A Differential Geometric Approach to Automated Segmentation of Human Airway Tree
Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into th...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 30; no. 2; pp. 266 - 278 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the 3-D human airway tree depicted on computed tomography (CT) images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A "puzzle game" procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms. |
---|---|
AbstractList | Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the three-dimensional human airway tree depicted on CT images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A “puzzle game” procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms. Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the 3-D human airway tree depicted on computed tomography (CT) images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A "puzzle game" procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms.Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the 3-D human airway tree depicted on computed tomography (CT) images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A "puzzle game" procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms. Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the 3-D human airway tree depicted on computed tomography (CT) images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A "puzzle game" procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms. |
Author | Jiantao Pu Gur, David Fuhrman, Carl Good, Walter F Sciurba, Frank C |
Author_xml | – sequence: 1 surname: Jiantao Pu fullname: Jiantao Pu email: puj@upmc.edu organization: Depts. of Radiol. & Bioeng., Univ. of Pittsburgh, Pittsburgh, PA, USA – sequence: 2 givenname: Carl surname: Fuhrman fullname: Fuhrman, Carl organization: Dept. of Radiol., Univ. of Pittsburgh, Pittsburgh, PA, USA – sequence: 3 givenname: Walter F surname: Good fullname: Good, Walter F organization: Dept. of Radiol., Univ. of Pittsburgh, Pittsburgh, PA, USA – sequence: 4 givenname: Frank C surname: Sciurba fullname: Sciurba, Frank C organization: Dept. of Med., Univ. of Pittsburgh, Pittsburgh, PA, USA – sequence: 5 givenname: David surname: Gur fullname: Gur, David organization: Dept. of Radiol., Univ. of Pittsburgh, Pittsburgh, PA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20851792$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLeFOxISsriUS4rHjj9yQYpaaCsVgcQeuFlOdty6SuKtk4D63-PVLivooZws27_3xjN-R-RgiAMS8hrYKQCrPiy_XJ1ylnecaSUYe0YWIKUpuCx_HJAF49oUjCl-SI7G8Y4xKCWrXpBDzowEXfEF-VbT8-A9Jhym4Dp6gbHHKYWW1ut1iq69pVOk9TzF3k24ot_xps-om0IcaPT0cu7dQOuQfrkHukyIL8lz77oRX-3WY7L8_Gl5dllcf724Oquvi1YKmArnmpXQRjXGg9ZlI4AZs_LCAfNMKBBulU9B6MaVIEqBXvnKtwJbp6QrxTH5uLVdz02Pqza_KbnOrlPoXXqw0QX7780Qbu1N_GkF1yCkzgYnO4MU72ccJ9uHscWucwPGebRG5UnKqqr-T5ZVKfKQRSbfP0mC0sAVVHxT_t0j9C7OacgTy35GgynVxu_t303uu_vzfRlgW6BNcRwT-j0CzG4SYnNC7CYhdpeQLFGPJG3YfmceU-ieEr7ZCgMi7utIqWXuXvwGbP7G3A |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_patcog_2016_07_023 crossref_primary_10_1016_j_acra_2012_06_007 crossref_primary_10_1097_MD_0000000000005095 crossref_primary_10_1007_s00383_021_04949_4 crossref_primary_10_1088_0031_9155_58_17_R187 crossref_primary_10_1109_TMI_2014_2374615 crossref_primary_10_1177_0300060517721309 crossref_primary_10_1186_s12890_018_0691_8 crossref_primary_10_1016_j_media_2012_11_003 crossref_primary_10_3390_cancers17010033 crossref_primary_10_3233_XST_180429 crossref_primary_10_1016_j_lungcan_2017_10_008 crossref_primary_10_3389_fonc_2021_719398 crossref_primary_10_1109_TMI_2012_2209674 crossref_primary_10_3233_XST_180486 crossref_primary_10_3233_THC_174800 crossref_primary_10_1098_rsif_2012_0116 crossref_primary_10_1118_1_4737023 crossref_primary_10_3233_THC_171315 crossref_primary_10_1111_crj_13064 crossref_primary_10_1097_MD_0000000000014438 crossref_primary_10_1097_HP_0000000000001468 crossref_primary_10_1007_s00330_020_07156_2 crossref_primary_10_1155_2012_382806 crossref_primary_10_1007_s42058_020_00034_2 crossref_primary_10_1016_j_cmpb_2016_04_021 crossref_primary_10_1016_j_compmedimag_2014_01_002 crossref_primary_10_1007_s00408_018_0162_2 crossref_primary_10_1007_s10278_018_0058_y crossref_primary_10_1016_j_media_2016_09_002 crossref_primary_10_1118_1_4703901 crossref_primary_10_3233_XST_16216 crossref_primary_10_3390_bioengineering11111062 crossref_primary_10_1016_j_compbiomed_2022_106241 crossref_primary_10_1016_j_jtcvs_2015_06_051 crossref_primary_10_1016_j_compmedimag_2014_10_008 |
Cites_doi | 10.1007/BFb0029240 10.1016/j.compmedimag.2008.04.005 10.1109/TMI.2005.844167 10.1109/42.500140 10.1109/TMI.2009.2035813 10.1109/TMI.2008.2010441 10.1145/882262.882368 10.1145/966131.966134 10.1016/j.cmpb.2008.04.003 10.1118/1.1581411 10.1016/S1076-6332(03)80517-2 10.1016/S1076-6332(97)80080-3 10.1117/12.772777 10.1109/TMI.2005.862753 10.1117/12.383438 10.1109/42.836370 10.1109/VISUAL.2003.1250370 10.1164/rccm.200601-037OC 10.1117/12.652440 10.1007/s00371-005-0308-0 10.1007/978-3-662-05105-4_2 10.1109/TDPVT.2004.1335277 10.1164/ajrccm.162.3.9907120 10.1006/cviu.1996.0571 10.1016/j.acra.2004.01.012 10.1016/0895-6111(94)00034-4 10.1109/TMI.2004.826945 10.1117/12.768706 10.1145/37402.37422 10.1117/12.387756 10.1109/TMI.2003.815905 10.1109/42.730394 10.1007/978-1-4613-0469-2_48 10.1145/311535.311576 10.1002/cnm.1630040603 10.1053/j.sult.2005.07.001 10.1109/TMI.2005.857654 10.1109/TMI.2009.2027117 10.1006/cviu.2000.0866 10.1109/TMI.2012.2209674 10.1117/12.467061 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/TMI.2010.2076300 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database Engineering Research Database Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 278 |
ExternalDocumentID | PMC3271357 2255159981 20851792 10_1109_TMI_2010_2076300 5575430 |
Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL096613 – fundername: NHLBI NIH HHS grantid: R01 HL085096 – fundername: NHLBI NIH HHS grantid: R01 HL084182 – fundername: NCATS NIH HHS grantid: UL1 TR000005 – fundername: NHLBI NIH HHS grantid: P50 HL084948 – fundername: NHLBI NIH HHS grantid: R01 HL095397 – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL085096-04 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL096613-01A1 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL084182-04 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: P50 HL084948-04 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL095397-04 || HL |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c531t-aabd3786b8f1774b31088df3a10f03613ad74b137ba41343ef6f9fc3eca65a43 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 17:55:37 EDT 2025 Fri Jul 11 03:59:32 EDT 2025 Fri Jul 11 05:31:52 EDT 2025 Fri Jul 11 10:40:47 EDT 2025 Sun Jun 29 14:34:53 EDT 2025 Mon Jul 21 06:01:19 EDT 2025 Tue Jul 01 03:15:49 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 Tue Aug 26 17:17:02 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-aabd3786b8f1774b31088df3a10f03613ad74b137ba41343ef6f9fc3eca65a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 20851792 |
PQID | 848718463 |
PQPubID | 85460 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_861555999 pubmed_primary_20851792 proquest_miscellaneous_849430623 crossref_primary_10_1109_TMI_2010_2076300 crossref_citationtrail_10_1109_TMI_2010_2076300 proquest_miscellaneous_1671261927 ieee_primary_5575430 proquest_journals_848718463 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3271357 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-01 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2011 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref15 chen (ref39) 1992 ref31 ref30 ref33 ref11 ref10 (ref1) 2007 ref2 ref17 ref38 ref16 ref19 ref18 pu (ref36) 2009; 28 graham (ref32) 2008; 6914 fleishman (ref45) 2003 ref46 ref24 ref23 ref26 ref47 ref25 ref20 sato (ref28) 1997; 1205 ref41 ref22 ref44 ref21 ref43 kitasaka (ref14) 2003; 2879 ref27 van ginneken (ref13) 2008 ref7 schlathalter (ref12) 2002; 4684 ref9 ref4 ref3 meyer (ref42) 2003 ref6 ref5 bauer (ref29) 2008 ref40 fabijaska (ref8) 2009; 23 pu (ref37) 2009; 28 |
References_xml | – volume: 1205 start-page: 213 year: 1997 ident: ref28 article-title: 3-d multi-scale line filter for segmentation and visualization of curvilinear structures in medical images publication-title: Lecture Notes in Computer Science doi: 10.1007/BFb0029240 – ident: ref35 doi: 10.1016/j.compmedimag.2008.04.005 – ident: ref34 doi: 10.1109/TMI.2005.844167 – ident: ref16 doi: 10.1109/42.500140 – ident: ref15 doi: 10.1109/TMI.2009.2035813 – volume: 28 start-page: 710 year: 2009 ident: ref37 article-title: a computational geometry approach to automated pulmonary fissure segmentation in ct examinations publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2008.2010441 – start-page: 950 year: 2003 ident: ref45 article-title: bilateral mesh denoising publication-title: ACM Trans Graphics doi: 10.1145/882262.882368 – ident: ref40 doi: 10.1145/966131.966134 – ident: ref6 doi: 10.1016/j.cmpb.2008.04.003 – ident: ref38 doi: 10.1118/1.1581411 – ident: ref27 doi: 10.1016/S1076-6332(03)80517-2 – start-page: 163 year: 2008 ident: ref29 article-title: a novel approach for detection of tubular objects and its application to medical image analysis publication-title: Proc 30th DAGM Symp Pattern Recognit – ident: ref2 doi: 10.1016/S1076-6332(97)80080-3 – ident: ref18 doi: 10.1117/12.772777 – ident: ref7 doi: 10.1109/TMI.2005.862753 – ident: ref17 doi: 10.1117/12.383438 – ident: ref9 doi: 10.1109/42.836370 – year: 2007 ident: ref1 – ident: ref21 doi: 10.1109/VISUAL.2003.1250370 – ident: ref3 doi: 10.1164/rccm.200601-037OC – ident: ref23 doi: 10.1117/12.652440 – ident: ref46 doi: 10.1007/s00371-005-0308-0 – start-page: 35 year: 2003 ident: ref42 publication-title: Visualization and Mathematics III doi: 10.1007/978-3-662-05105-4_2 – ident: ref41 doi: 10.1109/TDPVT.2004.1335277 – ident: ref4 doi: 10.1164/ajrccm.162.3.9907120 – start-page: 219 year: 2008 ident: ref13 article-title: robust segmentation and anatomical labeling of the airway tree from thoracic ct scans publication-title: Proc MICCAI – ident: ref30 doi: 10.1006/cviu.1996.0571 – ident: ref22 doi: 10.1016/j.acra.2004.01.012 – ident: ref10 doi: 10.1016/0895-6111(94)00034-4 – ident: ref26 doi: 10.1109/TMI.2004.826945 – volume: 6914 start-page: 69141j year: 2008 ident: ref32 article-title: robust system for human airway-tree segmentation publication-title: Proc SPIE Med Imag doi: 10.1117/12.768706 – ident: ref33 doi: 10.1145/37402.37422 – ident: ref11 doi: 10.1117/12.387756 – ident: ref25 doi: 10.1109/TMI.2003.815905 – start-page: 739 year: 1992 ident: ref39 article-title: intrinsic surface properties from surface triangulation publication-title: Proc Eur Conf Comput Vis – ident: ref19 doi: 10.1109/42.730394 – ident: ref24 doi: 10.1007/978-1-4613-0469-2_48 – ident: ref44 doi: 10.1145/311535.311576 – ident: ref43 doi: 10.1002/cnm.1630040603 – ident: ref5 doi: 10.1053/j.sult.2005.07.001 – ident: ref20 doi: 10.1109/TMI.2005.857654 – volume: 28 start-page: 1986 year: 2009 ident: ref36 article-title: pulmonary lobe segmentation in ct examinations using implicit surface fitting publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2009.2027117 – volume: 2879 start-page: 603 year: 2003 ident: ref14 article-title: a method for segmenting bronchial trees from 3-d chest x-ray ct images publication-title: Proc MICCAI – ident: ref31 doi: 10.1006/cviu.2000.0866 – ident: ref47 doi: 10.1109/TMI.2012.2209674 – volume: 4684 start-page: 103 year: 2002 ident: ref12 article-title: simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy publication-title: Proc SPIE Med Imag doi: 10.1117/12.467061 – volume: 23 start-page: 1353 year: 2009 ident: ref8 article-title: Two-pass region growing algorithm for segmenting airway trees from MDCT chest scans publication-title: Computerized Med Imag Graphics |
SSID | ssj0014509 |
Score | 2.2721884 |
Snippet | Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 266 |
SubjectTerms | Airway tree Airways Algorithms Anatomical structure Atmospheric modeling Bronchi - anatomy & histology Bronchography - methods Computed tomography computer-aided detection Curvature Diagnosis, Computer-Assisted Differential geometry Diseases Humans Image Processing, Computer-Assisted - methods Image segmentation lung computed tomography (CT) Lungs Pulmonary Disease, Chronic Obstructive - diagnostic imaging Segmentation Shape Smoothing methods Tomography, X-Ray Computed - methods Trees |
Title | A Differential Geometric Approach to Automated Segmentation of Human Airway Tree |
URI | https://ieeexplore.ieee.org/document/5575430 https://www.ncbi.nlm.nih.gov/pubmed/20851792 https://www.proquest.com/docview/848718463 https://www.proquest.com/docview/1671261927 https://www.proquest.com/docview/849430623 https://www.proquest.com/docview/861555999 https://pubmed.ncbi.nlm.nih.gov/PMC3271357 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEB5qH0QfvLReYlVW8EUw52Szm8s-BrVW4YjgEfoW9hYttomcJoj-emc3m9BTavEtJBNIMrPZ79uZ_QbgZWqkzYygccold6LaKhZpo2JjdKlK5BOFbwe0-pQffeUfj7PjHXg974Wx1vriM7twhz6Xbzo9uKWyZYbYgjMk6DeQuI17teaMAc_Gco7UKcYmeTqlJBOxXK8-jDVcKZJ2lrjmb64zJYZiujUb-fYqVyHNywWTF2agw7uwmp59LDz5sRh6tdB_Lsk6_u_L3YM7AYqSaoyd-7Bj2z24fUGgcA9urkLqfR8-V-RtaKaCP4VT8t52Z64blyZVkCUnfUeqoe8QA1tDvthvZ2FfU0u6hvhsAalONr_kb7LeWPsA1ofv1m-O4tCOIdY4UPtYSmVYUeaqbCiCRoXAsCxNwyRNGpwHKZMGz1JWKIkzI2e2yRvRaGa1zDPJ2UPYbbvWPgYiBeOioVJTTrkWSjGW5UIi-6NKGppEsJy8UusgVe46ZpzWnrIkokaX1s6ldXBpBK_mO36OMh3X2O67rz_bhQ8fwcHk-DqM4_O6RD6HHDhnEbyYr-IAdFkV2dpuOK9pXlBPQ4sIyD9sSu5U7hFpXmPiEsQZwvUIHo3BNj_gFKwRFFthOBs4ifDtK-3Jdy8VzlLXgrF4cvUrH8CtcYncVec8hd1-M9hniLF69dwPrr93ZiDE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEB5KBS8PVVursV5W8EUw52Szm9tjUOupNkUwQt_C3qLFNimnCaK_3tlkT-gptfgWTuZAkpnNfJOZ_T6A16EWJtIZ9UMuuCXVln4W1tLXWqUyxXoiGeSAiqN48Y1_Oo6ON-DttBfGGDMMn5mZPRx6-bpVvf1UNo8QW3CGBfotzPsRHXdrTT0DHo0DHaHljA3icNWUDLJ5WRyMU1whlu0ssPJvVpsSgzFcy0eDwMp1WPPqyOSlHLR_H4rV1Y-jJz9nfSdn6s8VYsf_vb0HsOXAKMnH6HkIG6bZhnuXKAq34Xbhmu878CUn752cCr4WTslH055ZPS5FckdMTrqW5H3XIgo2mnw138_czqaGtDUZ-gUkP1n-Er9JuTTmEZT7H8p3C98JMvgKl2rnCyE1S9JYpjVF2CgRGqaprpmgQY2ZkDKh8VfKEikwN3Jm6rjOasWMEnEkONuFzaZtzBMgImM8q6lQlFOuMikZi-JMYP1HpdA08GC-8kqlHFm51cw4rYaiJcgqdGllXVo5l3rwZvrH-UjUcYPtjn36k5178B7srRxfuZV8UaVY0WEVHDMPXk1ncQnavopoTNtfVDRO6FCIJh6Qf9ik3PLcI9a8wcS2iCME7B48HoNtusBVsHqQrIXhZGBJwtfPNCc_BrJwFloRxuTp9bf8Eu4syuKwOjw4-rwHd8cP5nZW5xlsdsvePEfE1ckXw0L7C6IAJA0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Differential+Geometric+Approach+to+Automated+Segmentation+of+Human+Airway+Tree&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Pu%2C+Jiantao&rft.au=Fuhrman%2C+Carl&rft.au=Good%2C+Walter+F&rft.au=Sciurba%2C+Frank+C&rft.date=2011-02-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=30&rft.issue=2&rft.spage=266&rft.epage=278&rft_id=info:doi/10.1109%2FTMI.2010.2076300&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |