Using Live-Cell Imaging and Synthetic Biology to Probe Directed Migration in Dictyostelium
For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used...
Saved in:
Published in | Frontiers in cell and developmental biology Vol. 9; p. 740205 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
05.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For decades, the social amoeba
Dictyostelium discoideum
has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease,
in vivo
. Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in
Dictyostelium
. |
---|---|
AbstractList | For decades, the social amoeba
Dictyostelium discoideum
has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease,
in vivo
. Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in
Dictyostelium
. For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease, in vivo. Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in Dictyostelium.For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease, in vivo. Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in Dictyostelium. For decades, the social amoeba has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease, . Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in . For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease, in vivo. Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in Dictyostelium. |
Author | Lin, Yiyan Devreotes, Peter N. Kuhn, Jonathan |
AuthorAffiliation | Department of Cell Biology, School of Medicine, Johns Hopkins University , Baltimore, MA , United States |
AuthorAffiliation_xml | – name: Department of Cell Biology, School of Medicine, Johns Hopkins University , Baltimore, MA , United States |
Author_xml | – sequence: 1 givenname: Jonathan surname: Kuhn fullname: Kuhn, Jonathan – sequence: 2 givenname: Yiyan surname: Lin fullname: Lin, Yiyan – sequence: 3 givenname: Peter N. surname: Devreotes fullname: Devreotes, Peter N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34676215$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUtVARLUM_gA3Kkk0GP-LE2SDB8BppEEhQCbGx_LhJXSV2a3sqzd_jmSlVywJ5Yev43HOvfc5zdOKDB4ReErxkTPRvBgPTtKSYkmXXYIr5E3RGad_WLWt-nTw4n6LzlK4wxoTyjgv2DJ2ypu1aSvgZ-n2RnB-rjbuFelUEq_Wsxj2ivK1-7Hy-hOxM9d6FKYy7Kofqewwaqg8ugslgq69ujCq74CvnC2ryLqQMk9vOL9DTQU0Jzu_2Bbr49PHn6ku9-fZ5vXq3qQ1nJNea9lxojo1SljKtBsEIb_DQ2xY0WFugjoDtRafswHThMkMxYSAYcCYoW6D1UdcGdSWvo5tV3MmgnDwAIY5SxfKICSRXplU9t8AFb4gWCluBy0cQzaDv27ZovT1qXW_1DNaAz1FNj0Qf33h3KcdwKwWnTJS1QK_vBGK42ULKcnZp75TyELZJUi6ahnUdIYX66mGv-yZ_zSkEciSYGFKKMNxTCJb7DMhDBuQ-A_KYgVLT_VNjXD74U8Z1038q_wCnIrg3 |
CitedBy_id | crossref_primary_10_1038_s41556_024_01453_4 crossref_primary_10_1016_j_cellsig_2023_110714 crossref_primary_10_3389_fcell_2023_1195806 crossref_primary_10_3389_fphys_2022_827435 crossref_primary_10_1371_journal_pone_0281211 crossref_primary_10_3389_fcell_2023_1263316 crossref_primary_10_1039_D3CB00185G crossref_primary_10_1038_s41598_022_15500_3 |
Cites_doi | 10.1038/sj.embor.7400151 10.1038/s41556-017-0028-5 10.1038/ncb811 10.1038/embor.2011.210 10.1016/j.cell.2007.08.006 10.1007/s00018-014-1638-8 10.1016/S0014-5793(01)03207-0 10.1016/S0960-9822(02)00950-8 10.1146/annurev-arplant-042110-103745 10.1021/cr8002888 10.1002/1521-1878 10.1016/S0092-8674(00)81784-5 10.1083/JCB.200311093 10.2976/1.3239407 10.1016/j.bpj.2012.08.004 10.1073/pnas.72.12.4991 10.1083/jcb.106.2.303 10.1242/jcs.108373 10.1016/j.ejcb.2006.01.012 10.1016/S0092-8674(03)00081-3 10.1038/s41586-020-2283-z 10.1083/jcb.201001129 10.1016/S0960-9822(00)00536-4 10.1016/j.semcdb.2019.11.001 10.1091/MBC.E03-12-0908 10.1083/jcb.200406177 10.1146/annurev-cellbio-100616-060739 10.1016/j.bpj.2013.12.023 10.1016/j.visinf.2020.11.003 10.1038/sj.emboj.7601763 10.1038/SJ.EMBOJ.7600368 10.1073/pnas.1315368111 10.1083/jcb.86.2.456 10.1038/nmeth.1904 10.1007/s00424-012-1208-6 10.1371/journal.pbio.1000618 10.1038/ncb783 10.1016/j.cell.2012.10.008 10.1073/pnas.0908278107 10.1186/1471-2121-12-42 10.1007/s11010-009-0111-8 10.1016/j.bspc.2019.101575 10.1242/jcs.156000 10.1016/j.devcel.2004.12.007 10.7554/eLife.04940 10.1083/jcb.200112070 10.1073/pnas.1608767113 10.1073/pnas.1417910112 10.1073/pnas.0409528102 10.1242/jcs.112.17.2867 10.1016/J.CUB.2003.12.005 10.1016/S0076-6879(01)33067-7 10.1016/j.devcel.2020.08.001 10.1073/pnas.0402152101 10.1073/pnas.1218025110 10.1074/jbc.274.19.13198 10.1007/s10059-011-0072-0 10.1038/nmeth.1220 10.1242/jcs.00726 10.1073/pnas.1616600114 10.1038/ncomms6175 10.1038/nmeth.f.326 10.1091/mbc.E05-09-0825 10.1038/ncb2859 10.1016/j.cub.2005.06.060 10.1038/nchembio.2000 10.1038/nmeth.1524 10.1101/gad.1694508 10.15252/msb.20188585 10.1186/s12859-018-2375-z 10.1073/pnas.0601302103 10.1091/mbc.E05-11-1019 10.1073/pnas.1700054114 10.1038/s41580-019-0172-9 10.1091/mbc.E02-10-0703 10.3389/fimmu.2017.01906 10.1093/EMBOJ/18.8.2092 10.1529/biophysj.104.047589 10.1126/scisignal.2002413 10.1038/nmeth.3926 10.1038/nmeth.2019 10.1073/pnas.1011271107 10.1242/jcs.132340 10.1038/ncb3495 10.1016/j.celrep.2014.09.047 10.1016/j.ceb.2015.06.005 10.1083/jcb.147.3.559 10.1002/JLB.1MR0218-044 10.1534/genetics.110.119297 10.1091/mbc.E17-12-0738 10.1091/mbc.E16-10-0733 10.12688/f1000research.16502.1 10.1038/nrm1435 10.1038/249450a0 10.1146/annurev.biophys.093008.131228 10.1073/pnas.1509098112 10.1016/S0092-8674(02)00745-6 10.1073/pnas.1710480115 10.1242/jcs.124073 10.1103/physrevlett.104.158301 10.7554/eLife.26990 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Kuhn, Lin and Devreotes. Copyright © 2021 Kuhn, Lin and Devreotes. 2021 Kuhn, Lin and Devreotes |
Copyright_xml | – notice: Copyright © 2021 Kuhn, Lin and Devreotes. – notice: Copyright © 2021 Kuhn, Lin and Devreotes. 2021 Kuhn, Lin and Devreotes |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fcell.2021.740205 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2296-634X |
ExternalDocumentID | oai_doaj_org_article_5ac6a95de58541b8a0d806211b3e9966 PMC8523838 34676215 10_3389_fcell_2021_740205 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM118177 – fundername: ; grantid: GM118177 – fundername: ; grantid: MURI |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM EMOBN IAO IEA IHR IHW IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c531t-b2958b50caad23baf831540f9d6ebedd3ba71ed987adf3b58b3c2013e83e53823 |
IEDL.DBID | M48 |
ISSN | 2296-634X |
IngestDate | Wed Aug 27 01:28:40 EDT 2025 Thu Aug 21 14:09:02 EDT 2025 Thu Jul 10 19:19:48 EDT 2025 Thu Jan 02 22:54:09 EST 2025 Tue Jul 01 03:20:41 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | migration synthetic & systems biology signaling imaging chemotaxis |
Language | English |
License | Copyright © 2021 Kuhn, Lin and Devreotes. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-b2958b50caad23baf831540f9d6ebedd3ba71ed987adf3b58b3c2013e83e53823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Arjan Kortholt, University of Groningen, Netherlands; Peggy Paschke, University of Glasgow, United Kingdom Edited by: Robert J. Huber, Trent University, Canada This article was submitted to Molecular and Cellular Pathology, a section of the journal Frontiers in Cell and Developmental Biology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2021.740205 |
PMID | 34676215 |
PQID | 2584437711 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5ac6a95de58541b8a0d806211b3e9966 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8523838 proquest_miscellaneous_2584437711 pubmed_primary_34676215 crossref_primary_10_3389_fcell_2021_740205 crossref_citationtrail_10_3389_fcell_2021_740205 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-05 |
PublicationDateYYYYMMDD | 2021-10-05 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in cell and developmental biology |
PublicationTitleAlternate | Front Cell Dev Biol |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Décave (B16) 2003; 116 Tranquillo (B84) 1988; 106 Benard (B7) 1999; 274 Bivona (B8) 2004; 164 Liu (B46) 2018; 7 Riedl (B65) 2008; 5 Al-Kofahi (B1) 2018; 19 Miao (B54) 2017; 19 Derose (B17) 2013; 465 Meili (B50) 1999; 18 Chung (B15) 1999; 147 Thomas (B81) 2018; 104 Huang (B36) 2003; 14 Cai (B12) 2010; 190 Nichols (B56) 2015; 36 Reversat (B64) 2020; 582 Gamarra (B25) 2019; 53 Vicker (B88) 2002; 510 Arai (B3) 2010; 107 Papakonstanti (B60) 2007; 26 Shu (B70) 2005; 102 Swaminathan (B73) 2014; 111 Gebbie (B27) 2004; 15 Taniguchi (B79) 2013; 110 Gerisch (B29) 2004; 87 Tang (B78) 2014; 5 Devreotes (B18) 2017; 33 Janetopoulos (B38) 2004; 101 Gerisch (B31) 2011; 12 Park (B62) 2017; 114 Van Haastert (B86) 2017; 28 Zhao (B101) 2002; 157 Gao (B26) 2012; 151 Miao (B53) 2019; 15 Xiong (B96) 2016; 12 Gerisch (B30) 2013; 126 Taylor (B80) 2001; 333 Dormann (B19) 2002; 12 Strickland (B72) 2012; 9 Takeda (B76) 2012; 5 Iijima (B37) 2002; 109 Arrieumerlou (B4) 2005; 8 Bretschneider (B11) 2004; 14 Yamada (B98) 2007; 130 Schindelin (B67) 2012; 9 Bloomfield (B9) 2015; 4 Swaney (B75) 2010; 39 Zhan (B100) 2020; 54 Fritz-Laylin (B24) 2017; 6 Annesley (B2) 2009; 329 Bolourani (B10) 2006; 17 Kortholt (B41) 2011; 12 Schroth-Diez (B68) 2009; 3 Hecht (B34) 2010; 104 Dunn (B20) 2018; 8 Emami (B22) 2021; 5 Weiner (B92) 2002; 4 Fegan (B23) 2010; 110 Kennedy (B40) 2010; 7 Meinhardt (B51) 1999; 112 Okumoto (B58) 2012; 63 Guntas (B33) 2015; 112 Wills (B94) 2018; 29 Zigmond (B102) 1974; 249 Artemenko (B6) 2014; 71 Nishikawa (B57) 2014; 106 Meinhardt (B52) 2000; 22 Wang (B91) 2014; 9 Parent (B61) 1998; 95 Kortholt (B42) 2013; 126 Park (B63) 2004; 23 Van Haren (B87) 2018; 20 Sasaki (B66) 2004; 167 Toettcher (B83) 2011; 8 Loovers (B47) 2006; 17 Yamada (B99) 2019; 20 Kae (B39) 2004; 5 Vogel (B89) 1980; 86 Huang (B35) 2013; 15 Wang (B90) 2016; 13 Edwards (B21) 2018; 115 Tang (B77) 2008; 22 Shibata (B69) 2012; 125 Mato (B48) 1975; 72 Xiong (B97) 2010; 107 Artemenko (B5) 2016; 113 Gerisch (B32) 2012; 103 Williams (B93) 2010; 185 Gerhardt (B28) 2014; 127 Song (B71) 2006; 85 Neilson (B55) 2011; 9 Van Haastert (B85) 2004; 5 Wong (B95) 2005; 15 Kriebel (B43) 2003; 112 Swaney (B74) 2015; 112 Levine (B44) 2006; 103 Thomas Lampert (B82) 2017; 114 Meili (B49) 2000; 10 Cha (B13) 2011; 32 Li (B45) 2020; 100 Chiu (B14) 2002; 4 |
References_xml | – volume: 5 start-page: 602 year: 2004 ident: B39 article-title: Chemoattractant-induced Ras activation during Dictyostelium aggregation. publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400151 – volume: 20 start-page: 252 year: 2018 ident: B87 article-title: Local control of intracellular microtubule dynamics by EB1 photodissociation. publication-title: Nat. Cell Biol. doi: 10.1038/s41556-017-0028-5 – volume: 4 start-page: 509 year: 2002 ident: B92 article-title: A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. publication-title: Nat. Cell Biol. doi: 10.1038/ncb811 – volume: 12 start-page: 1273 year: 2011 ident: B41 article-title: Dictyostelium chemotaxis: essential Ras activation and accessory signalling pathways for amplification. publication-title: EMBO Rep. doi: 10.1038/embor.2011.210 – volume: 130 start-page: 601 year: 2007 ident: B98 article-title: Modeling tissue morphogenesis and cancer in 3D. publication-title: Cell doi: 10.1016/j.cell.2007.08.006 – volume: 71 start-page: 3711 year: 2014 ident: B6 article-title: Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-014-1638-8 – volume: 510 start-page: 5 year: 2002 ident: B88 article-title: F-actin assembly in Dictyostelium cell locomotion and shape oscillations propagates as a self-organized reaction-diffusion wave. publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)03207-0 – volume: 12 start-page: 1178 year: 2002 ident: B19 article-title: Visualizing PI3 kinase-mediated cell-cell signaling during Dictyostelium development. publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00950-8 – volume: 63 start-page: 663 year: 2012 ident: B58 article-title: Quantitative imaging with fluorescent biosensors. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042110-103745 – volume: 110 start-page: 3315 year: 2010 ident: B23 article-title: Chemically controlled protein assembly: techniques and applications. publication-title: Chem. Rev. doi: 10.1021/cr8002888 – volume: 22 start-page: 753 year: 2000 ident: B52 article-title: Pattern formation by local self-activation and lateral inhibition. publication-title: Bioessays doi: 10.1002/1521-1878 – volume: 95 start-page: 81 year: 1998 ident: B61 article-title: G protein signaling events are activated at the leading edge of chemotactic cells. publication-title: Cell doi: 10.1016/S0092-8674(00)81784-5 – volume: 164 start-page: 461 year: 2004 ident: B8 article-title: Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. publication-title: J. Cell Biol. doi: 10.1083/JCB.200311093 – volume: 3 start-page: 412 year: 2009 ident: B68 article-title: Propagating waves separate two states of actin organization in living cells. publication-title: HFSP J. doi: 10.2976/1.3239407 – volume: 103 start-page: 1170 year: 2012 ident: B32 article-title: PIP3 waves and PTEN dynamics in the emergence of cell polarity. publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.08.004 – volume: 72 start-page: 4991 year: 1975 ident: B48 article-title: Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.72.12.4991 – volume: 106 start-page: 303 year: 1988 ident: B84 article-title: A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. publication-title: J. Cell Biol. doi: 10.1083/jcb.106.2.303 – volume: 125 start-page: 5138 year: 2012 ident: B69 article-title: Modeling the self-organized phosphatidylinositol lipid signaling system in chemotactic cells using quantitative image analysis. publication-title: J. Cell Sci. doi: 10.1242/jcs.108373 – volume: 85 start-page: 981 year: 2006 ident: B71 article-title: Dictyostelium discoideum chemotaxis: threshold for directed motion. publication-title: Eur. J. Cell Biol. doi: 10.1016/j.ejcb.2006.01.012 – volume: 112 start-page: 549 year: 2003 ident: B43 article-title: Adenylyl cyclase localization regulates streaming during chemotaxis. publication-title: Cell doi: 10.1016/S0092-8674(03)00081-3 – volume: 582 start-page: 582 year: 2020 ident: B64 article-title: Cellular locomotion using environmental topography. publication-title: Nature doi: 10.1038/s41586-020-2283-z – volume: 190 start-page: 233 year: 2010 ident: B12 article-title: Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis. publication-title: J. Cell Biol. doi: 10.1083/jcb.201001129 – volume: 10 start-page: 708 year: 2000 ident: B49 article-title: A novel Akt/PKB-related kinase is essential for morphogenesis in Dictyostelium. publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00536-4 – volume: 100 start-page: 133 year: 2020 ident: B45 article-title: Excitable networks controlling cell migration during development and disease. publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2019.11.001 – volume: 15 start-page: 3915 year: 2004 ident: B27 article-title: Phg2, a Kinase Involved in Adhesion and Focal Site Modeling in Dictyostelium. publication-title: Mol. Biol. Cell doi: 10.1091/MBC.E03-12-0908 – volume: 167 start-page: 505 year: 2004 ident: B66 article-title: Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. publication-title: J. Cell Biol. doi: 10.1083/jcb.200406177 – volume: 33 start-page: 103 year: 2017 ident: B18 article-title: Excitable Signal Transduction Networks in Directed Cell Migration. publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100616-060739 – volume: 106 start-page: 723 year: 2014 ident: B57 article-title: Excitable signal transduction induces both spontaneous and directional cell asymmetries in the phosphatidylinositol lipid signaling system for eukaryotic chemotaxis. publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.12.023 – volume: 5 start-page: 1 year: 2021 ident: B22 article-title: Computerized cell tracking: current methods, tools and challenges. publication-title: Vis. Informatics doi: 10.1016/j.visinf.2020.11.003 – volume: 26 start-page: 3050 year: 2007 ident: B60 article-title: The p110δ isoform of PI 3-kinase negatively controls RhoA and PTEN. publication-title: EMBO J. doi: 10.1038/sj.emboj.7601763 – volume: 23 start-page: 4177 year: 2004 ident: B63 article-title: Rac regulation of chemotaxis and morphogenesis in Dictyostelium. publication-title: EMBO J. doi: 10.1038/SJ.EMBOJ.7600368 – volume: 111 start-page: E25 year: 2014 ident: B73 article-title: A Cdc42- and Rac-interactive binding (CRIB) domain mediates functions of coronin. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1315368111 – volume: 86 start-page: 456 year: 1980 ident: B89 article-title: Mechanism of phagocytosis in dictyostelium discoideum: phagocytosis is mediated by different recognition sites as disclosed by mutants with altered phagocytotic properties. publication-title: J. Cell Biol. doi: 10.1083/jcb.86.2.456 – volume: 9 start-page: 379 year: 2012 ident: B72 article-title: TULIPs: tunable, light-controlled interacting protein tags for cell biology. publication-title: Nat. Methods doi: 10.1038/nmeth.1904 – volume: 465 start-page: 409 year: 2013 ident: B17 article-title: Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. publication-title: Pflugers Arch. doi: 10.1007/s00424-012-1208-6 – volume: 9 year: 2011 ident: B55 article-title: Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour. publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000618 – volume: 4 start-page: 343 year: 2002 ident: B14 article-title: Ras signalling on the endoplasmic reticulum and the Golgi. publication-title: Nat. Cell Biol doi: 10.1038/ncb783 – volume: 151 start-page: 1370 year: 2012 ident: B26 article-title: Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. publication-title: Cell doi: 10.1016/j.cell.2012.10.008 – volume: 107 start-page: 12399 year: 2010 ident: B3 article-title: Self-organization of the phosphatidylinositol lipids signaling system for random cell migration. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0908278107 – volume: 12 year: 2011 ident: B31 article-title: Different modes of state transitions determine pattern in the Phosphatidylinositide-Actin system. publication-title: BMC Cell Biol. doi: 10.1186/1471-2121-12-42 – volume: 329 start-page: 73 year: 2009 ident: B2 article-title: Dictyostelium discoideum-a model for many reasons. publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-009-0111-8 – volume: 53 year: 2019 ident: B25 article-title: Split and merge watershed: a two-step method for cell segmentation in fluorescence microscopy images. publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101575 – volume: 127 start-page: 4507 year: 2014 ident: B28 article-title: Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state. publication-title: J. Cell Sci. doi: 10.1242/jcs.156000 – volume: 8 start-page: 215 year: 2005 ident: B4 article-title: A local coupling model and compass parameter for eukaryotic chemotaxis. publication-title: Dev. Cell doi: 10.1016/j.devcel.2004.12.007 – volume: 4 year: 2015 ident: B9 article-title: Neurofibromin controls macropinocytosis and phagocytosis in Dictyostelium. publication-title: Elife doi: 10.7554/eLife.04940 – volume: 157 start-page: 921 year: 2002 ident: B101 article-title: Genetic analysis of the role of G protein-coupled receptor signaling in electrotaxis. publication-title: J. Cell Biol. doi: 10.1083/jcb.200112070 – volume: 113 start-page: E7500 year: 2016 ident: B5 article-title: Chemical and mechanical stimuli act on common signal transduction and cytoskeletal networks. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1608767113 – volume: 112 start-page: 112 year: 2015 ident: B33 article-title: Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1417910112 – volume: 102 start-page: 1472 year: 2005 ident: B70 article-title: Blebbistatin and blebbistatin-inactivated myosin II inhibit myosin II-independent processes in Dictyostelium. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0409528102 – volume: 112 start-page: 2867 year: 1999 ident: B51 article-title: Orientation of chemotactic cells and growth cones: models and mechanisms. publication-title: J. Cell Sci. doi: 10.1242/jcs.112.17.2867 – volume: 14 start-page: 1 year: 2004 ident: B11 article-title: Dynamic Actin Patterns and Arp2/3 Assembly at the Substrate-Attached Surface of Motile Cells. publication-title: Curr. Biol. doi: 10.1016/J.CUB.2003.12.005 – volume: 333 start-page: 333 year: 2001 ident: B80 article-title: Nonradioactive determination of Ras-GTP levels using activated Ras interaction assay. publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(01)33067-7 – volume: 54 start-page: 608 year: 2020 ident: B100 article-title: An Excitable Ras/PI3K/ERK Signaling Network Controls Migration and Oncogenic Transformation in Epithelial Cells. publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.08.001 – volume: 101 start-page: 8951 year: 2004 ident: B38 article-title: Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0402152101 – volume: 110 start-page: 5016 year: 2013 ident: B79 article-title: Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1218025110 – volume: 274 start-page: 13198 year: 1999 ident: B7 article-title: Characterization of Rac and Cdc42 activation in chemoattractant- stimulated human neutrophils using a novel assay for active GTPases. publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.19.13198 – volume: 32 start-page: 281 year: 2011 ident: B13 article-title: Dynamic localization of the actin-bundling protein cortexillin i during cell migration. publication-title: Mol. Cells doi: 10.1007/s10059-011-0072-0 – volume: 5 start-page: 605 year: 2008 ident: B65 article-title: Lifeact: a versatile marker to visualize F-actin. publication-title: Nat. Methods doi: 10.1038/nmeth.1220 – volume: 116 start-page: 4331 year: 2003 ident: B16 article-title: Shear flow-induced motility of Dictyostelium discoideum cells on solid substrate. publication-title: J. Cell Sci doi: 10.1242/jcs.00726 – volume: 114 start-page: E7727 year: 2017 ident: B82 article-title: Shear force-based genetic screen reveals negative regulators of cell adhesion and protrusive activity. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1616600114 – volume: 5 start-page: 1 year: 2014 ident: B78 article-title: Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis. publication-title: Nat. Commun. doi: 10.1038/ncomms6175 – volume: 8 start-page: 35 year: 2011 ident: B83 article-title: The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. publication-title: Nat. Methods doi: 10.1038/nmeth.f.326 – volume: 17 start-page: 1503 year: 2006 ident: B47 article-title: Distinct roles of PI(3,4,5)P3 during chemoattractant signaling in Dictyostelium: a quantitative in vivo analysis by inhibition of PI3-kinase. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E05-09-0825 – volume: 15 start-page: 1307 year: 2013 ident: B35 article-title: An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. publication-title: Nat. Cell Biol. doi: 10.1038/ncb2859 – volume: 15 start-page: 1401 year: 2005 ident: B95 article-title: PIP2 hydrolysis and calcium release are required for cytokinesis in Drosophila spermatocytes. publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.06.060 – volume: 12 start-page: 159 year: 2016 ident: B96 article-title: Frequency and amplitude control of cortical oscillations by phosphoinositide waves. publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2000 – volume: 7 start-page: 973 year: 2010 ident: B40 article-title: Rapid blue-light-mediated induction of protein interactions in living cells. publication-title: Nat. Methods doi: 10.1038/nmeth.1524 – volume: 22 start-page: 2278 year: 2008 ident: B77 article-title: tsunami, the Dictyostelium homolog of the Fused kinase, is required for polarization and chemotaxis. publication-title: Genes Dev. doi: 10.1101/gad.1694508 – volume: 15 year: 2019 ident: B53 article-title: Wave patterns organize cellular protrusions and control cortical dynamics. publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20188585 – volume: 19 year: 2018 ident: B1 article-title: A deep learning-based algorithm for 2-D cell segmentation in microscopy images. publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2375-z – volume: 103 start-page: 9761 year: 2006 ident: B44 article-title: Directional sensing in eukaryotic chemotaxis: a balanced inactivation model. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0601302103 – volume: 17 start-page: 4543 year: 2006 ident: B10 article-title: Delineation of the roles played by RasG and RasC in cAMP-dependent signal transduction during the early development of Dictyostelium discoideum. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E05-11-1019 – volume: 114 start-page: E5750 year: 2017 ident: B62 article-title: Mechanochemical feedback underlies coexistence of qualitatively distinct Cell polarity patterns within diverse cell populations. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1700054114 – volume: 20 start-page: 738 year: 2019 ident: B99 article-title: Mechanisms of 3D cell migration. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0172-9 – volume: 14 start-page: 1913 year: 2003 ident: B36 article-title: Receptor-mediated regulation of PI3Ks confines PI(3,4,5)P3 to the leading edge of chemotaxing cells. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E02-10-0703 – volume: 8 year: 2018 ident: B20 article-title: Eat prey, live: dictyostelium discoideum as a model for cell-autonomous defenses. publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01906 – volume: 18 start-page: 2092 year: 1999 ident: B50 article-title: Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. publication-title: EMBO J. doi: 10.1093/EMBOJ/18.8.2092 – volume: 87 start-page: 3493 year: 2004 ident: B29 article-title: Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. publication-title: Biophys. J. doi: 10.1529/biophysj.104.047589 – volume: 5 year: 2012 ident: B76 article-title: Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway. publication-title: Sci. Signal. doi: 10.1126/scisignal.2002413 – volume: 13 start-page: 755 year: 2016 ident: B90 article-title: LOVTRAP: an optogenetic system for photoinduced protein dissociation. publication-title: Nat. Methods doi: 10.1038/nmeth.3926 – volume: 9 start-page: 676 year: 2012 ident: B67 article-title: Fiji: an open-source platform for biological-image analysis. publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 107 start-page: 17079 year: 2010 ident: B97 article-title: Cells navigate with a local-excitation, global-inhibition-biased excitable network. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1011271107 – volume: 126 start-page: 4502 year: 2013 ident: B42 article-title: Ras activation and symmetry breaking during dictyostelium chemotaxis. publication-title: J. Cell Sci. doi: 10.1242/jcs.132340 – volume: 19 start-page: 329 year: 2017 ident: B54 article-title: Altering the threshold of an excitable signal transduction network changes cell migratory modes. publication-title: Nat. Cell Biol. doi: 10.1038/ncb3495 – volume: 9 start-page: 1110 year: 2014 ident: B91 article-title: The Directional Response of Chemotactic Cells Depends on a Balance between Cytoskeletal Architecture and the External Gradient Overall directional response depends on gradient and internal polarity. publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.09.047 – volume: 36 start-page: 7 year: 2015 ident: B56 article-title: Chemotaxis of a model organism: progress with Dictyostelium. publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2015.06.005 – volume: 147 start-page: 559 year: 1999 ident: B15 article-title: PAKa, a putative PAK family member, is required for cytokinesis and the regulation of the cytoskeleton in Dictyostelium discoideum cells during chemotaxis. publication-title: J. Cell Biol. doi: 10.1083/jcb.147.3.559 – volume: 104 start-page: 359 year: 2018 ident: B81 article-title: Decoding the chemotactic signal. publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.1MR0218-044 – volume: 185 start-page: 717 year: 2010 ident: B93 article-title: Dictyostelium finds new roles to model. publication-title: Genetics doi: 10.1534/genetics.110.119297 – volume: 29 start-page: 1526 year: 2018 ident: B94 article-title: Genetically encoded lipid biosensors. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E17-12-0738 – volume: 28 start-page: 922 year: 2017 ident: B86 article-title: Coupled excitable Ras and F-actin activation mediates spontaneous pseudopod formation and directed cell movement. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E16-10-0733 – volume: 7 year: 2018 ident: B46 article-title: Recent advances in cytokinesis: understanding the molecular underpinnings [version 1; referees: 2 approved]. publication-title: F1000Res. doi: 10.12688/f1000research.16502.1 – volume: 5 start-page: 626 year: 2004 ident: B85 article-title: Chemotaxis: signalling the way forward. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1435 – volume: 249 start-page: 450 year: 1974 ident: B102 article-title: Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes. publication-title: Nature doi: 10.1038/249450a0 – volume: 39 start-page: 265 year: 2010 ident: B75 article-title: Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.093008.131228 – volume: 112 start-page: E3845 year: 2015 ident: B74 article-title: Novel protein Callipygian defines the back of migrating cells. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1509098112 – volume: 109 start-page: 599 year: 2002 ident: B37 article-title: Tumor suppressor PTEN mediates sensing of chemoattractant gradients. publication-title: Cell doi: 10.1016/S0092-8674(02)00745-6 – volume: 115 start-page: E3722 year: 2018 ident: B21 article-title: Insight from the maximal activation of the signal transduction excitable network in Dictyostelium discoideum. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1710480115 – volume: 126 start-page: 2069 year: 2013 ident: B30 article-title: Membrane and actin reorganization in electropulseinduced cell fusion. publication-title: J. Cell Sci. doi: 10.1242/jcs.124073 – volume: 104 year: 2010 ident: B34 article-title: Transient localized patterns in noise-driven reaction-diffusion systems. publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.104.158301 – volume: 6 year: 2017 ident: B24 article-title: Actin-Based protrusions of migrating neutrophils are intrinsically lamellar and facilitate direction changes. publication-title: Elife doi: 10.7554/eLife.26990 |
SSID | ssj0001257583 |
Score | 2.2338016 |
SecondaryResourceType | review_article |
Snippet | For decades, the social amoeba
Dictyostelium discoideum
has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and... For decades, the social amoeba has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make... For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 740205 |
SubjectTerms | Cell and Developmental Biology chemotaxis imaging migration signaling synthetic & systems biology |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et-uLCJ6Eaps0bXrURVFxRVBBvIS8qgvaFe0e9t8709RlV0QvXtNJM8xMkm8myQwh-9ZyJlyso8xYF6WC-aiISxfpPLPCJcxKje-de9fZ-X16-SAeJkp94Z2wkB44CO5IaJvpQjgPuDZNjNSxk3EGbovhHrE6rr6w5004UyG6AjBE8nCMCV5YcVRiIBz8QZYc5ugziamNqMnX_xPI_H5XcmLzOVskCy1qpMeB2yUy46tlMhfqSI5WyGNz8E-vYOWKusAAvXhtig9RXTl6O6oA5EFH2tLTekBv8BUQDeudd7TXfwqWQPsVtNp6hG8_XvrD11Vyf3Z61z2P2qIJkYXpVEeGFUIaEVutHeNGl5IDSorLwmWgL-egKU-8K2SuXckN0HLLMBYquRd4KLhGZqtB5TcIZSXgOR0zjBOlrvBaGFeAMnwpUg7IskPiLwkq22YUx8IWLwo8CxS6aoSuUOgqCL1DDsZd3kI6jd-IT1AtY0LMhN00gH2o1j7UX_bRIXtfSlUwc3AMXfnB8EMxwF4pz_Mk6ZD1oOTxUBz2D_gJsJBPqX-Kl-kvVf-5yc4twbWXXG7-B_NbZB7l0VweFNtktn4f-h0AQbXZbez9E4A4BY0 priority: 102 providerName: Directory of Open Access Journals |
Title | Using Live-Cell Imaging and Synthetic Biology to Probe Directed Migration in Dictyostelium |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34676215 https://www.proquest.com/docview/2584437711 https://pubmed.ncbi.nlm.nih.gov/PMC8523838 https://doaj.org/article/5ac6a95de58541b8a0d806211b3e9966 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA-1RfClaP3oaS0RfBJSd5PNbvZBpBZLK54IenD4EvK17cF1T6974P33ziR7hyeH9DWbbLIzyc7vN0lmCHntnODSZ4aV1nlWSB5YnTWemap00ufcKYP3nYdfyotR8Wksxztkld6qF-DtVmqH-aRG8-nJ71_L97Dg3yHjBHv7tkEfN1A9np9USIfkPbIHhqnChAbDHu0nlwtgkxiYk_O6ZKUoxmmfc_tbNixVDOi_DYX-e5jyL-t0_pDs97CSnqZ58IjshPaA3E-JJpePyY94MoB-hl8bO4MB0MubmJ2ImtbTb8sWUCA0pH192s3oV7wmRNMPMXg6nFylqUInLZS6bomXQ6aTxc0TMjr_-P3sgvVZFZiD9dYxy2uprMycMZ4LaxolAEZlTe1LUKj3UFTlwdeqMr4RFuoKx9FZqkSQuGv4lOy2szYcEsobAHwm4-hIKnwdjLS-Lk0dGlkIgJ4Dkq0kqF0fchwzX0w1UA8Uuo5C1yh0nYQ-IG_WTX6meBv_q_wB1bKuiKGyY8FsfqX7laelcTAk6QMQoyK3ymReZSXwXisCkr0BebVSqoalhX2YNswWt5oDOCtEVeX5gDxLSl53JcDAwEtgCNWG-jfGsvmknVzH8N0KuL8S6vkd-n1BHuDnxsOD8ojsdvNFeAkgqLPH0XlwHCf4H88iBnI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Live-Cell+Imaging+and+Synthetic+Biology+to+Probe+Directed+Migration+in+Dictyostelium&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Kuhn%2C+Jonathan&rft.au=Lin%2C+Yiyan&rft.au=Devreotes%2C+Peter+N&rft.date=2021-10-05&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=9&rft.spage=740205&rft_id=info:doi/10.3389%2Ffcell.2021.740205&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |