Using Live-Cell Imaging and Synthetic Biology to Probe Directed Migration in Dictyostelium

For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cell and developmental biology Vol. 9; p. 740205
Main Authors Kuhn, Jonathan, Lin, Yiyan, Devreotes, Peter N.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 05.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease, in vivo . Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in Dictyostelium .
AbstractList For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease, in vivo . Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in Dictyostelium .
For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease, in vivo. Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in Dictyostelium.For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease, in vivo. Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in Dictyostelium.
For decades, the social amoeba has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease, . Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in .
For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease, in vivo. Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in Dictyostelium.
Author Lin, Yiyan
Devreotes, Peter N.
Kuhn, Jonathan
AuthorAffiliation Department of Cell Biology, School of Medicine, Johns Hopkins University , Baltimore, MA , United States
AuthorAffiliation_xml – name: Department of Cell Biology, School of Medicine, Johns Hopkins University , Baltimore, MA , United States
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Kuhn
  fullname: Kuhn, Jonathan
– sequence: 2
  givenname: Yiyan
  surname: Lin
  fullname: Lin, Yiyan
– sequence: 3
  givenname: Peter N.
  surname: Devreotes
  fullname: Devreotes, Peter N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34676215$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUtVARLUM_gA3Kkk0GP-LE2SDB8BppEEhQCbGx_LhJXSV2a3sqzd_jmSlVywJ5Yev43HOvfc5zdOKDB4ReErxkTPRvBgPTtKSYkmXXYIr5E3RGad_WLWt-nTw4n6LzlK4wxoTyjgv2DJ2ypu1aSvgZ-n2RnB-rjbuFelUEq_Wsxj2ivK1-7Hy-hOxM9d6FKYy7Kofqewwaqg8ugslgq69ujCq74CvnC2ryLqQMk9vOL9DTQU0Jzu_2Bbr49PHn6ku9-fZ5vXq3qQ1nJNea9lxojo1SljKtBsEIb_DQ2xY0WFugjoDtRafswHThMkMxYSAYcCYoW6D1UdcGdSWvo5tV3MmgnDwAIY5SxfKICSRXplU9t8AFb4gWCluBy0cQzaDv27ZovT1qXW_1DNaAz1FNj0Qf33h3KcdwKwWnTJS1QK_vBGK42ULKcnZp75TyELZJUi6ahnUdIYX66mGv-yZ_zSkEciSYGFKKMNxTCJb7DMhDBuQ-A_KYgVLT_VNjXD74U8Z1038q_wCnIrg3
CitedBy_id crossref_primary_10_1038_s41556_024_01453_4
crossref_primary_10_1016_j_cellsig_2023_110714
crossref_primary_10_3389_fcell_2023_1195806
crossref_primary_10_3389_fphys_2022_827435
crossref_primary_10_1371_journal_pone_0281211
crossref_primary_10_3389_fcell_2023_1263316
crossref_primary_10_1039_D3CB00185G
crossref_primary_10_1038_s41598_022_15500_3
Cites_doi 10.1038/sj.embor.7400151
10.1038/s41556-017-0028-5
10.1038/ncb811
10.1038/embor.2011.210
10.1016/j.cell.2007.08.006
10.1007/s00018-014-1638-8
10.1016/S0014-5793(01)03207-0
10.1016/S0960-9822(02)00950-8
10.1146/annurev-arplant-042110-103745
10.1021/cr8002888
10.1002/1521-1878
10.1016/S0092-8674(00)81784-5
10.1083/JCB.200311093
10.2976/1.3239407
10.1016/j.bpj.2012.08.004
10.1073/pnas.72.12.4991
10.1083/jcb.106.2.303
10.1242/jcs.108373
10.1016/j.ejcb.2006.01.012
10.1016/S0092-8674(03)00081-3
10.1038/s41586-020-2283-z
10.1083/jcb.201001129
10.1016/S0960-9822(00)00536-4
10.1016/j.semcdb.2019.11.001
10.1091/MBC.E03-12-0908
10.1083/jcb.200406177
10.1146/annurev-cellbio-100616-060739
10.1016/j.bpj.2013.12.023
10.1016/j.visinf.2020.11.003
10.1038/sj.emboj.7601763
10.1038/SJ.EMBOJ.7600368
10.1073/pnas.1315368111
10.1083/jcb.86.2.456
10.1038/nmeth.1904
10.1007/s00424-012-1208-6
10.1371/journal.pbio.1000618
10.1038/ncb783
10.1016/j.cell.2012.10.008
10.1073/pnas.0908278107
10.1186/1471-2121-12-42
10.1007/s11010-009-0111-8
10.1016/j.bspc.2019.101575
10.1242/jcs.156000
10.1016/j.devcel.2004.12.007
10.7554/eLife.04940
10.1083/jcb.200112070
10.1073/pnas.1608767113
10.1073/pnas.1417910112
10.1073/pnas.0409528102
10.1242/jcs.112.17.2867
10.1016/J.CUB.2003.12.005
10.1016/S0076-6879(01)33067-7
10.1016/j.devcel.2020.08.001
10.1073/pnas.0402152101
10.1073/pnas.1218025110
10.1074/jbc.274.19.13198
10.1007/s10059-011-0072-0
10.1038/nmeth.1220
10.1242/jcs.00726
10.1073/pnas.1616600114
10.1038/ncomms6175
10.1038/nmeth.f.326
10.1091/mbc.E05-09-0825
10.1038/ncb2859
10.1016/j.cub.2005.06.060
10.1038/nchembio.2000
10.1038/nmeth.1524
10.1101/gad.1694508
10.15252/msb.20188585
10.1186/s12859-018-2375-z
10.1073/pnas.0601302103
10.1091/mbc.E05-11-1019
10.1073/pnas.1700054114
10.1038/s41580-019-0172-9
10.1091/mbc.E02-10-0703
10.3389/fimmu.2017.01906
10.1093/EMBOJ/18.8.2092
10.1529/biophysj.104.047589
10.1126/scisignal.2002413
10.1038/nmeth.3926
10.1038/nmeth.2019
10.1073/pnas.1011271107
10.1242/jcs.132340
10.1038/ncb3495
10.1016/j.celrep.2014.09.047
10.1016/j.ceb.2015.06.005
10.1083/jcb.147.3.559
10.1002/JLB.1MR0218-044
10.1534/genetics.110.119297
10.1091/mbc.E17-12-0738
10.1091/mbc.E16-10-0733
10.12688/f1000research.16502.1
10.1038/nrm1435
10.1038/249450a0
10.1146/annurev.biophys.093008.131228
10.1073/pnas.1509098112
10.1016/S0092-8674(02)00745-6
10.1073/pnas.1710480115
10.1242/jcs.124073
10.1103/physrevlett.104.158301
10.7554/eLife.26990
ContentType Journal Article
Copyright Copyright © 2021 Kuhn, Lin and Devreotes.
Copyright © 2021 Kuhn, Lin and Devreotes. 2021 Kuhn, Lin and Devreotes
Copyright_xml – notice: Copyright © 2021 Kuhn, Lin and Devreotes.
– notice: Copyright © 2021 Kuhn, Lin and Devreotes. 2021 Kuhn, Lin and Devreotes
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fcell.2021.740205
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-634X
ExternalDocumentID oai_doaj_org_article_5ac6a95de58541b8a0d806211b3e9966
PMC8523838
34676215
10_3389_fcell_2021_740205
Genre Journal Article
Review
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM118177
– fundername: ;
  grantid: GM118177
– fundername: ;
  grantid: MURI
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
EMOBN
IAO
IEA
IHR
IHW
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c531t-b2958b50caad23baf831540f9d6ebedd3ba71ed987adf3b58b3c2013e83e53823
IEDL.DBID M48
ISSN 2296-634X
IngestDate Wed Aug 27 01:28:40 EDT 2025
Thu Aug 21 14:09:02 EDT 2025
Thu Jul 10 19:19:48 EDT 2025
Thu Jan 02 22:54:09 EST 2025
Tue Jul 01 03:20:41 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords migration
synthetic & systems biology
signaling
imaging
chemotaxis
Language English
License Copyright © 2021 Kuhn, Lin and Devreotes.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-b2958b50caad23baf831540f9d6ebedd3ba71ed987adf3b58b3c2013e83e53823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Arjan Kortholt, University of Groningen, Netherlands; Peggy Paschke, University of Glasgow, United Kingdom
Edited by: Robert J. Huber, Trent University, Canada
This article was submitted to Molecular and Cellular Pathology, a section of the journal Frontiers in Cell and Developmental Biology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2021.740205
PMID 34676215
PQID 2584437711
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5ac6a95de58541b8a0d806211b3e9966
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8523838
proquest_miscellaneous_2584437711
pubmed_primary_34676215
crossref_primary_10_3389_fcell_2021_740205
crossref_citationtrail_10_3389_fcell_2021_740205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-05
PublicationDateYYYYMMDD 2021-10-05
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-05
  day: 05
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in cell and developmental biology
PublicationTitleAlternate Front Cell Dev Biol
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Décave (B16) 2003; 116
Tranquillo (B84) 1988; 106
Benard (B7) 1999; 274
Bivona (B8) 2004; 164
Liu (B46) 2018; 7
Riedl (B65) 2008; 5
Al-Kofahi (B1) 2018; 19
Miao (B54) 2017; 19
Derose (B17) 2013; 465
Meili (B50) 1999; 18
Chung (B15) 1999; 147
Thomas (B81) 2018; 104
Huang (B36) 2003; 14
Cai (B12) 2010; 190
Nichols (B56) 2015; 36
Reversat (B64) 2020; 582
Gamarra (B25) 2019; 53
Vicker (B88) 2002; 510
Arai (B3) 2010; 107
Papakonstanti (B60) 2007; 26
Shu (B70) 2005; 102
Swaminathan (B73) 2014; 111
Gebbie (B27) 2004; 15
Taniguchi (B79) 2013; 110
Gerisch (B29) 2004; 87
Tang (B78) 2014; 5
Devreotes (B18) 2017; 33
Janetopoulos (B38) 2004; 101
Gerisch (B31) 2011; 12
Park (B62) 2017; 114
Van Haastert (B86) 2017; 28
Zhao (B101) 2002; 157
Gao (B26) 2012; 151
Miao (B53) 2019; 15
Xiong (B96) 2016; 12
Gerisch (B30) 2013; 126
Taylor (B80) 2001; 333
Dormann (B19) 2002; 12
Strickland (B72) 2012; 9
Takeda (B76) 2012; 5
Iijima (B37) 2002; 109
Arrieumerlou (B4) 2005; 8
Bretschneider (B11) 2004; 14
Yamada (B98) 2007; 130
Schindelin (B67) 2012; 9
Bloomfield (B9) 2015; 4
Swaney (B75) 2010; 39
Zhan (B100) 2020; 54
Fritz-Laylin (B24) 2017; 6
Annesley (B2) 2009; 329
Bolourani (B10) 2006; 17
Kortholt (B41) 2011; 12
Schroth-Diez (B68) 2009; 3
Hecht (B34) 2010; 104
Dunn (B20) 2018; 8
Emami (B22) 2021; 5
Weiner (B92) 2002; 4
Fegan (B23) 2010; 110
Kennedy (B40) 2010; 7
Meinhardt (B51) 1999; 112
Okumoto (B58) 2012; 63
Guntas (B33) 2015; 112
Wills (B94) 2018; 29
Zigmond (B102) 1974; 249
Artemenko (B6) 2014; 71
Nishikawa (B57) 2014; 106
Meinhardt (B52) 2000; 22
Wang (B91) 2014; 9
Parent (B61) 1998; 95
Kortholt (B42) 2013; 126
Park (B63) 2004; 23
Van Haren (B87) 2018; 20
Sasaki (B66) 2004; 167
Toettcher (B83) 2011; 8
Loovers (B47) 2006; 17
Yamada (B99) 2019; 20
Kae (B39) 2004; 5
Vogel (B89) 1980; 86
Huang (B35) 2013; 15
Wang (B90) 2016; 13
Edwards (B21) 2018; 115
Tang (B77) 2008; 22
Shibata (B69) 2012; 125
Mato (B48) 1975; 72
Xiong (B97) 2010; 107
Artemenko (B5) 2016; 113
Gerisch (B32) 2012; 103
Williams (B93) 2010; 185
Gerhardt (B28) 2014; 127
Song (B71) 2006; 85
Neilson (B55) 2011; 9
Van Haastert (B85) 2004; 5
Wong (B95) 2005; 15
Kriebel (B43) 2003; 112
Swaney (B74) 2015; 112
Levine (B44) 2006; 103
Thomas Lampert (B82) 2017; 114
Meili (B49) 2000; 10
Cha (B13) 2011; 32
Li (B45) 2020; 100
Chiu (B14) 2002; 4
References_xml – volume: 5
  start-page: 602
  year: 2004
  ident: B39
  article-title: Chemoattractant-induced Ras activation during Dictyostelium aggregation.
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400151
– volume: 20
  start-page: 252
  year: 2018
  ident: B87
  article-title: Local control of intracellular microtubule dynamics by EB1 photodissociation.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-017-0028-5
– volume: 4
  start-page: 509
  year: 2002
  ident: B92
  article-title: A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb811
– volume: 12
  start-page: 1273
  year: 2011
  ident: B41
  article-title: Dictyostelium chemotaxis: essential Ras activation and accessory signalling pathways for amplification.
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.210
– volume: 130
  start-page: 601
  year: 2007
  ident: B98
  article-title: Modeling tissue morphogenesis and cancer in 3D.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.08.006
– volume: 71
  start-page: 3711
  year: 2014
  ident: B6
  article-title: Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes.
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-014-1638-8
– volume: 510
  start-page: 5
  year: 2002
  ident: B88
  article-title: F-actin assembly in Dictyostelium cell locomotion and shape oscillations propagates as a self-organized reaction-diffusion wave.
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)03207-0
– volume: 12
  start-page: 1178
  year: 2002
  ident: B19
  article-title: Visualizing PI3 kinase-mediated cell-cell signaling during Dictyostelium development.
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)00950-8
– volume: 63
  start-page: 663
  year: 2012
  ident: B58
  article-title: Quantitative imaging with fluorescent biosensors.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042110-103745
– volume: 110
  start-page: 3315
  year: 2010
  ident: B23
  article-title: Chemically controlled protein assembly: techniques and applications.
  publication-title: Chem. Rev.
  doi: 10.1021/cr8002888
– volume: 22
  start-page: 753
  year: 2000
  ident: B52
  article-title: Pattern formation by local self-activation and lateral inhibition.
  publication-title: Bioessays
  doi: 10.1002/1521-1878
– volume: 95
  start-page: 81
  year: 1998
  ident: B61
  article-title: G protein signaling events are activated at the leading edge of chemotactic cells.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81784-5
– volume: 164
  start-page: 461
  year: 2004
  ident: B8
  article-title: Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion.
  publication-title: J. Cell Biol.
  doi: 10.1083/JCB.200311093
– volume: 3
  start-page: 412
  year: 2009
  ident: B68
  article-title: Propagating waves separate two states of actin organization in living cells.
  publication-title: HFSP J.
  doi: 10.2976/1.3239407
– volume: 103
  start-page: 1170
  year: 2012
  ident: B32
  article-title: PIP3 waves and PTEN dynamics in the emergence of cell polarity.
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2012.08.004
– volume: 72
  start-page: 4991
  year: 1975
  ident: B48
  article-title: Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.72.12.4991
– volume: 106
  start-page: 303
  year: 1988
  ident: B84
  article-title: A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.106.2.303
– volume: 125
  start-page: 5138
  year: 2012
  ident: B69
  article-title: Modeling the self-organized phosphatidylinositol lipid signaling system in chemotactic cells using quantitative image analysis.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.108373
– volume: 85
  start-page: 981
  year: 2006
  ident: B71
  article-title: Dictyostelium discoideum chemotaxis: threshold for directed motion.
  publication-title: Eur. J. Cell Biol.
  doi: 10.1016/j.ejcb.2006.01.012
– volume: 112
  start-page: 549
  year: 2003
  ident: B43
  article-title: Adenylyl cyclase localization regulates streaming during chemotaxis.
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00081-3
– volume: 582
  start-page: 582
  year: 2020
  ident: B64
  article-title: Cellular locomotion using environmental topography.
  publication-title: Nature
  doi: 10.1038/s41586-020-2283-z
– volume: 190
  start-page: 233
  year: 2010
  ident: B12
  article-title: Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201001129
– volume: 10
  start-page: 708
  year: 2000
  ident: B49
  article-title: A novel Akt/PKB-related kinase is essential for morphogenesis in Dictyostelium.
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00536-4
– volume: 100
  start-page: 133
  year: 2020
  ident: B45
  article-title: Excitable networks controlling cell migration during development and disease.
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2019.11.001
– volume: 15
  start-page: 3915
  year: 2004
  ident: B27
  article-title: Phg2, a Kinase Involved in Adhesion and Focal Site Modeling in Dictyostelium.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/MBC.E03-12-0908
– volume: 167
  start-page: 505
  year: 2004
  ident: B66
  article-title: Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200406177
– volume: 33
  start-page: 103
  year: 2017
  ident: B18
  article-title: Excitable Signal Transduction Networks in Directed Cell Migration.
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100616-060739
– volume: 106
  start-page: 723
  year: 2014
  ident: B57
  article-title: Excitable signal transduction induces both spontaneous and directional cell asymmetries in the phosphatidylinositol lipid signaling system for eukaryotic chemotaxis.
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.12.023
– volume: 5
  start-page: 1
  year: 2021
  ident: B22
  article-title: Computerized cell tracking: current methods, tools and challenges.
  publication-title: Vis. Informatics
  doi: 10.1016/j.visinf.2020.11.003
– volume: 26
  start-page: 3050
  year: 2007
  ident: B60
  article-title: The p110δ isoform of PI 3-kinase negatively controls RhoA and PTEN.
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601763
– volume: 23
  start-page: 4177
  year: 2004
  ident: B63
  article-title: Rac regulation of chemotaxis and morphogenesis in Dictyostelium.
  publication-title: EMBO J.
  doi: 10.1038/SJ.EMBOJ.7600368
– volume: 111
  start-page: E25
  year: 2014
  ident: B73
  article-title: A Cdc42- and Rac-interactive binding (CRIB) domain mediates functions of coronin.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1315368111
– volume: 86
  start-page: 456
  year: 1980
  ident: B89
  article-title: Mechanism of phagocytosis in dictyostelium discoideum: phagocytosis is mediated by different recognition sites as disclosed by mutants with altered phagocytotic properties.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.86.2.456
– volume: 9
  start-page: 379
  year: 2012
  ident: B72
  article-title: TULIPs: tunable, light-controlled interacting protein tags for cell biology.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1904
– volume: 465
  start-page: 409
  year: 2013
  ident: B17
  article-title: Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology.
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-012-1208-6
– volume: 9
  year: 2011
  ident: B55
  article-title: Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour.
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000618
– volume: 4
  start-page: 343
  year: 2002
  ident: B14
  article-title: Ras signalling on the endoplasmic reticulum and the Golgi.
  publication-title: Nat. Cell Biol
  doi: 10.1038/ncb783
– volume: 151
  start-page: 1370
  year: 2012
  ident: B26
  article-title: Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens.
  publication-title: Cell
  doi: 10.1016/j.cell.2012.10.008
– volume: 107
  start-page: 12399
  year: 2010
  ident: B3
  article-title: Self-organization of the phosphatidylinositol lipids signaling system for random cell migration.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0908278107
– volume: 12
  year: 2011
  ident: B31
  article-title: Different modes of state transitions determine pattern in the Phosphatidylinositide-Actin system.
  publication-title: BMC Cell Biol.
  doi: 10.1186/1471-2121-12-42
– volume: 329
  start-page: 73
  year: 2009
  ident: B2
  article-title: Dictyostelium discoideum-a model for many reasons.
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-009-0111-8
– volume: 53
  year: 2019
  ident: B25
  article-title: Split and merge watershed: a two-step method for cell segmentation in fluorescence microscopy images.
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101575
– volume: 127
  start-page: 4507
  year: 2014
  ident: B28
  article-title: Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.156000
– volume: 8
  start-page: 215
  year: 2005
  ident: B4
  article-title: A local coupling model and compass parameter for eukaryotic chemotaxis.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2004.12.007
– volume: 4
  year: 2015
  ident: B9
  article-title: Neurofibromin controls macropinocytosis and phagocytosis in Dictyostelium.
  publication-title: Elife
  doi: 10.7554/eLife.04940
– volume: 157
  start-page: 921
  year: 2002
  ident: B101
  article-title: Genetic analysis of the role of G protein-coupled receptor signaling in electrotaxis.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200112070
– volume: 113
  start-page: E7500
  year: 2016
  ident: B5
  article-title: Chemical and mechanical stimuli act on common signal transduction and cytoskeletal networks.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1608767113
– volume: 112
  start-page: 112
  year: 2015
  ident: B33
  article-title: Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1417910112
– volume: 102
  start-page: 1472
  year: 2005
  ident: B70
  article-title: Blebbistatin and blebbistatin-inactivated myosin II inhibit myosin II-independent processes in Dictyostelium.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0409528102
– volume: 112
  start-page: 2867
  year: 1999
  ident: B51
  article-title: Orientation of chemotactic cells and growth cones: models and mechanisms.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.112.17.2867
– volume: 14
  start-page: 1
  year: 2004
  ident: B11
  article-title: Dynamic Actin Patterns and Arp2/3 Assembly at the Substrate-Attached Surface of Motile Cells.
  publication-title: Curr. Biol.
  doi: 10.1016/J.CUB.2003.12.005
– volume: 333
  start-page: 333
  year: 2001
  ident: B80
  article-title: Nonradioactive determination of Ras-GTP levels using activated Ras interaction assay.
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(01)33067-7
– volume: 54
  start-page: 608
  year: 2020
  ident: B100
  article-title: An Excitable Ras/PI3K/ERK Signaling Network Controls Migration and Oncogenic Transformation in Epithelial Cells.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.08.001
– volume: 101
  start-page: 8951
  year: 2004
  ident: B38
  article-title: Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0402152101
– volume: 110
  start-page: 5016
  year: 2013
  ident: B79
  article-title: Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1218025110
– volume: 274
  start-page: 13198
  year: 1999
  ident: B7
  article-title: Characterization of Rac and Cdc42 activation in chemoattractant- stimulated human neutrophils using a novel assay for active GTPases.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.19.13198
– volume: 32
  start-page: 281
  year: 2011
  ident: B13
  article-title: Dynamic localization of the actin-bundling protein cortexillin i during cell migration.
  publication-title: Mol. Cells
  doi: 10.1007/s10059-011-0072-0
– volume: 5
  start-page: 605
  year: 2008
  ident: B65
  article-title: Lifeact: a versatile marker to visualize F-actin.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1220
– volume: 116
  start-page: 4331
  year: 2003
  ident: B16
  article-title: Shear flow-induced motility of Dictyostelium discoideum cells on solid substrate.
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.00726
– volume: 114
  start-page: E7727
  year: 2017
  ident: B82
  article-title: Shear force-based genetic screen reveals negative regulators of cell adhesion and protrusive activity.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1616600114
– volume: 5
  start-page: 1
  year: 2014
  ident: B78
  article-title: Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6175
– volume: 8
  start-page: 35
  year: 2011
  ident: B83
  article-title: The promise of optogenetics in cell biology: interrogating molecular circuits in space and time.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.f.326
– volume: 17
  start-page: 1503
  year: 2006
  ident: B47
  article-title: Distinct roles of PI(3,4,5)P3 during chemoattractant signaling in Dictyostelium: a quantitative in vivo analysis by inhibition of PI3-kinase.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E05-09-0825
– volume: 15
  start-page: 1307
  year: 2013
  ident: B35
  article-title: An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2859
– volume: 15
  start-page: 1401
  year: 2005
  ident: B95
  article-title: PIP2 hydrolysis and calcium release are required for cytokinesis in Drosophila spermatocytes.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.06.060
– volume: 12
  start-page: 159
  year: 2016
  ident: B96
  article-title: Frequency and amplitude control of cortical oscillations by phosphoinositide waves.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2000
– volume: 7
  start-page: 973
  year: 2010
  ident: B40
  article-title: Rapid blue-light-mediated induction of protein interactions in living cells.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1524
– volume: 22
  start-page: 2278
  year: 2008
  ident: B77
  article-title: tsunami, the Dictyostelium homolog of the Fused kinase, is required for polarization and chemotaxis.
  publication-title: Genes Dev.
  doi: 10.1101/gad.1694508
– volume: 15
  year: 2019
  ident: B53
  article-title: Wave patterns organize cellular protrusions and control cortical dynamics.
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20188585
– volume: 19
  year: 2018
  ident: B1
  article-title: A deep learning-based algorithm for 2-D cell segmentation in microscopy images.
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2375-z
– volume: 103
  start-page: 9761
  year: 2006
  ident: B44
  article-title: Directional sensing in eukaryotic chemotaxis: a balanced inactivation model.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0601302103
– volume: 17
  start-page: 4543
  year: 2006
  ident: B10
  article-title: Delineation of the roles played by RasG and RasC in cAMP-dependent signal transduction during the early development of Dictyostelium discoideum.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E05-11-1019
– volume: 114
  start-page: E5750
  year: 2017
  ident: B62
  article-title: Mechanochemical feedback underlies coexistence of qualitatively distinct Cell polarity patterns within diverse cell populations.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1700054114
– volume: 20
  start-page: 738
  year: 2019
  ident: B99
  article-title: Mechanisms of 3D cell migration.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0172-9
– volume: 14
  start-page: 1913
  year: 2003
  ident: B36
  article-title: Receptor-mediated regulation of PI3Ks confines PI(3,4,5)P3 to the leading edge of chemotaxing cells.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E02-10-0703
– volume: 8
  year: 2018
  ident: B20
  article-title: Eat prey, live: dictyostelium discoideum as a model for cell-autonomous defenses.
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.01906
– volume: 18
  start-page: 2092
  year: 1999
  ident: B50
  article-title: Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium.
  publication-title: EMBO J.
  doi: 10.1093/EMBOJ/18.8.2092
– volume: 87
  start-page: 3493
  year: 2004
  ident: B29
  article-title: Mobile actin clusters and traveling waves in cells recovering from actin depolymerization.
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.047589
– volume: 5
  year: 2012
  ident: B76
  article-title: Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway.
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002413
– volume: 13
  start-page: 755
  year: 2016
  ident: B90
  article-title: LOVTRAP: an optogenetic system for photoinduced protein dissociation.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3926
– volume: 9
  start-page: 676
  year: 2012
  ident: B67
  article-title: Fiji: an open-source platform for biological-image analysis.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 107
  start-page: 17079
  year: 2010
  ident: B97
  article-title: Cells navigate with a local-excitation, global-inhibition-biased excitable network.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1011271107
– volume: 126
  start-page: 4502
  year: 2013
  ident: B42
  article-title: Ras activation and symmetry breaking during dictyostelium chemotaxis.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.132340
– volume: 19
  start-page: 329
  year: 2017
  ident: B54
  article-title: Altering the threshold of an excitable signal transduction network changes cell migratory modes.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3495
– volume: 9
  start-page: 1110
  year: 2014
  ident: B91
  article-title: The Directional Response of Chemotactic Cells Depends on a Balance between Cytoskeletal Architecture and the External Gradient Overall directional response depends on gradient and internal polarity.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.09.047
– volume: 36
  start-page: 7
  year: 2015
  ident: B56
  article-title: Chemotaxis of a model organism: progress with Dictyostelium.
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2015.06.005
– volume: 147
  start-page: 559
  year: 1999
  ident: B15
  article-title: PAKa, a putative PAK family member, is required for cytokinesis and the regulation of the cytoskeleton in Dictyostelium discoideum cells during chemotaxis.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.147.3.559
– volume: 104
  start-page: 359
  year: 2018
  ident: B81
  article-title: Decoding the chemotactic signal.
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/JLB.1MR0218-044
– volume: 185
  start-page: 717
  year: 2010
  ident: B93
  article-title: Dictyostelium finds new roles to model.
  publication-title: Genetics
  doi: 10.1534/genetics.110.119297
– volume: 29
  start-page: 1526
  year: 2018
  ident: B94
  article-title: Genetically encoded lipid biosensors.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E17-12-0738
– volume: 28
  start-page: 922
  year: 2017
  ident: B86
  article-title: Coupled excitable Ras and F-actin activation mediates spontaneous pseudopod formation and directed cell movement.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E16-10-0733
– volume: 7
  year: 2018
  ident: B46
  article-title: Recent advances in cytokinesis: understanding the molecular underpinnings [version 1; referees: 2 approved].
  publication-title: F1000Res.
  doi: 10.12688/f1000research.16502.1
– volume: 5
  start-page: 626
  year: 2004
  ident: B85
  article-title: Chemotaxis: signalling the way forward.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1435
– volume: 249
  start-page: 450
  year: 1974
  ident: B102
  article-title: Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes.
  publication-title: Nature
  doi: 10.1038/249450a0
– volume: 39
  start-page: 265
  year: 2010
  ident: B75
  article-title: Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity.
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev.biophys.093008.131228
– volume: 112
  start-page: E3845
  year: 2015
  ident: B74
  article-title: Novel protein Callipygian defines the back of migrating cells.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1509098112
– volume: 109
  start-page: 599
  year: 2002
  ident: B37
  article-title: Tumor suppressor PTEN mediates sensing of chemoattractant gradients.
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00745-6
– volume: 115
  start-page: E3722
  year: 2018
  ident: B21
  article-title: Insight from the maximal activation of the signal transduction excitable network in Dictyostelium discoideum.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1710480115
– volume: 126
  start-page: 2069
  year: 2013
  ident: B30
  article-title: Membrane and actin reorganization in electropulseinduced cell fusion.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.124073
– volume: 104
  year: 2010
  ident: B34
  article-title: Transient localized patterns in noise-driven reaction-diffusion systems.
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.104.158301
– volume: 6
  year: 2017
  ident: B24
  article-title: Actin-Based protrusions of migrating neutrophils are intrinsically lamellar and facilitate direction changes.
  publication-title: Elife
  doi: 10.7554/eLife.26990
SSID ssj0001257583
Score 2.2338016
SecondaryResourceType review_article
Snippet For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and...
For decades, the social amoeba has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make...
For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 740205
SubjectTerms Cell and Developmental Biology
chemotaxis
imaging
migration
signaling
synthetic & systems biology
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et-uLCJ6Eaps0bXrURVFxRVBBvIS8qgvaFe0e9t8709RlV0QvXtNJM8xMkm8myQwh-9ZyJlyso8xYF6WC-aiISxfpPLPCJcxKje-de9fZ-X16-SAeJkp94Z2wkB44CO5IaJvpQjgPuDZNjNSxk3EGbovhHrE6rr6w5004UyG6AjBE8nCMCV5YcVRiIBz8QZYc5ugziamNqMnX_xPI_H5XcmLzOVskCy1qpMeB2yUy46tlMhfqSI5WyGNz8E-vYOWKusAAvXhtig9RXTl6O6oA5EFH2tLTekBv8BUQDeudd7TXfwqWQPsVtNp6hG8_XvrD11Vyf3Z61z2P2qIJkYXpVEeGFUIaEVutHeNGl5IDSorLwmWgL-egKU-8K2SuXckN0HLLMBYquRd4KLhGZqtB5TcIZSXgOR0zjBOlrvBaGFeAMnwpUg7IskPiLwkq22YUx8IWLwo8CxS6aoSuUOgqCL1DDsZd3kI6jd-IT1AtY0LMhN00gH2o1j7UX_bRIXtfSlUwc3AMXfnB8EMxwF4pz_Mk6ZD1oOTxUBz2D_gJsJBPqX-Kl-kvVf-5yc4twbWXXG7-B_NbZB7l0VweFNtktn4f-h0AQbXZbez9E4A4BY0
  priority: 102
  providerName: Directory of Open Access Journals
Title Using Live-Cell Imaging and Synthetic Biology to Probe Directed Migration in Dictyostelium
URI https://www.ncbi.nlm.nih.gov/pubmed/34676215
https://www.proquest.com/docview/2584437711
https://pubmed.ncbi.nlm.nih.gov/PMC8523838
https://doaj.org/article/5ac6a95de58541b8a0d806211b3e9966
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA-1RfClaP3oaS0RfBJSd5PNbvZBpBZLK54IenD4EvK17cF1T6974P33ziR7hyeH9DWbbLIzyc7vN0lmCHntnODSZ4aV1nlWSB5YnTWemap00ufcKYP3nYdfyotR8Wksxztkld6qF-DtVmqH-aRG8-nJ71_L97Dg3yHjBHv7tkEfN1A9np9USIfkPbIHhqnChAbDHu0nlwtgkxiYk_O6ZKUoxmmfc_tbNixVDOi_DYX-e5jyL-t0_pDs97CSnqZ58IjshPaA3E-JJpePyY94MoB-hl8bO4MB0MubmJ2ImtbTb8sWUCA0pH192s3oV7wmRNMPMXg6nFylqUInLZS6bomXQ6aTxc0TMjr_-P3sgvVZFZiD9dYxy2uprMycMZ4LaxolAEZlTe1LUKj3UFTlwdeqMr4RFuoKx9FZqkSQuGv4lOy2szYcEsobAHwm4-hIKnwdjLS-Lk0dGlkIgJ4Dkq0kqF0fchwzX0w1UA8Uuo5C1yh0nYQ-IG_WTX6meBv_q_wB1bKuiKGyY8FsfqX7laelcTAk6QMQoyK3ymReZSXwXisCkr0BebVSqoalhX2YNswWt5oDOCtEVeX5gDxLSl53JcDAwEtgCNWG-jfGsvmknVzH8N0KuL8S6vkd-n1BHuDnxsOD8ojsdvNFeAkgqLPH0XlwHCf4H88iBnI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Live-Cell+Imaging+and+Synthetic+Biology+to+Probe+Directed+Migration+in+Dictyostelium&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Kuhn%2C+Jonathan&rft.au=Lin%2C+Yiyan&rft.au=Devreotes%2C+Peter+N&rft.date=2021-10-05&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=9&rft.spage=740205&rft_id=info:doi/10.3389%2Ffcell.2021.740205&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon