Longitudinal metabolomics of human plasma reveal metabolic dynamics and predictive markers of antituberculosis drug-induced liver injury

Tuberculosis (TB) remains the second leading cause of death from a single infectious agent and long-term medication could lead to antituberculosis drug-induced liver injury (ATB-DILI). We established a prospective longitudinal cohort of ATB-DILI with multiple timepoint blood sampling and used untarg...

Full description

Saved in:
Bibliographic Details
Published inRespiratory research Vol. 25; no. 1; pp. 254 - 12
Main Authors Li, Mengjiao, Zhang, Dan, Yang, Qingxin, Zhao, Zhenzhen, Zhang, Chunying, Zhou, Yanbing, Bai, Yangjuan, Chen, Lu, Tang, Xiaoyan, Liu, Cuihua, Zhou, Juan, Chen, Xuerong, Ying, Binwu
Format Journal Article
LanguageEnglish
Published London BioMed Central 21.06.2024
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1465-993X
1465-9921
1465-993X
DOI10.1186/s12931-024-02837-8

Cover

Loading…
More Information
Summary:Tuberculosis (TB) remains the second leading cause of death from a single infectious agent and long-term medication could lead to antituberculosis drug-induced liver injury (ATB-DILI). We established a prospective longitudinal cohort of ATB-DILI with multiple timepoint blood sampling and used untargeted metabolomics to analyze the metabolic profiles of 107 plasma samples from healthy controls and newly diagnosed TB patients who either developed ATB-DILI within 2 months of anti-TB treatment (ATB-DILI subjects) or completed their treatment without any adverse drug reaction (ATB-Ctrl subjects). The untargeted metabolome revealed that 77 metabolites (of 895 total) were significantly changed with ATB-DILI progression. Among them, levels of multiple fatty acids and bile acids significantly increased over time in ATB-DILI subjects. Meanwhile, metabolites of the same class were highly correlated with each other and pathway analysis indicated both fatty acids metabolism and bile acids metabolism were up-regulated with ATB-DILI progression. The targeted metabolome further validated that 5 fatty acids had prediction capability at the early stage of the disease and 6 bile acids had a better diagnostic performance when ATB-DILI occurred. These findings provide evidence indicating that fatty acids metabolism and bile acids metabolism play a vital role during ATB-DILI progression. Our report adds a dynamic perspective better to understand the pathological process of ATB-DILI in clinical settings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1465-993X
1465-9921
1465-993X
DOI:10.1186/s12931-024-02837-8