Fbxl10/Kdm2b Recruits Polycomb Repressive Complex 1 to CpG Islands and Regulates H2A Ubiquitylation

Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fb...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 49; no. 6; pp. 1134 - 1146
Main Authors Wu, Xudong, Johansen, Jens Vilstrup, Helin, Kristian
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 28.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs. [Display omitted] ► Fbxl10 binds to most CpG islands in ESCs ► Fbxl10 recruits Nspc1 and Ring1B to CpG islands ► The Fbxl10, Nspc1, and Ring1B complex is required for H2A monoubiquitylation ► Fbxl10 is required for proper ESC differentiation
AbstractList Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs.
Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs.
Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs.Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs.
Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs. [Display omitted] ► Fbxl10 binds to most CpG islands in ESCs ► Fbxl10 recruits Nspc1 and Ring1B to CpG islands ► The Fbxl10, Nspc1, and Ring1B complex is required for H2A monoubiquitylation ► Fbxl10 is required for proper ESC differentiation
Author Helin, Kristian
Wu, Xudong
Johansen, Jens Vilstrup
Author_xml – sequence: 1
  givenname: Xudong
  surname: Wu
  fullname: Wu, Xudong
  organization: Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
– sequence: 2
  givenname: Jens Vilstrup
  surname: Johansen
  fullname: Johansen, Jens Vilstrup
  organization: Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
– sequence: 3
  givenname: Kristian
  surname: Helin
  fullname: Helin, Kristian
  email: kristian.helin@bric.ku.dk
  organization: Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23395003$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu3CAUhlGVqLm0b1C1LLuZCTdju4tK0ai5qJESpZ01wvgQMcLGATvKvH2ZeppFFg06AnT4_gP85wQd9KEHhD5RsqSEyrPNsgvegF8yQvmS0BzyHTqmpC4XgkpxsN-zUhZH6CSlDSFUFFX9Hh0xzuuCEH6MzEXz7Ck5-9l2rMH3YOLkxoTvgt-a0O0yQ4SU3BPgVegGD8-Y4jHg1XCJr5PXfZtwnjL3MHk9QsJX7ByvG_eY62xzxoX-Azq02if4uF9P0frix-_V1eLm9vJ6dX6zMAWn48IQWVsKjbCtZqAFEbKqy8pUVrDCyHxUmVJSI0pJ6kpybq01oDkBzvOZ5qfo61x3iOFxgjSqzqXsUH4lhCkpRvKoBeXFmyjljJWc1uUO_bxHp6aDVg3RdTpu1T8PMyBmwMSQUgT7glCidq1SGzW3Su1apQjNIbPs2yuZceNfv8aonX9L_GUWWx2UfoguqfWvDMj8Q5bdKTPxfSYgO_7kIKpkHPQGWhfBjKoN7v9X_AFIVrjK
CitedBy_id crossref_primary_10_1038_ng_3272
crossref_primary_10_1016_j_tibs_2015_11_005
crossref_primary_10_1007_s00412_015_0539_4
crossref_primary_10_1186_s13072_016_0069_1
crossref_primary_10_1016_j_molcel_2019_12_001
crossref_primary_10_1038_nsmb_3180
crossref_primary_10_1093_biolre_ioy181
crossref_primary_10_1371_journal_ppat_1008268
crossref_primary_10_1074_jbc_RA120_015502
crossref_primary_10_15252_embr_201541809
crossref_primary_10_1038_s41467_023_43869_w
crossref_primary_10_1016_j_bbagrm_2022_194786
crossref_primary_10_1016_j_exphem_2016_12_006
crossref_primary_10_1134_S0026893316060121
crossref_primary_10_1038_s41598_019_57214_z
crossref_primary_10_1101_gr_237180_118
crossref_primary_10_1111_cpr_12920
crossref_primary_10_1038_nature23891
crossref_primary_10_1038_onc_2013_604
crossref_primary_10_1111_cpr_13457
crossref_primary_10_3390_ijms25189809
crossref_primary_10_3390_epigenomes3020012
crossref_primary_10_1016_j_biocel_2016_02_005
crossref_primary_10_1016_j_jmb_2019_09_025
crossref_primary_10_18632_oncotarget_11279
crossref_primary_10_1186_s13619_024_00196_9
crossref_primary_10_1016_j_bbrc_2013_09_095
crossref_primary_10_1038_nrg3603
crossref_primary_10_1080_21541264_2017_1373209
crossref_primary_10_1021_acs_biochem_5b01210
crossref_primary_10_1016_j_tcb_2016_04_009
crossref_primary_10_1038_celldisc_2015_3
crossref_primary_10_1038_nrg3607
crossref_primary_10_1186_s12864_016_3471_y
crossref_primary_10_1016_j_arr_2014_05_004
crossref_primary_10_1038_s41419_017_0066_8
crossref_primary_10_1016_j_tig_2017_06_002
crossref_primary_10_1038_s41556_020_0484_1
crossref_primary_10_1038_ng_3290
crossref_primary_10_3390_cells11071113
crossref_primary_10_1016_j_cellin_2022_100048
crossref_primary_10_3389_fcell_2024_1498346
crossref_primary_10_1038_onc_2015_482
crossref_primary_10_1111_tpj_12818
crossref_primary_10_1016_j_celrep_2016_10_055
crossref_primary_10_1016_j_molcel_2022_01_027
crossref_primary_10_1080_19491034_2018_1498707
crossref_primary_10_1371_journal_ppat_1007838
crossref_primary_10_1016_j_jgg_2021_06_012
crossref_primary_10_3390_cells10020266
crossref_primary_10_1016_j_devcel_2015_04_006
crossref_primary_10_1016_j_conb_2019_07_003
crossref_primary_10_1126_sciadv_1500737
crossref_primary_10_1007_s00441_014_1885_x
crossref_primary_10_1016_j_celrep_2014_04_012
crossref_primary_10_3389_fmolb_2018_00019
crossref_primary_10_2217_epi_14_14
crossref_primary_10_1073_pnas_1400672111
crossref_primary_10_1038_s41589_023_01256_y
crossref_primary_10_1038_s41467_023_42322_2
crossref_primary_10_1128_jvi_02007_24
crossref_primary_10_3390_epigenomes4030017
crossref_primary_10_1128_MCB_01729_13
crossref_primary_10_1038_s41580_021_00341_1
crossref_primary_10_1038_s41467_018_06968_7
crossref_primary_10_1038_ng_3718
crossref_primary_10_1007_s11859_014_0971_y
crossref_primary_10_1101_gr_249219_119
crossref_primary_10_1093_nar_gkad1203
crossref_primary_10_1146_annurev_cellbio_100617_062802
crossref_primary_10_1016_j_yexcr_2020_112294
crossref_primary_10_1038_nrm_2017_83
crossref_primary_10_1038_s41556_022_01056_x
crossref_primary_10_1038_s41580_021_00398_y
crossref_primary_10_1038_s41594_023_01096_3
crossref_primary_10_1371_journal_pone_0154561
crossref_primary_10_7554_eLife_38771
crossref_primary_10_3390_epigenomes6030023
crossref_primary_10_1016_j_stemcr_2018_02_004
crossref_primary_10_3390_epigenomes6030025
crossref_primary_10_1016_j_molcel_2024_07_030
crossref_primary_10_1038_ncb2723
crossref_primary_10_1038_ncomms13594
crossref_primary_10_1038_s41467_019_09250_6
crossref_primary_10_1371_journal_pgen_1003717
crossref_primary_10_1128_JVI_00331_21
crossref_primary_10_1242_dev_182683
crossref_primary_10_1093_nar_gkab304
crossref_primary_10_1242_dev_181354
crossref_primary_10_1038_ncomms8621
crossref_primary_10_1371_journal_pgen_1007193
crossref_primary_10_1038_srep18388
crossref_primary_10_1155_2016_4034620
crossref_primary_10_3390_cells11152404
crossref_primary_10_1016_j_canlet_2021_01_007
crossref_primary_10_1038_nrd4154
crossref_primary_10_1038_s41594_018_0039_3
crossref_primary_10_1126_sciadv_ade3888
crossref_primary_10_1038_cr_2015_121
crossref_primary_10_1016_j_jgg_2021_03_013
crossref_primary_10_1089_scd_2014_0310
crossref_primary_10_3839_jabc_2014_060
crossref_primary_10_1016_j_ydbio_2020_06_013
crossref_primary_10_1038_nrc3700
crossref_primary_10_1016_j_ceb_2015_10_003
crossref_primary_10_1016_j_stem_2014_05_006
crossref_primary_10_1016_j_celrep_2015_12_100
crossref_primary_10_1007_s10753_019_01000_6
crossref_primary_10_15252_embr_201541113
crossref_primary_10_1093_nar_gkac290
crossref_primary_10_1007_s40588_024_00232_x
crossref_primary_10_1016_j_stem_2017_12_002
crossref_primary_10_1016_j_molcel_2013_03_012
crossref_primary_10_3390_genes11060638
crossref_primary_10_1016_j_celrep_2023_112163
crossref_primary_10_1038_nsmb_2669
crossref_primary_10_1111_imr_13056
crossref_primary_10_15252_embj_201797038
crossref_primary_10_1016_j_bbrc_2022_03_054
crossref_primary_10_1074_jbc_M114_626929
crossref_primary_10_1631_jzus_B1400077
crossref_primary_10_1128_MCB_00266_15
crossref_primary_10_15252_embr_201540945
crossref_primary_10_1016_j_str_2016_07_011
crossref_primary_10_3390_epigenomes2010004
crossref_primary_10_1016_j_molcel_2015_12_008
crossref_primary_10_1038_ncomms4127
crossref_primary_10_1016_j_semcancer_2015_09_015
crossref_primary_10_1101_gad_260919_115
crossref_primary_10_1158_2159_8290_CD_16_0058
crossref_primary_10_5010_JPB_2017_44_1_019
crossref_primary_10_1016_j_celrep_2018_09_081
crossref_primary_10_1083_jcb_202311021
crossref_primary_10_1016_j_gde_2016_11_001
crossref_primary_10_7554_eLife_21064
crossref_primary_10_1016_j_it_2020_10_003
crossref_primary_10_1007_s10930_020_09895_z
crossref_primary_10_1093_hmg_ddv499
crossref_primary_10_1126_science_aad9780
crossref_primary_10_2217_epi_2017_0160
crossref_primary_10_1016_j_tig_2017_01_006
crossref_primary_10_1146_annurev_genet_120116_023402
crossref_primary_10_1016_j_str_2017_11_022
crossref_primary_10_1093_abbs_gmx122
crossref_primary_10_1038_s41467_022_31759_6
crossref_primary_10_7554_eLife_67738
crossref_primary_10_1074_jbc_RA118_005010
crossref_primary_10_1038_onc_2017_34
crossref_primary_10_1038_s41467_018_03704_z
crossref_primary_10_1016_j_ccell_2018_01_018
crossref_primary_10_1016_j_ymgme_2015_01_007
crossref_primary_10_1073_pnas_1804512115
crossref_primary_10_1073_pnas_2005136117
crossref_primary_10_1016_j_molcel_2024_02_015
crossref_primary_10_1242_dev_142489
crossref_primary_10_1007_s00018_014_1734_9
crossref_primary_10_3390_genes12101485
crossref_primary_10_1016_j_jgg_2024_10_012
crossref_primary_10_1007_s42764_020_00020_z
crossref_primary_10_1038_s41576_020_0245_9
crossref_primary_10_1093_hmg_ddw215
crossref_primary_10_3389_fcell_2022_986319
crossref_primary_10_1038_nrm4067
crossref_primary_10_1042_BST20200695
crossref_primary_10_2217_epi_2023_0234
crossref_primary_10_1042_BST20130028
crossref_primary_10_1038_s41467_020_19722_9
crossref_primary_10_1101_gr_188920_114
crossref_primary_10_1158_2643_3230_BCD_21_0115
crossref_primary_10_1371_journal_pone_0149502
crossref_primary_10_1093_jmcb_mjaa011
crossref_primary_10_1016_j_bbcan_2016_05_001
crossref_primary_10_1101_gad_347005_120
crossref_primary_10_1016_j_bbagrm_2014_02_007
crossref_primary_10_1186_s13059_020_01953_0
crossref_primary_10_2139_ssrn_3155555
crossref_primary_10_1371_journal_pbio_3000749
crossref_primary_10_1016_j_celrep_2017_10_091
crossref_primary_10_1016_j_celrep_2019_12_026
crossref_primary_10_1016_j_molcel_2013_02_013
crossref_primary_10_1016_j_mod_2014_10_001
crossref_primary_10_7554_eLife_18591
crossref_primary_10_1107_S2052252514020922
crossref_primary_10_1038_s42003_024_06820_3
crossref_primary_10_1038_nature13890
crossref_primary_10_1016_j_dnarep_2019_102686
crossref_primary_10_14336_AD_2015_0929
crossref_primary_10_1016_j_tcb_2014_06_005
crossref_primary_10_1016_j_stem_2019_03_005
crossref_primary_10_1038_s41467_023_42507_9
crossref_primary_10_1093_bib_bbaa215
crossref_primary_10_1016_j_celrep_2024_115075
crossref_primary_10_1128_MCB_00036_14
crossref_primary_10_1101_gad_326066_119
crossref_primary_10_1182_blood_2014_03_562694
crossref_primary_10_1016_j_molcel_2019_03_011
crossref_primary_10_1038_nrm_2015_31
crossref_primary_10_1038_srep46276
crossref_primary_10_1074_jbc_TM118_000831
crossref_primary_10_1007_s00441_014_2011_9
crossref_primary_10_1016_j_cell_2014_05_004
crossref_primary_10_1016_j_gde_2016_03_013
crossref_primary_10_1016_j_stem_2015_08_009
crossref_primary_10_1038_s41467_021_24894_z
crossref_primary_10_1093_nar_gkab209
crossref_primary_10_1126_sciadv_adl4529
crossref_primary_10_1038_s41467_023_36236_2
crossref_primary_10_1093_nar_gkz607
crossref_primary_10_1002_bies_202100155
crossref_primary_10_1016_j_celrep_2015_12_034
crossref_primary_10_1172_JCI84014
crossref_primary_10_7554_eLife_37084
crossref_primary_10_1101_gad_219626_113
crossref_primary_10_1111_febs_13112
crossref_primary_10_1016_j_mod_2014_06_003
crossref_primary_10_1016_j_isci_2021_102435
crossref_primary_10_1242_dev_094615
crossref_primary_10_1360_SSV_2022_0132
crossref_primary_10_1186_s12935_017_0472_0
crossref_primary_10_3390_ijms24043743
crossref_primary_10_1016_j_gim_2022_09_006
crossref_primary_10_1158_0008_5472_CAN_13_2733
crossref_primary_10_1016_j_tibs_2017_04_003
crossref_primary_10_1371_journal_ppat_1004274
crossref_primary_10_1016_j_devcel_2022_10_009
crossref_primary_10_1042_BST20230336
crossref_primary_10_1002_bies_201900192
crossref_primary_10_1038_emm_2017_57
crossref_primary_10_1101_gad_248005_114
crossref_primary_10_1016_j_molcel_2020_11_046
crossref_primary_10_1016_j_ccell_2016_07_006
crossref_primary_10_1016_j_bbagrm_2024_195044
crossref_primary_10_1016_j_stemcr_2020_07_007
crossref_primary_10_7554_eLife_03397
crossref_primary_10_18632_oncotarget_24319
crossref_primary_10_1093_nar_gkw701
crossref_primary_10_5010_JPB_2018_45_4_299
crossref_primary_10_1002_stem_1826
crossref_primary_10_1158_0008_5472_CAN_21_1456
crossref_primary_10_1038_s41588_021_00856_5
crossref_primary_10_1016_j_gendis_2024_101311
crossref_primary_10_1038_nsmb_2848
crossref_primary_10_1126_sciadv_abq7598
crossref_primary_10_2217_epi_13_67
crossref_primary_10_1016_j_tig_2019_12_004
crossref_primary_10_1016_j_devcel_2013_08_016
crossref_primary_10_1093_abbs_gmy084
crossref_primary_10_1038_nrm_2016_6
crossref_primary_10_1093_mp_sst150
crossref_primary_10_1038_s41467_021_21130_6
crossref_primary_10_1016_j_ccell_2015_04_011
crossref_primary_10_1002_jcp_29299
crossref_primary_10_1093_jxb_ert410
crossref_primary_10_1016_j_biopha_2023_115897
crossref_primary_10_1371_journal_pone_0210207
crossref_primary_10_1038_s41594_021_00661_y
crossref_primary_10_1016_j_stem_2016_12_002
crossref_primary_10_1038_s41576_022_00499_0
crossref_primary_10_1128_JVI_01362_18
crossref_primary_10_1101_gr_158436_113
crossref_primary_10_3390_epigenomes1030021
crossref_primary_10_1247_csf_13022
crossref_primary_10_1007_s00281_020_00787_z
crossref_primary_10_1016_j_bbapap_2017_06_018
crossref_primary_10_1016_j_celrep_2014_07_001
crossref_primary_10_1155_2018_7961962
crossref_primary_10_1242_dev_091553
crossref_primary_10_1016_j_isci_2020_101646
crossref_primary_10_1016_j_stemcr_2021_10_013
crossref_primary_10_1158_1541_7786_MCR_13_0596
crossref_primary_10_1093_nar_gkv960
crossref_primary_10_1016_j_celrep_2016_08_096
crossref_primary_10_1093_nar_gkw258
crossref_primary_10_1101_cshperspect_a026575
crossref_primary_10_1016_j_isci_2022_103742
crossref_primary_10_1096_fj_201800242R
crossref_primary_10_1016_j_exphem_2016_05_006
crossref_primary_10_1038_ncomms13661
crossref_primary_10_2217_epi_13_79
crossref_primary_10_1074_jbc_R115_675165
crossref_primary_10_1093_nar_gkt1187
crossref_primary_10_1242_dev_166348
crossref_primary_10_3389_fcell_2022_928113
crossref_primary_10_1007_s11515_016_1399_x
crossref_primary_10_1080_19491034_2017_1363136
crossref_primary_10_3389_fgene_2018_00354
Cites_doi 10.1371/journal.pgen.1001244
10.1016/j.stem.2011.12.017
10.1038/nprot.2007.147
10.1038/nature08924
10.1016/j.molcel.2012.01.002
10.1128/MCB.01432-06
10.1016/j.cell.2008.07.020
10.1038/nature02985
10.1038/ncb1628
10.1016/j.cell.2006.02.043
10.1371/journal.pgen.1002774
10.1038/nature10066
10.1038/emboj.2011.399
10.1016/j.stem.2011.12.006
10.1038/sj.emboj.7601187
10.1371/journal.pgen.1000242
10.1371/journal.pgen.1002090
10.1038/nature09934
10.1083/jcb.200612127
10.1101/gad.381706
10.4161/epi.6.2.13640
10.1038/nature06008
10.1016/j.cell.2010.10.012
10.1038/nrc1991
10.1038/ng1817
10.1371/journal.pbio.1000013
10.1074/jbc.M110.194027
10.1016/j.molcel.2008.05.007
10.1038/nrc2736
10.1371/journal.pbio.0060253
10.1038/ncb1663
10.1016/j.molcel.2010.04.009
10.1016/j.cell.2007.05.042
10.1038/emboj.2011.383
10.1128/MCB.00630-06
10.1038/sj.emboj.7601144
10.1101/gad.544410
10.1038/nrm2763
10.1371/journal.pgen.1002494
10.1093/nar/gkn243
10.1038/ng.946
10.1101/gad.2037511
10.1016/j.molcel.2007.08.009
10.1038/nature04733
10.1371/journal.pone.0002235
10.1016/j.cell.2006.02.041
10.1101/gad.484208
10.1242/dev.033902
10.1038/nsmb.1499
10.1016/j.cell.2011.12.029
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.molcel.2013.01.016
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 1146
ExternalDocumentID 23395003
10_1016_j_molcel_2013_01_016
US201600020987
S109727651300049X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
5VS
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
AAQXK
ABPTK
ADMUD
AEQTP
FBQ
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
AAHBH
AAMRU
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c531t-c069f1eb4fda2ea40468978c8f425c6f1e8c761c476098633fffcea30e331e8a3
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Jul 10 20:51:43 EDT 2025
Fri Jul 11 06:20:42 EDT 2025
Thu Apr 03 06:59:13 EDT 2025
Tue Jul 01 03:40:41 EDT 2025
Thu Apr 24 22:56:17 EDT 2025
Wed Dec 27 18:54:16 EST 2023
Fri Feb 23 02:19:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-c069f1eb4fda2ea40468978c8f425c6f1e8c761c476098633fffcea30e331e8a3
Notes http://dx.doi.org/10.1016/j.molcel.2013.01.016
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S109727651300049X
PMID 23395003
PQID 1322731975
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2000094135
proquest_miscellaneous_1322731975
pubmed_primary_23395003
crossref_primary_10_1016_j_molcel_2013_01_016
crossref_citationtrail_10_1016_j_molcel_2013_01_016
fao_agris_US201600020987
elsevier_sciencedirect_doi_10_1016_j_molcel_2013_01_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-28
PublicationDateYYYYMMDD 2013-03-28
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Brookes, de Santiago, Hebenstreit, Morris, Carroll, Xie, Stock, Heidemann, Eick, Nozaki (bib8) 2012; 10
Bracken, Helin (bib7) 2009; 9
Ku, Koche, Rheinbay, Mendenhall, Endoh, Mikkelsen, Presser, Nusbaum, Xie, Chi (bib19) 2008; 4
Leeb, Wutz (bib22) 2007; 178
Marson, Levine, Cole, Frampton, Brambrink, Johnstone, Guenther, Johnston, Wernig, Newman (bib27) 2008; 134
Lee, Jenner, Boyer, Guenther, Levine, Kumar, Chevalier, Johnstone, Cole, Isono (bib21) 2006; 125
Blackledge, Klose (bib4) 2011; 6
Wu, Gong, Yue, Qiang, Yuan, Peng (bib47) 2008; 36
Mohn, Weber, Rebhan, Roloff, Richter, Stadler, Bibel, Schübeler (bib30) 2008; 30
Wang, Wang, Erdjument-Bromage, Vidal, Tempst, Jones, Zhang (bib45) 2004; 431
Blackledge, Zhou, Tolstorukov, Farcas, Park, Klose (bib5) 2010; 38
Boyer, Plath, Zeitlinger, Brambrink, Medeiros, Lee, Levine, Wernig, Tajonar, Ray (bib6) 2006; 441
Thomson, Skene, Selfridge, Clouaire, Guy, Webb, Kerr, Deaton, Andrews, James (bib43) 2010; 464
Gao, Zhang, Bonasio, Strino, Sawai, Parisi, Kluger, Reinberg (bib14) 2012; 45
Elderkin, Maertens, Endoh, Mallery, Morrice, Koseki, Peters, Brockdorff, Hiom (bib12) 2007; 28
Leeb, Pasini, Novatchkova, Jaritz, Helin, Wutz (bib23) 2010; 24
Schuettengruber, Ganapathi, Leblanc, Portoso, Jaschek, Tolhuis, van Lohuizen, Tanay, Cavalli (bib36) 2009; 7
Bibel, Richter, Lacroix, Barde (bib3) 2007; 2
Bracken, Dietrich, Pasini, Hansen, Helin (bib50) 2006; 20
Lienert, Wirbelauer, Som, Dean, Mohn, Schübeler (bib25) 2011; 43
Morey, Pascual, Cozzuto, Roma, Wutz, Benitah, Di Croce (bib31) 2012; 10
Schmitz, Albert, Malatesta, Morey, Johansen, Bak, Tommerup, Abarrategui, Helin (bib33) 2011; 30
Simon, Kingston (bib39) 2009; 10
Wu, D’Alessio, Ito, Xia, Wang, Cui, Zhao, Sun, Zhang (bib48) 2011; 473
Silva, Barrandon, Nichols, Kawaguchi, Theunissen, Smith (bib38) 2008; 6
Guenther, Levine, Boyer, Jaenisch, Young (bib16) 2007; 130
Koyama-Nasu, David, Tanese (bib18) 2007; 9
Bernstein, Mikkelsen, Xie, Kamal, Huebert, Cuff, Fry, Meissner, Wernig, Plath (bib2) 2006; 125
Lagarou, Mohd-Sarip, Moshkin, Chalkley, Bezstarosti, Demmers, Verrijzer (bib20) 2008; 22
van der Stoop, Boutsma, Hulsman, Noback, Heimerikx, Kerkhoven, Voncken, Wessels, van Lohuizen (bib44) 2008; 3
Dietrich, Lerdrup, Landt, Agrawal-Singh, Bak, Tommerup, Rappsilber, Södersten, Hansen (bib11) 2012; 8
Yuan, Xu, Huang, Liu, Chen, Zhu (bib49) 2011; 286
Mendenhall, Koche, Truong, Zhou, Issac, Chi, Ku, Bernstein (bib28) 2010; 6
Buchwald, van der Stoop, Weichenrieder, Perrakis, van Lohuizen, Sixma (bib9) 2006; 25
Tavares, Dimitrova, Oxley, Webster, Poot, Demmers, Bezstarosti, Taylor, Ura, Koide (bib42) 2012; 148
Mikkelsen, Ku, Jaffe, Issac, Lieberman, Giannoukos, Alvarez, Brockman, Kim, Koche (bib29) 2007; 448
Stock, Giadrossi, Casanova, Brookes, Vidal, Koseki, Brockdorff, Fisher, Pombo (bib41) 2007; 9
Endoh, Endo, Endoh, Isono, Sharif, Ohara, Toyoda, Ito, Eskeland, Bickmore (bib13) 2012; 8
Deaton, Bird (bib10) 2011; 25
Lienert, Mohn, Tiwari, Baubec, Roloff, Gaidatzis, Stadler, Schübeler (bib24) 2011; 7
Bartke, Vermeulen, Xhemalce, Robson, Mann, Kouzarides (bib1) 2010; 143
Sparmann, van Lohuizen (bib40) 2006; 6
Schoeftner, Sengupta, Kubicek, Mechtler, Spahn, Koseki, Jenuwein, Wutz (bib34) 2006; 25
He, Kallin, Tsukada, Zhang (bib17) 2008; 15
Schuettengruber, Cavalli (bib35) 2009; 136
Lynch, Smith, De Gobbi, Flenley, Hughes, Vernimmen, Ayyub, Sharpe, Sloane-Stanley, Sutherland (bib26) 2012; 31
Schwartz, Kahn, Nix, Li, Bourgon, Biggin, Pirrotta (bib37) 2006; 38
Gearhart, Corcoran, Wamstad, Bardwell (bib15) 2006; 26
Pasini, Bracken, Hansen, Capillo, Helin (bib32) 2007; 27
Williams, Christensen, Pedersen, Johansen, Cloos, Rappsilber, Helin (bib46) 2011; 473
Elderkin (10.1016/j.molcel.2013.01.016_bib12) 2007; 28
Guenther (10.1016/j.molcel.2013.01.016_bib16) 2007; 130
Boyer (10.1016/j.molcel.2013.01.016_bib6) 2006; 441
Gearhart (10.1016/j.molcel.2013.01.016_bib15) 2006; 26
Morey (10.1016/j.molcel.2013.01.016_bib31) 2012; 10
Blackledge (10.1016/j.molcel.2013.01.016_bib5) 2010; 38
Simon (10.1016/j.molcel.2013.01.016_bib39) 2009; 10
He (10.1016/j.molcel.2013.01.016_bib17) 2008; 15
Lee (10.1016/j.molcel.2013.01.016_bib21) 2006; 125
Endoh (10.1016/j.molcel.2013.01.016_bib13) 2012; 8
Dietrich (10.1016/j.molcel.2013.01.016_bib11) 2012; 8
Leeb (10.1016/j.molcel.2013.01.016_bib23) 2010; 24
Stock (10.1016/j.molcel.2013.01.016_bib41) 2007; 9
Schoeftner (10.1016/j.molcel.2013.01.016_bib34) 2006; 25
Yuan (10.1016/j.molcel.2013.01.016_bib49) 2011; 286
Lynch (10.1016/j.molcel.2013.01.016_bib26) 2012; 31
Leeb (10.1016/j.molcel.2013.01.016_bib22) 2007; 178
Tavares (10.1016/j.molcel.2013.01.016_bib42) 2012; 148
Gao (10.1016/j.molcel.2013.01.016_bib14) 2012; 45
Lagarou (10.1016/j.molcel.2013.01.016_bib20) 2008; 22
Mendenhall (10.1016/j.molcel.2013.01.016_bib28) 2010; 6
Wang (10.1016/j.molcel.2013.01.016_bib45) 2004; 431
Mikkelsen (10.1016/j.molcel.2013.01.016_bib29) 2007; 448
Marson (10.1016/j.molcel.2013.01.016_bib27) 2008; 134
van der Stoop (10.1016/j.molcel.2013.01.016_bib44) 2008; 3
Pasini (10.1016/j.molcel.2013.01.016_bib32) 2007; 27
Bibel (10.1016/j.molcel.2013.01.016_bib3) 2007; 2
Lienert (10.1016/j.molcel.2013.01.016_bib25) 2011; 43
Buchwald (10.1016/j.molcel.2013.01.016_bib9) 2006; 25
Bernstein (10.1016/j.molcel.2013.01.016_bib2) 2006; 125
Schuettengruber (10.1016/j.molcel.2013.01.016_bib35) 2009; 136
Blackledge (10.1016/j.molcel.2013.01.016_bib4) 2011; 6
Lienert (10.1016/j.molcel.2013.01.016_bib24) 2011; 7
Bracken (10.1016/j.molcel.2013.01.016_bib7) 2009; 9
Schmitz (10.1016/j.molcel.2013.01.016_bib33) 2011; 30
Thomson (10.1016/j.molcel.2013.01.016_bib43) 2010; 464
Sparmann (10.1016/j.molcel.2013.01.016_bib40) 2006; 6
Williams (10.1016/j.molcel.2013.01.016_bib46) 2011; 473
Wu (10.1016/j.molcel.2013.01.016_bib47) 2008; 36
Schwartz (10.1016/j.molcel.2013.01.016_bib37) 2006; 38
Bracken (10.1016/j.molcel.2013.01.016_bib50) 2006; 20
Schuettengruber (10.1016/j.molcel.2013.01.016_bib36) 2009; 7
Bartke (10.1016/j.molcel.2013.01.016_bib1) 2010; 143
Ku (10.1016/j.molcel.2013.01.016_bib19) 2008; 4
Brookes (10.1016/j.molcel.2013.01.016_bib8) 2012; 10
Deaton (10.1016/j.molcel.2013.01.016_bib10) 2011; 25
Silva (10.1016/j.molcel.2013.01.016_bib38) 2008; 6
Koyama-Nasu (10.1016/j.molcel.2013.01.016_bib18) 2007; 9
Wu (10.1016/j.molcel.2013.01.016_bib48) 2011; 473
Mohn (10.1016/j.molcel.2013.01.016_bib30) 2008; 30
23541037 - Mol Cell. 2013 Mar 28;49(6):1019-20
References_xml – volume: 441
  start-page: 349
  year: 2006
  end-page: 353
  ident: bib6
  article-title: Polycomb complexes repress developmental regulators in murine embryonic stem cells
  publication-title: Nature
– volume: 130
  start-page: 77
  year: 2007
  end-page: 88
  ident: bib16
  article-title: A chromatin landmark and transcription initiation at most promoters in human cells
  publication-title: Cell
– volume: 143
  start-page: 470
  year: 2010
  end-page: 484
  ident: bib1
  article-title: Nucleosome-interacting proteins regulated by DNA and histone methylation
  publication-title: Cell
– volume: 464
  start-page: 1082
  year: 2010
  end-page: 1086
  ident: bib43
  article-title: CpG islands influence chromatin structure via the CpG-binding protein Cfp1
  publication-title: Nature
– volume: 10
  start-page: 157
  year: 2012
  end-page: 170
  ident: bib8
  article-title: Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs
  publication-title: Cell Stem Cell
– volume: 178
  start-page: 219
  year: 2007
  end-page: 229
  ident: bib22
  article-title: Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells
  publication-title: J. Cell Biol.
– volume: 24
  start-page: 265
  year: 2010
  end-page: 276
  ident: bib23
  article-title: Polycomb complexes act redundantly to repress genomic repeats and genes
  publication-title: Genes Dev.
– volume: 9
  start-page: 1074
  year: 2007
  end-page: 1080
  ident: bib18
  article-title: The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun
  publication-title: Nat. Cell Biol.
– volume: 45
  start-page: 344
  year: 2012
  end-page: 356
  ident: bib14
  article-title: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes
  publication-title: Mol. Cell
– volume: 286
  start-page: 7983
  year: 2011
  end-page: 7989
  ident: bib49
  article-title: H3K36 methylation antagonizes PRC2-mediated H3K27 methylation
  publication-title: J. Biol. Chem.
– volume: 136
  start-page: 3531
  year: 2009
  end-page: 3542
  ident: bib35
  article-title: Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice
  publication-title: Development
– volume: 20
  start-page: 1123
  year: 2006
  end-page: 1136
  ident: bib50
  article-title: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions
  publication-title: Genes Dev
– volume: 43
  start-page: 1091
  year: 2011
  end-page: 1097
  ident: bib25
  article-title: Identification of genetic elements that autonomously determine DNA methylation states
  publication-title: Nat. Genet.
– volume: 6
  start-page: 147
  year: 2011
  end-page: 152
  ident: bib4
  article-title: CpG island chromatin: a platform for gene regulation
  publication-title: Epigenetics
– volume: 38
  start-page: 700
  year: 2006
  end-page: 705
  ident: bib37
  article-title: Genome-wide analysis of Polycomb targets in Drosophila melanogaster
  publication-title: Nat. Genet.
– volume: 15
  start-page: 1169
  year: 2008
  end-page: 1175
  ident: bib17
  article-title: The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b)
  publication-title: Nat. Struct. Mol. Biol.
– volume: 6
  start-page: e1001244
  year: 2010
  ident: bib28
  article-title: GC-rich sequence elements recruit PRC2 in mammalian ES cells
  publication-title: PLoS Genet.
– volume: 26
  start-page: 6880
  year: 2006
  end-page: 6889
  ident: bib15
  article-title: Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets
  publication-title: Mol. Cell. Biol.
– volume: 30
  start-page: 4586
  year: 2011
  end-page: 4600
  ident: bib33
  article-title: Jarid1b targets genes regulating development and is involved in neural differentiation
  publication-title: EMBO J.
– volume: 8
  start-page: e1002494
  year: 2012
  ident: bib11
  article-title: REST-mediated recruitment of polycomb repressor complexes in mammalian cells
  publication-title: PLoS Genet.
– volume: 431
  start-page: 873
  year: 2004
  end-page: 878
  ident: bib45
  article-title: Role of histone H2A ubiquitination in Polycomb silencing
  publication-title: Nature
– volume: 25
  start-page: 1010
  year: 2011
  end-page: 1022
  ident: bib10
  article-title: CpG islands and the regulation of transcription
  publication-title: Genes Dev.
– volume: 6
  start-page: 846
  year: 2006
  end-page: 856
  ident: bib40
  article-title: Polycomb silencers control cell fate, development and cancer
  publication-title: Nat. Rev. Cancer
– volume: 22
  start-page: 2799
  year: 2008
  end-page: 2810
  ident: bib20
  article-title: dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing
  publication-title: Genes Dev.
– volume: 134
  start-page: 521
  year: 2008
  end-page: 533
  ident: bib27
  article-title: Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells
  publication-title: Cell
– volume: 448
  start-page: 553
  year: 2007
  end-page: 560
  ident: bib29
  article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
  publication-title: Nature
– volume: 9
  start-page: 1428
  year: 2007
  end-page: 1435
  ident: bib41
  article-title: Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells
  publication-title: Nat. Cell Biol.
– volume: 125
  start-page: 315
  year: 2006
  end-page: 326
  ident: bib2
  article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells
  publication-title: Cell
– volume: 6
  start-page: e253
  year: 2008
  ident: bib38
  article-title: Promotion of reprogramming to ground state pluripotency by signal inhibition
  publication-title: PLoS Biol.
– volume: 125
  start-page: 301
  year: 2006
  end-page: 313
  ident: bib21
  article-title: Control of developmental regulators by Polycomb in human embryonic stem cells
  publication-title: Cell
– volume: 7
  start-page: e1002090
  year: 2011
  ident: bib24
  article-title: Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells
  publication-title: PLoS Genet.
– volume: 38
  start-page: 179
  year: 2010
  end-page: 190
  ident: bib5
  article-title: CpG islands recruit a histone H3 lysine 36 demethylase
  publication-title: Mol. Cell
– volume: 473
  start-page: 389
  year: 2011
  end-page: 393
  ident: bib48
  article-title: Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells
  publication-title: Nature
– volume: 3
  start-page: e2235
  year: 2008
  ident: bib44
  article-title: Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells
  publication-title: PLoS ONE
– volume: 30
  start-page: 755
  year: 2008
  end-page: 766
  ident: bib30
  article-title: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors
  publication-title: Mol. Cell
– volume: 28
  start-page: 107
  year: 2007
  end-page: 120
  ident: bib12
  article-title: A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin
  publication-title: Mol. Cell
– volume: 36
  start-page: 3590
  year: 2008
  end-page: 3599
  ident: bib47
  article-title: Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmt1 in HOX gene silencing
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 773
  year: 2009
  end-page: 784
  ident: bib7
  article-title: Polycomb group proteins: navigators of lineage pathways led astray in cancer
  publication-title: Nat. Rev. Cancer
– volume: 2
  start-page: 1034
  year: 2007
  end-page: 1043
  ident: bib3
  article-title: Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells
  publication-title: Nat. Protoc.
– volume: 10
  start-page: 47
  year: 2012
  end-page: 62
  ident: bib31
  article-title: Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 31
  start-page: 317
  year: 2012
  end-page: 329
  ident: bib26
  article-title: An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment
  publication-title: EMBO J.
– volume: 473
  start-page: 343
  year: 2011
  end-page: 348
  ident: bib46
  article-title: TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity
  publication-title: Nature
– volume: 10
  start-page: 697
  year: 2009
  end-page: 708
  ident: bib39
  article-title: Mechanisms of polycomb gene silencing: knowns and unknowns
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 25
  start-page: 3110
  year: 2006
  end-page: 3122
  ident: bib34
  article-title: Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing
  publication-title: EMBO J.
– volume: 25
  start-page: 2465
  year: 2006
  end-page: 2474
  ident: bib9
  article-title: Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b
  publication-title: EMBO J.
– volume: 7
  start-page: e13
  year: 2009
  ident: bib36
  article-title: Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos
  publication-title: PLoS Biol.
– volume: 27
  start-page: 3769
  year: 2007
  end-page: 3779
  ident: bib32
  article-title: The polycomb group protein Suz12 is required for embryonic stem cell differentiation
  publication-title: Mol. Cell. Biol.
– volume: 4
  start-page: e1000242
  year: 2008
  ident: bib19
  article-title: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains
  publication-title: PLoS Genet.
– volume: 148
  start-page: 664
  year: 2012
  end-page: 678
  ident: bib42
  article-title: RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3
  publication-title: Cell
– volume: 8
  start-page: e1002774
  year: 2012
  ident: bib13
  article-title: Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity
  publication-title: PLoS Genet.
– volume: 6
  start-page: e1001244
  year: 2010
  ident: 10.1016/j.molcel.2013.01.016_bib28
  article-title: GC-rich sequence elements recruit PRC2 in mammalian ES cells
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001244
– volume: 10
  start-page: 157
  year: 2012
  ident: 10.1016/j.molcel.2013.01.016_bib8
  article-title: Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.12.017
– volume: 2
  start-page: 1034
  year: 2007
  ident: 10.1016/j.molcel.2013.01.016_bib3
  article-title: Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.147
– volume: 464
  start-page: 1082
  year: 2010
  ident: 10.1016/j.molcel.2013.01.016_bib43
  article-title: CpG islands influence chromatin structure via the CpG-binding protein Cfp1
  publication-title: Nature
  doi: 10.1038/nature08924
– volume: 45
  start-page: 344
  year: 2012
  ident: 10.1016/j.molcel.2013.01.016_bib14
  article-title: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.01.002
– volume: 27
  start-page: 3769
  year: 2007
  ident: 10.1016/j.molcel.2013.01.016_bib32
  article-title: The polycomb group protein Suz12 is required for embryonic stem cell differentiation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01432-06
– volume: 134
  start-page: 521
  year: 2008
  ident: 10.1016/j.molcel.2013.01.016_bib27
  article-title: Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2008.07.020
– volume: 431
  start-page: 873
  year: 2004
  ident: 10.1016/j.molcel.2013.01.016_bib45
  article-title: Role of histone H2A ubiquitination in Polycomb silencing
  publication-title: Nature
  doi: 10.1038/nature02985
– volume: 9
  start-page: 1074
  year: 2007
  ident: 10.1016/j.molcel.2013.01.016_bib18
  article-title: The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1628
– volume: 125
  start-page: 301
  year: 2006
  ident: 10.1016/j.molcel.2013.01.016_bib21
  article-title: Control of developmental regulators by Polycomb in human embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.043
– volume: 8
  start-page: e1002774
  year: 2012
  ident: 10.1016/j.molcel.2013.01.016_bib13
  article-title: Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002774
– volume: 473
  start-page: 343
  year: 2011
  ident: 10.1016/j.molcel.2013.01.016_bib46
  article-title: TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity
  publication-title: Nature
  doi: 10.1038/nature10066
– volume: 31
  start-page: 317
  year: 2012
  ident: 10.1016/j.molcel.2013.01.016_bib26
  article-title: An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.399
– volume: 10
  start-page: 47
  year: 2012
  ident: 10.1016/j.molcel.2013.01.016_bib31
  article-title: Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.12.006
– volume: 25
  start-page: 3110
  year: 2006
  ident: 10.1016/j.molcel.2013.01.016_bib34
  article-title: Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601187
– volume: 4
  start-page: e1000242
  year: 2008
  ident: 10.1016/j.molcel.2013.01.016_bib19
  article-title: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000242
– volume: 7
  start-page: e1002090
  year: 2011
  ident: 10.1016/j.molcel.2013.01.016_bib24
  article-title: Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002090
– volume: 473
  start-page: 389
  year: 2011
  ident: 10.1016/j.molcel.2013.01.016_bib48
  article-title: Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells
  publication-title: Nature
  doi: 10.1038/nature09934
– volume: 178
  start-page: 219
  year: 2007
  ident: 10.1016/j.molcel.2013.01.016_bib22
  article-title: Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200612127
– volume: 20
  start-page: 1123
  year: 2006
  ident: 10.1016/j.molcel.2013.01.016_bib50
  article-title: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions
  publication-title: Genes Dev
  doi: 10.1101/gad.381706
– volume: 6
  start-page: 147
  year: 2011
  ident: 10.1016/j.molcel.2013.01.016_bib4
  article-title: CpG island chromatin: a platform for gene regulation
  publication-title: Epigenetics
  doi: 10.4161/epi.6.2.13640
– volume: 448
  start-page: 553
  year: 2007
  ident: 10.1016/j.molcel.2013.01.016_bib29
  article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
  publication-title: Nature
  doi: 10.1038/nature06008
– volume: 143
  start-page: 470
  year: 2010
  ident: 10.1016/j.molcel.2013.01.016_bib1
  article-title: Nucleosome-interacting proteins regulated by DNA and histone methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.10.012
– volume: 6
  start-page: 846
  year: 2006
  ident: 10.1016/j.molcel.2013.01.016_bib40
  article-title: Polycomb silencers control cell fate, development and cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1991
– volume: 38
  start-page: 700
  year: 2006
  ident: 10.1016/j.molcel.2013.01.016_bib37
  article-title: Genome-wide analysis of Polycomb targets in Drosophila melanogaster
  publication-title: Nat. Genet.
  doi: 10.1038/ng1817
– volume: 7
  start-page: e13
  year: 2009
  ident: 10.1016/j.molcel.2013.01.016_bib36
  article-title: Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000013
– volume: 286
  start-page: 7983
  year: 2011
  ident: 10.1016/j.molcel.2013.01.016_bib49
  article-title: H3K36 methylation antagonizes PRC2-mediated H3K27 methylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.194027
– volume: 30
  start-page: 755
  year: 2008
  ident: 10.1016/j.molcel.2013.01.016_bib30
  article-title: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.05.007
– volume: 9
  start-page: 773
  year: 2009
  ident: 10.1016/j.molcel.2013.01.016_bib7
  article-title: Polycomb group proteins: navigators of lineage pathways led astray in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2736
– volume: 6
  start-page: e253
  year: 2008
  ident: 10.1016/j.molcel.2013.01.016_bib38
  article-title: Promotion of reprogramming to ground state pluripotency by signal inhibition
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060253
– volume: 9
  start-page: 1428
  year: 2007
  ident: 10.1016/j.molcel.2013.01.016_bib41
  article-title: Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1663
– volume: 38
  start-page: 179
  year: 2010
  ident: 10.1016/j.molcel.2013.01.016_bib5
  article-title: CpG islands recruit a histone H3 lysine 36 demethylase
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.04.009
– volume: 130
  start-page: 77
  year: 2007
  ident: 10.1016/j.molcel.2013.01.016_bib16
  article-title: A chromatin landmark and transcription initiation at most promoters in human cells
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.042
– volume: 30
  start-page: 4586
  year: 2011
  ident: 10.1016/j.molcel.2013.01.016_bib33
  article-title: Jarid1b targets genes regulating development and is involved in neural differentiation
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.383
– volume: 26
  start-page: 6880
  year: 2006
  ident: 10.1016/j.molcel.2013.01.016_bib15
  article-title: Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00630-06
– volume: 25
  start-page: 2465
  year: 2006
  ident: 10.1016/j.molcel.2013.01.016_bib9
  article-title: Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601144
– volume: 24
  start-page: 265
  year: 2010
  ident: 10.1016/j.molcel.2013.01.016_bib23
  article-title: Polycomb complexes act redundantly to repress genomic repeats and genes
  publication-title: Genes Dev.
  doi: 10.1101/gad.544410
– volume: 10
  start-page: 697
  year: 2009
  ident: 10.1016/j.molcel.2013.01.016_bib39
  article-title: Mechanisms of polycomb gene silencing: knowns and unknowns
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2763
– volume: 8
  start-page: e1002494
  year: 2012
  ident: 10.1016/j.molcel.2013.01.016_bib11
  article-title: REST-mediated recruitment of polycomb repressor complexes in mammalian cells
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002494
– volume: 36
  start-page: 3590
  year: 2008
  ident: 10.1016/j.molcel.2013.01.016_bib47
  article-title: Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmt1 in HOX gene silencing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn243
– volume: 43
  start-page: 1091
  year: 2011
  ident: 10.1016/j.molcel.2013.01.016_bib25
  article-title: Identification of genetic elements that autonomously determine DNA methylation states
  publication-title: Nat. Genet.
  doi: 10.1038/ng.946
– volume: 25
  start-page: 1010
  year: 2011
  ident: 10.1016/j.molcel.2013.01.016_bib10
  article-title: CpG islands and the regulation of transcription
  publication-title: Genes Dev.
  doi: 10.1101/gad.2037511
– volume: 28
  start-page: 107
  year: 2007
  ident: 10.1016/j.molcel.2013.01.016_bib12
  article-title: A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.08.009
– volume: 441
  start-page: 349
  year: 2006
  ident: 10.1016/j.molcel.2013.01.016_bib6
  article-title: Polycomb complexes repress developmental regulators in murine embryonic stem cells
  publication-title: Nature
  doi: 10.1038/nature04733
– volume: 3
  start-page: e2235
  year: 2008
  ident: 10.1016/j.molcel.2013.01.016_bib44
  article-title: Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0002235
– volume: 125
  start-page: 315
  year: 2006
  ident: 10.1016/j.molcel.2013.01.016_bib2
  article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.041
– volume: 22
  start-page: 2799
  year: 2008
  ident: 10.1016/j.molcel.2013.01.016_bib20
  article-title: dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing
  publication-title: Genes Dev.
  doi: 10.1101/gad.484208
– volume: 136
  start-page: 3531
  year: 2009
  ident: 10.1016/j.molcel.2013.01.016_bib35
  article-title: Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice
  publication-title: Development
  doi: 10.1242/dev.033902
– volume: 15
  start-page: 1169
  year: 2008
  ident: 10.1016/j.molcel.2013.01.016_bib17
  article-title: The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b)
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1499
– volume: 148
  start-page: 664
  year: 2012
  ident: 10.1016/j.molcel.2013.01.016_bib42
  article-title: RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3
  publication-title: Cell
  doi: 10.1016/j.cell.2011.12.029
– reference: 23541037 - Mol Cell. 2013 Mar 28;49(6):1019-20
SSID ssj0014589
Score 2.5570335
Snippet Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs)....
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1134
SubjectTerms active sites
Animals
catalytic activity
Cell Differentiation
Cell Line
CpG Islands
DNA
embryonic stem cells
Embryonic Stem Cells - enzymology
Embryonic Stem Cells - physiology
Epigenesis, Genetic
F-Box Proteins - physiology
genes
genetic techniques and protocols
Genome
genomic islands
Histones - metabolism
Humans
Jumonji Domain-Containing Histone Demethylases - physiology
lysine
Mice
Models, Molecular
mutants
Polycomb Repressive Complex 1 - metabolism
Protein Binding
Protein Structure, Tertiary
Protein Transport
Transcription Initiation Site
Transcription, Genetic
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Title Fbxl10/Kdm2b Recruits Polycomb Repressive Complex 1 to CpG Islands and Regulates H2A Ubiquitylation
URI https://dx.doi.org/10.1016/j.molcel.2013.01.016
https://www.ncbi.nlm.nih.gov/pubmed/23395003
https://www.proquest.com/docview/1322731975
https://www.proquest.com/docview/2000094135
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddx2AvY9_N1hUN9ipi68vyYxaWhoWNsS4sb0KWpZHi2tnijOa_30m2A4OWQsH4QToJ6XT66cSd7hD64IwwXJiEiJJywkWpSOFkQbjn0qVeFT6Ga_ryVc6X_PNKrI7QdHgLE9wqe-zvMD2idV8y7rk53qzX44tgO6WZFMEgA3ruCnCYcRUf8a0-HiwJXMQ0eIGYBOrh-Vz08bpqKuuCASJlMXhnyHp-8_H0wJvmdiU0Hkazp-hJr0XiSTfQZ-jI1c_Roy6v5P4FsrPiukqT8aK8ogUOmuFu3W7xt6bawzxDSef--tfhgAeVu8Ypbhs83ZzjICN1ucXwA7qYqN5t8ZxO8LJY_4Z-9p333Eu0nH36MZ2TPpsCsbDPWmITmfvUFdyXhjrD4WKs4ApplYdtayVUKZvJ1PJMJrmSjHnvrTMscYxBnWGv0HHd1O4EYZ5n0CD3AnripVfKMgOqX5mBLmCMoCPEBiZq24caDxkvKj34lF3qjvU6sF4nKXxyhMih1aYLtXEHfTasj_5PZDScBne0PIHl1OYX4KheXtAQZS_ozbnKRuj9sMYaNlqwnpjaNbutDtf2DAArE7fT0M5VM2VA87oTkMNUKGO5AAx9c-9hv0WPaUzGwQhVp-i4_bNz70Alaosz9HCy-P5zcRZl_x_vMged
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxsxEBZJSmlfSu84vVToq_Cu7n1MTV2nOSgkBr8JrVYqLptdt16H-N93tIeh0BAoLPsgjYQ0Go0-MaMZhD55KywXNiGioJxwUWiSe5kTHrj0adB5aMM1nV_I2Zx_W4jFHpoMb2GiW2Wv-zud3mrrvmTcc3O8Wi7Hl9F2SpUU0SADOHexjx4AGlAxf8PJ4vPOlMBFmwcvUpNIPryfa528ruvS-WiBSFkbvTOmPf_3-bQfbH03Cm1Po-lT9KSHkfi4G-kztOer5-hhl1hy-wK5aX5bpsn4tLimOY7QcLNs1vh7XW5horGk83-98TgqhNLf4hQ3NZ6svuIoJFWxxvADujZTvV_jGT3G83z5C_rZdu5zL9F8-uVqMiN9OgXiYKM1xCUyC6nPeSgs9ZbDzVjDHdLpAPvWSajSTsnUcSWTTEvGQgjOW5Z4xqDOslfooKorf4gwzxQ0yIKAnngRtHbMAvYrFIABawUdITYw0bg-1nhMeVGawansp-lYbyLrTZLCJ0eI7Fqtulgb99CrYX3MXzJj4Di4p-UhLKexP0CRmvkljWH2InDOtBqhj8MaG9hp0XxiK19v1ibe2xVoLCXupqGdr2bKgOZ1JyC7qVDGMgFK9Oi_h_0BPZpdnZ-Zs5OL0zfoMW0zczBC9Vt00Pze-HeAj5r8fSv_fwDlXgkZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fbxl10%2FKdm2b+Recruits+Polycomb+Repressive+Complex+1+to+CpG+Islands+and+Regulates+H2A+Ubiquitylation&rft.jtitle=Molecular+cell&rft.au=Wu%2C+Xudong&rft.au=Johansen%2C+Jens%C2%A0Vilstrup&rft.au=Helin%2C+Kristian&rft.date=2013-03-28&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=49&rft.issue=6&rft.spage=1134&rft.epage=1146&rft_id=info:doi/10.1016%2Fj.molcel.2013.01.016&rft.externalDocID=S109727651300049X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon