Fbxl10/Kdm2b Recruits Polycomb Repressive Complex 1 to CpG Islands and Regulates H2A Ubiquitylation
Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fb...
Saved in:
Published in | Molecular cell Vol. 49; no. 6; pp. 1134 - 1146 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
28.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs.
[Display omitted]
► Fbxl10 binds to most CpG islands in ESCs ► Fbxl10 recruits Nspc1 and Ring1B to CpG islands ► The Fbxl10, Nspc1, and Ring1B complex is required for H2A monoubiquitylation ► Fbxl10 is required for proper ESC differentiation |
---|---|
AbstractList | Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs. Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs. Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs.Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs. Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs. [Display omitted] ► Fbxl10 binds to most CpG islands in ESCs ► Fbxl10 recruits Nspc1 and Ring1B to CpG islands ► The Fbxl10, Nspc1, and Ring1B complex is required for H2A monoubiquitylation ► Fbxl10 is required for proper ESC differentiation |
Author | Helin, Kristian Wu, Xudong Johansen, Jens Vilstrup |
Author_xml | – sequence: 1 givenname: Xudong surname: Wu fullname: Wu, Xudong organization: Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark – sequence: 2 givenname: Jens Vilstrup surname: Johansen fullname: Johansen, Jens Vilstrup organization: Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark – sequence: 3 givenname: Kristian surname: Helin fullname: Helin, Kristian email: kristian.helin@bric.ku.dk organization: Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23395003$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu3CAUhlGVqLm0b1C1LLuZCTdju4tK0ai5qJESpZ01wvgQMcLGATvKvH2ZeppFFg06AnT4_gP85wQd9KEHhD5RsqSEyrPNsgvegF8yQvmS0BzyHTqmpC4XgkpxsN-zUhZH6CSlDSFUFFX9Hh0xzuuCEH6MzEXz7Ck5-9l2rMH3YOLkxoTvgt-a0O0yQ4SU3BPgVegGD8-Y4jHg1XCJr5PXfZtwnjL3MHk9QsJX7ByvG_eY62xzxoX-Azq02if4uF9P0frix-_V1eLm9vJ6dX6zMAWn48IQWVsKjbCtZqAFEbKqy8pUVrDCyHxUmVJSI0pJ6kpybq01oDkBzvOZ5qfo61x3iOFxgjSqzqXsUH4lhCkpRvKoBeXFmyjljJWc1uUO_bxHp6aDVg3RdTpu1T8PMyBmwMSQUgT7glCidq1SGzW3Su1apQjNIbPs2yuZceNfv8aonX9L_GUWWx2UfoguqfWvDMj8Q5bdKTPxfSYgO_7kIKpkHPQGWhfBjKoN7v9X_AFIVrjK |
CitedBy_id | crossref_primary_10_1038_ng_3272 crossref_primary_10_1016_j_tibs_2015_11_005 crossref_primary_10_1007_s00412_015_0539_4 crossref_primary_10_1186_s13072_016_0069_1 crossref_primary_10_1016_j_molcel_2019_12_001 crossref_primary_10_1038_nsmb_3180 crossref_primary_10_1093_biolre_ioy181 crossref_primary_10_1371_journal_ppat_1008268 crossref_primary_10_1074_jbc_RA120_015502 crossref_primary_10_15252_embr_201541809 crossref_primary_10_1038_s41467_023_43869_w crossref_primary_10_1016_j_bbagrm_2022_194786 crossref_primary_10_1016_j_exphem_2016_12_006 crossref_primary_10_1134_S0026893316060121 crossref_primary_10_1038_s41598_019_57214_z crossref_primary_10_1101_gr_237180_118 crossref_primary_10_1111_cpr_12920 crossref_primary_10_1038_nature23891 crossref_primary_10_1038_onc_2013_604 crossref_primary_10_1111_cpr_13457 crossref_primary_10_3390_ijms25189809 crossref_primary_10_3390_epigenomes3020012 crossref_primary_10_1016_j_biocel_2016_02_005 crossref_primary_10_1016_j_jmb_2019_09_025 crossref_primary_10_18632_oncotarget_11279 crossref_primary_10_1186_s13619_024_00196_9 crossref_primary_10_1016_j_bbrc_2013_09_095 crossref_primary_10_1038_nrg3603 crossref_primary_10_1080_21541264_2017_1373209 crossref_primary_10_1021_acs_biochem_5b01210 crossref_primary_10_1016_j_tcb_2016_04_009 crossref_primary_10_1038_celldisc_2015_3 crossref_primary_10_1038_nrg3607 crossref_primary_10_1186_s12864_016_3471_y crossref_primary_10_1016_j_arr_2014_05_004 crossref_primary_10_1038_s41419_017_0066_8 crossref_primary_10_1016_j_tig_2017_06_002 crossref_primary_10_1038_s41556_020_0484_1 crossref_primary_10_1038_ng_3290 crossref_primary_10_3390_cells11071113 crossref_primary_10_1016_j_cellin_2022_100048 crossref_primary_10_3389_fcell_2024_1498346 crossref_primary_10_1038_onc_2015_482 crossref_primary_10_1111_tpj_12818 crossref_primary_10_1016_j_celrep_2016_10_055 crossref_primary_10_1016_j_molcel_2022_01_027 crossref_primary_10_1080_19491034_2018_1498707 crossref_primary_10_1371_journal_ppat_1007838 crossref_primary_10_1016_j_jgg_2021_06_012 crossref_primary_10_3390_cells10020266 crossref_primary_10_1016_j_devcel_2015_04_006 crossref_primary_10_1016_j_conb_2019_07_003 crossref_primary_10_1126_sciadv_1500737 crossref_primary_10_1007_s00441_014_1885_x crossref_primary_10_1016_j_celrep_2014_04_012 crossref_primary_10_3389_fmolb_2018_00019 crossref_primary_10_2217_epi_14_14 crossref_primary_10_1073_pnas_1400672111 crossref_primary_10_1038_s41589_023_01256_y crossref_primary_10_1038_s41467_023_42322_2 crossref_primary_10_1128_jvi_02007_24 crossref_primary_10_3390_epigenomes4030017 crossref_primary_10_1128_MCB_01729_13 crossref_primary_10_1038_s41580_021_00341_1 crossref_primary_10_1038_s41467_018_06968_7 crossref_primary_10_1038_ng_3718 crossref_primary_10_1007_s11859_014_0971_y crossref_primary_10_1101_gr_249219_119 crossref_primary_10_1093_nar_gkad1203 crossref_primary_10_1146_annurev_cellbio_100617_062802 crossref_primary_10_1016_j_yexcr_2020_112294 crossref_primary_10_1038_nrm_2017_83 crossref_primary_10_1038_s41556_022_01056_x crossref_primary_10_1038_s41580_021_00398_y crossref_primary_10_1038_s41594_023_01096_3 crossref_primary_10_1371_journal_pone_0154561 crossref_primary_10_7554_eLife_38771 crossref_primary_10_3390_epigenomes6030023 crossref_primary_10_1016_j_stemcr_2018_02_004 crossref_primary_10_3390_epigenomes6030025 crossref_primary_10_1016_j_molcel_2024_07_030 crossref_primary_10_1038_ncb2723 crossref_primary_10_1038_ncomms13594 crossref_primary_10_1038_s41467_019_09250_6 crossref_primary_10_1371_journal_pgen_1003717 crossref_primary_10_1128_JVI_00331_21 crossref_primary_10_1242_dev_182683 crossref_primary_10_1093_nar_gkab304 crossref_primary_10_1242_dev_181354 crossref_primary_10_1038_ncomms8621 crossref_primary_10_1371_journal_pgen_1007193 crossref_primary_10_1038_srep18388 crossref_primary_10_1155_2016_4034620 crossref_primary_10_3390_cells11152404 crossref_primary_10_1016_j_canlet_2021_01_007 crossref_primary_10_1038_nrd4154 crossref_primary_10_1038_s41594_018_0039_3 crossref_primary_10_1126_sciadv_ade3888 crossref_primary_10_1038_cr_2015_121 crossref_primary_10_1016_j_jgg_2021_03_013 crossref_primary_10_1089_scd_2014_0310 crossref_primary_10_3839_jabc_2014_060 crossref_primary_10_1016_j_ydbio_2020_06_013 crossref_primary_10_1038_nrc3700 crossref_primary_10_1016_j_ceb_2015_10_003 crossref_primary_10_1016_j_stem_2014_05_006 crossref_primary_10_1016_j_celrep_2015_12_100 crossref_primary_10_1007_s10753_019_01000_6 crossref_primary_10_15252_embr_201541113 crossref_primary_10_1093_nar_gkac290 crossref_primary_10_1007_s40588_024_00232_x crossref_primary_10_1016_j_stem_2017_12_002 crossref_primary_10_1016_j_molcel_2013_03_012 crossref_primary_10_3390_genes11060638 crossref_primary_10_1016_j_celrep_2023_112163 crossref_primary_10_1038_nsmb_2669 crossref_primary_10_1111_imr_13056 crossref_primary_10_15252_embj_201797038 crossref_primary_10_1016_j_bbrc_2022_03_054 crossref_primary_10_1074_jbc_M114_626929 crossref_primary_10_1631_jzus_B1400077 crossref_primary_10_1128_MCB_00266_15 crossref_primary_10_15252_embr_201540945 crossref_primary_10_1016_j_str_2016_07_011 crossref_primary_10_3390_epigenomes2010004 crossref_primary_10_1016_j_molcel_2015_12_008 crossref_primary_10_1038_ncomms4127 crossref_primary_10_1016_j_semcancer_2015_09_015 crossref_primary_10_1101_gad_260919_115 crossref_primary_10_1158_2159_8290_CD_16_0058 crossref_primary_10_5010_JPB_2017_44_1_019 crossref_primary_10_1016_j_celrep_2018_09_081 crossref_primary_10_1083_jcb_202311021 crossref_primary_10_1016_j_gde_2016_11_001 crossref_primary_10_7554_eLife_21064 crossref_primary_10_1016_j_it_2020_10_003 crossref_primary_10_1007_s10930_020_09895_z crossref_primary_10_1093_hmg_ddv499 crossref_primary_10_1126_science_aad9780 crossref_primary_10_2217_epi_2017_0160 crossref_primary_10_1016_j_tig_2017_01_006 crossref_primary_10_1146_annurev_genet_120116_023402 crossref_primary_10_1016_j_str_2017_11_022 crossref_primary_10_1093_abbs_gmx122 crossref_primary_10_1038_s41467_022_31759_6 crossref_primary_10_7554_eLife_67738 crossref_primary_10_1074_jbc_RA118_005010 crossref_primary_10_1038_onc_2017_34 crossref_primary_10_1038_s41467_018_03704_z crossref_primary_10_1016_j_ccell_2018_01_018 crossref_primary_10_1016_j_ymgme_2015_01_007 crossref_primary_10_1073_pnas_1804512115 crossref_primary_10_1073_pnas_2005136117 crossref_primary_10_1016_j_molcel_2024_02_015 crossref_primary_10_1242_dev_142489 crossref_primary_10_1007_s00018_014_1734_9 crossref_primary_10_3390_genes12101485 crossref_primary_10_1016_j_jgg_2024_10_012 crossref_primary_10_1007_s42764_020_00020_z crossref_primary_10_1038_s41576_020_0245_9 crossref_primary_10_1093_hmg_ddw215 crossref_primary_10_3389_fcell_2022_986319 crossref_primary_10_1038_nrm4067 crossref_primary_10_1042_BST20200695 crossref_primary_10_2217_epi_2023_0234 crossref_primary_10_1042_BST20130028 crossref_primary_10_1038_s41467_020_19722_9 crossref_primary_10_1101_gr_188920_114 crossref_primary_10_1158_2643_3230_BCD_21_0115 crossref_primary_10_1371_journal_pone_0149502 crossref_primary_10_1093_jmcb_mjaa011 crossref_primary_10_1016_j_bbcan_2016_05_001 crossref_primary_10_1101_gad_347005_120 crossref_primary_10_1016_j_bbagrm_2014_02_007 crossref_primary_10_1186_s13059_020_01953_0 crossref_primary_10_2139_ssrn_3155555 crossref_primary_10_1371_journal_pbio_3000749 crossref_primary_10_1016_j_celrep_2017_10_091 crossref_primary_10_1016_j_celrep_2019_12_026 crossref_primary_10_1016_j_molcel_2013_02_013 crossref_primary_10_1016_j_mod_2014_10_001 crossref_primary_10_7554_eLife_18591 crossref_primary_10_1107_S2052252514020922 crossref_primary_10_1038_s42003_024_06820_3 crossref_primary_10_1038_nature13890 crossref_primary_10_1016_j_dnarep_2019_102686 crossref_primary_10_14336_AD_2015_0929 crossref_primary_10_1016_j_tcb_2014_06_005 crossref_primary_10_1016_j_stem_2019_03_005 crossref_primary_10_1038_s41467_023_42507_9 crossref_primary_10_1093_bib_bbaa215 crossref_primary_10_1016_j_celrep_2024_115075 crossref_primary_10_1128_MCB_00036_14 crossref_primary_10_1101_gad_326066_119 crossref_primary_10_1182_blood_2014_03_562694 crossref_primary_10_1016_j_molcel_2019_03_011 crossref_primary_10_1038_nrm_2015_31 crossref_primary_10_1038_srep46276 crossref_primary_10_1074_jbc_TM118_000831 crossref_primary_10_1007_s00441_014_2011_9 crossref_primary_10_1016_j_cell_2014_05_004 crossref_primary_10_1016_j_gde_2016_03_013 crossref_primary_10_1016_j_stem_2015_08_009 crossref_primary_10_1038_s41467_021_24894_z crossref_primary_10_1093_nar_gkab209 crossref_primary_10_1126_sciadv_adl4529 crossref_primary_10_1038_s41467_023_36236_2 crossref_primary_10_1093_nar_gkz607 crossref_primary_10_1002_bies_202100155 crossref_primary_10_1016_j_celrep_2015_12_034 crossref_primary_10_1172_JCI84014 crossref_primary_10_7554_eLife_37084 crossref_primary_10_1101_gad_219626_113 crossref_primary_10_1111_febs_13112 crossref_primary_10_1016_j_mod_2014_06_003 crossref_primary_10_1016_j_isci_2021_102435 crossref_primary_10_1242_dev_094615 crossref_primary_10_1360_SSV_2022_0132 crossref_primary_10_1186_s12935_017_0472_0 crossref_primary_10_3390_ijms24043743 crossref_primary_10_1016_j_gim_2022_09_006 crossref_primary_10_1158_0008_5472_CAN_13_2733 crossref_primary_10_1016_j_tibs_2017_04_003 crossref_primary_10_1371_journal_ppat_1004274 crossref_primary_10_1016_j_devcel_2022_10_009 crossref_primary_10_1042_BST20230336 crossref_primary_10_1002_bies_201900192 crossref_primary_10_1038_emm_2017_57 crossref_primary_10_1101_gad_248005_114 crossref_primary_10_1016_j_molcel_2020_11_046 crossref_primary_10_1016_j_ccell_2016_07_006 crossref_primary_10_1016_j_bbagrm_2024_195044 crossref_primary_10_1016_j_stemcr_2020_07_007 crossref_primary_10_7554_eLife_03397 crossref_primary_10_18632_oncotarget_24319 crossref_primary_10_1093_nar_gkw701 crossref_primary_10_5010_JPB_2018_45_4_299 crossref_primary_10_1002_stem_1826 crossref_primary_10_1158_0008_5472_CAN_21_1456 crossref_primary_10_1038_s41588_021_00856_5 crossref_primary_10_1016_j_gendis_2024_101311 crossref_primary_10_1038_nsmb_2848 crossref_primary_10_1126_sciadv_abq7598 crossref_primary_10_2217_epi_13_67 crossref_primary_10_1016_j_tig_2019_12_004 crossref_primary_10_1016_j_devcel_2013_08_016 crossref_primary_10_1093_abbs_gmy084 crossref_primary_10_1038_nrm_2016_6 crossref_primary_10_1093_mp_sst150 crossref_primary_10_1038_s41467_021_21130_6 crossref_primary_10_1016_j_ccell_2015_04_011 crossref_primary_10_1002_jcp_29299 crossref_primary_10_1093_jxb_ert410 crossref_primary_10_1016_j_biopha_2023_115897 crossref_primary_10_1371_journal_pone_0210207 crossref_primary_10_1038_s41594_021_00661_y crossref_primary_10_1016_j_stem_2016_12_002 crossref_primary_10_1038_s41576_022_00499_0 crossref_primary_10_1128_JVI_01362_18 crossref_primary_10_1101_gr_158436_113 crossref_primary_10_3390_epigenomes1030021 crossref_primary_10_1247_csf_13022 crossref_primary_10_1007_s00281_020_00787_z crossref_primary_10_1016_j_bbapap_2017_06_018 crossref_primary_10_1016_j_celrep_2014_07_001 crossref_primary_10_1155_2018_7961962 crossref_primary_10_1242_dev_091553 crossref_primary_10_1016_j_isci_2020_101646 crossref_primary_10_1016_j_stemcr_2021_10_013 crossref_primary_10_1158_1541_7786_MCR_13_0596 crossref_primary_10_1093_nar_gkv960 crossref_primary_10_1016_j_celrep_2016_08_096 crossref_primary_10_1093_nar_gkw258 crossref_primary_10_1101_cshperspect_a026575 crossref_primary_10_1016_j_isci_2022_103742 crossref_primary_10_1096_fj_201800242R crossref_primary_10_1016_j_exphem_2016_05_006 crossref_primary_10_1038_ncomms13661 crossref_primary_10_2217_epi_13_79 crossref_primary_10_1074_jbc_R115_675165 crossref_primary_10_1093_nar_gkt1187 crossref_primary_10_1242_dev_166348 crossref_primary_10_3389_fcell_2022_928113 crossref_primary_10_1007_s11515_016_1399_x crossref_primary_10_1080_19491034_2017_1363136 crossref_primary_10_3389_fgene_2018_00354 |
Cites_doi | 10.1371/journal.pgen.1001244 10.1016/j.stem.2011.12.017 10.1038/nprot.2007.147 10.1038/nature08924 10.1016/j.molcel.2012.01.002 10.1128/MCB.01432-06 10.1016/j.cell.2008.07.020 10.1038/nature02985 10.1038/ncb1628 10.1016/j.cell.2006.02.043 10.1371/journal.pgen.1002774 10.1038/nature10066 10.1038/emboj.2011.399 10.1016/j.stem.2011.12.006 10.1038/sj.emboj.7601187 10.1371/journal.pgen.1000242 10.1371/journal.pgen.1002090 10.1038/nature09934 10.1083/jcb.200612127 10.1101/gad.381706 10.4161/epi.6.2.13640 10.1038/nature06008 10.1016/j.cell.2010.10.012 10.1038/nrc1991 10.1038/ng1817 10.1371/journal.pbio.1000013 10.1074/jbc.M110.194027 10.1016/j.molcel.2008.05.007 10.1038/nrc2736 10.1371/journal.pbio.0060253 10.1038/ncb1663 10.1016/j.molcel.2010.04.009 10.1016/j.cell.2007.05.042 10.1038/emboj.2011.383 10.1128/MCB.00630-06 10.1038/sj.emboj.7601144 10.1101/gad.544410 10.1038/nrm2763 10.1371/journal.pgen.1002494 10.1093/nar/gkn243 10.1038/ng.946 10.1101/gad.2037511 10.1016/j.molcel.2007.08.009 10.1038/nature04733 10.1371/journal.pone.0002235 10.1016/j.cell.2006.02.041 10.1101/gad.484208 10.1242/dev.033902 10.1038/nsmb.1499 10.1016/j.cell.2011.12.029 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molcel.2013.01.016 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 1146 |
ExternalDocumentID | 23395003 10_1016_j_molcel_2013_01_016 US201600020987 S109727651300049X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 5VS 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G AAQXK ABPTK ADMUD AEQTP FBQ FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP AAHBH AAMRU AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c531t-c069f1eb4fda2ea40468978c8f425c6f1e8c761c476098633fffcea30e331e8a3 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Jul 10 20:51:43 EDT 2025 Fri Jul 11 06:20:42 EDT 2025 Thu Apr 03 06:59:13 EDT 2025 Tue Jul 01 03:40:41 EDT 2025 Thu Apr 24 22:56:17 EDT 2025 Wed Dec 27 18:54:16 EST 2023 Fri Feb 23 02:19:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-c069f1eb4fda2ea40468978c8f425c6f1e8c761c476098633fffcea30e331e8a3 |
Notes | http://dx.doi.org/10.1016/j.molcel.2013.01.016 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S109727651300049X |
PMID | 23395003 |
PQID | 1322731975 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2000094135 proquest_miscellaneous_1322731975 pubmed_primary_23395003 crossref_primary_10_1016_j_molcel_2013_01_016 crossref_citationtrail_10_1016_j_molcel_2013_01_016 fao_agris_US201600020987 elsevier_sciencedirect_doi_10_1016_j_molcel_2013_01_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-28 |
PublicationDateYYYYMMDD | 2013-03-28 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Brookes, de Santiago, Hebenstreit, Morris, Carroll, Xie, Stock, Heidemann, Eick, Nozaki (bib8) 2012; 10 Bracken, Helin (bib7) 2009; 9 Ku, Koche, Rheinbay, Mendenhall, Endoh, Mikkelsen, Presser, Nusbaum, Xie, Chi (bib19) 2008; 4 Leeb, Wutz (bib22) 2007; 178 Marson, Levine, Cole, Frampton, Brambrink, Johnstone, Guenther, Johnston, Wernig, Newman (bib27) 2008; 134 Lee, Jenner, Boyer, Guenther, Levine, Kumar, Chevalier, Johnstone, Cole, Isono (bib21) 2006; 125 Blackledge, Klose (bib4) 2011; 6 Wu, Gong, Yue, Qiang, Yuan, Peng (bib47) 2008; 36 Mohn, Weber, Rebhan, Roloff, Richter, Stadler, Bibel, Schübeler (bib30) 2008; 30 Wang, Wang, Erdjument-Bromage, Vidal, Tempst, Jones, Zhang (bib45) 2004; 431 Blackledge, Zhou, Tolstorukov, Farcas, Park, Klose (bib5) 2010; 38 Boyer, Plath, Zeitlinger, Brambrink, Medeiros, Lee, Levine, Wernig, Tajonar, Ray (bib6) 2006; 441 Thomson, Skene, Selfridge, Clouaire, Guy, Webb, Kerr, Deaton, Andrews, James (bib43) 2010; 464 Gao, Zhang, Bonasio, Strino, Sawai, Parisi, Kluger, Reinberg (bib14) 2012; 45 Elderkin, Maertens, Endoh, Mallery, Morrice, Koseki, Peters, Brockdorff, Hiom (bib12) 2007; 28 Leeb, Pasini, Novatchkova, Jaritz, Helin, Wutz (bib23) 2010; 24 Schuettengruber, Ganapathi, Leblanc, Portoso, Jaschek, Tolhuis, van Lohuizen, Tanay, Cavalli (bib36) 2009; 7 Bibel, Richter, Lacroix, Barde (bib3) 2007; 2 Bracken, Dietrich, Pasini, Hansen, Helin (bib50) 2006; 20 Lienert, Wirbelauer, Som, Dean, Mohn, Schübeler (bib25) 2011; 43 Morey, Pascual, Cozzuto, Roma, Wutz, Benitah, Di Croce (bib31) 2012; 10 Schmitz, Albert, Malatesta, Morey, Johansen, Bak, Tommerup, Abarrategui, Helin (bib33) 2011; 30 Simon, Kingston (bib39) 2009; 10 Wu, D’Alessio, Ito, Xia, Wang, Cui, Zhao, Sun, Zhang (bib48) 2011; 473 Silva, Barrandon, Nichols, Kawaguchi, Theunissen, Smith (bib38) 2008; 6 Guenther, Levine, Boyer, Jaenisch, Young (bib16) 2007; 130 Koyama-Nasu, David, Tanese (bib18) 2007; 9 Bernstein, Mikkelsen, Xie, Kamal, Huebert, Cuff, Fry, Meissner, Wernig, Plath (bib2) 2006; 125 Lagarou, Mohd-Sarip, Moshkin, Chalkley, Bezstarosti, Demmers, Verrijzer (bib20) 2008; 22 van der Stoop, Boutsma, Hulsman, Noback, Heimerikx, Kerkhoven, Voncken, Wessels, van Lohuizen (bib44) 2008; 3 Dietrich, Lerdrup, Landt, Agrawal-Singh, Bak, Tommerup, Rappsilber, Södersten, Hansen (bib11) 2012; 8 Yuan, Xu, Huang, Liu, Chen, Zhu (bib49) 2011; 286 Mendenhall, Koche, Truong, Zhou, Issac, Chi, Ku, Bernstein (bib28) 2010; 6 Buchwald, van der Stoop, Weichenrieder, Perrakis, van Lohuizen, Sixma (bib9) 2006; 25 Tavares, Dimitrova, Oxley, Webster, Poot, Demmers, Bezstarosti, Taylor, Ura, Koide (bib42) 2012; 148 Mikkelsen, Ku, Jaffe, Issac, Lieberman, Giannoukos, Alvarez, Brockman, Kim, Koche (bib29) 2007; 448 Stock, Giadrossi, Casanova, Brookes, Vidal, Koseki, Brockdorff, Fisher, Pombo (bib41) 2007; 9 Endoh, Endo, Endoh, Isono, Sharif, Ohara, Toyoda, Ito, Eskeland, Bickmore (bib13) 2012; 8 Deaton, Bird (bib10) 2011; 25 Lienert, Mohn, Tiwari, Baubec, Roloff, Gaidatzis, Stadler, Schübeler (bib24) 2011; 7 Bartke, Vermeulen, Xhemalce, Robson, Mann, Kouzarides (bib1) 2010; 143 Sparmann, van Lohuizen (bib40) 2006; 6 Schoeftner, Sengupta, Kubicek, Mechtler, Spahn, Koseki, Jenuwein, Wutz (bib34) 2006; 25 He, Kallin, Tsukada, Zhang (bib17) 2008; 15 Schuettengruber, Cavalli (bib35) 2009; 136 Lynch, Smith, De Gobbi, Flenley, Hughes, Vernimmen, Ayyub, Sharpe, Sloane-Stanley, Sutherland (bib26) 2012; 31 Schwartz, Kahn, Nix, Li, Bourgon, Biggin, Pirrotta (bib37) 2006; 38 Gearhart, Corcoran, Wamstad, Bardwell (bib15) 2006; 26 Pasini, Bracken, Hansen, Capillo, Helin (bib32) 2007; 27 Williams, Christensen, Pedersen, Johansen, Cloos, Rappsilber, Helin (bib46) 2011; 473 Elderkin (10.1016/j.molcel.2013.01.016_bib12) 2007; 28 Guenther (10.1016/j.molcel.2013.01.016_bib16) 2007; 130 Boyer (10.1016/j.molcel.2013.01.016_bib6) 2006; 441 Gearhart (10.1016/j.molcel.2013.01.016_bib15) 2006; 26 Morey (10.1016/j.molcel.2013.01.016_bib31) 2012; 10 Blackledge (10.1016/j.molcel.2013.01.016_bib5) 2010; 38 Simon (10.1016/j.molcel.2013.01.016_bib39) 2009; 10 He (10.1016/j.molcel.2013.01.016_bib17) 2008; 15 Lee (10.1016/j.molcel.2013.01.016_bib21) 2006; 125 Endoh (10.1016/j.molcel.2013.01.016_bib13) 2012; 8 Dietrich (10.1016/j.molcel.2013.01.016_bib11) 2012; 8 Leeb (10.1016/j.molcel.2013.01.016_bib23) 2010; 24 Stock (10.1016/j.molcel.2013.01.016_bib41) 2007; 9 Schoeftner (10.1016/j.molcel.2013.01.016_bib34) 2006; 25 Yuan (10.1016/j.molcel.2013.01.016_bib49) 2011; 286 Lynch (10.1016/j.molcel.2013.01.016_bib26) 2012; 31 Leeb (10.1016/j.molcel.2013.01.016_bib22) 2007; 178 Tavares (10.1016/j.molcel.2013.01.016_bib42) 2012; 148 Gao (10.1016/j.molcel.2013.01.016_bib14) 2012; 45 Lagarou (10.1016/j.molcel.2013.01.016_bib20) 2008; 22 Mendenhall (10.1016/j.molcel.2013.01.016_bib28) 2010; 6 Wang (10.1016/j.molcel.2013.01.016_bib45) 2004; 431 Mikkelsen (10.1016/j.molcel.2013.01.016_bib29) 2007; 448 Marson (10.1016/j.molcel.2013.01.016_bib27) 2008; 134 van der Stoop (10.1016/j.molcel.2013.01.016_bib44) 2008; 3 Pasini (10.1016/j.molcel.2013.01.016_bib32) 2007; 27 Bibel (10.1016/j.molcel.2013.01.016_bib3) 2007; 2 Lienert (10.1016/j.molcel.2013.01.016_bib25) 2011; 43 Buchwald (10.1016/j.molcel.2013.01.016_bib9) 2006; 25 Bernstein (10.1016/j.molcel.2013.01.016_bib2) 2006; 125 Schuettengruber (10.1016/j.molcel.2013.01.016_bib35) 2009; 136 Blackledge (10.1016/j.molcel.2013.01.016_bib4) 2011; 6 Lienert (10.1016/j.molcel.2013.01.016_bib24) 2011; 7 Bracken (10.1016/j.molcel.2013.01.016_bib7) 2009; 9 Schmitz (10.1016/j.molcel.2013.01.016_bib33) 2011; 30 Thomson (10.1016/j.molcel.2013.01.016_bib43) 2010; 464 Sparmann (10.1016/j.molcel.2013.01.016_bib40) 2006; 6 Williams (10.1016/j.molcel.2013.01.016_bib46) 2011; 473 Wu (10.1016/j.molcel.2013.01.016_bib47) 2008; 36 Schwartz (10.1016/j.molcel.2013.01.016_bib37) 2006; 38 Bracken (10.1016/j.molcel.2013.01.016_bib50) 2006; 20 Schuettengruber (10.1016/j.molcel.2013.01.016_bib36) 2009; 7 Bartke (10.1016/j.molcel.2013.01.016_bib1) 2010; 143 Ku (10.1016/j.molcel.2013.01.016_bib19) 2008; 4 Brookes (10.1016/j.molcel.2013.01.016_bib8) 2012; 10 Deaton (10.1016/j.molcel.2013.01.016_bib10) 2011; 25 Silva (10.1016/j.molcel.2013.01.016_bib38) 2008; 6 Koyama-Nasu (10.1016/j.molcel.2013.01.016_bib18) 2007; 9 Wu (10.1016/j.molcel.2013.01.016_bib48) 2011; 473 Mohn (10.1016/j.molcel.2013.01.016_bib30) 2008; 30 23541037 - Mol Cell. 2013 Mar 28;49(6):1019-20 |
References_xml | – volume: 441 start-page: 349 year: 2006 end-page: 353 ident: bib6 article-title: Polycomb complexes repress developmental regulators in murine embryonic stem cells publication-title: Nature – volume: 130 start-page: 77 year: 2007 end-page: 88 ident: bib16 article-title: A chromatin landmark and transcription initiation at most promoters in human cells publication-title: Cell – volume: 143 start-page: 470 year: 2010 end-page: 484 ident: bib1 article-title: Nucleosome-interacting proteins regulated by DNA and histone methylation publication-title: Cell – volume: 464 start-page: 1082 year: 2010 end-page: 1086 ident: bib43 article-title: CpG islands influence chromatin structure via the CpG-binding protein Cfp1 publication-title: Nature – volume: 10 start-page: 157 year: 2012 end-page: 170 ident: bib8 article-title: Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs publication-title: Cell Stem Cell – volume: 178 start-page: 219 year: 2007 end-page: 229 ident: bib22 article-title: Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells publication-title: J. Cell Biol. – volume: 24 start-page: 265 year: 2010 end-page: 276 ident: bib23 article-title: Polycomb complexes act redundantly to repress genomic repeats and genes publication-title: Genes Dev. – volume: 9 start-page: 1074 year: 2007 end-page: 1080 ident: bib18 article-title: The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun publication-title: Nat. Cell Biol. – volume: 45 start-page: 344 year: 2012 end-page: 356 ident: bib14 article-title: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes publication-title: Mol. Cell – volume: 286 start-page: 7983 year: 2011 end-page: 7989 ident: bib49 article-title: H3K36 methylation antagonizes PRC2-mediated H3K27 methylation publication-title: J. Biol. Chem. – volume: 136 start-page: 3531 year: 2009 end-page: 3542 ident: bib35 article-title: Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice publication-title: Development – volume: 20 start-page: 1123 year: 2006 end-page: 1136 ident: bib50 article-title: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions publication-title: Genes Dev – volume: 43 start-page: 1091 year: 2011 end-page: 1097 ident: bib25 article-title: Identification of genetic elements that autonomously determine DNA methylation states publication-title: Nat. Genet. – volume: 6 start-page: 147 year: 2011 end-page: 152 ident: bib4 article-title: CpG island chromatin: a platform for gene regulation publication-title: Epigenetics – volume: 38 start-page: 700 year: 2006 end-page: 705 ident: bib37 article-title: Genome-wide analysis of Polycomb targets in Drosophila melanogaster publication-title: Nat. Genet. – volume: 15 start-page: 1169 year: 2008 end-page: 1175 ident: bib17 article-title: The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b) publication-title: Nat. Struct. Mol. Biol. – volume: 6 start-page: e1001244 year: 2010 ident: bib28 article-title: GC-rich sequence elements recruit PRC2 in mammalian ES cells publication-title: PLoS Genet. – volume: 26 start-page: 6880 year: 2006 end-page: 6889 ident: bib15 article-title: Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets publication-title: Mol. Cell. Biol. – volume: 30 start-page: 4586 year: 2011 end-page: 4600 ident: bib33 article-title: Jarid1b targets genes regulating development and is involved in neural differentiation publication-title: EMBO J. – volume: 8 start-page: e1002494 year: 2012 ident: bib11 article-title: REST-mediated recruitment of polycomb repressor complexes in mammalian cells publication-title: PLoS Genet. – volume: 431 start-page: 873 year: 2004 end-page: 878 ident: bib45 article-title: Role of histone H2A ubiquitination in Polycomb silencing publication-title: Nature – volume: 25 start-page: 1010 year: 2011 end-page: 1022 ident: bib10 article-title: CpG islands and the regulation of transcription publication-title: Genes Dev. – volume: 6 start-page: 846 year: 2006 end-page: 856 ident: bib40 article-title: Polycomb silencers control cell fate, development and cancer publication-title: Nat. Rev. Cancer – volume: 22 start-page: 2799 year: 2008 end-page: 2810 ident: bib20 article-title: dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing publication-title: Genes Dev. – volume: 134 start-page: 521 year: 2008 end-page: 533 ident: bib27 article-title: Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells publication-title: Cell – volume: 448 start-page: 553 year: 2007 end-page: 560 ident: bib29 article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells publication-title: Nature – volume: 9 start-page: 1428 year: 2007 end-page: 1435 ident: bib41 article-title: Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells publication-title: Nat. Cell Biol. – volume: 125 start-page: 315 year: 2006 end-page: 326 ident: bib2 article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells publication-title: Cell – volume: 6 start-page: e253 year: 2008 ident: bib38 article-title: Promotion of reprogramming to ground state pluripotency by signal inhibition publication-title: PLoS Biol. – volume: 125 start-page: 301 year: 2006 end-page: 313 ident: bib21 article-title: Control of developmental regulators by Polycomb in human embryonic stem cells publication-title: Cell – volume: 7 start-page: e1002090 year: 2011 ident: bib24 article-title: Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells publication-title: PLoS Genet. – volume: 38 start-page: 179 year: 2010 end-page: 190 ident: bib5 article-title: CpG islands recruit a histone H3 lysine 36 demethylase publication-title: Mol. Cell – volume: 473 start-page: 389 year: 2011 end-page: 393 ident: bib48 article-title: Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells publication-title: Nature – volume: 3 start-page: e2235 year: 2008 ident: bib44 article-title: Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells publication-title: PLoS ONE – volume: 30 start-page: 755 year: 2008 end-page: 766 ident: bib30 article-title: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors publication-title: Mol. Cell – volume: 28 start-page: 107 year: 2007 end-page: 120 ident: bib12 article-title: A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin publication-title: Mol. Cell – volume: 36 start-page: 3590 year: 2008 end-page: 3599 ident: bib47 article-title: Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmt1 in HOX gene silencing publication-title: Nucleic Acids Res. – volume: 9 start-page: 773 year: 2009 end-page: 784 ident: bib7 article-title: Polycomb group proteins: navigators of lineage pathways led astray in cancer publication-title: Nat. Rev. Cancer – volume: 2 start-page: 1034 year: 2007 end-page: 1043 ident: bib3 article-title: Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells publication-title: Nat. Protoc. – volume: 10 start-page: 47 year: 2012 end-page: 62 ident: bib31 article-title: Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells publication-title: Cell Stem Cell – volume: 31 start-page: 317 year: 2012 end-page: 329 ident: bib26 article-title: An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment publication-title: EMBO J. – volume: 473 start-page: 343 year: 2011 end-page: 348 ident: bib46 article-title: TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity publication-title: Nature – volume: 10 start-page: 697 year: 2009 end-page: 708 ident: bib39 article-title: Mechanisms of polycomb gene silencing: knowns and unknowns publication-title: Nat. Rev. Mol. Cell Biol. – volume: 25 start-page: 3110 year: 2006 end-page: 3122 ident: bib34 article-title: Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing publication-title: EMBO J. – volume: 25 start-page: 2465 year: 2006 end-page: 2474 ident: bib9 article-title: Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b publication-title: EMBO J. – volume: 7 start-page: e13 year: 2009 ident: bib36 article-title: Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos publication-title: PLoS Biol. – volume: 27 start-page: 3769 year: 2007 end-page: 3779 ident: bib32 article-title: The polycomb group protein Suz12 is required for embryonic stem cell differentiation publication-title: Mol. Cell. Biol. – volume: 4 start-page: e1000242 year: 2008 ident: bib19 article-title: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains publication-title: PLoS Genet. – volume: 148 start-page: 664 year: 2012 end-page: 678 ident: bib42 article-title: RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3 publication-title: Cell – volume: 8 start-page: e1002774 year: 2012 ident: bib13 article-title: Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity publication-title: PLoS Genet. – volume: 6 start-page: e1001244 year: 2010 ident: 10.1016/j.molcel.2013.01.016_bib28 article-title: GC-rich sequence elements recruit PRC2 in mammalian ES cells publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001244 – volume: 10 start-page: 157 year: 2012 ident: 10.1016/j.molcel.2013.01.016_bib8 article-title: Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.12.017 – volume: 2 start-page: 1034 year: 2007 ident: 10.1016/j.molcel.2013.01.016_bib3 article-title: Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.147 – volume: 464 start-page: 1082 year: 2010 ident: 10.1016/j.molcel.2013.01.016_bib43 article-title: CpG islands influence chromatin structure via the CpG-binding protein Cfp1 publication-title: Nature doi: 10.1038/nature08924 – volume: 45 start-page: 344 year: 2012 ident: 10.1016/j.molcel.2013.01.016_bib14 article-title: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.01.002 – volume: 27 start-page: 3769 year: 2007 ident: 10.1016/j.molcel.2013.01.016_bib32 article-title: The polycomb group protein Suz12 is required for embryonic stem cell differentiation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01432-06 – volume: 134 start-page: 521 year: 2008 ident: 10.1016/j.molcel.2013.01.016_bib27 article-title: Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2008.07.020 – volume: 431 start-page: 873 year: 2004 ident: 10.1016/j.molcel.2013.01.016_bib45 article-title: Role of histone H2A ubiquitination in Polycomb silencing publication-title: Nature doi: 10.1038/nature02985 – volume: 9 start-page: 1074 year: 2007 ident: 10.1016/j.molcel.2013.01.016_bib18 article-title: The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun publication-title: Nat. Cell Biol. doi: 10.1038/ncb1628 – volume: 125 start-page: 301 year: 2006 ident: 10.1016/j.molcel.2013.01.016_bib21 article-title: Control of developmental regulators by Polycomb in human embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2006.02.043 – volume: 8 start-page: e1002774 year: 2012 ident: 10.1016/j.molcel.2013.01.016_bib13 article-title: Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002774 – volume: 473 start-page: 343 year: 2011 ident: 10.1016/j.molcel.2013.01.016_bib46 article-title: TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity publication-title: Nature doi: 10.1038/nature10066 – volume: 31 start-page: 317 year: 2012 ident: 10.1016/j.molcel.2013.01.016_bib26 article-title: An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment publication-title: EMBO J. doi: 10.1038/emboj.2011.399 – volume: 10 start-page: 47 year: 2012 ident: 10.1016/j.molcel.2013.01.016_bib31 article-title: Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.12.006 – volume: 25 start-page: 3110 year: 2006 ident: 10.1016/j.molcel.2013.01.016_bib34 article-title: Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing publication-title: EMBO J. doi: 10.1038/sj.emboj.7601187 – volume: 4 start-page: e1000242 year: 2008 ident: 10.1016/j.molcel.2013.01.016_bib19 article-title: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000242 – volume: 7 start-page: e1002090 year: 2011 ident: 10.1016/j.molcel.2013.01.016_bib24 article-title: Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002090 – volume: 473 start-page: 389 year: 2011 ident: 10.1016/j.molcel.2013.01.016_bib48 article-title: Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells publication-title: Nature doi: 10.1038/nature09934 – volume: 178 start-page: 219 year: 2007 ident: 10.1016/j.molcel.2013.01.016_bib22 article-title: Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200612127 – volume: 20 start-page: 1123 year: 2006 ident: 10.1016/j.molcel.2013.01.016_bib50 article-title: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions publication-title: Genes Dev doi: 10.1101/gad.381706 – volume: 6 start-page: 147 year: 2011 ident: 10.1016/j.molcel.2013.01.016_bib4 article-title: CpG island chromatin: a platform for gene regulation publication-title: Epigenetics doi: 10.4161/epi.6.2.13640 – volume: 448 start-page: 553 year: 2007 ident: 10.1016/j.molcel.2013.01.016_bib29 article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells publication-title: Nature doi: 10.1038/nature06008 – volume: 143 start-page: 470 year: 2010 ident: 10.1016/j.molcel.2013.01.016_bib1 article-title: Nucleosome-interacting proteins regulated by DNA and histone methylation publication-title: Cell doi: 10.1016/j.cell.2010.10.012 – volume: 6 start-page: 846 year: 2006 ident: 10.1016/j.molcel.2013.01.016_bib40 article-title: Polycomb silencers control cell fate, development and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1991 – volume: 38 start-page: 700 year: 2006 ident: 10.1016/j.molcel.2013.01.016_bib37 article-title: Genome-wide analysis of Polycomb targets in Drosophila melanogaster publication-title: Nat. Genet. doi: 10.1038/ng1817 – volume: 7 start-page: e13 year: 2009 ident: 10.1016/j.molcel.2013.01.016_bib36 article-title: Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000013 – volume: 286 start-page: 7983 year: 2011 ident: 10.1016/j.molcel.2013.01.016_bib49 article-title: H3K36 methylation antagonizes PRC2-mediated H3K27 methylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.194027 – volume: 30 start-page: 755 year: 2008 ident: 10.1016/j.molcel.2013.01.016_bib30 article-title: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.05.007 – volume: 9 start-page: 773 year: 2009 ident: 10.1016/j.molcel.2013.01.016_bib7 article-title: Polycomb group proteins: navigators of lineage pathways led astray in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2736 – volume: 6 start-page: e253 year: 2008 ident: 10.1016/j.molcel.2013.01.016_bib38 article-title: Promotion of reprogramming to ground state pluripotency by signal inhibition publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060253 – volume: 9 start-page: 1428 year: 2007 ident: 10.1016/j.molcel.2013.01.016_bib41 article-title: Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb1663 – volume: 38 start-page: 179 year: 2010 ident: 10.1016/j.molcel.2013.01.016_bib5 article-title: CpG islands recruit a histone H3 lysine 36 demethylase publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.04.009 – volume: 130 start-page: 77 year: 2007 ident: 10.1016/j.molcel.2013.01.016_bib16 article-title: A chromatin landmark and transcription initiation at most promoters in human cells publication-title: Cell doi: 10.1016/j.cell.2007.05.042 – volume: 30 start-page: 4586 year: 2011 ident: 10.1016/j.molcel.2013.01.016_bib33 article-title: Jarid1b targets genes regulating development and is involved in neural differentiation publication-title: EMBO J. doi: 10.1038/emboj.2011.383 – volume: 26 start-page: 6880 year: 2006 ident: 10.1016/j.molcel.2013.01.016_bib15 article-title: Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00630-06 – volume: 25 start-page: 2465 year: 2006 ident: 10.1016/j.molcel.2013.01.016_bib9 article-title: Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b publication-title: EMBO J. doi: 10.1038/sj.emboj.7601144 – volume: 24 start-page: 265 year: 2010 ident: 10.1016/j.molcel.2013.01.016_bib23 article-title: Polycomb complexes act redundantly to repress genomic repeats and genes publication-title: Genes Dev. doi: 10.1101/gad.544410 – volume: 10 start-page: 697 year: 2009 ident: 10.1016/j.molcel.2013.01.016_bib39 article-title: Mechanisms of polycomb gene silencing: knowns and unknowns publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2763 – volume: 8 start-page: e1002494 year: 2012 ident: 10.1016/j.molcel.2013.01.016_bib11 article-title: REST-mediated recruitment of polycomb repressor complexes in mammalian cells publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002494 – volume: 36 start-page: 3590 year: 2008 ident: 10.1016/j.molcel.2013.01.016_bib47 article-title: Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmt1 in HOX gene silencing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn243 – volume: 43 start-page: 1091 year: 2011 ident: 10.1016/j.molcel.2013.01.016_bib25 article-title: Identification of genetic elements that autonomously determine DNA methylation states publication-title: Nat. Genet. doi: 10.1038/ng.946 – volume: 25 start-page: 1010 year: 2011 ident: 10.1016/j.molcel.2013.01.016_bib10 article-title: CpG islands and the regulation of transcription publication-title: Genes Dev. doi: 10.1101/gad.2037511 – volume: 28 start-page: 107 year: 2007 ident: 10.1016/j.molcel.2013.01.016_bib12 article-title: A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.08.009 – volume: 441 start-page: 349 year: 2006 ident: 10.1016/j.molcel.2013.01.016_bib6 article-title: Polycomb complexes repress developmental regulators in murine embryonic stem cells publication-title: Nature doi: 10.1038/nature04733 – volume: 3 start-page: e2235 year: 2008 ident: 10.1016/j.molcel.2013.01.016_bib44 article-title: Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0002235 – volume: 125 start-page: 315 year: 2006 ident: 10.1016/j.molcel.2013.01.016_bib2 article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2006.02.041 – volume: 22 start-page: 2799 year: 2008 ident: 10.1016/j.molcel.2013.01.016_bib20 article-title: dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing publication-title: Genes Dev. doi: 10.1101/gad.484208 – volume: 136 start-page: 3531 year: 2009 ident: 10.1016/j.molcel.2013.01.016_bib35 article-title: Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice publication-title: Development doi: 10.1242/dev.033902 – volume: 15 start-page: 1169 year: 2008 ident: 10.1016/j.molcel.2013.01.016_bib17 article-title: The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b) publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1499 – volume: 148 start-page: 664 year: 2012 ident: 10.1016/j.molcel.2013.01.016_bib42 article-title: RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3 publication-title: Cell doi: 10.1016/j.cell.2011.12.029 – reference: 23541037 - Mol Cell. 2013 Mar 28;49(6):1019-20 |
SSID | ssj0014589 |
Score | 2.5570335 |
Snippet | Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs).... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1134 |
SubjectTerms | active sites Animals catalytic activity Cell Differentiation Cell Line CpG Islands DNA embryonic stem cells Embryonic Stem Cells - enzymology Embryonic Stem Cells - physiology Epigenesis, Genetic F-Box Proteins - physiology genes genetic techniques and protocols Genome genomic islands Histones - metabolism Humans Jumonji Domain-Containing Histone Demethylases - physiology lysine Mice Models, Molecular mutants Polycomb Repressive Complex 1 - metabolism Protein Binding Protein Structure, Tertiary Protein Transport Transcription Initiation Site Transcription, Genetic Ubiquitin-Protein Ligases - metabolism Ubiquitination |
Title | Fbxl10/Kdm2b Recruits Polycomb Repressive Complex 1 to CpG Islands and Regulates H2A Ubiquitylation |
URI | https://dx.doi.org/10.1016/j.molcel.2013.01.016 https://www.ncbi.nlm.nih.gov/pubmed/23395003 https://www.proquest.com/docview/1322731975 https://www.proquest.com/docview/2000094135 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddx2AvY9_N1hUN9ipi68vyYxaWhoWNsS4sb0KWpZHi2tnijOa_30m2A4OWQsH4QToJ6XT66cSd7hD64IwwXJiEiJJywkWpSOFkQbjn0qVeFT6Ga_ryVc6X_PNKrI7QdHgLE9wqe-zvMD2idV8y7rk53qzX44tgO6WZFMEgA3ruCnCYcRUf8a0-HiwJXMQ0eIGYBOrh-Vz08bpqKuuCASJlMXhnyHp-8_H0wJvmdiU0Hkazp-hJr0XiSTfQZ-jI1c_Roy6v5P4FsrPiukqT8aK8ogUOmuFu3W7xt6bawzxDSef--tfhgAeVu8Ypbhs83ZzjICN1ucXwA7qYqN5t8ZxO8LJY_4Z-9p333Eu0nH36MZ2TPpsCsbDPWmITmfvUFdyXhjrD4WKs4ApplYdtayVUKZvJ1PJMJrmSjHnvrTMscYxBnWGv0HHd1O4EYZ5n0CD3AnripVfKMgOqX5mBLmCMoCPEBiZq24caDxkvKj34lF3qjvU6sF4nKXxyhMih1aYLtXEHfTasj_5PZDScBne0PIHl1OYX4KheXtAQZS_ozbnKRuj9sMYaNlqwnpjaNbutDtf2DAArE7fT0M5VM2VA87oTkMNUKGO5AAx9c-9hv0WPaUzGwQhVp-i4_bNz70Alaosz9HCy-P5zcRZl_x_vMged |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxsxEBZJSmlfSu84vVToq_Cu7n1MTV2nOSgkBr8JrVYqLptdt16H-N93tIeh0BAoLPsgjYQ0Go0-MaMZhD55KywXNiGioJxwUWiSe5kTHrj0adB5aMM1nV_I2Zx_W4jFHpoMb2GiW2Wv-zud3mrrvmTcc3O8Wi7Hl9F2SpUU0SADOHexjx4AGlAxf8PJ4vPOlMBFmwcvUpNIPryfa528ruvS-WiBSFkbvTOmPf_3-bQfbH03Cm1Po-lT9KSHkfi4G-kztOer5-hhl1hy-wK5aX5bpsn4tLimOY7QcLNs1vh7XW5horGk83-98TgqhNLf4hQ3NZ6svuIoJFWxxvADujZTvV_jGT3G83z5C_rZdu5zL9F8-uVqMiN9OgXiYKM1xCUyC6nPeSgs9ZbDzVjDHdLpAPvWSajSTsnUcSWTTEvGQgjOW5Z4xqDOslfooKorf4gwzxQ0yIKAnngRtHbMAvYrFIABawUdITYw0bg-1nhMeVGawansp-lYbyLrTZLCJ0eI7Fqtulgb99CrYX3MXzJj4Di4p-UhLKexP0CRmvkljWH2InDOtBqhj8MaG9hp0XxiK19v1ibe2xVoLCXupqGdr2bKgOZ1JyC7qVDGMgFK9Oi_h_0BPZpdnZ-Zs5OL0zfoMW0zczBC9Vt00Pze-HeAj5r8fSv_fwDlXgkZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fbxl10%2FKdm2b+Recruits+Polycomb+Repressive+Complex+1+to+CpG+Islands+and+Regulates+H2A+Ubiquitylation&rft.jtitle=Molecular+cell&rft.au=Wu%2C+Xudong&rft.au=Johansen%2C+Jens%C2%A0Vilstrup&rft.au=Helin%2C+Kristian&rft.date=2013-03-28&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=49&rft.issue=6&rft.spage=1134&rft.epage=1146&rft_id=info:doi/10.1016%2Fj.molcel.2013.01.016&rft.externalDocID=S109727651300049X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |