Transcriptional and Epigenomic Regulation of Adipogenesis

Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular biology Vol. 39; no. 11
Main Authors Lee, Ji-Eun, Schmidt, Hannah, Lai, Binbin, Ge, Kai
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.06.2019
American Society for Microbiology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis.
AbstractList Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis.Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis.
Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis.
Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master “adipogenic” transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis.
Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis.
Author Schmidt, Hannah
Lai, Binbin
Lee, Ji-Eun
Ge, Kai
Author_xml – sequence: 1
  givenname: Ji-Eun
  orcidid: 0000-0002-3768-7016
  surname: Lee
  fullname: Lee, Ji-Eun
  organization: Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
– sequence: 2
  givenname: Hannah
  surname: Schmidt
  fullname: Schmidt, Hannah
  organization: Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
– sequence: 3
  givenname: Binbin
  orcidid: 0000-0002-2831-2677
  surname: Lai
  fullname: Lai, Binbin
  organization: Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
– sequence: 4
  givenname: Kai
  orcidid: 0000-0002-7442-5138
  surname: Ge
  fullname: Ge, Kai
  email: kai.ge@nih.gov
  organization: Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30936246$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAUhYMovneupUsXVvNo03Yj6DA-QBFE1yFNb8dImtSko_jvzTwUFcVVAvc7Jyf3bKFV6ywgtEfwESG0PL4ZnR1hzDFJSbmCNgmuyjTPs2r1y30DbYXwhCNWYbaONhiuGKcZ30TVvZc2KK_7QTsrTSJtk4x7PQHrOq2SO5hMjZzNEtcmp43uXRxB0GEHrbXSBNhdntvo4Xx8P7pMr28vrkan16nKGRnSGoPkpFAlY6Quc1pB0xS1Ijg-z4ssqxltAGrANc1aWuZScQY1pgo3hWpzyrbRycK3n9YdNArs4KURvded9G_CSS2-T6x-FBP3InhOirwqo8HB0sC75ymEQXQ6KDBGWnDTIGjJMsoI5dn_KMWUVJxhHtH9r7E-83ysNgKHC0B5F4KH9hMhWMyaE7E5MW9OkFlK-gNXepgvPn5Km79ExUKkbet8J1-dN40Y5Jtxvo3FKh0E-1X5Dm8QrbM
CitedBy_id crossref_primary_10_1016_j_envres_2023_116213
crossref_primary_10_1186_s12906_019_2754_7
crossref_primary_10_1007_s13258_022_01332_y
crossref_primary_10_1016_j_lfs_2021_120066
crossref_primary_10_1038_s41366_020_00654_9
crossref_primary_10_1172_JCI129191
crossref_primary_10_1186_s13765_023_00837_8
crossref_primary_10_3390_antiox11101890
crossref_primary_10_3892_ol_2021_13115
crossref_primary_10_1016_j_phrs_2019_104592
crossref_primary_10_1002_jcp_30307
crossref_primary_10_3390_ijms21165760
crossref_primary_10_3389_fmicb_2021_719967
crossref_primary_10_1016_j_cmet_2020_12_004
crossref_primary_10_1042_EBC20240008
crossref_primary_10_3389_fvets_2022_946447
crossref_primary_10_1093_bbb_zbaf003
crossref_primary_10_1210_jendso_bvae121
crossref_primary_10_3390_biology11101497
crossref_primary_10_1016_j_jhazmat_2022_128411
crossref_primary_10_3390_cells11101704
crossref_primary_10_1016_j_jff_2021_104511
crossref_primary_10_1016_j_jbc_2024_107985
crossref_primary_10_1186_s12864_024_10231_3
crossref_primary_10_1186_s13018_024_05121_z
crossref_primary_10_3390_epigenomes5010003
crossref_primary_10_1016_j_gene_2023_148106
crossref_primary_10_1128_MCB_00209_20
crossref_primary_10_3390_ijms22168974
crossref_primary_10_1016_j_molmet_2021_101400
crossref_primary_10_3390_biology13010039
crossref_primary_10_1016_j_jid_2024_06_1275
crossref_primary_10_3389_fcell_2021_627102
crossref_primary_10_1016_j_gendis_2022_04_014
crossref_primary_10_3390_ani12223070
crossref_primary_10_4239_wjd_v12_i4_366
crossref_primary_10_3390_ijms21103710
crossref_primary_10_3390_plants12122273
crossref_primary_10_1016_j_ijbiomac_2024_133839
crossref_primary_10_1016_j_cellsig_2020_109732
crossref_primary_10_1016_j_ejmech_2023_115516
crossref_primary_10_3389_fendo_2020_00095
crossref_primary_10_1101_gad_346791_120
crossref_primary_10_1021_acsomega_3c09633
crossref_primary_10_3390_ijms231911614
crossref_primary_10_1016_j_isci_2023_108312
crossref_primary_10_1111_gtc_12868
crossref_primary_10_3390_medsci12040055
crossref_primary_10_1016_j_ygeno_2022_110482
crossref_primary_10_3390_nu15143078
crossref_primary_10_1007_s00018_023_05076_0
crossref_primary_10_1080_15376516_2020_1747124
crossref_primary_10_3349_ymj_2019_60_12_1187
crossref_primary_10_1007_s40200_024_01490_8
crossref_primary_10_3390_ijms21072502
crossref_primary_10_3390_nu16152436
crossref_primary_10_1016_j_jtherbio_2024_103824
crossref_primary_10_3390_nu15051252
crossref_primary_10_3390_toxics9110287
crossref_primary_10_1016_j_mito_2025_102019
crossref_primary_10_3390_cells11061022
crossref_primary_10_1016_j_plipres_2021_101117
crossref_primary_10_1093_bioadv_vbae034
crossref_primary_10_3389_fgene_2021_709342
crossref_primary_10_1038_s41598_023_47553_3
crossref_primary_10_1093_nar_gkad342
crossref_primary_10_3390_ani10122362
crossref_primary_10_1101_gr_274563_120
crossref_primary_10_1093_jas_skae357
crossref_primary_10_2147_DDDT_S256504
crossref_primary_10_1016_j_isci_2023_107753
crossref_primary_10_1016_j_ijbiomac_2024_138168
crossref_primary_10_1016_j_isci_2022_105848
crossref_primary_10_3390_ph17060790
crossref_primary_10_1016_j_lfs_2020_118763
crossref_primary_10_3390_ijms252011105
crossref_primary_10_1080_10495398_2021_2011739
crossref_primary_10_3389_fimmu_2023_1158027
crossref_primary_10_5507_bp_2023_016
crossref_primary_10_3389_fvets_2022_951512
crossref_primary_10_1007_s00109_021_02164_1
crossref_primary_10_1002_mco2_261
crossref_primary_10_1039_D1MO00160D
crossref_primary_10_3390_ijms25020693
crossref_primary_10_1186_s13287_022_03027_3
crossref_primary_10_1177_0963689721997799
crossref_primary_10_3892_etm_2021_11004
crossref_primary_10_1038_s41419_025_07478_3
crossref_primary_10_1002_jat_4241
crossref_primary_10_3390_foods14020160
crossref_primary_10_1016_j_cbpb_2021_110700
crossref_primary_10_1016_j_bbrc_2024_150279
crossref_primary_10_15429_jkomor_2023_23_1_1
crossref_primary_10_3390_v16060995
crossref_primary_10_1016_j_bbrc_2019_11_175
crossref_primary_10_1016_j_jlr_2024_100680
crossref_primary_10_3390_ijms24119143
crossref_primary_10_3390_cimb45060311
crossref_primary_10_3390_molecules27030676
crossref_primary_10_1021_acsbiomaterials_9b00894
crossref_primary_10_1186_s12864_021_08247_0
crossref_primary_10_3390_ijms21020654
crossref_primary_10_3892_ijmm_2022_5209
crossref_primary_10_3390_cells12192360
crossref_primary_10_1016_j_bbalip_2021_159045
crossref_primary_10_1038_s41467_021_21893_y
crossref_primary_10_1016_j_jff_2024_106323
crossref_primary_10_3390_nu11091988
crossref_primary_10_7554_eLife_54695
crossref_primary_10_1172_jci_insight_136233
crossref_primary_10_3390_ijms25052970
crossref_primary_10_3390_ijms21124283
crossref_primary_10_1002_iub_2707
crossref_primary_10_3390_ijms23042299
crossref_primary_10_1016_j_bbalip_2024_159461
crossref_primary_10_1016_j_aqrep_2025_102738
crossref_primary_10_1016_j_psj_2020_09_086
crossref_primary_10_1080_21623945_2023_2173966
crossref_primary_10_1016_j_bbalip_2021_158919
crossref_primary_10_3389_fimmu_2021_686769
crossref_primary_10_1089_ars_2022_0200
crossref_primary_10_3389_fphys_2021_767739
crossref_primary_10_3390_ijms22073775
crossref_primary_10_1152_ajpendo_00362_2019
crossref_primary_10_1016_j_ygeno_2021_09_014
crossref_primary_10_3390_cells13010086
crossref_primary_10_1002_advs_202001563
crossref_primary_10_1007_s11033_022_07565_0
crossref_primary_10_1021_acs_jafc_1c01822
crossref_primary_10_3389_fgene_2022_991875
crossref_primary_10_1111_jbg_12841
crossref_primary_10_1016_j_ebiom_2024_105127
crossref_primary_10_1038_s41598_020_79384_x
crossref_primary_10_1111_cpr_12831
crossref_primary_10_1101_gad_349393_122
crossref_primary_10_3389_fphys_2022_821278
crossref_primary_10_1080_21623945_2021_1948165
crossref_primary_10_2217_epi_2020_0304
crossref_primary_10_1016_j_tifs_2023_06_015
crossref_primary_10_1080_21623945_2020_1859789
crossref_primary_10_3390_epigenomes7030018
crossref_primary_10_3389_fgene_2022_889109
crossref_primary_10_14341_ket12699
crossref_primary_10_1016_j_biortech_2023_128701
crossref_primary_10_1021_acs_jafc_3c03559
crossref_primary_10_3390_ani10050917
crossref_primary_10_37496_rbz5220220029
crossref_primary_10_3389_fvets_2022_998956
crossref_primary_10_1186_s12864_022_08923_9
crossref_primary_10_22141_2224_0551_19_4_2024_1710
crossref_primary_10_1186_s40104_023_00864_x
crossref_primary_10_1016_j_jnutbio_2024_109832
crossref_primary_10_1093_jmcb_mjac067
crossref_primary_10_1002_fsn3_3607
crossref_primary_10_1186_s40104_022_00727_x
crossref_primary_10_1096_fj_202301153R
crossref_primary_10_1016_j_isci_2023_106468
crossref_primary_10_1186_s40104_021_00579_x
crossref_primary_10_3390_jpm13010098
crossref_primary_10_1016_j_psj_2024_103559
crossref_primary_10_1302_2046_3758_117_BJR_2022_0019_R1
crossref_primary_10_4163_jnh_2023_56_5_469
crossref_primary_10_1016_j_ijbiomac_2024_132253
crossref_primary_10_1155_2020_8851010
crossref_primary_10_3390_life12111687
crossref_primary_10_1016_j_mce_2021_111485
crossref_primary_10_1080_10408398_2020_1852171
crossref_primary_10_3390_cells12081175
crossref_primary_10_1007_s12032_022_01770_4
crossref_primary_10_1097_MED_0000000000000852
crossref_primary_10_1152_ajpendo_00131_2020
crossref_primary_10_3390_molecules26061506
crossref_primary_10_1007_s12015_022_10415_y
crossref_primary_10_1016_j_jep_2021_114403
crossref_primary_10_3390_nu16121913
crossref_primary_10_1016_j_ncrna_2021_04_001
crossref_primary_10_3390_molecules27134232
crossref_primary_10_1016_j_mce_2021_111246
crossref_primary_10_3390_ijms21114104
crossref_primary_10_3390_ijms24043940
crossref_primary_10_1007_s13205_021_02771_2
crossref_primary_10_3390_biom14101297
crossref_primary_10_3390_ani12243561
Cites_doi 10.1038/nrg3542
10.1101/gad.1709008
10.18632/oncotarget.12774
10.1016/j.cmet.2007.07.003
10.1016/0248-4900(90)90348-7
10.1073/pnas.1016071107
10.1210/en.2013-2105
10.1074/jbc.M200585200
10.1016/0092-8674(74)90116-0
10.7554/eLife.27669.023
10.1038/nrc3929
10.1038/sj.embor.7401151
10.1038/nature12652
10.1016/0092-8674(94)90006-X
10.1128/MCB.16.8.4128
10.1186/2045-3701-4-29
10.7554/eLife.01503
10.1093/nar/25.12.2543
10.1101/gad.6.4.533
10.1210/en.2018-00118
10.1016/j.devcel.2009.04.006
10.1101/gad.989402
10.1038/nrm3965
10.1093/nar/gks595
10.1126/sciadv.1500447
10.1093/nar/gku827
10.2337/diabetes.51.7.2045
10.1210/mend.16.7.0862
10.1074/jbc.M410515200
10.1128/MCB.00070-14
10.1016/j.celrep.2016.05.019
10.1101/gad.14.11.1293
10.1242/dev.125336
10.1016/j.cmet.2011.02.014
10.1038/nrm2763
10.1101/sqb.2011.76.010512
10.1016/S0021-9258(17)34541-6
10.1101/cshperspect.a018713
10.1073/pnas.2536828100
10.1073/pnas.95.8.4333
10.1101/gad.501108
10.1101/gad.5.9.1538
10.1016/j.cmet.2016.04.023
10.1128/MCB.01495-12
10.1016/j.molcel.2006.12.014
10.1128/MCB.00554-16
10.1038/nature02871
10.4161/adip.29674
10.1038/nrm.2016.96
10.1016/j.molmet.2016.11.009
10.1038/emboj.2010.318
10.1016/j.tibs.2005.03.009
10.1016/S1097-2765(00)80209-9
10.1016/j.cmet.2013.01.015
10.1128/MCB.01557-06
10.1016/j.tibs.2011.09.001
10.1038/nrendo.2015.25
10.1016/j.cmet.2009.05.010
10.1073/pnas.1000031107
10.1073/pnas.211416898
10.1371/journal.pgen.1002311
10.1016/j.molcel.2008.12.013
10.1016/j.cell.2004.05.009
10.1038/nrm.2016.62
10.1074/jbc.M110.151209
10.1074/jbc.M111.262964
10.1038/nature05918
10.1038/ncomms5093
10.1038/ng.3746
10.1093/nar/gkw1156
10.1210/me.2011-1162
10.1126/science.1189862
10.2337/db09-0335
10.1242/dev.127.23.5059
10.1038/nrg3899
10.1016/j.cmet.2011.02.005
10.1016/j.biochi.2004.09.018
10.1101/gad.1907110
10.1101/gad.12.20.3168
10.1093/nar/gkx234
10.1128/MCB.24.11.4651-4663.2004
10.1038/nature24028
10.1097/MED.0b013e328337a81f
10.1016/j.cmet.2008.02.001
10.1073/pnas.1304124110
10.1038/nature04733
10.1016/S0092-8674(02)01169-8
10.1038/417563a
10.4161/rna.24644
10.1038/35055575
10.1016/j.molcel.2014.05.016
10.1093/nar/gkv645
10.1038/ng829
10.1016/j.molmet.2015.02.007
10.1038/nrm3198
10.1074/jbc.C300175200
10.1073/pnas.1222643110
10.1016/j.cell.2007.01.015
10.1371/journal.pone.0078536
10.1016/j.tem.2014.04.001
10.1016/j.cmet.2004.11.005
10.1016/j.molcel.2015.10.025
10.1093/nar/gkw129
10.1016/j.tig.2017.12.014
10.1074/jbc.M109.081679
10.1042/BJ20090928
10.1111/febs.12792
10.1016/j.cmet.2013.01.016
10.1016/S0960-9822(02)01387-8
10.1016/j.tem.2016.11.005
10.1038/emboj.2011.65
10.1074/jbc.M210859200
10.1074/jbc.R110.193367
10.1128/MCB.00587-15
10.1038/nrm2066
10.1016/j.cell.2006.02.043
10.1101/gad.294405.116
10.1073/pnas.1606857113
10.1038/ncb3590
10.1038/nature09692
10.1038/ng.3958
10.1038/nature08816
10.1038/nrg.2017.80
10.1073/pnas.0400356101
10.1126/science.289.5481.950
10.2337/db12-1089
10.1038/nrg3607
10.1073/pnas.1711155115
10.1016/j.cell.2007.02.005
10.1186/2045-3701-2-19
10.1126/science.1225787
10.1038/emboj.2012.306
10.1091/mbc.e08-06-0647
10.1074/jbc.R700001200
10.1016/S1097-2765(00)80306-8
10.1182/blood.V99.3.736
10.1126/science.290.5489.134
10.1016/j.celrep.2016.12.087
10.1016/j.bbagrm.2011.12.008
10.1038/s41467-017-02403-5
10.1093/emboj/16.24.7432
10.1074/jbc.M311327200
10.1172/JCI119746
10.1073/pnas.1706945114
10.1038/nrg.2017.33
10.7554/eLife.06821
10.1016/j.celrep.2017.03.006
10.1128/MCB.25.2.706-715.2005
10.1016/0014-4827(87)90412-5
10.1126/science.1189123
10.1038/nrg2957
10.1128/MCB.22.22.8015-8025.2002
10.1038/ncomms3883
10.1128/MCB.00622-14
10.1016/j.molcel.2017.04.010
10.1073/pnas.0608711103
10.1016/j.cmet.2006.07.001
10.1073/pnas.1412685111
10.1016/j.cmet.2004.12.009
10.1128/MCB.01238-09
10.1016/j.neuron.2015.05.018
10.1210/me.2015-1135
10.1038/s41467-018-04127-6
10.1210/en.2010-0136
10.1210/en.2009-0987
10.1038/nsmb.2436
10.1016/j.mam.2012.10.001
ContentType Journal Article
Copyright 2023 Taylor & Francis, LLC, trading as Taylor & Francis Group 2023
This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
Copyright_xml – notice: 2023 Taylor & Francis, LLC, trading as Taylor & Francis Group 2023
– notice: This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1128/MCB.00601-18
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Minireview
EISSN 1098-5549
ExternalDocumentID PMC6517598
30936246
10_1128_MCB_00601_18
12276968
Genre Research Article
Journal Article
Research Support, N.I.H., Intramural
Review
GrantInformation_xml – fundername: ;
  grantid: DK075017
GroupedDBID ---
-DZ
-~X
0R~
123
18M
29M
2WC
39C
4.4
53G
5RE
5VS
ACGFO
ACNCT
ADBBV
ADIYS
AENEX
AEOZL
AGHSJ
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
HYE
HZ~
IH2
KQ8
L7B
M4Z
N9A
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TDBHL
TFL
TFW
TR2
UCJ
UDS
VQA
W8F
WH7
WOQ
ZCA
AAGFI
AAYXX
ABJNI
AMPGV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
TASJS
7S9
L.6
5PM
ID FETCH-LOGICAL-c531t-b0ea617c8331b8529edd7bc102466744b32deebe0b24f285ac63eb02c0d7cf523
ISSN 1098-5549
0270-7306
IngestDate Thu Aug 21 18:13:41 EDT 2025
Wed Jul 02 04:37:20 EDT 2025
Mon Jul 21 10:13:00 EDT 2025
Wed Feb 19 02:30:56 EST 2025
Thu Apr 24 22:56:16 EDT 2025
Tue Jul 01 01:41:31 EDT 2025
Wed Dec 25 09:05:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords epigenomic regulation
transcriptional regulation
adipogenesis
Language English
License This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c531t-b0ea617c8331b8529edd7bc102466744b32deebe0b24f285ac63eb02c0d7cf523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Citation Lee J-E, Schmidt H, Lai B, Ge K. 2019. Transcriptional and epigenomic regulation of adipogenesis. Mol Cell Biol 39:e00601-18. https://doi.org/10.1128/MCB.00601-18.
ORCID 0000-0002-2831-2677
0000-0002-3768-7016
0000-0002-7442-5138
OpenAccessLink https://mcb.asm.org/content/mcb/39/11/e00601-18.full.pdf
PMID 30936246
PQID 2202196306
PQPubID 23479
ParticipantIDs pubmed_primary_30936246
crossref_primary_10_1128_MCB_00601_18
informaworld_taylorfrancis_310_1128_MCB_00601_18
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6517598
crossref_citationtrail_10_1128_MCB_00601_18
proquest_miscellaneous_2834231264
proquest_miscellaneous_2202196306
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Molecular and cellular biology
PublicationTitleAlternate Mol Cell Biol
PublicationYear 2019
Publisher Taylor & Francis
American Society for Microbiology
Publisher_xml – name: Taylor & Francis
– name: American Society for Microbiology
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B158
B159
B156
B157
B154
B155
B152
B153
B150
B151
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B169
B167
B1
B168
B2
B165
B3
B166
B4
B163
B164
B6
B161
B7
B162
B8
B9
Park YK (B57)
B160
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B170
B50
B51
B52
B53
B54
B55
B56
B58
B59
B109
B107
B108
B105
B106
B103
B104
B101
B102
B100
B60
B61
B62
B63
B64
B65
B66
B67
B68
B69
B118
B119
Reznikoff CA (B5) 1973; 33
B116
B117
B114
B115
B112
B113
B110
B111
B70
B71
B72
B73
B74
B75
B76
B77
B78
B79
B129
B127
B128
B125
B126
B123
B124
B121
B122
B120
B80
B81
B82
B83
B84
B85
B86
B87
B88
B89
B138
B139
B136
B137
B134
B135
B132
B133
B130
B131
B90
B91
B92
B93
B94
B95
B96
B97
B10
B98
B11
B99
B12
B13
B14
B15
B16
B17
B18
B19
B149
B147
B148
B145
B146
B143
B144
B141
B142
B140
References_xml – ident: B164
  doi: 10.1038/nrg3542
– ident: B29
  doi: 10.1101/gad.1709008
– ident: B133
  doi: 10.18632/oncotarget.12774
– ident: B135
  doi: 10.1016/j.cmet.2007.07.003
– ident: B56
  doi: 10.1016/0248-4900(90)90348-7
– ident: B127
  doi: 10.1073/pnas.1016071107
– ident: B156
  doi: 10.1210/en.2013-2105
– ident: B125
  doi: 10.1074/jbc.M200585200
– ident: B4
  doi: 10.1016/0092-8674(74)90116-0
– ident: B62
  doi: 10.7554/eLife.27669.023
– ident: B93
  doi: 10.1038/nrc3929
– ident: B115
  doi: 10.1038/sj.embor.7401151
– ident: B100
  doi: 10.1038/nature12652
– ident: B18
  doi: 10.1016/0092-8674(94)90006-X
– ident: B34
  doi: 10.1128/MCB.16.8.4128
– ident: B23
  doi: 10.1186/2045-3701-4-29
– ident: B91
  doi: 10.7554/eLife.01503
– ident: B9
  doi: 10.1093/nar/25.12.2543
– ident: B21
  doi: 10.1101/gad.6.4.533
– ident: B58
  doi: 10.1210/en.2018-00118
– ident: B80
  doi: 10.1016/j.devcel.2009.04.006
– ident: B101
  doi: 10.1101/gad.989402
– ident: B169
  doi: 10.1038/nrm3965
– ident: B152
  doi: 10.1093/nar/gks595
– ident: B144
  doi: 10.1126/sciadv.1500447
– ident: B122
  doi: 10.1093/nar/gku827
– ident: B26
  doi: 10.2337/diabetes.51.7.2045
– ident: B68
  doi: 10.1210/mend.16.7.0862
– ident: B67
  doi: 10.1074/jbc.M410515200
– ident: B102
  doi: 10.1128/MCB.00070-14
– ident: B112
  doi: 10.1016/j.celrep.2016.05.019
– ident: B30
  doi: 10.1101/gad.14.11.1293
– ident: B64
  doi: 10.1242/dev.125336
– ident: B84
  doi: 10.1016/j.cmet.2011.02.014
– ident: B104
  doi: 10.1038/nrm2763
– ident: B25
  doi: 10.1101/sqb.2011.76.010512
– ident: B50
  doi: 10.1016/S0021-9258(17)34541-6
– ident: B129
  doi: 10.1101/cshperspect.a018713
– ident: B11
  doi: 10.1073/pnas.2536828100
– ident: B74
  doi: 10.1073/pnas.95.8.4333
– ident: B28
  doi: 10.1101/gad.501108
– ident: B33
  doi: 10.1101/gad.5.9.1538
– ident: B61
  doi: 10.1016/j.cmet.2016.04.023
– ident: B149
  doi: 10.1128/MCB.01495-12
– ident: B92
  doi: 10.1016/j.molcel.2006.12.014
– ident: B54
  doi: 10.1128/MCB.00554-16
– ident: B154
  doi: 10.1038/nature02871
– ident: B13
  doi: 10.4161/adip.29674
– ident: B15
  doi: 10.1038/nrm.2016.96
– ident: B63
  doi: 10.1016/j.molmet.2016.11.009
– ident: B121
  doi: 10.1038/emboj.2010.318
– ident: B77
  doi: 10.1016/j.tibs.2005.03.009
– ident: B19
  doi: 10.1016/S1097-2765(00)80209-9
– ident: B39
  doi: 10.1016/j.cmet.2013.01.015
– ident: B37
  doi: 10.1128/MCB.01557-06
– ident: B120
  doi: 10.1016/j.tibs.2011.09.001
– ident: B155
  doi: 10.1038/nrendo.2015.25
– ident: B95
  doi: 10.1016/j.cmet.2009.05.010
– ident: B108
  doi: 10.1073/pnas.1000031107
– ident: B17
  doi: 10.1073/pnas.211416898
– ident: B48
  doi: 10.1371/journal.pgen.1002311
– ident: B114
  doi: 10.1016/j.molcel.2008.12.013
– ident: B117
  doi: 10.1016/j.cell.2004.05.009
– ident: B16
  doi: 10.1038/nrm.2016.62
– ident: B110
  doi: 10.1074/jbc.M110.151209
– ident: B131
  doi: 10.1074/jbc.M111.262964
– ident: B86
  doi: 10.1038/nature05918
– ident: B111
  doi: 10.1038/ncomms5093
– ident: B146
  doi: 10.1038/ng.3746
– ident: B113
  doi: 10.1093/nar/gkw1156
– ident: B118
  doi: 10.1210/me.2011-1162
– ident: B158
  doi: 10.1126/science.1189862
– ident: B46
  doi: 10.2337/db09-0335
– ident: B6
  doi: 10.1242/dev.127.23.5059
– ident: B166
  doi: 10.1038/nrg3899
– ident: B7
  doi: 10.1016/j.cmet.2011.02.005
– ident: B73
  doi: 10.1016/j.biochi.2004.09.018
– ident: B31
  doi: 10.1101/gad.1907110
– ident: B72
  doi: 10.1101/gad.12.20.3168
– ident: B41
  doi: 10.1093/nar/gkx234
– ident: B99
– ident: B145
  doi: 10.1128/MCB.24.11.4651-4663.2004
– ident: B123
  doi: 10.1038/nature24028
– ident: B2
  doi: 10.1097/MED.0b013e328337a81f
– volume: 33
  start-page: 3231
  year: 1973
  ident: B5
  publication-title: Cancer Res
– ident: B53
  doi: 10.1016/j.cmet.2008.02.001
– ident: B162
  doi: 10.1073/pnas.1304124110
– ident: B106
  doi: 10.1038/nature04733
– ident: B81
  doi: 10.1016/S0092-8674(02)01169-8
– ident: B78
  doi: 10.1038/417563a
– ident: B168
  doi: 10.4161/rna.24644
– ident: B10
  doi: 10.1038/35055575
– ident: B139
  doi: 10.1016/j.molcel.2014.05.016
– ident: B141
  doi: 10.1093/nar/gkv645
– ident: B126
  doi: 10.1038/ng829
– ident: B132
  doi: 10.1016/j.molmet.2015.02.007
– ident: B3
  doi: 10.1038/nrm3198
– ident: B96
  doi: 10.1074/jbc.C300175200
– ident: B167
  doi: 10.1073/pnas.1222643110
– ident: B89
  doi: 10.1016/j.cell.2007.01.015
– ident: B142
  doi: 10.1371/journal.pone.0078536
– ident: B24
  doi: 10.1016/j.tem.2014.04.001
– ident: B66
  doi: 10.1016/j.cmet.2004.11.005
– ident: B103
  doi: 10.1016/j.molcel.2015.10.025
– ident: B119
  doi: 10.1093/nar/gkw129
– ident: B43
  doi: 10.1016/j.tig.2017.12.014
– ident: B130
  doi: 10.1074/jbc.M109.081679
– ident: B143
  doi: 10.1042/BJ20090928
– ident: B45
  doi: 10.1111/febs.12792
– ident: B83
  doi: 10.1016/j.cmet.2013.01.016
– ident: B116
  doi: 10.1016/S0960-9822(02)01387-8
– ident: B14
  doi: 10.1016/j.tem.2016.11.005
– ident: B32
  doi: 10.1038/emboj.2011.65
– ident: B71
  doi: 10.1074/jbc.M210859200
– ident: B76
  doi: 10.1074/jbc.R110.193367
– ident: B153
  doi: 10.1128/MCB.00587-15
– ident: B1
  doi: 10.1038/nrm2066
– ident: B105
  doi: 10.1016/j.cell.2006.02.043
– ident: B40
  doi: 10.1101/gad.294405.116
– ident: B94
  doi: 10.1073/pnas.1606857113
– ident: B49
  doi: 10.1038/ncb3590
– ident: B128
  doi: 10.1038/nature09692
– ident: B147
  doi: 10.1038/ng.3958
– ident: B60
  doi: 10.1038/nature08816
– ident: B148
  doi: 10.1038/nrg.2017.80
– ident: B27
  doi: 10.1073/pnas.0400356101
– ident: B107
  doi: 10.1126/science.289.5481.950
– ident: B12
  doi: 10.2337/db12-1089
– ident: B57
  publication-title: Mol Cell Biol
– ident: B87
  doi: 10.1038/nrg3607
– ident: B140
  doi: 10.1073/pnas.1711155115
– ident: B90
  doi: 10.1016/j.cell.2007.02.005
– ident: B59
  doi: 10.1186/2045-3701-2-19
– ident: B165
  doi: 10.1126/science.1225787
– ident: B98
  doi: 10.1038/emboj.2012.306
– ident: B134
  doi: 10.1091/mbc.e08-06-0647
– ident: B138
  doi: 10.1074/jbc.R700001200
– ident: B20
  doi: 10.1016/S1097-2765(00)80306-8
– ident: B47
  doi: 10.1182/blood.V99.3.736
– ident: B69
  doi: 10.1126/science.290.5489.134
– ident: B161
  doi: 10.1016/j.celrep.2016.12.087
– ident: B51
  doi: 10.1016/j.bbagrm.2011.12.008
– ident: B97
  doi: 10.1038/s41467-017-02403-5
– ident: B35
  doi: 10.1093/emboj/16.24.7432
– ident: B65
  doi: 10.1074/jbc.M311327200
– ident: B75
  doi: 10.1172/JCI119746
– ident: B136
  doi: 10.1073/pnas.1706945114
– ident: B151
  doi: 10.1038/nrg.2017.33
– ident: B44
  doi: 10.7554/eLife.06821
– ident: B137
  doi: 10.1016/j.celrep.2017.03.006
– ident: B70
  doi: 10.1128/MCB.25.2.706-715.2005
– ident: B55
  doi: 10.1016/0014-4827(87)90412-5
– ident: B157
  doi: 10.1126/science.1189123
– ident: B85
  doi: 10.1038/nrg2957
– ident: B36
  doi: 10.1128/MCB.22.22.8015-8025.2002
– ident: B159
  doi: 10.1038/ncomms3883
– ident: B124
  doi: 10.1128/MCB.00622-14
– ident: B170
  doi: 10.1016/j.molcel.2017.04.010
– ident: B82
  doi: 10.1073/pnas.0608711103
– ident: B22
  doi: 10.1016/j.cmet.2006.07.001
– ident: B38
  doi: 10.1073/pnas.1412685111
– ident: B52
  doi: 10.1016/j.cmet.2004.12.009
– ident: B79
  doi: 10.1128/MCB.01238-09
– ident: B163
  doi: 10.1016/j.neuron.2015.05.018
– ident: B150
  doi: 10.1210/me.2015-1135
– ident: B109
  doi: 10.1038/s41467-018-04127-6
– ident: B8
  doi: 10.1210/en.2010-0136
– ident: B42
  doi: 10.1210/en.2009-0987
– ident: B88
  doi: 10.1038/nsmb.2436
– ident: B160
  doi: 10.1016/j.mam.2012.10.001
SSID ssj0006903
Score 2.646934
SecondaryResourceType review_article
Snippet Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms acetylation
adipocytes
Adipogenesis
Animals
cell culture
Cell Differentiation
chromatin
demethylation
DNA methylation
epigenome
epigenomic regulation
Epigenomics - methods
Gene Expression Profiling - methods
Gene Expression Regulation
histones
Humans
microRNA
Minireview
obesity
peroxisome proliferator-activated receptor gamma
transcription (genetics)
transcriptional regulation
Title Transcriptional and Epigenomic Regulation of Adipogenesis
URI https://www.tandfonline.com/doi/abs/10.1128/MCB.00601-18
https://www.ncbi.nlm.nih.gov/pubmed/30936246
https://www.proquest.com/docview/2202196306
https://www.proquest.com/docview/2834231264
https://pubmed.ncbi.nlm.nih.gov/PMC6517598
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCNgLgnFZuSlI8IQyHMdxnEdWFSogCMQm7S1KbGeL1KbVlj7Ar-fYzsWpCoK9RG3iXOTv88mxc853EHpNJCtDqaOncpz7tBTET-I88bHACueKsdyki6Vf2fyUfjqLzoYFfZNd0hRH4tfOvJLroAr7AFedJfsfyPYXhR3wG_CFLSAM23_DWL9oumHfJv3P1kZ3dWkC5M_b4lzG35TVenWuTVt15bqkaVcg16a4qcXC_GnVmbYDdip_tun59ENcLCtpzPg8r-thafmLLXJ9XNVF1bf-qGz4RuWuNOjkJjaK2ug-IbnxpGk16EU5povE2Afb0YpcW9OqlUvBeUlc22uFjDqOBbttOtF5Cun0-MiIx_jWXjvwrpcGX_1NlxG6JaxtXtXf0imLwFFK-E10i8CEQlvEz98HXXmWmBra_XN3KRKEv3NvvI_udHcZ-TEjldtdc5XtkFvHhzm5j-61kw_vvWXSA3RD1Qfoti1H-vMA3Z121f8eomSLWx6Qwxu45Q3c8lal53LrETr9MDuZzv22zIYvwAA3foEVDMhY8DAMCh6RREkZFwI8T8pYTGkREqlgrOOC0JLwKBcsVAUmAstYlBEJH6O9elWrQ-SVQklOFRWx0J4i50KFlOQhXIFGMiAT9LbrtEy0GvS6FMoiM3NRwjPo7cz0dhbwCXrTt15b7ZU_tMNu_2eNWesqbWGaLNx9yqsOoww6Vo-tvFarzVVGCHi98FbC7C9tuNbNDGAuMUFPLK79A3b8mKB4hHjfQOu5j4_U1YXRdW8p-vTaZz5D-8O4fY72msuNegE-c1O8NHT_DUBRwnw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+and+Epigenomic+Regulation+of+Adipogenesis&rft.jtitle=Molecular+and+cellular+biology&rft.au=Lee%2C+Ji-Eun&rft.au=Schmidt%2C+Hannah&rft.au=Lai%2C+Binbin&rft.au=Ge%2C+Kai&rft.date=2019-06-01&rft.pub=American+Society+for+Microbiology&rft.issn=0270-7306&rft.eissn=1098-5549&rft.volume=39&rft.issue=11&rft_id=info:doi/10.1128%2FMCB.00601-18&rft_id=info%3Apmid%2F30936246&rft.externalDocID=PMC6517598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5549&client=summon