Transcriptional and Epigenomic Regulation of Adipogenesis
Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor...
Saved in:
Published in | Molecular and cellular biology Vol. 39; no. 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
01.06.2019
American Society for Microbiology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis. |
---|---|
AbstractList | Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis.Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis. Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis. Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master “adipogenic” transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis. Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis. |
Author | Schmidt, Hannah Lai, Binbin Lee, Ji-Eun Ge, Kai |
Author_xml | – sequence: 1 givenname: Ji-Eun orcidid: 0000-0002-3768-7016 surname: Lee fullname: Lee, Ji-Eun organization: Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health – sequence: 2 givenname: Hannah surname: Schmidt fullname: Schmidt, Hannah organization: Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health – sequence: 3 givenname: Binbin orcidid: 0000-0002-2831-2677 surname: Lai fullname: Lai, Binbin organization: Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health – sequence: 4 givenname: Kai orcidid: 0000-0002-7442-5138 surname: Ge fullname: Ge, Kai email: kai.ge@nih.gov organization: Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30936246$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAUhYMovneupUsXVvNo03Yj6DA-QBFE1yFNb8dImtSko_jvzTwUFcVVAvc7Jyf3bKFV6ywgtEfwESG0PL4ZnR1hzDFJSbmCNgmuyjTPs2r1y30DbYXwhCNWYbaONhiuGKcZ30TVvZc2KK_7QTsrTSJtk4x7PQHrOq2SO5hMjZzNEtcmp43uXRxB0GEHrbXSBNhdntvo4Xx8P7pMr28vrkan16nKGRnSGoPkpFAlY6Quc1pB0xS1Ijg-z4ssqxltAGrANc1aWuZScQY1pgo3hWpzyrbRycK3n9YdNArs4KURvded9G_CSS2-T6x-FBP3InhOirwqo8HB0sC75ymEQXQ6KDBGWnDTIGjJMsoI5dn_KMWUVJxhHtH9r7E-83ysNgKHC0B5F4KH9hMhWMyaE7E5MW9OkFlK-gNXepgvPn5Km79ExUKkbet8J1-dN40Y5Jtxvo3FKh0E-1X5Dm8QrbM |
CitedBy_id | crossref_primary_10_1016_j_envres_2023_116213 crossref_primary_10_1186_s12906_019_2754_7 crossref_primary_10_1007_s13258_022_01332_y crossref_primary_10_1016_j_lfs_2021_120066 crossref_primary_10_1038_s41366_020_00654_9 crossref_primary_10_1172_JCI129191 crossref_primary_10_1186_s13765_023_00837_8 crossref_primary_10_3390_antiox11101890 crossref_primary_10_3892_ol_2021_13115 crossref_primary_10_1016_j_phrs_2019_104592 crossref_primary_10_1002_jcp_30307 crossref_primary_10_3390_ijms21165760 crossref_primary_10_3389_fmicb_2021_719967 crossref_primary_10_1016_j_cmet_2020_12_004 crossref_primary_10_1042_EBC20240008 crossref_primary_10_3389_fvets_2022_946447 crossref_primary_10_1093_bbb_zbaf003 crossref_primary_10_1210_jendso_bvae121 crossref_primary_10_3390_biology11101497 crossref_primary_10_1016_j_jhazmat_2022_128411 crossref_primary_10_3390_cells11101704 crossref_primary_10_1016_j_jff_2021_104511 crossref_primary_10_1016_j_jbc_2024_107985 crossref_primary_10_1186_s12864_024_10231_3 crossref_primary_10_1186_s13018_024_05121_z crossref_primary_10_3390_epigenomes5010003 crossref_primary_10_1016_j_gene_2023_148106 crossref_primary_10_1128_MCB_00209_20 crossref_primary_10_3390_ijms22168974 crossref_primary_10_1016_j_molmet_2021_101400 crossref_primary_10_3390_biology13010039 crossref_primary_10_1016_j_jid_2024_06_1275 crossref_primary_10_3389_fcell_2021_627102 crossref_primary_10_1016_j_gendis_2022_04_014 crossref_primary_10_3390_ani12223070 crossref_primary_10_4239_wjd_v12_i4_366 crossref_primary_10_3390_ijms21103710 crossref_primary_10_3390_plants12122273 crossref_primary_10_1016_j_ijbiomac_2024_133839 crossref_primary_10_1016_j_cellsig_2020_109732 crossref_primary_10_1016_j_ejmech_2023_115516 crossref_primary_10_3389_fendo_2020_00095 crossref_primary_10_1101_gad_346791_120 crossref_primary_10_1021_acsomega_3c09633 crossref_primary_10_3390_ijms231911614 crossref_primary_10_1016_j_isci_2023_108312 crossref_primary_10_1111_gtc_12868 crossref_primary_10_3390_medsci12040055 crossref_primary_10_1016_j_ygeno_2022_110482 crossref_primary_10_3390_nu15143078 crossref_primary_10_1007_s00018_023_05076_0 crossref_primary_10_1080_15376516_2020_1747124 crossref_primary_10_3349_ymj_2019_60_12_1187 crossref_primary_10_1007_s40200_024_01490_8 crossref_primary_10_3390_ijms21072502 crossref_primary_10_3390_nu16152436 crossref_primary_10_1016_j_jtherbio_2024_103824 crossref_primary_10_3390_nu15051252 crossref_primary_10_3390_toxics9110287 crossref_primary_10_1016_j_mito_2025_102019 crossref_primary_10_3390_cells11061022 crossref_primary_10_1016_j_plipres_2021_101117 crossref_primary_10_1093_bioadv_vbae034 crossref_primary_10_3389_fgene_2021_709342 crossref_primary_10_1038_s41598_023_47553_3 crossref_primary_10_1093_nar_gkad342 crossref_primary_10_3390_ani10122362 crossref_primary_10_1101_gr_274563_120 crossref_primary_10_1093_jas_skae357 crossref_primary_10_2147_DDDT_S256504 crossref_primary_10_1016_j_isci_2023_107753 crossref_primary_10_1016_j_ijbiomac_2024_138168 crossref_primary_10_1016_j_isci_2022_105848 crossref_primary_10_3390_ph17060790 crossref_primary_10_1016_j_lfs_2020_118763 crossref_primary_10_3390_ijms252011105 crossref_primary_10_1080_10495398_2021_2011739 crossref_primary_10_3389_fimmu_2023_1158027 crossref_primary_10_5507_bp_2023_016 crossref_primary_10_3389_fvets_2022_951512 crossref_primary_10_1007_s00109_021_02164_1 crossref_primary_10_1002_mco2_261 crossref_primary_10_1039_D1MO00160D crossref_primary_10_3390_ijms25020693 crossref_primary_10_1186_s13287_022_03027_3 crossref_primary_10_1177_0963689721997799 crossref_primary_10_3892_etm_2021_11004 crossref_primary_10_1038_s41419_025_07478_3 crossref_primary_10_1002_jat_4241 crossref_primary_10_3390_foods14020160 crossref_primary_10_1016_j_cbpb_2021_110700 crossref_primary_10_1016_j_bbrc_2024_150279 crossref_primary_10_15429_jkomor_2023_23_1_1 crossref_primary_10_3390_v16060995 crossref_primary_10_1016_j_bbrc_2019_11_175 crossref_primary_10_1016_j_jlr_2024_100680 crossref_primary_10_3390_ijms24119143 crossref_primary_10_3390_cimb45060311 crossref_primary_10_3390_molecules27030676 crossref_primary_10_1021_acsbiomaterials_9b00894 crossref_primary_10_1186_s12864_021_08247_0 crossref_primary_10_3390_ijms21020654 crossref_primary_10_3892_ijmm_2022_5209 crossref_primary_10_3390_cells12192360 crossref_primary_10_1016_j_bbalip_2021_159045 crossref_primary_10_1038_s41467_021_21893_y crossref_primary_10_1016_j_jff_2024_106323 crossref_primary_10_3390_nu11091988 crossref_primary_10_7554_eLife_54695 crossref_primary_10_1172_jci_insight_136233 crossref_primary_10_3390_ijms25052970 crossref_primary_10_3390_ijms21124283 crossref_primary_10_1002_iub_2707 crossref_primary_10_3390_ijms23042299 crossref_primary_10_1016_j_bbalip_2024_159461 crossref_primary_10_1016_j_aqrep_2025_102738 crossref_primary_10_1016_j_psj_2020_09_086 crossref_primary_10_1080_21623945_2023_2173966 crossref_primary_10_1016_j_bbalip_2021_158919 crossref_primary_10_3389_fimmu_2021_686769 crossref_primary_10_1089_ars_2022_0200 crossref_primary_10_3389_fphys_2021_767739 crossref_primary_10_3390_ijms22073775 crossref_primary_10_1152_ajpendo_00362_2019 crossref_primary_10_1016_j_ygeno_2021_09_014 crossref_primary_10_3390_cells13010086 crossref_primary_10_1002_advs_202001563 crossref_primary_10_1007_s11033_022_07565_0 crossref_primary_10_1021_acs_jafc_1c01822 crossref_primary_10_3389_fgene_2022_991875 crossref_primary_10_1111_jbg_12841 crossref_primary_10_1016_j_ebiom_2024_105127 crossref_primary_10_1038_s41598_020_79384_x crossref_primary_10_1111_cpr_12831 crossref_primary_10_1101_gad_349393_122 crossref_primary_10_3389_fphys_2022_821278 crossref_primary_10_1080_21623945_2021_1948165 crossref_primary_10_2217_epi_2020_0304 crossref_primary_10_1016_j_tifs_2023_06_015 crossref_primary_10_1080_21623945_2020_1859789 crossref_primary_10_3390_epigenomes7030018 crossref_primary_10_3389_fgene_2022_889109 crossref_primary_10_14341_ket12699 crossref_primary_10_1016_j_biortech_2023_128701 crossref_primary_10_1021_acs_jafc_3c03559 crossref_primary_10_3390_ani10050917 crossref_primary_10_37496_rbz5220220029 crossref_primary_10_3389_fvets_2022_998956 crossref_primary_10_1186_s12864_022_08923_9 crossref_primary_10_22141_2224_0551_19_4_2024_1710 crossref_primary_10_1186_s40104_023_00864_x crossref_primary_10_1016_j_jnutbio_2024_109832 crossref_primary_10_1093_jmcb_mjac067 crossref_primary_10_1002_fsn3_3607 crossref_primary_10_1186_s40104_022_00727_x crossref_primary_10_1096_fj_202301153R crossref_primary_10_1016_j_isci_2023_106468 crossref_primary_10_1186_s40104_021_00579_x crossref_primary_10_3390_jpm13010098 crossref_primary_10_1016_j_psj_2024_103559 crossref_primary_10_1302_2046_3758_117_BJR_2022_0019_R1 crossref_primary_10_4163_jnh_2023_56_5_469 crossref_primary_10_1016_j_ijbiomac_2024_132253 crossref_primary_10_1155_2020_8851010 crossref_primary_10_3390_life12111687 crossref_primary_10_1016_j_mce_2021_111485 crossref_primary_10_1080_10408398_2020_1852171 crossref_primary_10_3390_cells12081175 crossref_primary_10_1007_s12032_022_01770_4 crossref_primary_10_1097_MED_0000000000000852 crossref_primary_10_1152_ajpendo_00131_2020 crossref_primary_10_3390_molecules26061506 crossref_primary_10_1007_s12015_022_10415_y crossref_primary_10_1016_j_jep_2021_114403 crossref_primary_10_3390_nu16121913 crossref_primary_10_1016_j_ncrna_2021_04_001 crossref_primary_10_3390_molecules27134232 crossref_primary_10_1016_j_mce_2021_111246 crossref_primary_10_3390_ijms21114104 crossref_primary_10_3390_ijms24043940 crossref_primary_10_1007_s13205_021_02771_2 crossref_primary_10_3390_biom14101297 crossref_primary_10_3390_ani12243561 |
Cites_doi | 10.1038/nrg3542 10.1101/gad.1709008 10.18632/oncotarget.12774 10.1016/j.cmet.2007.07.003 10.1016/0248-4900(90)90348-7 10.1073/pnas.1016071107 10.1210/en.2013-2105 10.1074/jbc.M200585200 10.1016/0092-8674(74)90116-0 10.7554/eLife.27669.023 10.1038/nrc3929 10.1038/sj.embor.7401151 10.1038/nature12652 10.1016/0092-8674(94)90006-X 10.1128/MCB.16.8.4128 10.1186/2045-3701-4-29 10.7554/eLife.01503 10.1093/nar/25.12.2543 10.1101/gad.6.4.533 10.1210/en.2018-00118 10.1016/j.devcel.2009.04.006 10.1101/gad.989402 10.1038/nrm3965 10.1093/nar/gks595 10.1126/sciadv.1500447 10.1093/nar/gku827 10.2337/diabetes.51.7.2045 10.1210/mend.16.7.0862 10.1074/jbc.M410515200 10.1128/MCB.00070-14 10.1016/j.celrep.2016.05.019 10.1101/gad.14.11.1293 10.1242/dev.125336 10.1016/j.cmet.2011.02.014 10.1038/nrm2763 10.1101/sqb.2011.76.010512 10.1016/S0021-9258(17)34541-6 10.1101/cshperspect.a018713 10.1073/pnas.2536828100 10.1073/pnas.95.8.4333 10.1101/gad.501108 10.1101/gad.5.9.1538 10.1016/j.cmet.2016.04.023 10.1128/MCB.01495-12 10.1016/j.molcel.2006.12.014 10.1128/MCB.00554-16 10.1038/nature02871 10.4161/adip.29674 10.1038/nrm.2016.96 10.1016/j.molmet.2016.11.009 10.1038/emboj.2010.318 10.1016/j.tibs.2005.03.009 10.1016/S1097-2765(00)80209-9 10.1016/j.cmet.2013.01.015 10.1128/MCB.01557-06 10.1016/j.tibs.2011.09.001 10.1038/nrendo.2015.25 10.1016/j.cmet.2009.05.010 10.1073/pnas.1000031107 10.1073/pnas.211416898 10.1371/journal.pgen.1002311 10.1016/j.molcel.2008.12.013 10.1016/j.cell.2004.05.009 10.1038/nrm.2016.62 10.1074/jbc.M110.151209 10.1074/jbc.M111.262964 10.1038/nature05918 10.1038/ncomms5093 10.1038/ng.3746 10.1093/nar/gkw1156 10.1210/me.2011-1162 10.1126/science.1189862 10.2337/db09-0335 10.1242/dev.127.23.5059 10.1038/nrg3899 10.1016/j.cmet.2011.02.005 10.1016/j.biochi.2004.09.018 10.1101/gad.1907110 10.1101/gad.12.20.3168 10.1093/nar/gkx234 10.1128/MCB.24.11.4651-4663.2004 10.1038/nature24028 10.1097/MED.0b013e328337a81f 10.1016/j.cmet.2008.02.001 10.1073/pnas.1304124110 10.1038/nature04733 10.1016/S0092-8674(02)01169-8 10.1038/417563a 10.4161/rna.24644 10.1038/35055575 10.1016/j.molcel.2014.05.016 10.1093/nar/gkv645 10.1038/ng829 10.1016/j.molmet.2015.02.007 10.1038/nrm3198 10.1074/jbc.C300175200 10.1073/pnas.1222643110 10.1016/j.cell.2007.01.015 10.1371/journal.pone.0078536 10.1016/j.tem.2014.04.001 10.1016/j.cmet.2004.11.005 10.1016/j.molcel.2015.10.025 10.1093/nar/gkw129 10.1016/j.tig.2017.12.014 10.1074/jbc.M109.081679 10.1042/BJ20090928 10.1111/febs.12792 10.1016/j.cmet.2013.01.016 10.1016/S0960-9822(02)01387-8 10.1016/j.tem.2016.11.005 10.1038/emboj.2011.65 10.1074/jbc.M210859200 10.1074/jbc.R110.193367 10.1128/MCB.00587-15 10.1038/nrm2066 10.1016/j.cell.2006.02.043 10.1101/gad.294405.116 10.1073/pnas.1606857113 10.1038/ncb3590 10.1038/nature09692 10.1038/ng.3958 10.1038/nature08816 10.1038/nrg.2017.80 10.1073/pnas.0400356101 10.1126/science.289.5481.950 10.2337/db12-1089 10.1038/nrg3607 10.1073/pnas.1711155115 10.1016/j.cell.2007.02.005 10.1186/2045-3701-2-19 10.1126/science.1225787 10.1038/emboj.2012.306 10.1091/mbc.e08-06-0647 10.1074/jbc.R700001200 10.1016/S1097-2765(00)80306-8 10.1182/blood.V99.3.736 10.1126/science.290.5489.134 10.1016/j.celrep.2016.12.087 10.1016/j.bbagrm.2011.12.008 10.1038/s41467-017-02403-5 10.1093/emboj/16.24.7432 10.1074/jbc.M311327200 10.1172/JCI119746 10.1073/pnas.1706945114 10.1038/nrg.2017.33 10.7554/eLife.06821 10.1016/j.celrep.2017.03.006 10.1128/MCB.25.2.706-715.2005 10.1016/0014-4827(87)90412-5 10.1126/science.1189123 10.1038/nrg2957 10.1128/MCB.22.22.8015-8025.2002 10.1038/ncomms3883 10.1128/MCB.00622-14 10.1016/j.molcel.2017.04.010 10.1073/pnas.0608711103 10.1016/j.cmet.2006.07.001 10.1073/pnas.1412685111 10.1016/j.cmet.2004.12.009 10.1128/MCB.01238-09 10.1016/j.neuron.2015.05.018 10.1210/me.2015-1135 10.1038/s41467-018-04127-6 10.1210/en.2010-0136 10.1210/en.2009-0987 10.1038/nsmb.2436 10.1016/j.mam.2012.10.001 |
ContentType | Journal Article |
Copyright | 2023 Taylor & Francis, LLC, trading as Taylor & Francis Group 2023 This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply. |
Copyright_xml | – notice: 2023 Taylor & Francis, LLC, trading as Taylor & Francis Group 2023 – notice: This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1128/MCB.00601-18 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Minireview |
EISSN | 1098-5549 |
ExternalDocumentID | PMC6517598 30936246 10_1128_MCB_00601_18 12276968 |
Genre | Research Article Journal Article Research Support, N.I.H., Intramural Review |
GrantInformation_xml | – fundername: ; grantid: DK075017 |
GroupedDBID | --- -DZ -~X 0R~ 123 18M 29M 2WC 39C 4.4 53G 5RE 5VS ACGFO ACNCT ADBBV ADIYS AENEX AEOZL AGHSJ AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HH5 HYE HZ~ IH2 KQ8 L7B M4Z N9A O9- OK1 P2P RHF RHI RNS RPM RSF TDBHL TFL TFW TR2 UCJ UDS VQA W8F WH7 WOQ ZCA AAGFI AAYXX ABJNI AMPGV CITATION CGR CUY CVF ECM EIF NPM YIN 7X8 TASJS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c531t-b0ea617c8331b8529edd7bc102466744b32deebe0b24f285ac63eb02c0d7cf523 |
ISSN | 1098-5549 0270-7306 |
IngestDate | Thu Aug 21 18:13:41 EDT 2025 Wed Jul 02 04:37:20 EDT 2025 Mon Jul 21 10:13:00 EDT 2025 Wed Feb 19 02:30:56 EST 2025 Thu Apr 24 22:56:16 EDT 2025 Tue Jul 01 01:41:31 EDT 2025 Wed Dec 25 09:05:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | epigenomic regulation transcriptional regulation adipogenesis |
Language | English |
License | This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c531t-b0ea617c8331b8529edd7bc102466744b32deebe0b24f285ac63eb02c0d7cf523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Citation Lee J-E, Schmidt H, Lai B, Ge K. 2019. Transcriptional and epigenomic regulation of adipogenesis. Mol Cell Biol 39:e00601-18. https://doi.org/10.1128/MCB.00601-18. |
ORCID | 0000-0002-2831-2677 0000-0002-3768-7016 0000-0002-7442-5138 |
OpenAccessLink | https://mcb.asm.org/content/mcb/39/11/e00601-18.full.pdf |
PMID | 30936246 |
PQID | 2202196306 |
PQPubID | 23479 |
ParticipantIDs | pubmed_primary_30936246 crossref_primary_10_1128_MCB_00601_18 informaworld_taylorfrancis_310_1128_MCB_00601_18 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6517598 crossref_citationtrail_10_1128_MCB_00601_18 proquest_miscellaneous_2834231264 proquest_miscellaneous_2202196306 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Molecular and cellular biology |
PublicationTitleAlternate | Mol Cell Biol |
PublicationYear | 2019 |
Publisher | Taylor & Francis American Society for Microbiology |
Publisher_xml | – name: Taylor & Francis – name: American Society for Microbiology |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B158 B159 B156 B157 B154 B155 B152 B153 B150 B151 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B169 B167 B1 B168 B2 B165 B3 B166 B4 B163 B164 B6 B161 B7 B162 B8 B9 Park YK (B57) B160 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B170 B50 B51 B52 B53 B54 B55 B56 B58 B59 B109 B107 B108 B105 B106 B103 B104 B101 B102 B100 B60 B61 B62 B63 B64 B65 B66 B67 B68 B69 B118 B119 Reznikoff CA (B5) 1973; 33 B116 B117 B114 B115 B112 B113 B110 B111 B70 B71 B72 B73 B74 B75 B76 B77 B78 B79 B129 B127 B128 B125 B126 B123 B124 B121 B122 B120 B80 B81 B82 B83 B84 B85 B86 B87 B88 B89 B138 B139 B136 B137 B134 B135 B132 B133 B130 B131 B90 B91 B92 B93 B94 B95 B96 B97 B10 B98 B11 B99 B12 B13 B14 B15 B16 B17 B18 B19 B149 B147 B148 B145 B146 B143 B144 B141 B142 B140 |
References_xml | – ident: B164 doi: 10.1038/nrg3542 – ident: B29 doi: 10.1101/gad.1709008 – ident: B133 doi: 10.18632/oncotarget.12774 – ident: B135 doi: 10.1016/j.cmet.2007.07.003 – ident: B56 doi: 10.1016/0248-4900(90)90348-7 – ident: B127 doi: 10.1073/pnas.1016071107 – ident: B156 doi: 10.1210/en.2013-2105 – ident: B125 doi: 10.1074/jbc.M200585200 – ident: B4 doi: 10.1016/0092-8674(74)90116-0 – ident: B62 doi: 10.7554/eLife.27669.023 – ident: B93 doi: 10.1038/nrc3929 – ident: B115 doi: 10.1038/sj.embor.7401151 – ident: B100 doi: 10.1038/nature12652 – ident: B18 doi: 10.1016/0092-8674(94)90006-X – ident: B34 doi: 10.1128/MCB.16.8.4128 – ident: B23 doi: 10.1186/2045-3701-4-29 – ident: B91 doi: 10.7554/eLife.01503 – ident: B9 doi: 10.1093/nar/25.12.2543 – ident: B21 doi: 10.1101/gad.6.4.533 – ident: B58 doi: 10.1210/en.2018-00118 – ident: B80 doi: 10.1016/j.devcel.2009.04.006 – ident: B101 doi: 10.1101/gad.989402 – ident: B169 doi: 10.1038/nrm3965 – ident: B152 doi: 10.1093/nar/gks595 – ident: B144 doi: 10.1126/sciadv.1500447 – ident: B122 doi: 10.1093/nar/gku827 – ident: B26 doi: 10.2337/diabetes.51.7.2045 – ident: B68 doi: 10.1210/mend.16.7.0862 – ident: B67 doi: 10.1074/jbc.M410515200 – ident: B102 doi: 10.1128/MCB.00070-14 – ident: B112 doi: 10.1016/j.celrep.2016.05.019 – ident: B30 doi: 10.1101/gad.14.11.1293 – ident: B64 doi: 10.1242/dev.125336 – ident: B84 doi: 10.1016/j.cmet.2011.02.014 – ident: B104 doi: 10.1038/nrm2763 – ident: B25 doi: 10.1101/sqb.2011.76.010512 – ident: B50 doi: 10.1016/S0021-9258(17)34541-6 – ident: B129 doi: 10.1101/cshperspect.a018713 – ident: B11 doi: 10.1073/pnas.2536828100 – ident: B74 doi: 10.1073/pnas.95.8.4333 – ident: B28 doi: 10.1101/gad.501108 – ident: B33 doi: 10.1101/gad.5.9.1538 – ident: B61 doi: 10.1016/j.cmet.2016.04.023 – ident: B149 doi: 10.1128/MCB.01495-12 – ident: B92 doi: 10.1016/j.molcel.2006.12.014 – ident: B54 doi: 10.1128/MCB.00554-16 – ident: B154 doi: 10.1038/nature02871 – ident: B13 doi: 10.4161/adip.29674 – ident: B15 doi: 10.1038/nrm.2016.96 – ident: B63 doi: 10.1016/j.molmet.2016.11.009 – ident: B121 doi: 10.1038/emboj.2010.318 – ident: B77 doi: 10.1016/j.tibs.2005.03.009 – ident: B19 doi: 10.1016/S1097-2765(00)80209-9 – ident: B39 doi: 10.1016/j.cmet.2013.01.015 – ident: B37 doi: 10.1128/MCB.01557-06 – ident: B120 doi: 10.1016/j.tibs.2011.09.001 – ident: B155 doi: 10.1038/nrendo.2015.25 – ident: B95 doi: 10.1016/j.cmet.2009.05.010 – ident: B108 doi: 10.1073/pnas.1000031107 – ident: B17 doi: 10.1073/pnas.211416898 – ident: B48 doi: 10.1371/journal.pgen.1002311 – ident: B114 doi: 10.1016/j.molcel.2008.12.013 – ident: B117 doi: 10.1016/j.cell.2004.05.009 – ident: B16 doi: 10.1038/nrm.2016.62 – ident: B110 doi: 10.1074/jbc.M110.151209 – ident: B131 doi: 10.1074/jbc.M111.262964 – ident: B86 doi: 10.1038/nature05918 – ident: B111 doi: 10.1038/ncomms5093 – ident: B146 doi: 10.1038/ng.3746 – ident: B113 doi: 10.1093/nar/gkw1156 – ident: B118 doi: 10.1210/me.2011-1162 – ident: B158 doi: 10.1126/science.1189862 – ident: B46 doi: 10.2337/db09-0335 – ident: B6 doi: 10.1242/dev.127.23.5059 – ident: B166 doi: 10.1038/nrg3899 – ident: B7 doi: 10.1016/j.cmet.2011.02.005 – ident: B73 doi: 10.1016/j.biochi.2004.09.018 – ident: B31 doi: 10.1101/gad.1907110 – ident: B72 doi: 10.1101/gad.12.20.3168 – ident: B41 doi: 10.1093/nar/gkx234 – ident: B99 – ident: B145 doi: 10.1128/MCB.24.11.4651-4663.2004 – ident: B123 doi: 10.1038/nature24028 – ident: B2 doi: 10.1097/MED.0b013e328337a81f – volume: 33 start-page: 3231 year: 1973 ident: B5 publication-title: Cancer Res – ident: B53 doi: 10.1016/j.cmet.2008.02.001 – ident: B162 doi: 10.1073/pnas.1304124110 – ident: B106 doi: 10.1038/nature04733 – ident: B81 doi: 10.1016/S0092-8674(02)01169-8 – ident: B78 doi: 10.1038/417563a – ident: B168 doi: 10.4161/rna.24644 – ident: B10 doi: 10.1038/35055575 – ident: B139 doi: 10.1016/j.molcel.2014.05.016 – ident: B141 doi: 10.1093/nar/gkv645 – ident: B126 doi: 10.1038/ng829 – ident: B132 doi: 10.1016/j.molmet.2015.02.007 – ident: B3 doi: 10.1038/nrm3198 – ident: B96 doi: 10.1074/jbc.C300175200 – ident: B167 doi: 10.1073/pnas.1222643110 – ident: B89 doi: 10.1016/j.cell.2007.01.015 – ident: B142 doi: 10.1371/journal.pone.0078536 – ident: B24 doi: 10.1016/j.tem.2014.04.001 – ident: B66 doi: 10.1016/j.cmet.2004.11.005 – ident: B103 doi: 10.1016/j.molcel.2015.10.025 – ident: B119 doi: 10.1093/nar/gkw129 – ident: B43 doi: 10.1016/j.tig.2017.12.014 – ident: B130 doi: 10.1074/jbc.M109.081679 – ident: B143 doi: 10.1042/BJ20090928 – ident: B45 doi: 10.1111/febs.12792 – ident: B83 doi: 10.1016/j.cmet.2013.01.016 – ident: B116 doi: 10.1016/S0960-9822(02)01387-8 – ident: B14 doi: 10.1016/j.tem.2016.11.005 – ident: B32 doi: 10.1038/emboj.2011.65 – ident: B71 doi: 10.1074/jbc.M210859200 – ident: B76 doi: 10.1074/jbc.R110.193367 – ident: B153 doi: 10.1128/MCB.00587-15 – ident: B1 doi: 10.1038/nrm2066 – ident: B105 doi: 10.1016/j.cell.2006.02.043 – ident: B40 doi: 10.1101/gad.294405.116 – ident: B94 doi: 10.1073/pnas.1606857113 – ident: B49 doi: 10.1038/ncb3590 – ident: B128 doi: 10.1038/nature09692 – ident: B147 doi: 10.1038/ng.3958 – ident: B60 doi: 10.1038/nature08816 – ident: B148 doi: 10.1038/nrg.2017.80 – ident: B27 doi: 10.1073/pnas.0400356101 – ident: B107 doi: 10.1126/science.289.5481.950 – ident: B12 doi: 10.2337/db12-1089 – ident: B57 publication-title: Mol Cell Biol – ident: B87 doi: 10.1038/nrg3607 – ident: B140 doi: 10.1073/pnas.1711155115 – ident: B90 doi: 10.1016/j.cell.2007.02.005 – ident: B59 doi: 10.1186/2045-3701-2-19 – ident: B165 doi: 10.1126/science.1225787 – ident: B98 doi: 10.1038/emboj.2012.306 – ident: B134 doi: 10.1091/mbc.e08-06-0647 – ident: B138 doi: 10.1074/jbc.R700001200 – ident: B20 doi: 10.1016/S1097-2765(00)80306-8 – ident: B47 doi: 10.1182/blood.V99.3.736 – ident: B69 doi: 10.1126/science.290.5489.134 – ident: B161 doi: 10.1016/j.celrep.2016.12.087 – ident: B51 doi: 10.1016/j.bbagrm.2011.12.008 – ident: B97 doi: 10.1038/s41467-017-02403-5 – ident: B35 doi: 10.1093/emboj/16.24.7432 – ident: B65 doi: 10.1074/jbc.M311327200 – ident: B75 doi: 10.1172/JCI119746 – ident: B136 doi: 10.1073/pnas.1706945114 – ident: B151 doi: 10.1038/nrg.2017.33 – ident: B44 doi: 10.7554/eLife.06821 – ident: B137 doi: 10.1016/j.celrep.2017.03.006 – ident: B70 doi: 10.1128/MCB.25.2.706-715.2005 – ident: B55 doi: 10.1016/0014-4827(87)90412-5 – ident: B157 doi: 10.1126/science.1189123 – ident: B85 doi: 10.1038/nrg2957 – ident: B36 doi: 10.1128/MCB.22.22.8015-8025.2002 – ident: B159 doi: 10.1038/ncomms3883 – ident: B124 doi: 10.1128/MCB.00622-14 – ident: B170 doi: 10.1016/j.molcel.2017.04.010 – ident: B82 doi: 10.1073/pnas.0608711103 – ident: B22 doi: 10.1016/j.cmet.2006.07.001 – ident: B38 doi: 10.1073/pnas.1412685111 – ident: B52 doi: 10.1016/j.cmet.2004.12.009 – ident: B79 doi: 10.1128/MCB.01238-09 – ident: B163 doi: 10.1016/j.neuron.2015.05.018 – ident: B150 doi: 10.1210/me.2015-1135 – ident: B109 doi: 10.1038/s41467-018-04127-6 – ident: B8 doi: 10.1210/en.2010-0136 – ident: B42 doi: 10.1210/en.2009-0987 – ident: B88 doi: 10.1038/nsmb.2436 – ident: B160 doi: 10.1016/j.mam.2012.10.001 |
SSID | ssj0006903 |
Score | 2.646934 |
SecondaryResourceType | review_article |
Snippet | Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | acetylation adipocytes Adipogenesis Animals cell culture Cell Differentiation chromatin demethylation DNA methylation epigenome epigenomic regulation Epigenomics - methods Gene Expression Profiling - methods Gene Expression Regulation histones Humans microRNA Minireview obesity peroxisome proliferator-activated receptor gamma transcription (genetics) transcriptional regulation |
Title | Transcriptional and Epigenomic Regulation of Adipogenesis |
URI | https://www.tandfonline.com/doi/abs/10.1128/MCB.00601-18 https://www.ncbi.nlm.nih.gov/pubmed/30936246 https://www.proquest.com/docview/2202196306 https://www.proquest.com/docview/2834231264 https://pubmed.ncbi.nlm.nih.gov/PMC6517598 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCNgLgnFZuSlI8IQyHMdxnEdWFSogCMQm7S1KbGeL1KbVlj7Ar-fYzsWpCoK9RG3iXOTv88mxc853EHpNJCtDqaOncpz7tBTET-I88bHACueKsdyki6Vf2fyUfjqLzoYFfZNd0hRH4tfOvJLroAr7AFedJfsfyPYXhR3wG_CFLSAM23_DWL9oumHfJv3P1kZ3dWkC5M_b4lzG35TVenWuTVt15bqkaVcg16a4qcXC_GnVmbYDdip_tun59ENcLCtpzPg8r-thafmLLXJ9XNVF1bf-qGz4RuWuNOjkJjaK2ug-IbnxpGk16EU5povE2Afb0YpcW9OqlUvBeUlc22uFjDqOBbttOtF5Cun0-MiIx_jWXjvwrpcGX_1NlxG6JaxtXtXf0imLwFFK-E10i8CEQlvEz98HXXmWmBra_XN3KRKEv3NvvI_udHcZ-TEjldtdc5XtkFvHhzm5j-61kw_vvWXSA3RD1Qfoti1H-vMA3Z121f8eomSLWx6Qwxu45Q3c8lal53LrETr9MDuZzv22zIYvwAA3foEVDMhY8DAMCh6RREkZFwI8T8pYTGkREqlgrOOC0JLwKBcsVAUmAstYlBEJH6O9elWrQ-SVQklOFRWx0J4i50KFlOQhXIFGMiAT9LbrtEy0GvS6FMoiM3NRwjPo7cz0dhbwCXrTt15b7ZU_tMNu_2eNWesqbWGaLNx9yqsOoww6Vo-tvFarzVVGCHi98FbC7C9tuNbNDGAuMUFPLK79A3b8mKB4hHjfQOu5j4_U1YXRdW8p-vTaZz5D-8O4fY72msuNegE-c1O8NHT_DUBRwnw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+and+Epigenomic+Regulation+of+Adipogenesis&rft.jtitle=Molecular+and+cellular+biology&rft.au=Lee%2C+Ji-Eun&rft.au=Schmidt%2C+Hannah&rft.au=Lai%2C+Binbin&rft.au=Ge%2C+Kai&rft.date=2019-06-01&rft.pub=American+Society+for+Microbiology&rft.issn=0270-7306&rft.eissn=1098-5549&rft.volume=39&rft.issue=11&rft_id=info:doi/10.1128%2FMCB.00601-18&rft_id=info%3Apmid%2F30936246&rft.externalDocID=PMC6517598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5549&client=summon |