Tsc2 Is a Molecular Checkpoint Controlling Osteoblast Development and Glucose Homeostasis
Insulin signaling in osteoblasts regulates global energy balance by stimulating the production of osteocalcin, a bone-derived protein that promotes insulin production and action. To identify the signaling pathways in osteoblasts that mediate insulin's effects on bone and energy metabolism, we e...
Saved in:
Published in | Molecular and cellular biology Vol. 34; no. 10; pp. 1850 - 1862 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
01.05.2014
American Society for Microbiology |
Subjects | |
Online Access | Get full text |
ISSN | 1098-5549 0270-7306 1098-5549 |
DOI | 10.1128/MCB.00075-14 |
Cover
Loading…
Abstract | Insulin signaling in osteoblasts regulates global energy balance by stimulating the production of osteocalcin, a bone-derived protein that promotes insulin production and action. To identify the signaling pathways in osteoblasts that mediate insulin's effects on bone and energy metabolism, we examined the function of the tuberous sclerosis 2 (Tsc2) protein, a key target important in coordinating nutrient signaling. Here, we show that loss of Tsc2 in osteoblasts constitutively activates mTOR and destabilizes Irs1, causing osteoblasts to differentiate poorly and become resistant to insulin. Young Tsc2 mutant mice demonstrate hypoglycemia with increased levels of insulin and undercarboxylated osteocalcin. However, with age, Tsc2 mutants develop metabolic features similar to mice lacking the insulin receptor in the osteoblast, including peripheral adiposity, hyperglycemia, and decreased pancreatic β cell mass. These metabolic abnormalities appear to result from chronic elevations in undercarboxylated osteocalcin that lead to downregulation of the osteocalcin receptor and desensitization of the β cell to this hormone. Removal of a single mTOR allele from the Tsc2 mutant mice largely normalizes the bone and metabolic abnormalities. Together, these findings suggest that Tsc2 serves as a key checkpoint in the osteoblast that is required for proper insulin signaling and acts to ensure normal bone acquisition and energy homeostasis. |
---|---|
AbstractList | Insulin signaling in osteoblasts regulates global energy balance by stimulating the production of osteocalcin, a bone-derived protein that promotes insulin production and action. To identify the signaling pathways in osteoblasts that mediate insulin's effects on bone and energy metabolism, we examined the function of the tuberous sclerosis 2 (Tsc2) protein, a key target important in coordinating nutrient signaling. Here, we show that loss of
Tsc2
in osteoblasts constitutively activates mTOR and destabilizes Irs1, causing osteoblasts to differentiate poorly and become resistant to insulin. Young Tsc2 mutant mice demonstrate hypoglycemia with increased levels of insulin and undercarboxylated osteocalcin. However, with age, Tsc2 mutants develop metabolic features similar to mice lacking the insulin receptor in the osteoblast, including peripheral adiposity, hyperglycemia, and decreased pancreatic β cell mass. These metabolic abnormalities appear to result from chronic elevations in undercarboxylated osteocalcin that lead to downregulation of the osteocalcin receptor and desensitization of the β cell to this hormone. Removal of a single mTOR allele from the Tsc2 mutant mice largely normalizes the bone and metabolic abnormalities. Together, these findings suggest that Tsc2 serves as a key checkpoint in the osteoblast that is required for proper insulin signaling and acts to ensure normal bone acquisition and energy homeostasis. Insulin signaling in osteoblasts regulates global energy balance by stimulating the production of osteocalcin, a bone-derived protein that promotes insulin production and action. To identify the signaling pathways in osteoblasts that mediate insulin's effects on bone and energy metabolism, we examined the function of the tuberous sclerosis 2 (Tsc2) protein, a key target important in coordinating nutrient signaling. Here, we show that loss of Tsc2 in osteoblasts constitutively activates mTOR and destabilizes Irs1, causing osteoblasts to differentiate poorly and become resistant to insulin. Young Tsc2 mutant mice demonstrate hypoglycemia with increased levels of insulin and undercarboxylated osteocalcin. However, with age, Tsc2 mutants develop metabolic features similar to mice lacking the insulin receptor in the osteoblast, including peripheral adiposity, hyperglycemia, and decreased pancreatic β cell mass. These metabolic abnormalities appear to result from chronic elevations in undercarboxylated osteocalcin that lead to downregulation of the osteocalcin receptor and desensitization of the β cell to this hormone. Removal of a single mTOR allele from the Tsc2 mutant mice largely normalizes the bone and metabolic abnormalities. Together, these findings suggest that Tsc2 serves as a key checkpoint in the osteoblast that is required for proper insulin signaling and acts to ensure normal bone acquisition and energy homeostasis.Insulin signaling in osteoblasts regulates global energy balance by stimulating the production of osteocalcin, a bone-derived protein that promotes insulin production and action. To identify the signaling pathways in osteoblasts that mediate insulin's effects on bone and energy metabolism, we examined the function of the tuberous sclerosis 2 (Tsc2) protein, a key target important in coordinating nutrient signaling. Here, we show that loss of Tsc2 in osteoblasts constitutively activates mTOR and destabilizes Irs1, causing osteoblasts to differentiate poorly and become resistant to insulin. Young Tsc2 mutant mice demonstrate hypoglycemia with increased levels of insulin and undercarboxylated osteocalcin. However, with age, Tsc2 mutants develop metabolic features similar to mice lacking the insulin receptor in the osteoblast, including peripheral adiposity, hyperglycemia, and decreased pancreatic β cell mass. These metabolic abnormalities appear to result from chronic elevations in undercarboxylated osteocalcin that lead to downregulation of the osteocalcin receptor and desensitization of the β cell to this hormone. Removal of a single mTOR allele from the Tsc2 mutant mice largely normalizes the bone and metabolic abnormalities. Together, these findings suggest that Tsc2 serves as a key checkpoint in the osteoblast that is required for proper insulin signaling and acts to ensure normal bone acquisition and energy homeostasis. Insulin signaling in osteoblasts regulates global energy balance by stimulating the production of osteocalcin, a bone-derived protein that promotes insulin production and action. To identify the signaling pathways in osteoblasts that mediate insulin's effects on bone and energy metabolism, we examined the function of the tuberous sclerosis 2 (Tsc2) protein, a key target important in coordinating nutrient signaling. Here, we show that loss of Tsc2 in osteoblasts constitutively activates mTOR and destabilizes Irs1, causing osteoblasts to differentiate poorly and become resistant to insulin. Young Tsc2 mutant mice demonstrate hypoglycemia with increased levels of insulin and undercarboxylated osteocalcin. However, with age, Tsc2 mutants develop metabolic features similar to mice lacking the insulin receptor in the osteoblast, including peripheral adiposity, hyperglycemia, and decreased pancreatic β cell mass. These metabolic abnormalities appear to result from chronic elevations in undercarboxylated osteocalcin that lead to downregulation of the osteocalcin receptor and desensitization of the β cell to this hormone. Removal of a single mTOR allele from the Tsc2 mutant mice largely normalizes the bone and metabolic abnormalities. Together, these findings suggest that Tsc2 serves as a key checkpoint in the osteoblast that is required for proper insulin signaling and acts to ensure normal bone acquisition and energy homeostasis. Insulin signaling in osteoblasts regulates global energy balance by stimulating the production of osteocalcin, a bone-derived protein that promotes insulin production and action. To identify the signaling pathways in osteoblasts that mediate insulin's effects on bone and energy metabolism, we examined the function of the tuberous sclerosis 2 (Tsc2) protein, a key target important in coordinating nutrient signaling. Here, we show that loss of Tsc2 in osteoblasts constitutively activates mTOR and destabilizes Irs1, causing osteoblasts to differentiate poorly and become resistant to insulin. Young Tsc2 mutant mice demonstrate hypoglycemia with increased levels of insulin and undercarboxylated osteocalcin. However, with age, Tsc2 mutants develop metabolic features similar to mice lacking the insulin receptor in the osteoblast, including peripheral adiposity, hyperglycemia, and decreased pancreatic beta cell mass. These metabolic abnormalities appear to result from chronic elevations in undercarboxylated osteocalcin that lead to downregulation of the osteocalcin receptor and desensitization of the beta cell to this hormone. Removal of a single mTOR allele from the Tsc2 mutant mice largely normalizes the bone and metabolic abnormalities. Together, these findings suggest that Tsc2 serves as a key checkpoint in the osteoblast that is required for proper insulin signaling and acts to ensure normal bone acquisition and energy homeostasis. |
Author | Riddle, Ryan C. Hussain, Mehboob A. Ferron, Mathieu Frey, Julie L. Li, Yuanyuan Clemens, Thomas L. Tomlinson, Ryan E. Karsenty, Gerard DiGirolamo, Douglas J. Faugere, Marie-Claude |
Author_xml | – sequence: 1 givenname: Ryan C. surname: Riddle fullname: Riddle, Ryan C. email: rriddle1@jhmi.edu, tclemen5@jhmi.edu organization: Baltimore Veterans Administration Medical Center – sequence: 2 givenname: Julie L. surname: Frey fullname: Frey, Julie L. organization: Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine – sequence: 3 givenname: Ryan E. surname: Tomlinson fullname: Tomlinson, Ryan E. organization: Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine – sequence: 4 givenname: Mathieu surname: Ferron fullname: Ferron, Mathieu organization: Département de Médecine, Université de Montréal – sequence: 5 givenname: Yuanyuan surname: Li fullname: Li, Yuanyuan organization: Departments of Pediatrics, Medicine, and Biological Chemistry, Metabolism Division, Johns Hopkins University – sequence: 6 givenname: Douglas J. surname: DiGirolamo fullname: DiGirolamo, Douglas J. organization: Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine – sequence: 7 givenname: Marie-Claude surname: Faugere fullname: Faugere, Marie-Claude organization: Division of Nephrology, University of Kentucky – sequence: 8 givenname: Mehboob A. surname: Hussain fullname: Hussain, Mehboob A. organization: Departments of Pediatrics, Medicine, and Biological Chemistry, Metabolism Division, Johns Hopkins University – sequence: 9 givenname: Gerard surname: Karsenty fullname: Karsenty, Gerard organization: Department of Genetics and Development, College of Physicians and Surgeons, Columbia University – sequence: 10 givenname: Thomas L. surname: Clemens fullname: Clemens, Thomas L. email: rriddle1@jhmi.edu, tclemen5@jhmi.edu organization: Baltimore Veterans Administration Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24591652$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1PFTEUxRuDkQ_duTazdOFgO53OdDYmOiCQQNjgwlVzp3ML1U77bDsQ_nvm-ZCggcRVb9LfOffknl2y5YNHQt4yus9YJT-e9V_2KaWtKFn9guww2slSiLrbejRvk92UfixU01H-imxXtehYI6od8v0i6ao4SQUUZ8Ghnh3Eor9C_XMVrM9FH3yOwTnrL4vzlDEMDlIuDvAaXVhNuCDgx-LIzTokLI7DhCFlSDa9Ji8NuIRv7t898u3r4UV_XJ6eH530n09LLTjLpcSq01RDyw0aapZkVEvUBhrZSDmA5JQZ3YAY2diODIamGVsUepCiHYEyvkc-bXxX8zDhqJdIEZxaRTtBvFUBrPr7x9srdRmuVU3Zco12MXh_bxDDrxlTVpNNGp0Dj2FOigleSy7bqv4PlHWVqLmUC_rucayHPH9OvwAfNoCOIaWI5gFhVK2bVUuz6neziq1XV__g2mbIdt0PWPecqN2IrDchTnATohtVhlsXoongtU2KP6m8A2rbudk |
CitedBy_id | crossref_primary_10_1016_j_bone_2015_05_046 crossref_primary_10_1098_rsob_180262 crossref_primary_10_1002_jcp_26163 crossref_primary_10_1007_s00018_016_2425_5 crossref_primary_10_1152_physrev_00022_2016 crossref_primary_10_2740_jisdh_27_49 crossref_primary_10_1002_jbmr_3530 crossref_primary_10_1016_j_bone_2024_117285 crossref_primary_10_3389_fcell_2022_920683 crossref_primary_10_1002_jbmr_3172 crossref_primary_10_3390_genes12081286 crossref_primary_10_1002_1873_3468_14259 crossref_primary_10_1007_s11892_014_0556_3 crossref_primary_10_1016_j_diff_2022_10_003 crossref_primary_10_1016_j_bone_2018_05_013 crossref_primary_10_1002_jbmr_2348 crossref_primary_10_1016_j_diff_2020_06_002 crossref_primary_10_1002_jbmr_3001 crossref_primary_10_1002_jbmr_3564 crossref_primary_10_1083_jcb_201409111 crossref_primary_10_1038_ncomms13885 crossref_primary_10_1038_s41413_020_00123_z crossref_primary_10_1038_nrendo_2015_142 crossref_primary_10_1038_s41598_018_32858_5 crossref_primary_10_2147_DMSO_S349769 crossref_primary_10_1002_jbmr_2819 crossref_primary_10_1210_er_2017_00064 crossref_primary_10_1038_s41418_017_0054_7 crossref_primary_10_1038_s12276_024_01190_6 crossref_primary_10_1016_j_heliyon_2024_e31314 crossref_primary_10_1016_j_ajodo_2024_05_017 crossref_primary_10_1016_j_bone_2020_115467 crossref_primary_10_1016_j_bone_2021_115881 crossref_primary_10_1016_j_ajpath_2016_08_013 crossref_primary_10_1002_jbmr_2447 crossref_primary_10_1038_bonekey_2016_58 crossref_primary_10_1038_cdd_2017_110 crossref_primary_10_1093_jbmr_zjaf017 crossref_primary_10_1586_17446651_2015_1058152 crossref_primary_10_1038_s41418_017_0049_4 crossref_primary_10_1007_s12020_015_0618_6 crossref_primary_10_1002_jbmr_4312 crossref_primary_10_3390_ijms24119198 crossref_primary_10_1016_j_stemcr_2017_04_005 crossref_primary_10_1007_s40610_017_0061_y crossref_primary_10_1371_journal_pgen_1005426 crossref_primary_10_1016_j_semcdb_2021_10_008 crossref_primary_10_1128_MCB_00668_16 crossref_primary_10_1038_s41413_017_0004_5 crossref_primary_10_1055_a_2247_5610 crossref_primary_10_1371_journal_pgen_1008938 |
Cites_doi | 10.2337/diabetes.51.2.276 10.1007/BF03343726 10.1016/S0960-9822(03)00506-2 10.1002/jbmr.141 10.1002/jbmr.390 10.1042/BJ20080281 10.1146/annurev-physiol-020911-153233 10.1016/j.molcel.2006.09.019 10.1016/S1043-2760(02)00662-8 10.1038/ncb839 10.1016/j.cell.2006.06.055 10.1016/S0092-8674(02)01049-8 10.1002/dvg.20271 10.1016/S1534-5807(04)00058-9 10.1016/j.cell.2011.02.004 10.1016/j.bone.2011.04.017 10.1016/j.cell.2006.01.016 10.1038/305549a0 10.1073/pnas.86.20.7838 10.1016/j.tem.2009.02.001 10.1136/adc.63.12.1423 10.1016/S1097-2765(02)00568-3 10.1016/j.bbrc.2010.06.008 10.1128/MCB.02353-05 10.1074/jbc.275.12.9047 10.1038/nature01137 10.1016/S0092-8674(01)00240-9 10.1016/S0092-8674(00)81558-5 10.1128/MCB.21.3.952-965.2001 10.1073/pnas.0711119105 10.1074/jbc.M208265200 10.1016/j.molcel.2008.04.027 10.2106/00004623-196951010-00007 10.1016/j.cmet.2006.10.008 10.1016/j.cell.2010.06.002 10.1152/ajpendo.00676.2009 10.1074/jbc.M700651200 10.1016/j.molcel.2007.12.023 10.1089/152091599316775 10.1073/pnas.0604153104 10.1016/S1097-2765(03)00220-X 10.1016/j.cub.2004.08.026 10.1016/j.cell.2007.05.047 10.1074/jbc.M111.282897 10.1002/jbmr.1805 10.1016/S0092-8674(03)00929-2 10.1172/JCI39901 10.1128/MCB.01405-07 10.1067/mjd.2001.111626 10.1016/j.cell.2010.06.003 10.1007/s002239900163 10.1177/088307388800300211 10.1002/jbmr.5650020617 10.1126/science.1103160 10.1083/jcb.200403069 10.1042/bj20021535 |
ContentType | Journal Article |
Copyright | Copyright © 2014, American Society for Microbiology 2014 Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2014, American Society for Microbiology 2014 – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QP 5PM |
DOI | 10.1128/MCB.00075-14 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Calcium & Calcified Tissue Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1098-5549 |
EndPage | 1862 |
ExternalDocumentID | PMC4019037 24591652 10_1128_MCB_00075_14 12275216 |
Genre | Research Article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: DK079637 – fundername: NIDDK NIH HHS grantid: DK081472 – fundername: NIDDK NIH HHS grantid: P60 DK079637 – fundername: NIDDK NIH HHS grantid: P30 DK079637 – fundername: NIDDK NIH HHS grantid: R01 DK081472 – fundername: NIDDK NIH HHS grantid: R01 DK099134 – fundername: NIDDK NIH HHS grantid: DK099134 – fundername: BLRD VA grantid: I01 BX001234 |
GroupedDBID | --- -DZ -~X 0R~ 123 18M 29M 2WC 39C 4.4 53G 5RE 5VS ACGFO ACNCT ADBBV ADIYS AENEX AEOZL AGHSJ AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HH5 HYE HZ~ IH2 KQ8 L7B M4Z N9A O9- OK1 P2P RHF RHI RNS RPM RSF TDBHL TFL TFW TR2 UCJ UDS VQA W8F WH7 WOQ ZCA AAGFI AAYXX ABJNI AMPGV CITATION .55 .GJ 3O- 9M8 ABRLO ABTAH ACKIV AFFNX C1A CGR CUY CVF ECM EIF EMOBN MVM NPM PKN WHG X7M Y6R YIN YYP ZGI ZXP ZY4 7X8 TASJS 7QP 5PM |
ID | FETCH-LOGICAL-c531t-8e29c0ca73fef0f2450c8ecfa68688ba8301fc6a5d1d7d1ab66d7e5cb857da013 |
ISSN | 1098-5549 0270-7306 |
IngestDate | Thu Aug 21 18:29:06 EDT 2025 Mon Jul 21 10:17:55 EDT 2025 Tue Aug 05 11:27:42 EDT 2025 Wed Feb 19 01:57:39 EST 2025 Tue Jul 01 01:41:13 EDT 2025 Thu Apr 24 22:50:33 EDT 2025 Wed Dec 25 09:04:46 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c531t-8e29c0ca73fef0f2450c8ecfa68688ba8301fc6a5d1d7d1ab66d7e5cb857da013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1128/MCB.00075-14 |
PMID | 24591652 |
PQID | 1519254388 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1128_MCB_00075_14 proquest_miscellaneous_1534838724 proquest_miscellaneous_1519254388 informaworld_taylorfrancis_310_1128_MCB_00075_14 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4019037 pubmed_primary_24591652 crossref_citationtrail_10_1128_MCB_00075_14 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Molecular and cellular biology |
PublicationTitleAlternate | Mol Cell Biol |
PublicationYear | 2014 |
Publisher | Taylor & Francis American Society for Microbiology |
Publisher_xml | – name: Taylor & Francis – name: American Society for Microbiology |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 Bernauer TA (B48) 2001; 45 B32 B33 B34 B35 B36 B37 B38 B39 Hernandez O (B18) 2007; 45 B1 B2 B3 B4 B5 B6 B7 B8 B9 Gasparetto EL (B50) 2003; 24 Smith TK (B49) 1969; 51 B40 B41 B42 B43 B44 B45 B46 Breningstall GN (B51) 1988; 3 B47 Kode A (B11) 2012; 287 B52 B53 B10 B54 B55 B12 B56 B13 B57 B14 B15 B16 B17 Lang CH (B19) 2010; 298 21425331 - J Bone Miner Res. 2011 Jul;26(7):1680-3 11239410 - Cell. 2001 Feb 23;104(4):531-43 21550430 - Bone. 2012 Feb;50(2):568-75 11511845 - J Am Acad Dermatol. 2001 Sep;45(3):450-2 12820960 - Mol Cell. 2003 Jun;11(6):1457-66 5762715 - J Bone Joint Surg Am. 1969 Jan;51(1):97-102 20533309 - J Bone Miner Res. 2010 Jul;25(7):1468-86 22298775 - J Biol Chem. 2012 Mar 16;287(12):8757-68 12748080 - AJNR Am J Neuroradiol. 2003 May;24(5):835-7 12447443 - Nature. 2002 Nov 21;420(6913):333-6 20570657 - Biochem Biophys Res Commun. 2010 Jul 9;397(4):691-6 15380067 - Curr Biol. 2004 Sep 21;14(18):1650-6 18342602 - Mol Cell. 2008 Mar 14;29(5):541-51 15486293 - Science. 2004 Oct 15;306(5695):457-61 11812733 - Diabetes. 2002 Feb;51(2):276-83 3069050 - Arch Dis Child. 1988 Dec;63(12):1423-5 12150915 - Mol Cell. 2002 Jul;10(1):151-62 18570873 - Mol Cell. 2008 Jun 20;30(6):701-11 23197339 - J Bone Miner Res. 2013 Jan;28(1):2-17 20038793 - J Clin Invest. 2010 Jan;120(1):357-68 16959574 - Cell. 2006 Sep 8;126(5):955-68 20655470 - Cell. 2010 Jul 23;142(2):296-308 17693256 - Cell. 2007 Aug 10;130(3):456-69 10722755 - J Biol Chem. 2000 Mar 24;275(12):9047-54 3372971 - J Child Neurol. 1988 Apr;3(2):131-4 12906785 - Curr Biol. 2003 Aug 5;13(15):1259-68 17084709 - Cell Metab. 2006 Nov;4(5):341-8 17245776 - Genesis. 2007 Feb;45(2):101-6 14651849 - Cell. 2003 Nov 26;115(5):577-90 8939777 - Calcif Tissue Int. 1996 Dec;59(6):492-5 2682629 - Proc Natl Acad Sci U S A. 1989 Oct;86(20):7838-42 15249583 - J Cell Biol. 2004 Jul 19;166(2):213-23 17553792 - J Biol Chem. 2007 Aug 31;282(35):25649-58 16908541 - Mol Cell Biol. 2006 Oct;26(20):7747-59 19546009 - Trends Endocrinol Metab. 2009 Jul;20(5):230-6 22077214 - Annu Rev Physiol. 2012;74:87-105 17287359 - Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2259-64 20388826 - Am J Physiol Endocrinol Metab. 2010 Jun;298(6):E1283-94 6353247 - Nature. 1983 Oct 6-12;305(5934):549-51 15030764 - Dev Cell. 2004 Mar;6(3):423-35 18466115 - Biochem J. 2008 Jun 1;412(2):179-90 21333348 - Cell. 2011 Mar 4;144(5):796-809 17967879 - Mol Cell Biol. 2008 Jan;28(1):61-70 11467325 - Diabetes Technol Ther. 2000 Spring;2(1):69-80 12215457 - J Biol Chem. 2002 Nov 15;277(46):44005-12 3455637 - J Bone Miner Res. 1987 Dec;2(6):595-610 11154281 - Mol Cell Biol. 2001 Feb;21(3):952-65 20655471 - Cell. 2010 Jul 23;142(2):309-19 16469695 - Cell. 2006 Feb 10;124(3):471-84 10660043 - Cell. 2000 Jan 21;100(2):197-207 17052453 - Mol Cell. 2006 Oct 20;24(2):185-97 12419242 - Cell. 2002 Nov 1;111(3):305-17 10882147 - J Endocrinol Invest. 2000 May;23(5):295-303 12534346 - Biochem J. 2003 Apr 1;371(Pt 1):199-204 12172553 - Nat Cell Biol. 2002 Sep;4(9):648-57 12431841 - Trends Endocrinol Metab. 2002 Dec;13(10):444-51 18362359 - Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5266-70 |
References_xml | – ident: B36 doi: 10.2337/diabetes.51.2.276 – ident: B45 doi: 10.1007/BF03343726 – ident: B15 doi: 10.1016/S0960-9822(03)00506-2 – ident: B22 doi: 10.1002/jbmr.141 – ident: B37 doi: 10.1002/jbmr.390 – ident: B42 doi: 10.1042/BJ20080281 – ident: B3 doi: 10.1146/annurev-physiol-020911-153233 – ident: B55 doi: 10.1016/j.molcel.2006.09.019 – volume: 24 start-page: 835 year: 2003 ident: B50 publication-title: Am. J. Neuroradiol. – ident: B12 doi: 10.1016/S1043-2760(02)00662-8 – ident: B17 doi: 10.1038/ncb839 – ident: B39 doi: 10.1016/j.cell.2006.06.055 – ident: B6 doi: 10.1016/S0092-8674(02)01049-8 – volume: 45 start-page: 101 year: 2007 ident: B18 publication-title: Genesis doi: 10.1002/dvg.20271 – ident: B27 doi: 10.1016/S1534-5807(04)00058-9 – ident: B38 doi: 10.1016/j.cell.2011.02.004 – ident: B54 doi: 10.1016/j.bone.2011.04.017 – ident: B13 doi: 10.1016/j.cell.2006.01.016 – ident: B34 doi: 10.1038/305549a0 – ident: B35 doi: 10.1073/pnas.86.20.7838 – ident: B2 doi: 10.1016/j.tem.2009.02.001 – ident: B47 doi: 10.1136/adc.63.12.1423 – ident: B16 doi: 10.1016/S1097-2765(02)00568-3 – ident: B26 doi: 10.1016/j.bbrc.2010.06.008 – ident: B24 doi: 10.1128/MCB.02353-05 – ident: B33 doi: 10.1074/jbc.275.12.9047 – ident: B52 doi: 10.1038/nature01137 – ident: B4 doi: 10.1016/S0092-8674(01)00240-9 – ident: B5 doi: 10.1016/S0092-8674(00)81558-5 – ident: B57 doi: 10.1128/MCB.21.3.952-965.2001 – ident: B53 doi: 10.1073/pnas.0711119105 – ident: B20 doi: 10.1074/jbc.M208265200 – ident: B56 doi: 10.1016/j.molcel.2008.04.027 – volume: 51 start-page: 97 year: 1969 ident: B49 publication-title: J. Bone Joint Surg. Am. doi: 10.2106/00004623-196951010-00007 – ident: B1 doi: 10.1016/j.cmet.2006.10.008 – ident: B8 doi: 10.1016/j.cell.2010.06.002 – volume: 298 start-page: E1283 year: 2010 ident: B19 publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00676.2009 – ident: B25 doi: 10.1074/jbc.M700651200 – ident: B30 doi: 10.1016/j.molcel.2007.12.023 – ident: B46 doi: 10.1089/152091599316775 – ident: B43 doi: 10.1073/pnas.0604153104 – ident: B14 doi: 10.1016/S1097-2765(03)00220-X – ident: B29 doi: 10.1016/j.cub.2004.08.026 – ident: B7 doi: 10.1016/j.cell.2007.05.047 – volume: 287 start-page: 8757 year: 2012 ident: B11 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.282897 – ident: B23 doi: 10.1002/jbmr.1805 – ident: B40 doi: 10.1016/S0092-8674(03)00929-2 – ident: B10 doi: 10.1172/JCI39901 – ident: B41 doi: 10.1128/MCB.01405-07 – volume: 45 start-page: 450 year: 2001 ident: B48 publication-title: J. Am. Acad. Dermatol. doi: 10.1067/mjd.2001.111626 – ident: B9 doi: 10.1016/j.cell.2010.06.003 – ident: B44 doi: 10.1007/s002239900163 – volume: 3 start-page: 131 year: 1988 ident: B51 publication-title: J. Child Neurol. doi: 10.1177/088307388800300211 – ident: B21 doi: 10.1002/jbmr.5650020617 – ident: B32 doi: 10.1126/science.1103160 – ident: B28 doi: 10.1083/jcb.200403069 – ident: B31 doi: 10.1042/bj20021535 – reference: 14651849 - Cell. 2003 Nov 26;115(5):577-90 – reference: 10660043 - Cell. 2000 Jan 21;100(2):197-207 – reference: 23197339 - J Bone Miner Res. 2013 Jan;28(1):2-17 – reference: 17693256 - Cell. 2007 Aug 10;130(3):456-69 – reference: 21425331 - J Bone Miner Res. 2011 Jul;26(7):1680-3 – reference: 18342602 - Mol Cell. 2008 Mar 14;29(5):541-51 – reference: 12534346 - Biochem J. 2003 Apr 1;371(Pt 1):199-204 – reference: 2682629 - Proc Natl Acad Sci U S A. 1989 Oct;86(20):7838-42 – reference: 16959574 - Cell. 2006 Sep 8;126(5):955-68 – reference: 6353247 - Nature. 1983 Oct 6-12;305(5934):549-51 – reference: 3069050 - Arch Dis Child. 1988 Dec;63(12):1423-5 – reference: 12150915 - Mol Cell. 2002 Jul;10(1):151-62 – reference: 12419242 - Cell. 2002 Nov 1;111(3):305-17 – reference: 22077214 - Annu Rev Physiol. 2012;74:87-105 – reference: 10722755 - J Biol Chem. 2000 Mar 24;275(12):9047-54 – reference: 3455637 - J Bone Miner Res. 1987 Dec;2(6):595-610 – reference: 11239410 - Cell. 2001 Feb 23;104(4):531-43 – reference: 15249583 - J Cell Biol. 2004 Jul 19;166(2):213-23 – reference: 10882147 - J Endocrinol Invest. 2000 May;23(5):295-303 – reference: 11467325 - Diabetes Technol Ther. 2000 Spring;2(1):69-80 – reference: 15380067 - Curr Biol. 2004 Sep 21;14(18):1650-6 – reference: 16469695 - Cell. 2006 Feb 10;124(3):471-84 – reference: 17287359 - Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2259-64 – reference: 22298775 - J Biol Chem. 2012 Mar 16;287(12):8757-68 – reference: 17967879 - Mol Cell Biol. 2008 Jan;28(1):61-70 – reference: 12748080 - AJNR Am J Neuroradiol. 2003 May;24(5):835-7 – reference: 12906785 - Curr Biol. 2003 Aug 5;13(15):1259-68 – reference: 17084709 - Cell Metab. 2006 Nov;4(5):341-8 – reference: 18570873 - Mol Cell. 2008 Jun 20;30(6):701-11 – reference: 11511845 - J Am Acad Dermatol. 2001 Sep;45(3):450-2 – reference: 20655470 - Cell. 2010 Jul 23;142(2):296-308 – reference: 21550430 - Bone. 2012 Feb;50(2):568-75 – reference: 11812733 - Diabetes. 2002 Feb;51(2):276-83 – reference: 17245776 - Genesis. 2007 Feb;45(2):101-6 – reference: 18466115 - Biochem J. 2008 Jun 1;412(2):179-90 – reference: 15030764 - Dev Cell. 2004 Mar;6(3):423-35 – reference: 20038793 - J Clin Invest. 2010 Jan;120(1):357-68 – reference: 11154281 - Mol Cell Biol. 2001 Feb;21(3):952-65 – reference: 12447443 - Nature. 2002 Nov 21;420(6913):333-6 – reference: 12215457 - J Biol Chem. 2002 Nov 15;277(46):44005-12 – reference: 8939777 - Calcif Tissue Int. 1996 Dec;59(6):492-5 – reference: 12820960 - Mol Cell. 2003 Jun;11(6):1457-66 – reference: 20655471 - Cell. 2010 Jul 23;142(2):309-19 – reference: 19546009 - Trends Endocrinol Metab. 2009 Jul;20(5):230-6 – reference: 16908541 - Mol Cell Biol. 2006 Oct;26(20):7747-59 – reference: 15486293 - Science. 2004 Oct 15;306(5695):457-61 – reference: 17052453 - Mol Cell. 2006 Oct 20;24(2):185-97 – reference: 18362359 - Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5266-70 – reference: 20533309 - J Bone Miner Res. 2010 Jul;25(7):1468-86 – reference: 17553792 - J Biol Chem. 2007 Aug 31;282(35):25649-58 – reference: 12431841 - Trends Endocrinol Metab. 2002 Dec;13(10):444-51 – reference: 3372971 - J Child Neurol. 1988 Apr;3(2):131-4 – reference: 20570657 - Biochem Biophys Res Commun. 2010 Jul 9;397(4):691-6 – reference: 21333348 - Cell. 2011 Mar 4;144(5):796-809 – reference: 12172553 - Nat Cell Biol. 2002 Sep;4(9):648-57 – reference: 5762715 - J Bone Joint Surg Am. 1969 Jan;51(1):97-102 – reference: 20388826 - Am J Physiol Endocrinol Metab. 2010 Jun;298(6):E1283-94 |
SSID | ssj0006903 |
Score | 2.3533585 |
Snippet | Insulin signaling in osteoblasts regulates global energy balance by stimulating the production of osteocalcin, a bone-derived protein that promotes insulin... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1850 |
SubjectTerms | Animals Bone and Bones - cytology Bone and Bones - diagnostic imaging Bone and Bones - metabolism Cell Differentiation Cells, Cultured Glucose - metabolism Homeostasis Insulin - physiology Male Mice Mice, Inbred C57BL Mice, Transgenic Osteoblasts - physiology Osteocalcin - metabolism Signal Transduction TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism Tumor Suppressor Proteins - physiology X-Ray Microtomography |
Title | Tsc2 Is a Molecular Checkpoint Controlling Osteoblast Development and Glucose Homeostasis |
URI | https://www.tandfonline.com/doi/abs/10.1128/MCB.00075-14 https://www.ncbi.nlm.nih.gov/pubmed/24591652 https://www.proquest.com/docview/1519254388 https://www.proquest.com/docview/1534838724 https://pubmed.ncbi.nlm.nih.gov/PMC4019037 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqRQguCJZXeclIcIpSHOflHCFa2AUWhNSVllPkOI62oiSrJj0s_4J_zNhxE2cJaOESta7tNJ7P45nJPBB6UXAvLuMicAktiTLdUJdLmbuCSCng-AZNSCmKx5-iw5Pg_Wl4Opv9tLyWtm2-ED8m40r-h6rQBnRVUbL_QNl-UmiAz0BfuAKF4Xo1GjeCOkeNw2Frmiq3TnomxbfzelW1KppPuaHrgPPPQM06B1G5tf2E9KuDd8ZrXVVMr0FYbFaNLbIOU-sQOLle6y8me1P_wkYbOjTBLoBlpIseGJvOKK4CsaXzsW9f1t_XfeSZHnMwjJGbjfHqV86RcmvbJrxg8AQ07FRlKwWBpWOKcqLN8GBj0DRYIxZHBXmCWKezxzrm_Tvnpyqa4Th9s9BikNuFpo4TbF86-Hp3RK0IUZbB6EyPzlRp9GsUNA_F6z98GRLQRwnpYjbMQ-xiKSh7Zd97JOWMcuBOaTKXHXItCWd5G90yqgl-3eHsDprJah9d74qVXuyjG-muNuBd9FUhDx81mOMeHnhAHraQhwfkYQt5GMCEDfKwhbx76OTtwTI9dE2RDlcA-25dJmkiiOCxX8qSlDQIiWBSlDxiEWM5Z3CClCLiYeEVceHxPIqKWIYiZ2FccFBA7qO9qq7kQ4QJ8IyEwWRCegEPfMZ4zpNYyACESJKXc-TsFjUTJoO9KqSyzqYIOEcv-97nXeaWP_QjNn2yVlvKyq6sTeZPD3m-o2EGC692Hq9kvW0ykJ8TlV6Csb_18QPms5jCPA86uvd_EJYP9LWQzlE8QkTfQWWDH_9Src50VvhAZYXw40dXfOzH6OawY5-gvXazlU9Bvm7zZxrxvwBtc9De |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tsc2+Is+a+Molecular+Checkpoint+Controlling+Osteoblast+Development+and+Glucose+Homeostasis&rft.jtitle=Molecular+and+cellular+biology&rft.au=Riddle%2C+Ryan+C.&rft.au=Frey%2C+Julie+L.&rft.au=Tomlinson%2C+Ryan+E.&rft.au=Ferron%2C+Mathieu&rft.date=2014-05-01&rft.issn=1098-5549&rft.eissn=1098-5549&rft.volume=34&rft.issue=10&rft.spage=1850&rft.epage=1862&rft_id=info:doi/10.1128%2FMCB.00075-14&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_MCB_00075_14 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5549&client=summon |