 2002 end-page: 38 ident: bb0220 article-title: Conserved function for embryonic nodal cilia publication-title: Nature – volume: 22 start-page: 236 year: 2008 end-page: 245 ident: bb0280 article-title: All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha publication-title: FASEB J. – volume: 17 start-page: 1552 year: 1997 end-page: 1561 ident: bb0485 article-title: Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription publication-title: Mol. Cell. Biol. – volume: 33 start-page: 331 year: 2008 end-page: 338 ident: bb0515 article-title: Retinoic acid syndrome: a review publication-title: J. Clin. Pharm. Ther. – volume: 2 start-page: e102 year: 2006 ident: bb0060 article-title: Neofunctionalization in vertebrates: the example of retinoic acid receptors publication-title: PLoS Genet. – volume: 161 start-page: 223 year: 2003 end-page: 228 ident: bb0030 article-title: Active repression by unliganded retinoid receptors in development: less is sometimes more publication-title: J. Cell Biol. – volume: 153 start-page: 91 year: 1992 end-page: 101 ident: bb0245 article-title: Patterning the zebrafish heart tube: acquisition of anteroposterior polarity publication-title: Dev. Biol. – volume: 193 start-page: 156 year: 1998 end-page: 168 ident: bb0345 article-title: Paraxial-fated mesoderm is required for neural crest induction in publication-title: Dev. Biol. – volume: 14 start-page: 255 year: 1980 end-page: 266 ident: bb0465 article-title: Inhibition of adipose conversion in 3 T3‐L2 cells by retinoic acid publication-title: J. Supramol. Struct. – volume: 285 start-page: 224 year: 2005 end-page: 237 ident: bb0050 article-title: The control of morphogen signalling: regulation of the synthesis and catabolism of retinoic acid in the developing embryo publication-title: Dev. Biol. – volume: 130 start-page: 2173 year: 2003 end-page: 2186 ident: bb0055 article-title: Provitamin A conversion to retinal via the beta, beta-carotene-15,15′-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis publication-title: Development (Cambridge, England) – volume: 130 start-page: 2039 year: 2003 end-page: 2050 ident: bb0140 article-title: A novel role for retinoids in patterning the avian forebrain during presomite stages publication-title: Development (Cambridge, England) – volume: 33 start-page: 1007 year: 2005 end-page: 1014 ident: bb0305 article-title: Transcriptional regulation of hematopoietic stem cell development in zebrafish publication-title: Exp. Hematol. – volume: 45 start-page: 15179 year: 2006 end-page: 15187 ident: bb0545 article-title: Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae publication-title: Biochemistry – volume: 7 start-page: 289 year: 1973 end-page: 298 ident: bb0425 article-title: Limb development in mouse embryos. I. Analysis of teratogenic effects of retinoic acid publication-title: Teratology – volume: 12 start-page: 1215 year: 2002 end-page: 1220 ident: bb0565 article-title: Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development publication-title: Curr. Biol. – volume: 159 start-page: 135 year: 2002 end-page: 146 ident: bb0435 article-title: Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes publication-title: J. Cell Biol. – volume: 250 start-page: 197 year: 2001 end-page: 207 ident: bb0415 article-title: Features of mono‐and multinucleated bone resorbing cells of the zebrafish publication-title: J. Morphol. – volume: 140 start-page: 201S year: 2010 end-page: 207S ident: bb0005 article-title: Vitamin A intake and status in populations facing economic stress publication-title: J. Nutr. – volume: 307 start-page: 247 year: 2005 end-page: 249 ident: bb0260 article-title: Retinoic acid signaling restricts the cardiac progenitor pool publication-title: Science – volume: 133 start-page: 2649 year: 2006 end-page: 2659 ident: bb0555 article-title: Induction and prepatterning of the zebrafish pectoral fin bud requires axial retinoic acid signaling publication-title: Development – volume: 360 start-page: 276 year: 2011 end-page: 285 ident: bb0535 article-title: Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish publication-title: Dev. Biol. – volume: 3 start-page: 453 year: 2002 end-page: 461 ident: bb0320 article-title: Induction of the neural crest: a multigene process publication-title: Nat. Rev. Genetics – volume: 155 start-page: 215 year: 2013 end-page: 227 ident: bb0285 article-title: Retinoic acid signaling is essential for embryonic hematopoietic stem cell development publication-title: Cell – volume: 8 start-page: 141 year: 2008 end-page: 147 ident: bb0020 article-title: Expression of zebrafish aldh1a3 (raldh3) and absence of aldh1a1 in teleosts publication-title: Gene Expr. Patterns – volume: 303 start-page: 601 year: 2007 end-page: 610 ident: bb0130 article-title: Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone publication-title: Dev. Biol. – volume: 100 start-page: 722 year: 2008 end-page: 730 ident: bb0525 article-title: Synergic effect of vitamin A and high-fat diet in adipose tissue development and nuclear receptor expression in young rats publication-title: Br. J. Nutr. – volume: 137 start-page: 389 year: 2010 end-page: 394 ident: bb0455 article-title: Regulation of neural crest cell fate by the retinoic acid and Pparg signalling pathways publication-title: Development – volume: 15 start-page: 2111 year: 2001 end-page: 2121 ident: bb0025 article-title: Active repression of RAR signaling is required for head formation publication-title: Genes Dev. – volume: 3 start-page: e189 year: 2007 ident: bb0560 article-title: The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros publication-title: PLoS Genet. – volume: 435 start-page: 215 year: 2005 end-page: 220 ident: bb0190 article-title: Retinoic acid coordinates somitogenesis and left–right patterning in vertebrate embryos publication-title: Nature – volume: 28 start-page: 719 year: 2004 end-page: 725 ident: bb0520 article-title: Isotretinoin and fenofibrate induce adiposity with distinct effect on metabolic profile in a rat model of the insulin resistance syndrome publication-title: Int. J. Obes. – volume: 89 start-page: 43 year: 1999 end-page: 54 ident: bb0105 article-title: Hindbrain respecification in the retinoid-deficient quail publication-title: Mech. Dev. – volume: 15 start-page: 923 year: 2008 end-page: 934 ident: bb0265 article-title: Hoxb5b acts downstream of retinoic acid signaling in the forelimb field to restrict heart field potential in zebrafish publication-title: Dev. Cell – volume: 134 start-page: 177 year: 2007 end-page: 187 ident: bb0170 article-title: Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development publication-title: Development – volume: 374 start-page: 85 year: 2013 end-page: 95 ident: bb0210 article-title: ENC1-like integrates the retinoic acid/FGF signaling pathways to modulate ciliogenesis of Kupffer's vesicle during zebrafish embryonic development publication-title: Dev. Biol. – volume: 238 start-page: 459 year: 2009 end-page: 466 ident: bb0420 article-title: Tracking gene expression during zebrafish osteoblast differentiation publication-title: Dev. Dyn. – volume: 37 start-page: 36 year: 2013 end-page: 46 ident: bb0475 article-title: All‐trans retinoic acid displays multiple effects on the growth, lipogenesis and adipokine gene expression of AML‐I preadipocyte cell line publication-title: Cell Biol. Int. – volume: 496 start-page: 363 year: 2013 end-page: 366 ident: bb0180 article-title: Visualization of an endogenous retinoic acid gradient across embryonic development publication-title: Nature – volume: 5 start-page: e304 year: 2007 ident: bb0160 article-title: Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo publication-title: PLoS Biol. – volume: 423 start-page: 332 year: 2003 end-page: 336 ident: bb0400 article-title: Developmental regulation of the growth plate publication-title: Nature – volume: 136 start-page: 3991 year: 2009 end-page: 4000 ident: bb0410 article-title: Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling publication-title: Development – volume: 355 start-page: 55 year: 2011 end-page: 64 ident: bb0145 article-title: Hmx4 regulates Sonic hedgehog signaling through control of retinoic acid synthesis during forebrain patterning publication-title: Dev. Biol. – volume: 292 start-page: 1385 year: 2001 end-page: 1388 ident: bb0540 article-title: Genetic analysis of digestive physiology using fluorescent phospholipid reporters publication-title: Science – volume: 303 start-page: 362 year: 2007 end-page: 375 ident: bb0135 article-title: Retinoids control anterior and dorsal properties in the developing forebrain publication-title: Dev. Biol. – volume: 2 start-page: a000869 year: 2010 ident: bb0155 article-title: Signaling gradients during paraxial mesoderm development publication-title: Cold Spring Harb. Perspect. Biol. – volume: 22 start-page: 3250 year: 2013 end-page: 3258 ident: bb0095 article-title: ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm publication-title: Hum. Mol. Genet. – volume: 137 start-page: 2605 year: 2010 end-page: 2621 ident: bb0355 article-title: Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development publication-title: Development – volume: 2 start-page: 39 year: 2001 end-page: 48 ident: bb0230 article-title: Zebrafish genetics and vertebrate heart formation publication-title: Nat. Rev. Genetics – volume: 61 start-page: 23 year: 1997 end-page: 36 ident: bb0375 article-title: Specific craniofacial cartilage dysmorphogenesis coincides with a loss of dlx gene expression in retinoic acid-treated zebrafish embryos publication-title: Mech. Dev. – volume: 23 start-page: 54 year: 2001 end-page: 61 ident: bb0380 article-title: Patterning the pharyngeal arches publication-title: BioEssays – volume: 147 start-page: 5325 year: 2006 end-page: 5332 ident: bb0505 article-title: Remodeling of white adipose tissue after retinoic acid administration in mice publication-title: Endocrinology – volume: 122 start-page: 3409 year: 1996 end-page: 3418 ident: bb0165 article-title: A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in publication-title: Development – volume: 16 start-page: 1567 year: 1996 end-page: 1575 ident: bb0490 article-title: Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARgamma publication-title: Mol. Cell. Biol. – volume: 77 start-page: 216 year: 1995 end-page: 219 ident: bb0240 article-title: Diversification of cardiomyogenic cell lineages during early heart development publication-title: Circ. Res. – volume: 47 start-page: 263 year: 2003 end-page: 268 ident: bb0480 article-title: Differentiation of embryonic stem cells for pharmacological studies on adipose cells publication-title: Pharmacol. Res. – volume: 137 start-page: 2605 year: 2010 ident: 10.1016/j.bbagrm.2014.05.030_bb0355 article-title: Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development publication-title: Development doi: 10.1242/dev.040048 – volume: 135 start-page: 3775 year: 2008 ident: 10.1016/j.bbagrm.2014.05.030_bb0085 article-title: Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development publication-title: Development doi: 10.1242/dev.021238 – volume: 54 start-page: 347 year: 2008 ident: 10.1016/j.bbagrm.2014.05.030_bb0510 article-title: Vitamin A intake is inversely related with adiposity in healthy young adults publication-title: J. Nutr. Sci. Vitaminol. doi: 10.3177/jnsv.54.347 – volume: 330 start-page: 444 year: 1987 ident: 10.1016/j.bbagrm.2014.05.030_bb0010 article-title: A human retinoic acid receptor which belongs to the family of nuclear receptors publication-title: Nature doi: 10.1038/330444a0 – volume: 127 start-page: 225 year: 2000 ident: 10.1016/j.bbagrm.2014.05.030_bb0275 article-title: Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar) publication-title: Development doi: 10.1242/dev.127.2.225 – volume: 26 start-page: 227 year: 2001 ident: 10.1016/j.bbagrm.2014.05.030_bb0445 article-title: Phase-independent inhibition by retinoic acid of mineralization correlated with loss of tetranectin expression in a human osteoblastic cell line publication-title: Cell Struct. Funct. doi: 10.1247/csf.26.227 – volume: 116 start-page: 201 year: 2010 ident: 10.1016/j.bbagrm.2014.05.030_bb0295 article-title: Interaction of retinoic acid and scl controls primitive blood development publication-title: Blood doi: 10.1182/blood-2009-10-249557 – volume: 23 start-page: 164 year: 1982 ident: 10.1016/j.bbagrm.2014.05.030_bb0460 article-title: Differentiation of 3 T3-F442A cells into adipocytes is inhibited by retinoic acid publication-title: Differentiation doi: 10.1111/j.1432-0436.1982.tb01279.x – volume: 33 start-page: 331 year: 2008 ident: 10.1016/j.bbagrm.2014.05.030_bb0515 article-title: Retinoic acid syndrome: a review publication-title: J. Clin. Pharm. Ther. doi: 10.1111/j.1365-2710.2008.00935.x – volume: 161 start-page: 223 year: 2003 ident: 10.1016/j.bbagrm.2014.05.030_bb0030 article-title: Active repression by unliganded retinoid receptors in development: less is sometimes more publication-title: J. Cell Biol. doi: 10.1083/jcb.200211117 – volume: 4 start-page: 595 year: 2010 ident: 10.1016/j.bbagrm.2014.05.030_bb0330 article-title: Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis publication-title: Cell Adhes. Migr. doi: 10.4161/cam.4.4.12962 – volume: 159 start-page: 135 year: 2002 ident: 10.1016/j.bbagrm.2014.05.030_bb0435 article-title: Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes publication-title: J. Cell Biol. doi: 10.1083/jcb.200204060 – volume: 22 start-page: 3250 year: 2013 ident: 10.1016/j.bbagrm.2014.05.030_bb0095 article-title: ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt179 – volume: 435 start-page: 165 year: 2005 ident: 10.1016/j.bbagrm.2014.05.030_bb0195 article-title: Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo publication-title: Nature doi: 10.1038/nature03512 – volume: 16 start-page: 1567 year: 1996 ident: 10.1016/j.bbagrm.2014.05.030_bb0490 article-title: Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARgamma publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.4.1567 – volume: 61 start-page: 23 year: 1997 ident: 10.1016/j.bbagrm.2014.05.030_bb0375 article-title: Specific craniofacial cartilage dysmorphogenesis coincides with a loss of dlx gene expression in retinoic acid-treated zebrafish embryos publication-title: Mech. Dev. doi: 10.1016/S0925-4773(96)00616-8 – volume: 372 start-page: 178 year: 2012 ident: 10.1016/j.bbagrm.2014.05.030_bb0205 article-title: Rargb regulates organ laterality in a zebrafish model of right atrial isomerism publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2012.09.001 – volume: 285 start-page: 224 year: 2005 ident: 10.1016/j.bbagrm.2014.05.030_bb0050 article-title: The control of morphogen signalling: regulation of the synthesis and catabolism of retinoic acid in the developing embryo publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2005.06.019 – volume: 89 start-page: 43 year: 1999 ident: 10.1016/j.bbagrm.2014.05.030_bb0105 article-title: Hindbrain respecification in the retinoid-deficient quail publication-title: Mech. Dev. doi: 10.1016/S0925-4773(99)00202-6 – volume: 3 start-page: 453 year: 2002 ident: 10.1016/j.bbagrm.2014.05.030_bb0320 article-title: Induction of the neural crest: a multigene process publication-title: Nat. Rev. Genetics doi: 10.1038/nrg819 – volume: 37 start-page: 36 year: 2013 ident: 10.1016/j.bbagrm.2014.05.030_bb0475 article-title: All‐trans retinoic acid displays multiple effects on the growth, lipogenesis and adipokine gene expression of AML‐I preadipocyte cell line publication-title: Cell Biol. Int. doi: 10.1002/cbin.10005 – volume: 28 start-page: 260 year: 2014 ident: 10.1016/j.bbagrm.2014.05.030_bb0550 article-title: Retinoic acid receptor subtype-specific transcriptotypes in the early zebrafish embryo publication-title: Mol. Endocrinol. doi: 10.1210/me.2013-1358 – volume: 136 start-page: 3991 year: 2009 ident: 10.1016/j.bbagrm.2014.05.030_bb0410 article-title: Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling publication-title: Development doi: 10.1242/dev.042150 – volume: 50 start-page: 1641 year: 2009 ident: 10.1016/j.bbagrm.2014.05.030_bb0530 article-title: Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio) publication-title: J. Lipid Res. doi: 10.1194/jlr.M800590-JLR200 – volume: 23 start-page: 7233 year: 2004 ident: 10.1016/j.bbagrm.2014.05.030_bb0300 article-title: The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis publication-title: Oncogene doi: 10.1038/sj.onc.1207943 – volume: 325 start-page: 60 year: 2009 ident: 10.1016/j.bbagrm.2014.05.030_bb0090 article-title: Combinatorial roles for zebrafish retinoic acid receptors in the hindbrain, limbs and pharyngeal arches publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2008.09.022 – volume: 122 start-page: 3409 year: 1996 ident: 10.1016/j.bbagrm.2014.05.030_bb0165 article-title: A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm publication-title: Development doi: 10.1242/dev.122.11.3409 – volume: 279 start-page: 51581 year: 2004 ident: 10.1016/j.bbagrm.2014.05.030_bb0570 article-title: Adenomatous polyposis coli control of retinoic acid biosynthesis is critical for zebrafish intestinal development and differentiation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M408830200 – volume: 250 start-page: 197 year: 2001 ident: 10.1016/j.bbagrm.2014.05.030_bb0415 article-title: Features of mono‐and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling, and growth publication-title: J. Morphol. doi: 10.1002/jmor.1065 – volume: 45 start-page: 15179 year: 2006 ident: 10.1016/j.bbagrm.2014.05.030_bb0545 article-title: Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae publication-title: Biochemistry doi: 10.1021/bi0619268 – volume: 61 start-page: 1112 year: 2012 ident: 10.1016/j.bbagrm.2014.05.030_bb0500 article-title: Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity publication-title: Diabetes doi: 10.2337/db11-1620 – volume: 26 start-page: 5014 year: 2012 ident: 10.1016/j.bbagrm.2014.05.030_bb0370 article-title: Retinoic acid expands the evolutionarily reduced dentition of zebrafish publication-title: FASEB J. doi: 10.1096/fj.12-209304 – volume: 121 start-page: 339 year: 2004 ident: 10.1016/j.bbagrm.2014.05.030_bb0040 article-title: Feedback mechanisms regulate retinoic acid production and degradation in the zebrafish embryo publication-title: Mech. Dev. doi: 10.1016/j.mod.2004.02.008 – volume: 2 start-page: a000869 year: 2010 ident: 10.1016/j.bbagrm.2014.05.030_bb0155 article-title: Signaling gradients during paraxial mesoderm development publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a000869 – volume: 202 start-page: 255 year: 2005 ident: 10.1016/j.bbagrm.2014.05.030_bb0440 article-title: High‐dose retinoic acid modulates rat calvarial osteoblast biology publication-title: J. Cell. Physiol. doi: 10.1002/jcp.20115 – volume: 53 start-page: 882 year: 2004 ident: 10.1016/j.bbagrm.2014.05.030_bb0495 article-title: Modulation of resistin expression by retinoic acid and vitamin A status publication-title: Diabetes doi: 10.2337/diabetes.53.4.882 – volume: 193 start-page: 156 year: 1998 ident: 10.1016/j.bbagrm.2014.05.030_bb0345 article-title: Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos publication-title: Dev. Biol. doi: 10.1006/dbio.1997.8795 – volume: 20 start-page: 2458 year: 2013 ident: 10.1016/j.bbagrm.2014.05.030_bb0100 article-title: Zebrafish as a genetic model in pre-clinical drug testing and screening publication-title: Curr. Med. Chem. doi: 10.2174/0929867311320190005 – volume: 10 start-page: 93 year: 1999 ident: 10.1016/j.bbagrm.2014.05.030_bb0250 article-title: Patterning during organogenesis: genetic analysis of cardiac chamber formation publication-title: Semin. Cell Dev. Biol. doi: 10.1006/scdb.1998.0278 – volume: 122 start-page: 195 year: 1996 ident: 10.1016/j.bbagrm.2014.05.030_bb0575 article-title: Retinoic acid establishes ventral retinal characteristics publication-title: Development doi: 10.1242/dev.122.1.195 – volume: 228 start-page: 337 year: 2003 ident: 10.1016/j.bbagrm.2014.05.030_bb0405 article-title: Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae) publication-title: Dev. Dyn. doi: 10.1002/dvdy.10387 – volume: 308 start-page: 563 year: 2005 ident: 10.1016/j.bbagrm.2014.05.030_bb0185 article-title: Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo publication-title: Science doi: 10.1126/science.1108363 – volume: 7 start-page: 289 year: 1973 ident: 10.1016/j.bbagrm.2014.05.030_bb0425 article-title: Limb development in mouse embryos. I. Analysis of teratogenic effects of retinoic acid publication-title: Teratology doi: 10.1002/tera.1420070310 – volume: 69 start-page: 3069 year: 2012 ident: 10.1016/j.bbagrm.2014.05.030_bb0225 article-title: Left–right asymmetry in zebrafish publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-012-0985-6 – volume: 15 start-page: 2111 year: 2001 ident: 10.1016/j.bbagrm.2014.05.030_bb0025 article-title: Active repression of RAR signaling is required for head formation publication-title: Genes Dev. doi: 10.1101/gad.908801 – volume: 292 start-page: 1385 year: 2001 ident: 10.1016/j.bbagrm.2014.05.030_bb0540 article-title: Genetic analysis of digestive physiology using fluorescent phospholipid reporters publication-title: Science doi: 10.1126/science.1060418 – volume: 4 start-page: 806 year: 2003 ident: 10.1016/j.bbagrm.2014.05.030_bb0360 article-title: Cranial neural crest and the building of the vertebrate head publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1221 – volume: 4 start-page: e8261 year: 2009 ident: 10.1016/j.bbagrm.2014.05.030_bb0110 article-title: Maternal and zygotic aldh1a2 activity is required for pancreas development in zebrafish publication-title: PLoS One doi: 10.1371/journal.pone.0008261 – volume: 355 start-page: 55 year: 2011 ident: 10.1016/j.bbagrm.2014.05.030_bb0145 article-title: Hmx4 regulates Sonic hedgehog signaling through control of retinoic acid synthesis during forebrain patterning publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2011.04.018 – volume: 3 start-page: e188 year: 2007 ident: 10.1016/j.bbagrm.2014.05.030_bb0035 article-title: Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030188 – volume: 278 start-page: 415 year: 2005 ident: 10.1016/j.bbagrm.2014.05.030_bb0080 article-title: Retinoic acid-metabolizing enzyme Cyp26a1 is essential for determining territories of hindbrain and spinal cord in zebrafish publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2004.11.023 – volume: 22 start-page: 236 year: 2008 ident: 10.1016/j.bbagrm.2014.05.030_bb0280 article-title: All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha publication-title: FASEB J. doi: 10.1096/fj.07-8739com – volume: 271 start-page: 119 year: 2004 ident: 10.1016/j.bbagrm.2014.05.030_bb0115 article-title: Beyond the neckless phenotype: influence of reduced retinoic acid signaling on motor neuron development in the zebrafish hindbrain publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2004.03.033 – volume: 137 start-page: 389 year: 2010 ident: 10.1016/j.bbagrm.2014.05.030_bb0455 article-title: Regulation of neural crest cell fate by the retinoic acid and Pparg signalling pathways publication-title: Development doi: 10.1242/dev.044164 – volume: 330 start-page: 213 year: 2009 ident: 10.1016/j.bbagrm.2014.05.030_bb0235 article-title: Shaping the zebrafish heart: from left–right axis specification to epithelial tissue morphogenesis publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2009.04.011 – volume: 285 start-page: 593 year: 2005 ident: 10.1016/j.bbagrm.2014.05.030_bb0150 article-title: Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2005.07.015 – volume: 14 start-page: 255 year: 1980 ident: 10.1016/j.bbagrm.2014.05.030_bb0465 article-title: Inhibition of adipose conversion in 3 T3‐L2 cells by retinoic acid publication-title: J. Supramol. Struct. doi: 10.1002/jss.400140214 – volume: 133 start-page: 2649 year: 2006 ident: 10.1016/j.bbagrm.2014.05.030_bb0555 article-title: Induction and prepatterning of the zebrafish pectoral fin bud requires axial retinoic acid signaling publication-title: Development doi: 10.1242/dev.02438 – volume: 303 start-page: 601 year: 2007 ident: 10.1016/j.bbagrm.2014.05.030_bb0130 article-title: Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.11.035 – volume: 153 start-page: 91 year: 1992 ident: 10.1016/j.bbagrm.2014.05.030_bb0245 article-title: Patterning the zebrafish heart tube: acquisition of anteroposterior polarity publication-title: Dev. Biol. doi: 10.1016/0012-1606(92)90094-W – volume: 130 start-page: 2039 year: 2003 ident: 10.1016/j.bbagrm.2014.05.030_bb0140 article-title: A novel role for retinoids in patterning the avian forebrain during presomite stages publication-title: Development (Cambridge, England) doi: 10.1242/dev.00423 – volume: 140 start-page: 201S year: 2010 ident: 10.1016/j.bbagrm.2014.05.030_bb0005 article-title: Vitamin A intake and status in populations facing economic stress publication-title: J. Nutr. doi: 10.3945/jn.109.112730 – volume: 276 start-page: 16 year: 2004 ident: 10.1016/j.bbagrm.2014.05.030_bb0350 article-title: Signals derived from the underlying mesoderm are dispensable for zebrafish neural crest induction publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2004.08.017 – volume: 235 start-page: 2695 year: 2006 ident: 10.1016/j.bbagrm.2014.05.030_bb0365 article-title: Retinoic acid is required for endodermal pouch morphogenesis and not for pharyngeal endoderm specification publication-title: Dev. Dyn. doi: 10.1002/dvdy.20905 – volume: 2 start-page: 39 year: 2001 ident: 10.1016/j.bbagrm.2014.05.030_bb0230 article-title: Zebrafish genetics and vertebrate heart formation publication-title: Nat. Rev. Genetics doi: 10.1038/35047564 – volume: 330 start-page: 624 year: 1987 ident: 10.1016/j.bbagrm.2014.05.030_bb0015 article-title: Identification of a receptor for the morphogen retinoic acid publication-title: Nature doi: 10.1038/330624a0 – volume: 5 start-page: e304 year: 2007 ident: 10.1016/j.bbagrm.2014.05.030_bb0160 article-title: Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050304 – volume: 203 start-page: 178 year: 1993 ident: 10.1016/j.bbagrm.2014.05.030_bb0315 article-title: On the formation of the neural keel and neural tube in the zebrafish Danio (Brachydanio) rerio publication-title: Roux's Arch. Dev. Biol. doi: 10.1007/BF00636333 – volume: 418 start-page: 37 year: 2002 ident: 10.1016/j.bbagrm.2014.05.030_bb0220 article-title: Conserved function for embryonic nodal cilia publication-title: Nature doi: 10.1038/418037a – volume: 134 start-page: 177 year: 2007 ident: 10.1016/j.bbagrm.2014.05.030_bb0170 article-title: Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development publication-title: Development doi: 10.1242/dev.02706 – volume: 47 start-page: 263 year: 2003 ident: 10.1016/j.bbagrm.2014.05.030_bb0480 article-title: Differentiation of embryonic stem cells for pharmacological studies on adipose cells publication-title: Pharmacol. Res. doi: 10.1016/S1043-6618(03)00035-5 – volume: 28 start-page: 719 year: 2004 ident: 10.1016/j.bbagrm.2014.05.030_bb0520 article-title: Isotretinoin and fenofibrate induce adiposity with distinct effect on metabolic profile in a rat model of the insulin resistance syndrome publication-title: Int. J. Obes. doi: 10.1038/sj.ijo.0802613 – volume: 7 start-page: e30865 year: 2012 ident: 10.1016/j.bbagrm.2014.05.030_bb0310 article-title: Retinoic acid signaling plays a restrictive role in zebrafish primitive myelopoiesis publication-title: PLoS One doi: 10.1371/journal.pone.0030865 – volume: 12 start-page: 452 year: 2002 ident: 10.1016/j.bbagrm.2014.05.030_bb0335 article-title: Early induction of neural crest cells: lessons learned from frog, fish and chick publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/S0959-437X(02)00325-8 – volume: 286 start-page: 28533 year: 2011 ident: 10.1016/j.bbagrm.2014.05.030_bb0200 article-title: Retinoic acid signaling sequentially controls visceral and heart laterality in zebrafish publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.244327 – volume: 374 start-page: 85 year: 2013 ident: 10.1016/j.bbagrm.2014.05.030_bb0210 article-title: ENC1-like integrates the retinoic acid/FGF signaling pathways to modulate ciliogenesis of Kupffer's vesicle during zebrafish embryonic development publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2012.11.022 – volume: 7 start-page: 189 year: 1993 ident: 10.1016/j.bbagrm.2014.05.030_bb0430 article-title: Modulation of expression and cell surface binding of members of the transforming growth factor-beta superfamily during retinoic acid-induced osteoblastic differentiation of multipotential mesenchymal cells publication-title: Mol. Endocrinol. – volume: 24 start-page: 3298 year: 2010 ident: 10.1016/j.bbagrm.2014.05.030_bb0390 article-title: Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling publication-title: FASEB J. doi: 10.1096/fj.09-147488 – volume: 33 start-page: 1007 year: 2005 ident: 10.1016/j.bbagrm.2014.05.030_bb0305 article-title: Transcriptional regulation of hematopoietic stem cell development in zebrafish publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2005.06.013 – volume: 104 start-page: 201 year: 1994 ident: 10.1016/j.bbagrm.2014.05.030_bb0470 article-title: Retinoids are positive effectors of adipose cell differentiation publication-title: Mol. Cell. Endocrinol. doi: 10.1016/0303-7207(94)90123-6 – volume: 360 start-page: 276 year: 2011 ident: 10.1016/j.bbagrm.2014.05.030_bb0535 article-title: Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2011.09.010 – volume: 12 start-page: 1215 year: 2002 ident: 10.1016/j.bbagrm.2014.05.030_bb0565 article-title: Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00929-6 – volume: 129 start-page: 2851 year: 2002 ident: 10.1016/j.bbagrm.2014.05.030_bb0070 article-title: Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior–posterior axis of the CNS and to induce a pectoral fin bud publication-title: Development doi: 10.1242/dev.129.12.2851 – volume: 17 start-page: 1552 year: 1997 ident: 10.1016/j.bbagrm.2014.05.030_bb0485 article-title: Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.17.3.1552 – volume: 241 start-page: 289 year: 2002 ident: 10.1016/j.bbagrm.2014.05.030_bb0340 article-title: Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction publication-title: Dev. Biol. doi: 10.1006/dbio.2001.0485 – volume: 155 start-page: 215 year: 2013 ident: 10.1016/j.bbagrm.2014.05.030_bb0285 article-title: Retinoic acid signaling is essential for embryonic hematopoietic stem cell development publication-title: Cell doi: 10.1016/j.cell.2013.08.055 – volume: 435 start-page: 215 year: 2005 ident: 10.1016/j.bbagrm.2014.05.030_bb0190 article-title: Retinoic acid coordinates somitogenesis and left–right patterning in vertebrate embryos publication-title: Nature doi: 10.1038/nature03488 – volume: 303 start-page: 362 year: 2007 ident: 10.1016/j.bbagrm.2014.05.030_bb0135 article-title: Retinoids control anterior and dorsal properties in the developing forebrain publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.11.021 – volume: 147 start-page: 5325 year: 2006 ident: 10.1016/j.bbagrm.2014.05.030_bb0505 article-title: Remodeling of white adipose tissue after retinoic acid administration in mice publication-title: Endocrinology doi: 10.1210/en.2006-0760 – volume: 237 start-page: 2775 year: 2008 ident: 10.1016/j.bbagrm.2014.05.030_bb0175 article-title: How degrading: Cyp26s in hindbrain development publication-title: Dev. Dyn. doi: 10.1002/dvdy.21695 – volume: 358 start-page: 44 year: 2011 ident: 10.1016/j.bbagrm.2014.05.030_bb0270 article-title: Restraint of Fgf8 signaling by retinoic acid signaling is required for proper heart and forelimb formation publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2011.07.022 – volume: 8 start-page: 248 year: 2008 ident: 10.1016/j.bbagrm.2014.05.030_bb0045 article-title: Expressions of Raldh3 and Raldh4 during zebrafish early development publication-title: Gene Expr. Patterns doi: 10.1016/j.gep.2007.12.007 – volume: 130 start-page: 2173 year: 2003 ident: 10.1016/j.bbagrm.2014.05.030_bb0055 article-title: Provitamin A conversion to retinal via the beta, beta-carotene-15,15′-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis publication-title: Development (Cambridge, England) doi: 10.1242/dev.00437 – volume: 307 start-page: 247 year: 2005 ident: 10.1016/j.bbagrm.2014.05.030_bb0260 article-title: Retinoic acid signaling restricts the cardiac progenitor pool publication-title: Science doi: 10.1126/science.1101573 – volume: 8 start-page: 141 year: 2008 ident: 10.1016/j.bbagrm.2014.05.030_bb0020 article-title: Expression of zebrafish aldh1a3 (raldh3) and absence of aldh1a1 in teleosts publication-title: Gene Expr. Patterns doi: 10.1016/j.gep.2007.11.003 – volume: 128 start-page: 3081 year: 2001 ident: 10.1016/j.bbagrm.2014.05.030_bb0065 article-title: The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain publication-title: Development doi: 10.1242/dev.128.16.3081 – volume: 77 start-page: 216 year: 1995 ident: 10.1016/j.bbagrm.2014.05.030_bb0240 article-title: Diversification of cardiomyogenic cell lineages during early heart development publication-title: Circ. Res. doi: 10.1161/01.RES.77.2.216 – volume: 116 start-page: 4786 year: 2010 ident: 10.1016/j.bbagrm.2014.05.030_bb0290 article-title: Retinoic acid enhances the generation of hematopoietic progenitors from human embryonic stem cell-derived hemato-vascular precursors publication-title: Blood doi: 10.1182/blood-2010-01-263335 – volume: 1 start-page: a000802 year: 2009 ident: 10.1016/j.bbagrm.2014.05.030_bb0215 article-title: Left–right determination: involvement of molecular motor KIF3, cilia, and nodal flow publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a000802 – volume: 2 start-page: e102 year: 2006 ident: 10.1016/j.bbagrm.2014.05.030_bb0060 article-title: Neofunctionalization in vertebrates: the example of retinoic acid receptors publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0020102 – volume: 135 start-page: 3765 year: 2008 ident: 10.1016/j.bbagrm.2014.05.030_bb0075 article-title: Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton publication-title: Development doi: 10.1242/dev.024034 – volume: 231 start-page: 270 year: 2004 ident: 10.1016/j.bbagrm.2014.05.030_bb0125 article-title: Raldh2 expression in optic vesicle generates a retinoic acid signal needed for invagination of retina during optic cup formation publication-title: Dev. Dyn. doi: 10.1002/dvdy.20128 – start-page: 103 year: 1998 ident: 10.1016/j.bbagrm.2014.05.030_bb0325 article-title: Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2/swirl pathway of genes publication-title: Dev. Biol. – volume: 23 start-page: 54 year: 2001 ident: 10.1016/j.bbagrm.2014.05.030_bb0380 article-title: Patterning the pharyngeal arches publication-title: BioEssays doi: 10.1002/1521-1878(200101)23:1<54::AID-BIES1007>3.3.CO;2-X – volume: 100 start-page: 722 year: 2008 ident: 10.1016/j.bbagrm.2014.05.030_bb0525 article-title: Synergic effect of vitamin A and high-fat diet in adipose tissue development and nuclear receptor expression in young rats publication-title: Br. J. Nutr. doi: 10.1017/S0007114508967568 – volume: 72 start-page: 200 year: 2004 ident: 10.1016/j.bbagrm.2014.05.030_bb0385 article-title: Neural crest contribution to mammalian tooth formation publication-title: Birth Defects Res. C Embryo Today Rev doi: 10.1002/bdrc.20012 – volume: 199 start-page: 55 year: 1998 ident: 10.1016/j.bbagrm.2014.05.030_bb0255 article-title: Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart publication-title: Dev. Biol. doi: 10.1006/dbio.1998.8911 – volume: 3 start-page: e189 year: 2007 ident: 10.1016/j.bbagrm.2014.05.030_bb0560 article-title: The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030189 – volume: 133 start-page: 351 year: 2006 ident: 10.1016/j.bbagrm.2014.05.030_bb0120 article-title: Retinaldehyde dehydrogenase 2 (RALDH2)-mediated retinoic acid synthesis regulates early mouse embryonic forebrain development by controlling FGF and sonic hedgehog signaling publication-title: Development doi: 10.1242/dev.02204 – volume: 229 start-page: 121 year: 1996 ident: 10.1016/j.bbagrm.2014.05.030_bb0395 article-title: Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae) publication-title: J. Morphol. doi: 10.1002/(SICI)1097-4687(199608)229:2<121::AID-JMOR1>3.0.CO;2-4 – volume: 15 start-page: 923 year: 2008 ident: 10.1016/j.bbagrm.2014.05.030_bb0265 article-title: Hoxb5b acts downstream of retinoic acid signaling in the forelimb field to restrict heart field potential in zebrafish publication-title: Dev. Cell doi: 10.1016/j.devcel.2008.09.009 – volume: 423 start-page: 332 year: 2003 ident: 10.1016/j.bbagrm.2014.05.030_bb0400 article-title: Developmental regulation of the growth plate publication-title: Nature doi: 10.1038/nature01657 – volume: 63 start-page: 115 year: 1998 ident: 10.1016/j.bbagrm.2014.05.030_bb0450 article-title: Retinoic acid suppresses the osteogenic differentiation capacity of murine osteoblast-like 3/A/1D–1M cell cultures publication-title: Differentiation doi: 10.1046/j.1432-0436.1998.6330115.x – volume: 238 start-page: 459 year: 2009 ident: 10.1016/j.bbagrm.2014.05.030_bb0420 article-title: Tracking gene expression during zebrafish osteoblast differentiation publication-title: Dev. Dyn. doi: 10.1002/dvdy.21838 – volume: 496 start-page: 363 year: 2013 ident: 10.1016/j.bbagrm.2014.05.030_bb0180 article-title: Visualization of an endogenous retinoic acid gradient across embryonic development publication-title: Nature doi: 10.1038/nature12037 |
SSID | ssj0061200 ssj0025309 |
Score | 2.327706 |
SecondaryResourceType | review_article |
Snippet | Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 73 |
SubjectTerms | Animals Body Patterning - drug effects Body Patterning - genetics Danio rerio Embryo, Nonmammalian Embryogenesis Embryonic Development - drug effects Embryonic Development - genetics Freshwater Gene Expression Regulation, Developmental - drug effects Organogenesis Organogenesis - drug effects Organogenesis - genetics RAR Retinoic acid Signal Transduction - drug effects Signal Transduction - genetics Tretinoin - pharmacology Tretinoin - physiology Zebrafish Zebrafish - embryology Zebrafish - genetics |
Title | ZebRA: An overview of retinoic acid signaling during zebrafish development |
URI | https://dx.doi.org/10.1016/j.bbagrm.2014.05.030 https://www.ncbi.nlm.nih.gov/pubmed/24928143 https://www.proquest.com/docview/1660393513 https://www.proquest.com/docview/1697218536 |
Volume | 1849 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kInoR39YXK3iNTWxe660US23RQ1UUL0v2EY1IWrQ96MHf7swmqQhqwVNImMAys5lH9vtmAI587dvA6sQ85ETJiR0ZaONQbzcV-eYklvRD_-Iy7N74vbvgbg7aFReGYJWl7y98uvXW5ZNGqc3GKMsaVzRNjmN8xRLBpeGsxGD3I9rlxx9TmAcGcEtDIWGHpCv6nMV4SZk8vBAf3fNt_07CQv8cnn5LP20Y6qzAcpk_slaxxFWYM_kaLBQTJd_WYLFdDXBbh969kYPWKWvljHCadAbAhikj2mI-zBRLVKYZ4TcSoqSzgrDI3ukkOc1eH5n-whNtwE3n7LrddcrRCY7Cj2rsaNdTccqlcaWH0UepCDOV1KXmghGWz1iKci2TKOEcyzml0jDwJDFFtLYZm2xuQi0f5mYbGNdKh1x7qQmwdIzdxCfybhS5irtchbwOzUpjQpV9xWm8xbOoAGRPotCzID0LNxCo5zo407dGRV-NGfJRZQzxbX8IdP0z3jysbCfQAHQekuRmOHkVXhhaZrLX_EuG2hthThPWYasw_HS91Gwxxnxz599r24UlvAsKFPge1MYvE7OPSc5YHthdfADzrfN-95Ku_cFt_xNrpvoQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH7UFtGLuFvXEbyGJjbbeCvFUlvbgwsUL0NmiUYkLdoe9Nf7XpaKoBa8JjMwvJm8JfN93wM4c7WbBVYr5D4nSk5oSU8bi7TdVOCa81DSD_3B0O_eu72RN6pAu-TCEKyy8P25T8-8dfGkUVizMUmSxi11k-MYX7FEsKk56xLUSJ3Kq0KtddXvDkuHjDE8Y6LQeIsmlAy6DOYlZfT4SpR0x80kPAkO_XOE-i0DzSJRZx3WihSStfJVbkDFpJuwnDeVfN-ElXbZw20Leg9G3rQuWCtlBNWkawA2jhkxF9NxolikEs0IwhERK53lnEX2QZfJcfL2xPQXpGgb7juXd-2uVXRPsBR-V1NL244KYy6NLR0MQEoFmKzENukLBlhBYzXKtYyCiHOs6JSKfc-RRBbROkvaZHMHquk4NXvAuFba59qJjYfVY2hHLvF3g8BW3ObK53VolhYTqpAWpw4XL6LEkD2L3M6C7CxsT6Cd62DNZ01yaY0F44NyM8S3IyLQ-y-YeVruncANoCuRKDXj2ZtwfD8jJzvNv8aQwhGmNX4ddvONn6-X9BZDTDn3_722E1jp3g2uxfXVsH8Aq_jGy0Hhh1Cdvs7MEeY8U3lcnOlPKbn7Hg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZebRA%3A+An+overview+of+retinoic+acid+signaling+during+zebrafish+development&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Samarut%2C+Eric&rft.au=Fraher%2C+Daniel&rft.au=Laudet%2C+Vincent&rft.au=Gibert%2C+Yann&rft.date=2015-02-01&rft.issn=0006-3002&rft.volume=1849&rft.issue=2&rft.spage=73&rft_id=info:doi/10.1016%2Fj.bbagrm.2014.05.030&rft_id=info%3Apmid%2F24928143&rft.externalDocID=24928143 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-9399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-9399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-9399&client=summon |