A Differential Geometric Approach to Automated Segmentation of Human Airway Tree

Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 30; no. 2; pp. 266 - 278
Main Authors Jiantao Pu, Fuhrman, Carl, Good, Walter F, Sciurba, Frank C, Gur, David
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the 3-D human airway tree depicted on computed tomography (CT) images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A "puzzle game" procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms.
AbstractList Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the three-dimensional human airway tree depicted on CT images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A “puzzle game” procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms.
Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the 3-D human airway tree depicted on computed tomography (CT) images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A "puzzle game" procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms.Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the 3-D human airway tree depicted on computed tomography (CT) images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A "puzzle game" procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms.
Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the 3-D human airway tree depicted on computed tomography (CT) images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A "puzzle game" procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms.
Author Jiantao Pu
Gur, David
Fuhrman, Carl
Good, Walter F
Sciurba, Frank C
Author_xml – sequence: 1
  surname: Jiantao Pu
  fullname: Jiantao Pu
  email: puj@upmc.edu
  organization: Depts. of Radiol. & Bioeng., Univ. of Pittsburgh, Pittsburgh, PA, USA
– sequence: 2
  givenname: Carl
  surname: Fuhrman
  fullname: Fuhrman, Carl
  organization: Dept. of Radiol., Univ. of Pittsburgh, Pittsburgh, PA, USA
– sequence: 3
  givenname: Walter F
  surname: Good
  fullname: Good, Walter F
  organization: Dept. of Radiol., Univ. of Pittsburgh, Pittsburgh, PA, USA
– sequence: 4
  givenname: Frank C
  surname: Sciurba
  fullname: Sciurba, Frank C
  organization: Dept. of Med., Univ. of Pittsburgh, Pittsburgh, PA, USA
– sequence: 5
  givenname: David
  surname: Gur
  fullname: Gur, David
  organization: Dept. of Radiol., Univ. of Pittsburgh, Pittsburgh, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20851792$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLeFOxISsriUS4rHjj9yQYpaaCsVgcQeuFlOdty6SuKtk4D63-PVLivooZws27_3xjN-R-RgiAMS8hrYKQCrPiy_XJ1ylnecaSUYe0YWIKUpuCx_HJAF49oUjCl-SI7G8Y4xKCWrXpBDzowEXfEF-VbT8-A9Jhym4Dp6gbHHKYWW1ut1iq69pVOk9TzF3k24ot_xps-om0IcaPT0cu7dQOuQfrkHukyIL8lz77oRX-3WY7L8_Gl5dllcf724Oquvi1YKmArnmpXQRjXGg9ZlI4AZs_LCAfNMKBBulU9B6MaVIEqBXvnKtwJbp6QrxTH5uLVdz02Pqza_KbnOrlPoXXqw0QX7780Qbu1N_GkF1yCkzgYnO4MU72ccJ9uHscWucwPGebRG5UnKqqr-T5ZVKfKQRSbfP0mC0sAVVHxT_t0j9C7OacgTy35GgynVxu_t303uu_vzfRlgW6BNcRwT-j0CzG4SYnNC7CYhdpeQLFGPJG3YfmceU-ieEr7ZCgMi7utIqWXuXvwGbP7G3A
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_patcog_2016_07_023
crossref_primary_10_1016_j_acra_2012_06_007
crossref_primary_10_1097_MD_0000000000005095
crossref_primary_10_1007_s00383_021_04949_4
crossref_primary_10_1088_0031_9155_58_17_R187
crossref_primary_10_1109_TMI_2014_2374615
crossref_primary_10_1177_0300060517721309
crossref_primary_10_1186_s12890_018_0691_8
crossref_primary_10_1016_j_media_2012_11_003
crossref_primary_10_3390_cancers17010033
crossref_primary_10_3233_XST_180429
crossref_primary_10_1016_j_lungcan_2017_10_008
crossref_primary_10_3389_fonc_2021_719398
crossref_primary_10_1109_TMI_2012_2209674
crossref_primary_10_3233_XST_180486
crossref_primary_10_3233_THC_174800
crossref_primary_10_1098_rsif_2012_0116
crossref_primary_10_1118_1_4737023
crossref_primary_10_3233_THC_171315
crossref_primary_10_1111_crj_13064
crossref_primary_10_1097_MD_0000000000014438
crossref_primary_10_1097_HP_0000000000001468
crossref_primary_10_1007_s00330_020_07156_2
crossref_primary_10_1155_2012_382806
crossref_primary_10_1007_s42058_020_00034_2
crossref_primary_10_1016_j_cmpb_2016_04_021
crossref_primary_10_1016_j_compmedimag_2014_01_002
crossref_primary_10_1007_s00408_018_0162_2
crossref_primary_10_1007_s10278_018_0058_y
crossref_primary_10_1016_j_media_2016_09_002
crossref_primary_10_1118_1_4703901
crossref_primary_10_3233_XST_16216
crossref_primary_10_3390_bioengineering11111062
crossref_primary_10_1016_j_compbiomed_2022_106241
crossref_primary_10_1016_j_jtcvs_2015_06_051
crossref_primary_10_1016_j_compmedimag_2014_10_008
Cites_doi 10.1007/BFb0029240
10.1016/j.compmedimag.2008.04.005
10.1109/TMI.2005.844167
10.1109/42.500140
10.1109/TMI.2009.2035813
10.1109/TMI.2008.2010441
10.1145/882262.882368
10.1145/966131.966134
10.1016/j.cmpb.2008.04.003
10.1118/1.1581411
10.1016/S1076-6332(03)80517-2
10.1016/S1076-6332(97)80080-3
10.1117/12.772777
10.1109/TMI.2005.862753
10.1117/12.383438
10.1109/42.836370
10.1109/VISUAL.2003.1250370
10.1164/rccm.200601-037OC
10.1117/12.652440
10.1007/s00371-005-0308-0
10.1007/978-3-662-05105-4_2
10.1109/TDPVT.2004.1335277
10.1164/ajrccm.162.3.9907120
10.1006/cviu.1996.0571
10.1016/j.acra.2004.01.012
10.1016/0895-6111(94)00034-4
10.1109/TMI.2004.826945
10.1117/12.768706
10.1145/37402.37422
10.1117/12.387756
10.1109/TMI.2003.815905
10.1109/42.730394
10.1007/978-1-4613-0469-2_48
10.1145/311535.311576
10.1002/cnm.1630040603
10.1053/j.sult.2005.07.001
10.1109/TMI.2005.857654
10.1109/TMI.2009.2027117
10.1006/cviu.2000.0866
10.1109/TMI.2012.2209674
10.1117/12.467061
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2010.2076300
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 278
ExternalDocumentID PMC3271357
2255159981
20851792
10_1109_TMI_2010_2076300
5575430
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL096613
– fundername: NHLBI NIH HHS
  grantid: R01 HL085096
– fundername: NHLBI NIH HHS
  grantid: R01 HL084182
– fundername: NCATS NIH HHS
  grantid: UL1 TR000005
– fundername: NHLBI NIH HHS
  grantid: P50 HL084948
– fundername: NHLBI NIH HHS
  grantid: R01 HL095397
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL085096-04 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL096613-01A1 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL084182-04 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: P50 HL084948-04 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL095397-04 || HL
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c531t-aabd3786b8f1774b31088df3a10f03613ad74b137ba41343ef6f9fc3eca65a43
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 17:55:37 EDT 2025
Fri Jul 11 03:59:32 EDT 2025
Fri Jul 11 05:31:52 EDT 2025
Fri Jul 11 10:40:47 EDT 2025
Sun Jun 29 14:34:53 EDT 2025
Mon Jul 21 06:01:19 EDT 2025
Tue Jul 01 03:15:49 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
Tue Aug 26 17:17:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-aabd3786b8f1774b31088df3a10f03613ad74b137ba41343ef6f9fc3eca65a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 20851792
PQID 848718463
PQPubID 85460
PageCount 13
ParticipantIDs proquest_miscellaneous_861555999
pubmed_primary_20851792
proquest_miscellaneous_849430623
crossref_primary_10_1109_TMI_2010_2076300
crossref_citationtrail_10_1109_TMI_2010_2076300
proquest_miscellaneous_1671261927
ieee_primary_5575430
proquest_journals_848718463
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3271357
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2011
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
chen (ref39) 1992
ref31
ref30
ref33
ref11
ref10
(ref1) 2007
ref2
ref17
ref38
ref16
ref19
ref18
pu (ref36) 2009; 28
graham (ref32) 2008; 6914
fleishman (ref45) 2003
ref46
ref24
ref23
ref26
ref47
ref25
ref20
sato (ref28) 1997; 1205
ref41
ref22
ref44
ref21
ref43
kitasaka (ref14) 2003; 2879
ref27
van ginneken (ref13) 2008
ref7
schlathalter (ref12) 2002; 4684
ref9
ref4
ref3
meyer (ref42) 2003
ref6
ref5
bauer (ref29) 2008
ref40
fabijaska (ref8) 2009; 23
pu (ref37) 2009; 28
References_xml – volume: 1205
  start-page: 213
  year: 1997
  ident: ref28
  article-title: 3-d multi-scale line filter for segmentation and visualization of curvilinear structures in medical images
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/BFb0029240
– ident: ref35
  doi: 10.1016/j.compmedimag.2008.04.005
– ident: ref34
  doi: 10.1109/TMI.2005.844167
– ident: ref16
  doi: 10.1109/42.500140
– ident: ref15
  doi: 10.1109/TMI.2009.2035813
– volume: 28
  start-page: 710
  year: 2009
  ident: ref37
  article-title: a computational geometry approach to automated pulmonary fissure segmentation in ct examinations
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2008.2010441
– start-page: 950
  year: 2003
  ident: ref45
  article-title: bilateral mesh denoising
  publication-title: ACM Trans Graphics
  doi: 10.1145/882262.882368
– ident: ref40
  doi: 10.1145/966131.966134
– ident: ref6
  doi: 10.1016/j.cmpb.2008.04.003
– ident: ref38
  doi: 10.1118/1.1581411
– ident: ref27
  doi: 10.1016/S1076-6332(03)80517-2
– start-page: 163
  year: 2008
  ident: ref29
  article-title: a novel approach for detection of tubular objects and its application to medical image analysis
  publication-title: Proc 30th DAGM Symp Pattern Recognit
– ident: ref2
  doi: 10.1016/S1076-6332(97)80080-3
– ident: ref18
  doi: 10.1117/12.772777
– ident: ref7
  doi: 10.1109/TMI.2005.862753
– ident: ref17
  doi: 10.1117/12.383438
– ident: ref9
  doi: 10.1109/42.836370
– year: 2007
  ident: ref1
– ident: ref21
  doi: 10.1109/VISUAL.2003.1250370
– ident: ref3
  doi: 10.1164/rccm.200601-037OC
– ident: ref23
  doi: 10.1117/12.652440
– ident: ref46
  doi: 10.1007/s00371-005-0308-0
– start-page: 35
  year: 2003
  ident: ref42
  publication-title: Visualization and Mathematics III
  doi: 10.1007/978-3-662-05105-4_2
– ident: ref41
  doi: 10.1109/TDPVT.2004.1335277
– ident: ref4
  doi: 10.1164/ajrccm.162.3.9907120
– start-page: 219
  year: 2008
  ident: ref13
  article-title: robust segmentation and anatomical labeling of the airway tree from thoracic ct scans
  publication-title: Proc MICCAI
– ident: ref30
  doi: 10.1006/cviu.1996.0571
– ident: ref22
  doi: 10.1016/j.acra.2004.01.012
– ident: ref10
  doi: 10.1016/0895-6111(94)00034-4
– ident: ref26
  doi: 10.1109/TMI.2004.826945
– volume: 6914
  start-page: 69141j
  year: 2008
  ident: ref32
  article-title: robust system for human airway-tree segmentation
  publication-title: Proc SPIE Med Imag
  doi: 10.1117/12.768706
– ident: ref33
  doi: 10.1145/37402.37422
– ident: ref11
  doi: 10.1117/12.387756
– ident: ref25
  doi: 10.1109/TMI.2003.815905
– start-page: 739
  year: 1992
  ident: ref39
  article-title: intrinsic surface properties from surface triangulation
  publication-title: Proc Eur Conf Comput Vis
– ident: ref19
  doi: 10.1109/42.730394
– ident: ref24
  doi: 10.1007/978-1-4613-0469-2_48
– ident: ref44
  doi: 10.1145/311535.311576
– ident: ref43
  doi: 10.1002/cnm.1630040603
– ident: ref5
  doi: 10.1053/j.sult.2005.07.001
– ident: ref20
  doi: 10.1109/TMI.2005.857654
– volume: 28
  start-page: 1986
  year: 2009
  ident: ref36
  article-title: pulmonary lobe segmentation in ct examinations using implicit surface fitting
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2009.2027117
– volume: 2879
  start-page: 603
  year: 2003
  ident: ref14
  article-title: a method for segmenting bronchial trees from 3-d chest x-ray ct images
  publication-title: Proc MICCAI
– ident: ref31
  doi: 10.1006/cviu.2000.0866
– ident: ref47
  doi: 10.1109/TMI.2012.2209674
– volume: 4684
  start-page: 103
  year: 2002
  ident: ref12
  article-title: simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy
  publication-title: Proc SPIE Med Imag
  doi: 10.1117/12.467061
– volume: 23
  start-page: 1353
  year: 2009
  ident: ref8
  article-title: Two-pass region growing algorithm for segmenting airway trees from MDCT chest scans
  publication-title: Computerized Med Imag Graphics
SSID ssj0014509
Score 2.2721884
Snippet Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 266
SubjectTerms Airway tree
Airways
Algorithms
Anatomical structure
Atmospheric modeling
Bronchi - anatomy & histology
Bronchography - methods
Computed tomography
computer-aided detection
Curvature
Diagnosis, Computer-Assisted
Differential geometry
Diseases
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
lung computed tomography (CT)
Lungs
Pulmonary Disease, Chronic Obstructive - diagnostic imaging
Segmentation
Shape
Smoothing methods
Tomography, X-Ray Computed - methods
Trees
Title A Differential Geometric Approach to Automated Segmentation of Human Airway Tree
URI https://ieeexplore.ieee.org/document/5575430
https://www.ncbi.nlm.nih.gov/pubmed/20851792
https://www.proquest.com/docview/848718463
https://www.proquest.com/docview/1671261927
https://www.proquest.com/docview/849430623
https://www.proquest.com/docview/861555999
https://pubmed.ncbi.nlm.nih.gov/PMC3271357
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEB5qH0QfvLReYlVW8EUw52Szm8s-BrVW4YjgEfoW9hYttomcJoj-emc3m9BTavEtJBNIMrPZ79uZ_QbgZWqkzYygccold6LaKhZpo2JjdKlK5BOFbwe0-pQffeUfj7PjHXg974Wx1vriM7twhz6Xbzo9uKWyZYbYgjMk6DeQuI17teaMAc_Gco7UKcYmeTqlJBOxXK8-jDVcKZJ2lrjmb64zJYZiujUb-fYqVyHNywWTF2agw7uwmp59LDz5sRh6tdB_Lsk6_u_L3YM7AYqSaoyd-7Bj2z24fUGgcA9urkLqfR8-V-RtaKaCP4VT8t52Z64blyZVkCUnfUeqoe8QA1tDvthvZ2FfU0u6hvhsAalONr_kb7LeWPsA1ofv1m-O4tCOIdY4UPtYSmVYUeaqbCiCRoXAsCxNwyRNGpwHKZMGz1JWKIkzI2e2yRvRaGa1zDPJ2UPYbbvWPgYiBeOioVJTTrkWSjGW5UIi-6NKGppEsJy8UusgVe46ZpzWnrIkokaX1s6ldXBpBK_mO36OMh3X2O67rz_bhQ8fwcHk-DqM4_O6RD6HHDhnEbyYr-IAdFkV2dpuOK9pXlBPQ4sIyD9sSu5U7hFpXmPiEsQZwvUIHo3BNj_gFKwRFFthOBs4ifDtK-3Jdy8VzlLXgrF4cvUrH8CtcYncVec8hd1-M9hniLF69dwPrr93ZiDE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEB5KBS8PVVursV5W8EUw52Szm9tjUOupNkUwQt_C3qLFNimnCaK_3tlkT-gptfgWTuZAkpnNfJOZ_T6A16EWJtIZ9UMuuCXVln4W1tLXWqUyxXoiGeSAiqN48Y1_Oo6ON-DttBfGGDMMn5mZPRx6-bpVvf1UNo8QW3CGBfotzPsRHXdrTT0DHo0DHaHljA3icNWUDLJ5WRyMU1whlu0ssPJvVpsSgzFcy0eDwMp1WPPqyOSlHLR_H4rV1Y-jJz9nfSdn6s8VYsf_vb0HsOXAKMnH6HkIG6bZhnuXKAq34Xbhmu878CUn752cCr4WTslH055ZPS5FckdMTrqW5H3XIgo2mnw138_czqaGtDUZ-gUkP1n-Er9JuTTmEZT7H8p3C98JMvgKl2rnCyE1S9JYpjVF2CgRGqaprpmgQY2ZkDKh8VfKEikwN3Jm6rjOasWMEnEkONuFzaZtzBMgImM8q6lQlFOuMikZi-JMYP1HpdA08GC-8kqlHFm51cw4rYaiJcgqdGllXVo5l3rwZvrH-UjUcYPtjn36k5178B7srRxfuZV8UaVY0WEVHDMPXk1ncQnavopoTNtfVDRO6FCIJh6Qf9ik3PLcI9a8wcS2iCME7B48HoNtusBVsHqQrIXhZGBJwtfPNCc_BrJwFloRxuTp9bf8Eu4syuKwOjw4-rwHd8cP5nZW5xlsdsvePEfE1ckXw0L7C6IAJA0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Differential+Geometric+Approach+to+Automated+Segmentation+of+Human+Airway+Tree&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Pu%2C+Jiantao&rft.au=Fuhrman%2C+Carl&rft.au=Good%2C+Walter+F&rft.au=Sciurba%2C+Frank+C&rft.date=2011-02-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=30&rft.issue=2&rft.spage=266&rft.epage=278&rft_id=info:doi/10.1109%2FTMI.2010.2076300&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon