Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria
We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO(2) (ceria) as a function of U in density functional theory studies with the rotationally invariant forms of the LDA+U and GGA+U functionals. The four nearest neighbor...
Saved in:
Published in | The Journal of chemical physics Vol. 127; no. 24; p. 244704 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
2007
|
Online Access | Get more information |
Cover
Loading…
Abstract | We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO(2) (ceria) as a function of U in density functional theory studies with the rotationally invariant forms of the LDA+U and GGA+U functionals. The four nearest neighbor Ce ions always relax outwards, with those not carrying localized Ce4f charge moving furthest. Several quantification schemes show that the charge starts to become localized at U approximately 3 eV and that the degree of localization reaches a maximum at approximately 6 eV for LDA+U or at approximately 5.5 eV for GGA+U. For higher U it decreases rapidly as charge is transferred onto second neighbor O ions and beyond. The localization is never into atomic corelike states; at maximum localization about 80-90% of the Ce4f charge is located on the two nearest neighboring Ce ions. However, if we look at the total atomic charge we find that the two ions only make a net gain of (0.2-0.4)e each, so localization is actually very incomplete, with localization of Ce4f electrons coming at the expense of moving other electrons off the Ce ions. We have also revisited some properties of defect-free ceria and find that with LDA+U the crystal structure is actually best described with U=3-4 eV, while the experimental band structure is obtained with U=7-8 eV. (For GGA+U the lattice parameters worsen for U>0 eV, but the band structure is similar to LDA+U.) The best overall choice is U approximately 6 eV with LDA+U and approximately 5.5 eV for GGA+U, since the localization is most important, but a consistent choice for both CeO(2) and Ce(2)O(3), with and without vacancies, is hard to find. |
---|---|
AbstractList | We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO(2) (ceria) as a function of U in density functional theory studies with the rotationally invariant forms of the LDA+U and GGA+U functionals. The four nearest neighbor Ce ions always relax outwards, with those not carrying localized Ce4f charge moving furthest. Several quantification schemes show that the charge starts to become localized at U approximately 3 eV and that the degree of localization reaches a maximum at approximately 6 eV for LDA+U or at approximately 5.5 eV for GGA+U. For higher U it decreases rapidly as charge is transferred onto second neighbor O ions and beyond. The localization is never into atomic corelike states; at maximum localization about 80-90% of the Ce4f charge is located on the two nearest neighboring Ce ions. However, if we look at the total atomic charge we find that the two ions only make a net gain of (0.2-0.4)e each, so localization is actually very incomplete, with localization of Ce4f electrons coming at the expense of moving other electrons off the Ce ions. We have also revisited some properties of defect-free ceria and find that with LDA+U the crystal structure is actually best described with U=3-4 eV, while the experimental band structure is obtained with U=7-8 eV. (For GGA+U the lattice parameters worsen for U>0 eV, but the band structure is similar to LDA+U.) The best overall choice is U approximately 6 eV with LDA+U and approximately 5.5 eV for GGA+U, since the localization is most important, but a consistent choice for both CeO(2) and Ce(2)O(3), with and without vacancies, is hard to find. |
Author | Kullgren, J Castleton, C W M Hermansson, K |
Author_xml | – sequence: 1 givenname: C W M surname: Castleton fullname: Castleton, C W M email: christopher.castleton@mkem.uu.se organization: Department of Physics and Measurement Technology (IFM), Linköping University, SE-58183 Linköping, Sweden. christopher.castleton@mkem.uu.se – sequence: 2 givenname: J surname: Kullgren fullname: Kullgren, J – sequence: 3 givenname: K surname: Hermansson fullname: Hermansson, K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18163692$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j0tLxDAURrMYcR668A9I9tIxN2nSZjmMTyiIMLMebm7TIdJJh7QVx1-voq4-zlkc-OZsErvoGbsCsQRh1C0sZSmEAD1hMyEkZNYIM2Xzvn_70YXMz9kUSjDKWDljr5sxhrjn1d3qZsubLnHfehpSF3nbEbbhE4fwDRhr3g9ppGFMnuPAu4_T3kf-joSRgu95iJx8CnjBzhpse3_5twu2fbjfrJ-y6uXxeb2qMtIKhszVUGpLhKJxjZc1OZIGvaJCY24oxwKkEgosFLkswGpTau0K45SQwnotF-z6t3sc3cHXu2MKB0yn3f83-QUaVU62 |
CitedBy_id | crossref_primary_10_1039_C9CS00588A crossref_primary_10_1063_1_3216102 crossref_primary_10_1039_C6CP05479J crossref_primary_10_1021_acs_jpcc_7b01431 crossref_primary_10_1021_acs_jpcc_8b09134 crossref_primary_10_1039_c1cp20950g crossref_primary_10_3390_jcs7060251 crossref_primary_10_3389_fchem_2019_00436 crossref_primary_10_1002_anie_201707965 crossref_primary_10_1002_anie_201914271 crossref_primary_10_1016_j_cap_2022_08_001 crossref_primary_10_1155_2019_5413134 crossref_primary_10_1016_S1872_2067_19_63468_6 crossref_primary_10_1063_1_3429314 crossref_primary_10_1016_j_apcatb_2018_10_015 crossref_primary_10_1016_j_jnucmat_2015_10_038 crossref_primary_10_1039_D4NR00676C crossref_primary_10_1021_acs_jpcc_1c07040 crossref_primary_10_3389_fchem_2019_00203 crossref_primary_10_1021_acs_jpcc_0c03494 crossref_primary_10_1021_ja910574h crossref_primary_10_1016_j_jallcom_2012_10_136 crossref_primary_10_1021_jp9024156 crossref_primary_10_1016_j_jcat_2024_115500 crossref_primary_10_1021_jp810093a crossref_primary_10_1021_jp306863d crossref_primary_10_1021_cr3004949 crossref_primary_10_1063_5_0185746 crossref_primary_10_1088_1742_6596_526_1_012002 crossref_primary_10_1021_jp400977m crossref_primary_10_1002_pssr_201409099 crossref_primary_10_1016_j_jcat_2014_03_014 crossref_primary_10_1063_1_3682310 crossref_primary_10_1021_acscatal_3c02240 crossref_primary_10_1039_C4CP00928B crossref_primary_10_3389_fchem_2019_00212 crossref_primary_10_1039_C4CP01083C crossref_primary_10_3390_cryst13020255 crossref_primary_10_1021_acs_jpcc_7b05385 crossref_primary_10_1021_acs_jpcc_6b12373 crossref_primary_10_1063_1_3253795 crossref_primary_10_1103_PhysRevB_79_075433 crossref_primary_10_1002_er_6646 crossref_primary_10_1016_j_jpcs_2011_09_002 crossref_primary_10_1021_acs_jpcc_9b09433 crossref_primary_10_1021_acs_jpclett_3c02035 crossref_primary_10_1016_j_cattod_2023_114387 crossref_primary_10_1021_acs_nanolett_2c02468 crossref_primary_10_1039_D1CP03007H crossref_primary_10_1016_j_ceramint_2017_11_149 crossref_primary_10_1016_j_susc_2022_122096 crossref_primary_10_1103_PhysRevB_79_100403 crossref_primary_10_1111_jace_12650 crossref_primary_10_1016_j_apsusc_2017_12_104 crossref_primary_10_1039_c2cp00020b crossref_primary_10_1039_D3RE00027C crossref_primary_10_1021_jacs_4c04366 crossref_primary_10_1021_acscatal_8b01477 crossref_primary_10_1021_acscatal_9b00252 crossref_primary_10_1039_C3TA11169E crossref_primary_10_1039_C7CP08535D crossref_primary_10_1021_ja1087979 crossref_primary_10_1007_s10562_016_1735_4 crossref_primary_10_1016_j_apsusc_2019_143732 crossref_primary_10_1088_0953_8984_24_45_456001 crossref_primary_10_1021_jp203112p crossref_primary_10_1088_0953_8984_22_13_135004 crossref_primary_10_1103_PhysRevMaterials_4_064003 crossref_primary_10_1021_acscatal_6b03387 crossref_primary_10_1021_jp2092913 crossref_primary_10_1063_1_3327684 crossref_primary_10_1088_0953_8984_22_22_223201 crossref_primary_10_1021_acs_jpcc_3c00622 crossref_primary_10_1016_j_apcata_2014_07_040 crossref_primary_10_1021_cr300418s crossref_primary_10_1021_acscatal_0c00333 crossref_primary_10_1021_acs_jpcc_8b05885 crossref_primary_10_1088_1361_648X_ac238b crossref_primary_10_1016_j_actamat_2016_04_052 crossref_primary_10_1021_acs_jpca_9b11415 crossref_primary_10_1021_acs_jpcc_0c00229 crossref_primary_10_1063_1_5142724 crossref_primary_10_1007_s00214_016_1948_z crossref_primary_10_1103_PhysRevMaterials_2_035802 crossref_primary_10_1021_cs401206e crossref_primary_10_1016_j_apsusc_2023_158928 crossref_primary_10_1039_D3NR05950B crossref_primary_10_1080_14786435_2014_933908 crossref_primary_10_1088_1674_1056_abff42 crossref_primary_10_1039_C6CS00914J crossref_primary_10_1039_D0CY00392A crossref_primary_10_1080_14686996_2019_1578183 crossref_primary_10_1063_5_0137117 crossref_primary_10_1515_psr_2017_0165 crossref_primary_10_1063_1_3191784 crossref_primary_10_1088_2516_1075_aae6f2 crossref_primary_10_1103_PhysRevMaterials_2_083609 crossref_primary_10_1016_j_apsusc_2014_06_076 crossref_primary_10_1021_jp212605g crossref_primary_10_1021_ja906687f crossref_primary_10_1021_acs_jpcc_0c05352 crossref_primary_10_1380_ejssnt_2009_389 crossref_primary_10_1016_j_cplett_2011_03_091 crossref_primary_10_1002_ange_201914271 crossref_primary_10_1103_PhysRevB_87_134104 crossref_primary_10_1088_0022_3727_46_49_495306 crossref_primary_10_1016_j_commatsci_2021_110696 crossref_primary_10_1039_c2cp42220d crossref_primary_10_1016_j_cej_2019_03_053 crossref_primary_10_1021_acsomega_8b02410 crossref_primary_10_1007_s00894_010_0671_2 crossref_primary_10_1007_s42247_022_00370_2 crossref_primary_10_1021_ct100430q crossref_primary_10_1149_2_0101411jes crossref_primary_10_1021_acs_jpcc_5b07813 crossref_primary_10_1088_2515_7655_acbb29 crossref_primary_10_1021_acsnano_7b00696 crossref_primary_10_1103_PhysRevLett_110_205901 crossref_primary_10_1021_acs_jpcc_6b08118 crossref_primary_10_1021_jp2080034 crossref_primary_10_1039_C5CY01597A crossref_primary_10_1063_5_0137264 crossref_primary_10_1021_acsami_8b11688 crossref_primary_10_1016_j_jnucmat_2017_11_046 crossref_primary_10_1038_srep15415 crossref_primary_10_1016_j_spmi_2014_10_023 crossref_primary_10_1070_RCR4966 crossref_primary_10_1039_C9CP01858A crossref_primary_10_1021_acs_jpcc_6b10557 crossref_primary_10_1021_ja407616p crossref_primary_10_1039_C7CP01785E crossref_primary_10_1063_1_3337918 crossref_primary_10_1021_acs_jpcc_6b03218 crossref_primary_10_1039_C8TA08245F crossref_primary_10_1016_j_jallcom_2022_167227 crossref_primary_10_1088_1674_1056_21_4_047505 crossref_primary_10_1016_j_ijhydene_2013_11_132 crossref_primary_10_1103_PhysRevB_81_205123 crossref_primary_10_1007_s10853_024_09861_5 crossref_primary_10_1063_1_4885546 crossref_primary_10_1021_jp200005r crossref_primary_10_1039_C5RA27890B crossref_primary_10_1007_s10853_012_6423_1 crossref_primary_10_1016_j_cattod_2012_01_022 crossref_primary_10_1021_acs_chemmater_6b01548 crossref_primary_10_3390_catal10121435 crossref_primary_10_1039_D0CP03298K crossref_primary_10_1103_PhysRevB_105_195153 crossref_primary_10_1016_j_ssc_2011_12_010 crossref_primary_10_1021_acscatal_2c03823 crossref_primary_10_1039_C8TA06372A crossref_primary_10_1016_j_apsusc_2021_151803 crossref_primary_10_1007_s11244_019_01183_0 crossref_primary_10_1103_PhysRevB_97_235203 crossref_primary_10_1016_j_commatsci_2023_112396 crossref_primary_10_1021_acsanm_3c05193 crossref_primary_10_1021_acscatal_2c02216 crossref_primary_10_1016_j_jnucmat_2009_06_026 crossref_primary_10_1016_j_cplett_2023_140586 crossref_primary_10_1002_aenm_201901963 crossref_primary_10_1103_PhysRevLett_102_026101 crossref_primary_10_1103_PhysRevLett_112_156102 crossref_primary_10_1039_C7DT02077E crossref_primary_10_1039_D0TA08655J crossref_primary_10_1039_b805904g crossref_primary_10_1103_PhysRevB_95_045203 crossref_primary_10_1021_jp312645f crossref_primary_10_1021_jp112112u crossref_primary_10_1039_C8CP03677B crossref_primary_10_1016_j_susc_2011_10_011 crossref_primary_10_1021_jp406016z crossref_primary_10_1039_c3fd20129e crossref_primary_10_1088_0953_8984_21_40_405502 crossref_primary_10_1002_cphc_201900141 crossref_primary_10_1103_PhysRevLett_102_126403 crossref_primary_10_1039_C6CP02647H crossref_primary_10_1063_1_3009629 crossref_primary_10_1103_PhysRevB_95_245101 crossref_primary_10_1002_cctc_202100643 crossref_primary_10_1016_j_jnucmat_2009_06_016 crossref_primary_10_1021_acs_jpcc_8b12037 crossref_primary_10_1063_1_3566998 crossref_primary_10_1039_C0CP01123A crossref_primary_10_1039_C6CP00151C crossref_primary_10_1021_jp508666c crossref_primary_10_1016_j_commatsci_2017_06_036 crossref_primary_10_1039_C2TA00504B crossref_primary_10_1039_C9FD00133F crossref_primary_10_1103_PhysRevB_90_115120 crossref_primary_10_1088_1674_1056_22_10_107102 crossref_primary_10_1016_j_susc_2018_08_017 crossref_primary_10_1063_1_4864378 crossref_primary_10_1021_acs_chemrev_3c00602 crossref_primary_10_1063_1_4819801 crossref_primary_10_1016_j_matchemphys_2019_121816 crossref_primary_10_1039_C5CP07537H crossref_primary_10_1088_0953_8984_22_47_475003 crossref_primary_10_1016_j_cattod_2015_01_049 crossref_primary_10_1038_s41598_019_41157_6 crossref_primary_10_1103_PhysRevB_98_235157 crossref_primary_10_1039_c3cy00319a crossref_primary_10_1103_PhysRevB_86_134117 crossref_primary_10_1016_j_elspec_2021_147088 crossref_primary_10_1016_j_jcat_2022_02_008 crossref_primary_10_1016_j_cattod_2008_11_005 crossref_primary_10_1016_j_jcou_2022_102221 crossref_primary_10_7566_JPSJ_83_094707 crossref_primary_10_1021_la904285g crossref_primary_10_1088_1674_1056_24_2_026801 crossref_primary_10_1021_jp403911b crossref_primary_10_7498_aps_62_117301 crossref_primary_10_1016_j_commatsci_2014_04_037 crossref_primary_10_1088_2053_1591_aaff14 crossref_primary_10_1021_jp506625h crossref_primary_10_1016_j_apsusc_2023_158441 crossref_primary_10_1021_acscatal_1c02154 crossref_primary_10_1016_j_apcatb_2021_120825 crossref_primary_10_1016_j_cplett_2010_09_016 crossref_primary_10_1021_acsnano_0c06472 crossref_primary_10_1107_S1600577515009698 crossref_primary_10_1039_D1SC01201K crossref_primary_10_1039_c1jm11238d crossref_primary_10_1103_PhysRevB_79_134108 crossref_primary_10_1021_acs_jpcc_1c09032 crossref_primary_10_1039_C9NR02731A crossref_primary_10_1002_cphc_201800860 crossref_primary_10_1016_j_physb_2012_01_085 crossref_primary_10_1021_acs_jpcc_5b09499 crossref_primary_10_1021_jp8094352 crossref_primary_10_1021_acs_jctc_8b00600 crossref_primary_10_1016_j_apcatb_2016_03_015 crossref_primary_10_1021_ct200202g crossref_primary_10_1039_D0CP05800A crossref_primary_10_1063_1_4973239 crossref_primary_10_1007_s00894_014_2270_0 crossref_primary_10_1021_acscatal_0c02909 crossref_primary_10_1103_PhysRevB_95_144430 crossref_primary_10_1002_pssb_202100020 crossref_primary_10_1103_PhysRevLett_122_096101 crossref_primary_10_1002_pssb_201600488 crossref_primary_10_1016_j_jnucmat_2011_08_008 crossref_primary_10_1021_jp202016s crossref_primary_10_1021_acscatal_6b00948 crossref_primary_10_1016_j_ijhydene_2017_12_017 crossref_primary_10_1039_C4TA02449D crossref_primary_10_1103_PhysRevB_97_024305 crossref_primary_10_1021_acs_jpcc_6b07650 crossref_primary_10_1021_jp1108703 crossref_primary_10_1103_PhysRevB_85_014302 crossref_primary_10_1063_1_3678309 crossref_primary_10_1016_j_apsusc_2016_10_193 crossref_primary_10_1021_acs_jpcc_4c01539 crossref_primary_10_1039_C5CP07469J crossref_primary_10_1103_PhysRevB_89_165101 crossref_primary_10_1021_acs_jpcc_6b00325 crossref_primary_10_1021_nl1029336 crossref_primary_10_1103_PhysRevLett_125_256101 crossref_primary_10_1039_D3CY00494E crossref_primary_10_1103_PhysRevLett_116_086102 crossref_primary_10_1016_j_micromeso_2023_112882 crossref_primary_10_1149_2_0261815jes crossref_primary_10_1103_PhysRevB_108_104103 crossref_primary_10_1021_jp104490k crossref_primary_10_1016_j_apsusc_2016_10_087 crossref_primary_10_1039_D1CY01934A crossref_primary_10_1016_j_susc_2020_121693 crossref_primary_10_1016_j_jhazmat_2021_127985 crossref_primary_10_1021_acscatal_2c02117 crossref_primary_10_1103_PhysRevB_94_115132 crossref_primary_10_1021_jp507876m crossref_primary_10_1021_acsami_0c01083 crossref_primary_10_1002_ange_201707965 crossref_primary_10_1103_PhysRevB_84_054110 crossref_primary_10_1016_j_actamat_2016_09_018 crossref_primary_10_1021_acscatal_5b01372 crossref_primary_10_1021_cs400034c crossref_primary_10_1063_1_4867961 crossref_primary_10_1021_acscatal_5b00832 crossref_primary_10_1021_acs_jpcc_8b08977 crossref_primary_10_1039_C5RA14184B crossref_primary_10_1002_jcc_23088 crossref_primary_10_1016_j_jnucmat_2012_02_008 crossref_primary_10_1063_1_4723867 crossref_primary_10_1016_j_susc_2015_12_002 crossref_primary_10_1038_s41598_017_05046_0 crossref_primary_10_1016_j_susc_2021_121852 crossref_primary_10_1021_ja508657c crossref_primary_10_1063_5_0122958 crossref_primary_10_1063_1_5099204 crossref_primary_10_1557_opl_2015_179 crossref_primary_10_1021_jp3125268 crossref_primary_10_1039_C5CP03764F crossref_primary_10_1021_jp806066g crossref_primary_10_1063_5_0136443 crossref_primary_10_1016_j_apsusc_2016_12_245 crossref_primary_10_1021_acscatal_9b00450 crossref_primary_10_1063_5_0024499 crossref_primary_10_1002_jcc_24049 crossref_primary_10_1021_acs_jpcc_5b09293 crossref_primary_10_1021_acs_jpcc_1c10181 crossref_primary_10_1016_j_apsusc_2018_07_090 crossref_primary_10_1021_acs_accounts_1c00226 crossref_primary_10_1039_c1cp21824g crossref_primary_10_1021_jp111427j crossref_primary_10_1021_acs_chemmater_7b03555 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1063/1.2800015 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Chemistry Physics |
ExternalDocumentID | 18163692 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 6TJ 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPM NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL WH7 YQT YZZ ~02 |
ID | FETCH-LOGICAL-c531t-bd1859cca0fbfe2dcbc26ae3c75a46c4a71230319174271956855b76b30209e52 |
ISSN | 0021-9606 |
IngestDate | Sat Sep 28 07:52:32 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c531t-bd1859cca0fbfe2dcbc26ae3c75a46c4a71230319174271956855b76b30209e52 |
OpenAccessLink | http://irep.ntu.ac.uk/id/eprint/14434/1/Castleton5.pdf |
PMID | 18163692 |
ParticipantIDs | pubmed_primary_18163692 |
PublicationCentury | 2000 |
PublicationDate | 2007 |
PublicationDateYYYYMMDD | 2007-01-01 |
PublicationDate_xml | – year: 2007 text: 2007 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2007 |
SSID | ssj0001724 |
Score | 2.440069 |
Snippet | We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO(2) (ceria) as a function... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 244704 |
Title | Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18163692 |
Volume | 127 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG5EY_RiFN-v9KCnzSLso909ImqIGKIJRG6kLV3jQSC6GvXXO33sLuAj6mVDtqSBzrez30z7zSB0FIpqpIq2uLIaQIDiV5kbSeG5jIVxoup71YQ-5dsmzW5w2Qt7xYFMrS5JeUW8f6kr-Y9V4R7YValk_2DZfFK4AZ_BvnAFC8P1dzZ-1lmNq7P6sXfaNdW7bVsbR7-krMhS7xCYSrF6vyB1Rq9vMKvzwoTuzqsPxQp75Dgnq4VsTBNWkdUWMNmQnIw3mNoqtsfwG85tkWBtQXx792jlH0XWVekUnqzSqzWVdqATaYdMBlBzVfgz5UqNzt9ixgsmPWMQUNNo-JPTBpak8gcVL9LK7snvwHqPH7T1gIkQn5i-eT-PztTPzoZKqEQj5QnbKp9j39VA32ydbvNnstpTxD_Jf4-qK2vnmIk9NAfprKIVawtcN0hYQ3NyWEZLjaxnXxktXhvTrKMbgw0M2HC6GJCBM2TgSWRgQAbOkYFZig0ycI4MfD_EGhkbqHtx3mk0Xds-wxXgWFOXD4CLxfCEVhOeSG8guPAIk76gIQuICBgF1qJEbBCUelTrRsOQU8J9CCFiGXqbaH44GspthGUsKTAdSQY1CRFuxGgokzjmjMtBJHyyg7bMuvTHpkZKP1ux3W9H9tBygat9tJDAQykPgOGl_FAb6QPrjkyf |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+LDA%2BU+for+electron+localization+and+structure+at+oxygen+vacancies+in+ceria&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Castleton%2C+C+W+M&rft.au=Kullgren%2C+J&rft.au=Hermansson%2C+K&rft.date=2007-01-01&rft.issn=0021-9606&rft.volume=127&rft.issue=24&rft.spage=244704&rft_id=info:doi/10.1063%2F1.2800015&rft_id=info%3Apmid%2F18163692&rft_id=info%3Apmid%2F18163692&rft.externalDocID=18163692 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |