Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria

We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO(2) (ceria) as a function of U in density functional theory studies with the rotationally invariant forms of the LDA+U and GGA+U functionals. The four nearest neighbor...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 127; no. 24; p. 244704
Main Authors Castleton, C W M, Kullgren, J, Hermansson, K
Format Journal Article
LanguageEnglish
Published United States 2007
Online AccessGet more information

Cover

Loading…
Abstract We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO(2) (ceria) as a function of U in density functional theory studies with the rotationally invariant forms of the LDA+U and GGA+U functionals. The four nearest neighbor Ce ions always relax outwards, with those not carrying localized Ce4f charge moving furthest. Several quantification schemes show that the charge starts to become localized at U approximately 3 eV and that the degree of localization reaches a maximum at approximately 6 eV for LDA+U or at approximately 5.5 eV for GGA+U. For higher U it decreases rapidly as charge is transferred onto second neighbor O ions and beyond. The localization is never into atomic corelike states; at maximum localization about 80-90% of the Ce4f charge is located on the two nearest neighboring Ce ions. However, if we look at the total atomic charge we find that the two ions only make a net gain of (0.2-0.4)e each, so localization is actually very incomplete, with localization of Ce4f electrons coming at the expense of moving other electrons off the Ce ions. We have also revisited some properties of defect-free ceria and find that with LDA+U the crystal structure is actually best described with U=3-4 eV, while the experimental band structure is obtained with U=7-8 eV. (For GGA+U the lattice parameters worsen for U>0 eV, but the band structure is similar to LDA+U.) The best overall choice is U approximately 6 eV with LDA+U and approximately 5.5 eV for GGA+U, since the localization is most important, but a consistent choice for both CeO(2) and Ce(2)O(3), with and without vacancies, is hard to find.
AbstractList We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO(2) (ceria) as a function of U in density functional theory studies with the rotationally invariant forms of the LDA+U and GGA+U functionals. The four nearest neighbor Ce ions always relax outwards, with those not carrying localized Ce4f charge moving furthest. Several quantification schemes show that the charge starts to become localized at U approximately 3 eV and that the degree of localization reaches a maximum at approximately 6 eV for LDA+U or at approximately 5.5 eV for GGA+U. For higher U it decreases rapidly as charge is transferred onto second neighbor O ions and beyond. The localization is never into atomic corelike states; at maximum localization about 80-90% of the Ce4f charge is located on the two nearest neighboring Ce ions. However, if we look at the total atomic charge we find that the two ions only make a net gain of (0.2-0.4)e each, so localization is actually very incomplete, with localization of Ce4f electrons coming at the expense of moving other electrons off the Ce ions. We have also revisited some properties of defect-free ceria and find that with LDA+U the crystal structure is actually best described with U=3-4 eV, while the experimental band structure is obtained with U=7-8 eV. (For GGA+U the lattice parameters worsen for U>0 eV, but the band structure is similar to LDA+U.) The best overall choice is U approximately 6 eV with LDA+U and approximately 5.5 eV for GGA+U, since the localization is most important, but a consistent choice for both CeO(2) and Ce(2)O(3), with and without vacancies, is hard to find.
Author Kullgren, J
Castleton, C W M
Hermansson, K
Author_xml – sequence: 1
  givenname: C W M
  surname: Castleton
  fullname: Castleton, C W M
  email: christopher.castleton@mkem.uu.se
  organization: Department of Physics and Measurement Technology (IFM), Linköping University, SE-58183 Linköping, Sweden. christopher.castleton@mkem.uu.se
– sequence: 2
  givenname: J
  surname: Kullgren
  fullname: Kullgren, J
– sequence: 3
  givenname: K
  surname: Hermansson
  fullname: Hermansson, K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18163692$$D View this record in MEDLINE/PubMed
BookMark eNo1j0tLxDAURrMYcR668A9I9tIxN2nSZjmMTyiIMLMebm7TIdJJh7QVx1-voq4-zlkc-OZsErvoGbsCsQRh1C0sZSmEAD1hMyEkZNYIM2Xzvn_70YXMz9kUSjDKWDljr5sxhrjn1d3qZsubLnHfehpSF3nbEbbhE4fwDRhr3g9ppGFMnuPAu4_T3kf-joSRgu95iJx8CnjBzhpse3_5twu2fbjfrJ-y6uXxeb2qMtIKhszVUGpLhKJxjZc1OZIGvaJCY24oxwKkEgosFLkswGpTau0K45SQwnotF-z6t3sc3cHXu2MKB0yn3f83-QUaVU62
CitedBy_id crossref_primary_10_1039_C9CS00588A
crossref_primary_10_1063_1_3216102
crossref_primary_10_1039_C6CP05479J
crossref_primary_10_1021_acs_jpcc_7b01431
crossref_primary_10_1021_acs_jpcc_8b09134
crossref_primary_10_1039_c1cp20950g
crossref_primary_10_3390_jcs7060251
crossref_primary_10_3389_fchem_2019_00436
crossref_primary_10_1002_anie_201707965
crossref_primary_10_1002_anie_201914271
crossref_primary_10_1016_j_cap_2022_08_001
crossref_primary_10_1155_2019_5413134
crossref_primary_10_1016_S1872_2067_19_63468_6
crossref_primary_10_1063_1_3429314
crossref_primary_10_1016_j_apcatb_2018_10_015
crossref_primary_10_1016_j_jnucmat_2015_10_038
crossref_primary_10_1039_D4NR00676C
crossref_primary_10_1021_acs_jpcc_1c07040
crossref_primary_10_3389_fchem_2019_00203
crossref_primary_10_1021_acs_jpcc_0c03494
crossref_primary_10_1021_ja910574h
crossref_primary_10_1016_j_jallcom_2012_10_136
crossref_primary_10_1021_jp9024156
crossref_primary_10_1016_j_jcat_2024_115500
crossref_primary_10_1021_jp810093a
crossref_primary_10_1021_jp306863d
crossref_primary_10_1021_cr3004949
crossref_primary_10_1063_5_0185746
crossref_primary_10_1088_1742_6596_526_1_012002
crossref_primary_10_1021_jp400977m
crossref_primary_10_1002_pssr_201409099
crossref_primary_10_1016_j_jcat_2014_03_014
crossref_primary_10_1063_1_3682310
crossref_primary_10_1021_acscatal_3c02240
crossref_primary_10_1039_C4CP00928B
crossref_primary_10_3389_fchem_2019_00212
crossref_primary_10_1039_C4CP01083C
crossref_primary_10_3390_cryst13020255
crossref_primary_10_1021_acs_jpcc_7b05385
crossref_primary_10_1021_acs_jpcc_6b12373
crossref_primary_10_1063_1_3253795
crossref_primary_10_1103_PhysRevB_79_075433
crossref_primary_10_1002_er_6646
crossref_primary_10_1016_j_jpcs_2011_09_002
crossref_primary_10_1021_acs_jpcc_9b09433
crossref_primary_10_1021_acs_jpclett_3c02035
crossref_primary_10_1016_j_cattod_2023_114387
crossref_primary_10_1021_acs_nanolett_2c02468
crossref_primary_10_1039_D1CP03007H
crossref_primary_10_1016_j_ceramint_2017_11_149
crossref_primary_10_1016_j_susc_2022_122096
crossref_primary_10_1103_PhysRevB_79_100403
crossref_primary_10_1111_jace_12650
crossref_primary_10_1016_j_apsusc_2017_12_104
crossref_primary_10_1039_c2cp00020b
crossref_primary_10_1039_D3RE00027C
crossref_primary_10_1021_jacs_4c04366
crossref_primary_10_1021_acscatal_8b01477
crossref_primary_10_1021_acscatal_9b00252
crossref_primary_10_1039_C3TA11169E
crossref_primary_10_1039_C7CP08535D
crossref_primary_10_1021_ja1087979
crossref_primary_10_1007_s10562_016_1735_4
crossref_primary_10_1016_j_apsusc_2019_143732
crossref_primary_10_1088_0953_8984_24_45_456001
crossref_primary_10_1021_jp203112p
crossref_primary_10_1088_0953_8984_22_13_135004
crossref_primary_10_1103_PhysRevMaterials_4_064003
crossref_primary_10_1021_acscatal_6b03387
crossref_primary_10_1021_jp2092913
crossref_primary_10_1063_1_3327684
crossref_primary_10_1088_0953_8984_22_22_223201
crossref_primary_10_1021_acs_jpcc_3c00622
crossref_primary_10_1016_j_apcata_2014_07_040
crossref_primary_10_1021_cr300418s
crossref_primary_10_1021_acscatal_0c00333
crossref_primary_10_1021_acs_jpcc_8b05885
crossref_primary_10_1088_1361_648X_ac238b
crossref_primary_10_1016_j_actamat_2016_04_052
crossref_primary_10_1021_acs_jpca_9b11415
crossref_primary_10_1021_acs_jpcc_0c00229
crossref_primary_10_1063_1_5142724
crossref_primary_10_1007_s00214_016_1948_z
crossref_primary_10_1103_PhysRevMaterials_2_035802
crossref_primary_10_1021_cs401206e
crossref_primary_10_1016_j_apsusc_2023_158928
crossref_primary_10_1039_D3NR05950B
crossref_primary_10_1080_14786435_2014_933908
crossref_primary_10_1088_1674_1056_abff42
crossref_primary_10_1039_C6CS00914J
crossref_primary_10_1039_D0CY00392A
crossref_primary_10_1080_14686996_2019_1578183
crossref_primary_10_1063_5_0137117
crossref_primary_10_1515_psr_2017_0165
crossref_primary_10_1063_1_3191784
crossref_primary_10_1088_2516_1075_aae6f2
crossref_primary_10_1103_PhysRevMaterials_2_083609
crossref_primary_10_1016_j_apsusc_2014_06_076
crossref_primary_10_1021_jp212605g
crossref_primary_10_1021_ja906687f
crossref_primary_10_1021_acs_jpcc_0c05352
crossref_primary_10_1380_ejssnt_2009_389
crossref_primary_10_1016_j_cplett_2011_03_091
crossref_primary_10_1002_ange_201914271
crossref_primary_10_1103_PhysRevB_87_134104
crossref_primary_10_1088_0022_3727_46_49_495306
crossref_primary_10_1016_j_commatsci_2021_110696
crossref_primary_10_1039_c2cp42220d
crossref_primary_10_1016_j_cej_2019_03_053
crossref_primary_10_1021_acsomega_8b02410
crossref_primary_10_1007_s00894_010_0671_2
crossref_primary_10_1007_s42247_022_00370_2
crossref_primary_10_1021_ct100430q
crossref_primary_10_1149_2_0101411jes
crossref_primary_10_1021_acs_jpcc_5b07813
crossref_primary_10_1088_2515_7655_acbb29
crossref_primary_10_1021_acsnano_7b00696
crossref_primary_10_1103_PhysRevLett_110_205901
crossref_primary_10_1021_acs_jpcc_6b08118
crossref_primary_10_1021_jp2080034
crossref_primary_10_1039_C5CY01597A
crossref_primary_10_1063_5_0137264
crossref_primary_10_1021_acsami_8b11688
crossref_primary_10_1016_j_jnucmat_2017_11_046
crossref_primary_10_1038_srep15415
crossref_primary_10_1016_j_spmi_2014_10_023
crossref_primary_10_1070_RCR4966
crossref_primary_10_1039_C9CP01858A
crossref_primary_10_1021_acs_jpcc_6b10557
crossref_primary_10_1021_ja407616p
crossref_primary_10_1039_C7CP01785E
crossref_primary_10_1063_1_3337918
crossref_primary_10_1021_acs_jpcc_6b03218
crossref_primary_10_1039_C8TA08245F
crossref_primary_10_1016_j_jallcom_2022_167227
crossref_primary_10_1088_1674_1056_21_4_047505
crossref_primary_10_1016_j_ijhydene_2013_11_132
crossref_primary_10_1103_PhysRevB_81_205123
crossref_primary_10_1007_s10853_024_09861_5
crossref_primary_10_1063_1_4885546
crossref_primary_10_1021_jp200005r
crossref_primary_10_1039_C5RA27890B
crossref_primary_10_1007_s10853_012_6423_1
crossref_primary_10_1016_j_cattod_2012_01_022
crossref_primary_10_1021_acs_chemmater_6b01548
crossref_primary_10_3390_catal10121435
crossref_primary_10_1039_D0CP03298K
crossref_primary_10_1103_PhysRevB_105_195153
crossref_primary_10_1016_j_ssc_2011_12_010
crossref_primary_10_1021_acscatal_2c03823
crossref_primary_10_1039_C8TA06372A
crossref_primary_10_1016_j_apsusc_2021_151803
crossref_primary_10_1007_s11244_019_01183_0
crossref_primary_10_1103_PhysRevB_97_235203
crossref_primary_10_1016_j_commatsci_2023_112396
crossref_primary_10_1021_acsanm_3c05193
crossref_primary_10_1021_acscatal_2c02216
crossref_primary_10_1016_j_jnucmat_2009_06_026
crossref_primary_10_1016_j_cplett_2023_140586
crossref_primary_10_1002_aenm_201901963
crossref_primary_10_1103_PhysRevLett_102_026101
crossref_primary_10_1103_PhysRevLett_112_156102
crossref_primary_10_1039_C7DT02077E
crossref_primary_10_1039_D0TA08655J
crossref_primary_10_1039_b805904g
crossref_primary_10_1103_PhysRevB_95_045203
crossref_primary_10_1021_jp312645f
crossref_primary_10_1021_jp112112u
crossref_primary_10_1039_C8CP03677B
crossref_primary_10_1016_j_susc_2011_10_011
crossref_primary_10_1021_jp406016z
crossref_primary_10_1039_c3fd20129e
crossref_primary_10_1088_0953_8984_21_40_405502
crossref_primary_10_1002_cphc_201900141
crossref_primary_10_1103_PhysRevLett_102_126403
crossref_primary_10_1039_C6CP02647H
crossref_primary_10_1063_1_3009629
crossref_primary_10_1103_PhysRevB_95_245101
crossref_primary_10_1002_cctc_202100643
crossref_primary_10_1016_j_jnucmat_2009_06_016
crossref_primary_10_1021_acs_jpcc_8b12037
crossref_primary_10_1063_1_3566998
crossref_primary_10_1039_C0CP01123A
crossref_primary_10_1039_C6CP00151C
crossref_primary_10_1021_jp508666c
crossref_primary_10_1016_j_commatsci_2017_06_036
crossref_primary_10_1039_C2TA00504B
crossref_primary_10_1039_C9FD00133F
crossref_primary_10_1103_PhysRevB_90_115120
crossref_primary_10_1088_1674_1056_22_10_107102
crossref_primary_10_1016_j_susc_2018_08_017
crossref_primary_10_1063_1_4864378
crossref_primary_10_1021_acs_chemrev_3c00602
crossref_primary_10_1063_1_4819801
crossref_primary_10_1016_j_matchemphys_2019_121816
crossref_primary_10_1039_C5CP07537H
crossref_primary_10_1088_0953_8984_22_47_475003
crossref_primary_10_1016_j_cattod_2015_01_049
crossref_primary_10_1038_s41598_019_41157_6
crossref_primary_10_1103_PhysRevB_98_235157
crossref_primary_10_1039_c3cy00319a
crossref_primary_10_1103_PhysRevB_86_134117
crossref_primary_10_1016_j_elspec_2021_147088
crossref_primary_10_1016_j_jcat_2022_02_008
crossref_primary_10_1016_j_cattod_2008_11_005
crossref_primary_10_1016_j_jcou_2022_102221
crossref_primary_10_7566_JPSJ_83_094707
crossref_primary_10_1021_la904285g
crossref_primary_10_1088_1674_1056_24_2_026801
crossref_primary_10_1021_jp403911b
crossref_primary_10_7498_aps_62_117301
crossref_primary_10_1016_j_commatsci_2014_04_037
crossref_primary_10_1088_2053_1591_aaff14
crossref_primary_10_1021_jp506625h
crossref_primary_10_1016_j_apsusc_2023_158441
crossref_primary_10_1021_acscatal_1c02154
crossref_primary_10_1016_j_apcatb_2021_120825
crossref_primary_10_1016_j_cplett_2010_09_016
crossref_primary_10_1021_acsnano_0c06472
crossref_primary_10_1107_S1600577515009698
crossref_primary_10_1039_D1SC01201K
crossref_primary_10_1039_c1jm11238d
crossref_primary_10_1103_PhysRevB_79_134108
crossref_primary_10_1021_acs_jpcc_1c09032
crossref_primary_10_1039_C9NR02731A
crossref_primary_10_1002_cphc_201800860
crossref_primary_10_1016_j_physb_2012_01_085
crossref_primary_10_1021_acs_jpcc_5b09499
crossref_primary_10_1021_jp8094352
crossref_primary_10_1021_acs_jctc_8b00600
crossref_primary_10_1016_j_apcatb_2016_03_015
crossref_primary_10_1021_ct200202g
crossref_primary_10_1039_D0CP05800A
crossref_primary_10_1063_1_4973239
crossref_primary_10_1007_s00894_014_2270_0
crossref_primary_10_1021_acscatal_0c02909
crossref_primary_10_1103_PhysRevB_95_144430
crossref_primary_10_1002_pssb_202100020
crossref_primary_10_1103_PhysRevLett_122_096101
crossref_primary_10_1002_pssb_201600488
crossref_primary_10_1016_j_jnucmat_2011_08_008
crossref_primary_10_1021_jp202016s
crossref_primary_10_1021_acscatal_6b00948
crossref_primary_10_1016_j_ijhydene_2017_12_017
crossref_primary_10_1039_C4TA02449D
crossref_primary_10_1103_PhysRevB_97_024305
crossref_primary_10_1021_acs_jpcc_6b07650
crossref_primary_10_1021_jp1108703
crossref_primary_10_1103_PhysRevB_85_014302
crossref_primary_10_1063_1_3678309
crossref_primary_10_1016_j_apsusc_2016_10_193
crossref_primary_10_1021_acs_jpcc_4c01539
crossref_primary_10_1039_C5CP07469J
crossref_primary_10_1103_PhysRevB_89_165101
crossref_primary_10_1021_acs_jpcc_6b00325
crossref_primary_10_1021_nl1029336
crossref_primary_10_1103_PhysRevLett_125_256101
crossref_primary_10_1039_D3CY00494E
crossref_primary_10_1103_PhysRevLett_116_086102
crossref_primary_10_1016_j_micromeso_2023_112882
crossref_primary_10_1149_2_0261815jes
crossref_primary_10_1103_PhysRevB_108_104103
crossref_primary_10_1021_jp104490k
crossref_primary_10_1016_j_apsusc_2016_10_087
crossref_primary_10_1039_D1CY01934A
crossref_primary_10_1016_j_susc_2020_121693
crossref_primary_10_1016_j_jhazmat_2021_127985
crossref_primary_10_1021_acscatal_2c02117
crossref_primary_10_1103_PhysRevB_94_115132
crossref_primary_10_1021_jp507876m
crossref_primary_10_1021_acsami_0c01083
crossref_primary_10_1002_ange_201707965
crossref_primary_10_1103_PhysRevB_84_054110
crossref_primary_10_1016_j_actamat_2016_09_018
crossref_primary_10_1021_acscatal_5b01372
crossref_primary_10_1021_cs400034c
crossref_primary_10_1063_1_4867961
crossref_primary_10_1021_acscatal_5b00832
crossref_primary_10_1021_acs_jpcc_8b08977
crossref_primary_10_1039_C5RA14184B
crossref_primary_10_1002_jcc_23088
crossref_primary_10_1016_j_jnucmat_2012_02_008
crossref_primary_10_1063_1_4723867
crossref_primary_10_1016_j_susc_2015_12_002
crossref_primary_10_1038_s41598_017_05046_0
crossref_primary_10_1016_j_susc_2021_121852
crossref_primary_10_1021_ja508657c
crossref_primary_10_1063_5_0122958
crossref_primary_10_1063_1_5099204
crossref_primary_10_1557_opl_2015_179
crossref_primary_10_1021_jp3125268
crossref_primary_10_1039_C5CP03764F
crossref_primary_10_1021_jp806066g
crossref_primary_10_1063_5_0136443
crossref_primary_10_1016_j_apsusc_2016_12_245
crossref_primary_10_1021_acscatal_9b00450
crossref_primary_10_1063_5_0024499
crossref_primary_10_1002_jcc_24049
crossref_primary_10_1021_acs_jpcc_5b09293
crossref_primary_10_1021_acs_jpcc_1c10181
crossref_primary_10_1016_j_apsusc_2018_07_090
crossref_primary_10_1021_acs_accounts_1c00226
crossref_primary_10_1039_c1cp21824g
crossref_primary_10_1021_jp111427j
crossref_primary_10_1021_acs_chemmater_7b03555
ContentType Journal Article
DBID NPM
DOI 10.1063/1.2800015
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Physics
ExternalDocumentID 18163692
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
6TJ
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPM
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
UQL
WH7
YQT
YZZ
~02
ID FETCH-LOGICAL-c531t-bd1859cca0fbfe2dcbc26ae3c75a46c4a71230319174271956855b76b30209e52
ISSN 0021-9606
IngestDate Sat Sep 28 07:52:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c531t-bd1859cca0fbfe2dcbc26ae3c75a46c4a71230319174271956855b76b30209e52
OpenAccessLink http://irep.ntu.ac.uk/id/eprint/14434/1/Castleton5.pdf
PMID 18163692
ParticipantIDs pubmed_primary_18163692
PublicationCentury 2000
PublicationDate 2007
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 2007
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2007
SSID ssj0001724
Score 2.440069
Snippet We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO(2) (ceria) as a function...
SourceID pubmed
SourceType Index Database
StartPage 244704
Title Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria
URI https://www.ncbi.nlm.nih.gov/pubmed/18163692
Volume 127
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG5EY_RiFN-v9KCnzSLso909ImqIGKIJRG6kLV3jQSC6GvXXO33sLuAj6mVDtqSBzrez30z7zSB0FIpqpIq2uLIaQIDiV5kbSeG5jIVxoup71YQ-5dsmzW5w2Qt7xYFMrS5JeUW8f6kr-Y9V4R7YValk_2DZfFK4AZ_BvnAFC8P1dzZ-1lmNq7P6sXfaNdW7bVsbR7-krMhS7xCYSrF6vyB1Rq9vMKvzwoTuzqsPxQp75Dgnq4VsTBNWkdUWMNmQnIw3mNoqtsfwG85tkWBtQXx792jlH0XWVekUnqzSqzWVdqATaYdMBlBzVfgz5UqNzt9ixgsmPWMQUNNo-JPTBpak8gcVL9LK7snvwHqPH7T1gIkQn5i-eT-PztTPzoZKqEQj5QnbKp9j39VA32ydbvNnstpTxD_Jf4-qK2vnmIk9NAfprKIVawtcN0hYQ3NyWEZLjaxnXxktXhvTrKMbgw0M2HC6GJCBM2TgSWRgQAbOkYFZig0ycI4MfD_EGhkbqHtx3mk0Xds-wxXgWFOXD4CLxfCEVhOeSG8guPAIk76gIQuICBgF1qJEbBCUelTrRsOQU8J9CCFiGXqbaH44GspthGUsKTAdSQY1CRFuxGgokzjmjMtBJHyyg7bMuvTHpkZKP1ux3W9H9tBygat9tJDAQykPgOGl_FAb6QPrjkyf
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+LDA%2BU+for+electron+localization+and+structure+at+oxygen+vacancies+in+ceria&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Castleton%2C+C+W+M&rft.au=Kullgren%2C+J&rft.au=Hermansson%2C+K&rft.date=2007-01-01&rft.issn=0021-9606&rft.volume=127&rft.issue=24&rft.spage=244704&rft_id=info:doi/10.1063%2F1.2800015&rft_id=info%3Apmid%2F18163692&rft_id=info%3Apmid%2F18163692&rft.externalDocID=18163692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon