Deep Learning for Automated Analysis of Cellular and Extracellular Components of the Foreign Body Response in Multiphoton Microscopy Images

The Foreign body response (FBR) is a major unresolved challenge that compromises medical implant integration and function by inflammation and fibrotic encapsulation. Mice implanted with polymeric scaffolds coupled to intravital non-linear multiphoton microscopy acquisition enable multiparametric, lo...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in bioengineering and biotechnology Vol. 9; p. 797555
Main Authors Sarti, Mattia, Parlani, Maria, Diaz-Gomez, Luis, Mikos, Antonios G., Cerveri, Pietro, Casarin, Stefano, Dondossola, Eleonora
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 25.01.2022
Subjects
Online AccessGet full text
ISSN2296-4185
2296-4185
DOI10.3389/fbioe.2021.797555

Cover

Loading…
Abstract The Foreign body response (FBR) is a major unresolved challenge that compromises medical implant integration and function by inflammation and fibrotic encapsulation. Mice implanted with polymeric scaffolds coupled to intravital non-linear multiphoton microscopy acquisition enable multiparametric, longitudinal investigation of the FBR evolution and interference strategies. However, follow-up analyses based on visual localization and manual segmentation are extremely time-consuming, subject to human error, and do not allow for automated parameter extraction. We developed an integrated computational pipeline based on an innovative and versatile variant of the U-Net neural network to segment and quantify cellular and extracellular structures of interest, which is maintained across different objectives without impairing accuracy. This software for automatically detecting the elements of the FBR shows promise to unravel the complexity of this pathophysiological process.
AbstractList The Foreign body response (FBR) is a major unresolved challenge that compromises medical implant integration and function by inflammation and fibrotic encapsulation. Mice implanted with polymeric scaffolds coupled to intravital non-linear multiphoton microscopy acquisition enable multiparametric, longitudinal investigation of the FBR evolution and interference strategies. However, follow-up analyses based on visual localization and manual segmentation are extremely time-consuming, subject to human error, and do not allow for automated parameter extraction. We developed an integrated computational pipeline based on an innovative and versatile variant of the U-Net neural network to segment and quantify cellular and extracellular structures of interest, which is maintained across different objectives without impairing accuracy. This software for automatically detecting the elements of the FBR shows promise to unravel the complexity of this pathophysiological process.
The Foreign body response (FBR) is a major unresolved challenge that compromises medical implant integration and function by inflammation and fibrotic encapsulation. Mice implanted with polymeric scaffolds coupled to intravital non-linear multiphoton microscopy acquisition enable multiparametric, longitudinal investigation of the FBR evolution and interference strategies. However, follow-up analyses based on visual localization and manual segmentation are extremely time-consuming, subject to human error, and do not allow for automated parameter extraction. We developed an integrated computational pipeline based on an innovative and versatile variant of the U-Net neural network to segment and quantify cellular and extracellular structures of interest, which is maintained across different objectives without impairing accuracy. This software for automatically detecting the elements of the FBR shows promise to unravel the complexity of this pathophysiological process.The Foreign body response (FBR) is a major unresolved challenge that compromises medical implant integration and function by inflammation and fibrotic encapsulation. Mice implanted with polymeric scaffolds coupled to intravital non-linear multiphoton microscopy acquisition enable multiparametric, longitudinal investigation of the FBR evolution and interference strategies. However, follow-up analyses based on visual localization and manual segmentation are extremely time-consuming, subject to human error, and do not allow for automated parameter extraction. We developed an integrated computational pipeline based on an innovative and versatile variant of the U-Net neural network to segment and quantify cellular and extracellular structures of interest, which is maintained across different objectives without impairing accuracy. This software for automatically detecting the elements of the FBR shows promise to unravel the complexity of this pathophysiological process.
Author Cerveri, Pietro
Sarti, Mattia
Dondossola, Eleonora
Diaz-Gomez, Luis
Mikos, Antonios G.
Parlani, Maria
Casarin, Stefano
AuthorAffiliation 2 David H. Koch Center for Applied Research of Genitourinary Cancers and Genitourinary Medical Oncology Department , The University of Texas MD Anderson Cancer Center , Houston , TX , United States
5 Center for Computational Surgery , Houston Methodist Research Institute , Houston , TX , United States
7 Houston Methodist Academic Institute , Houston , TX , United States
6 Department of Surgery , Houston Methodist Hospital , Houston , TX , United States
1 Department of Electronics , Information and Bioengineering , Politecnico di Milano University , Milan , Italy
3 Department of Cell Biology , Radboud University Medical Center , Nijmegen , Netherlands
4 Rice University , Dept. of Bioengineering , Houston , TX , United States
AuthorAffiliation_xml – name: 1 Department of Electronics , Information and Bioengineering , Politecnico di Milano University , Milan , Italy
– name: 6 Department of Surgery , Houston Methodist Hospital , Houston , TX , United States
– name: 7 Houston Methodist Academic Institute , Houston , TX , United States
– name: 3 Department of Cell Biology , Radboud University Medical Center , Nijmegen , Netherlands
– name: 2 David H. Koch Center for Applied Research of Genitourinary Cancers and Genitourinary Medical Oncology Department , The University of Texas MD Anderson Cancer Center , Houston , TX , United States
– name: 4 Rice University , Dept. of Bioengineering , Houston , TX , United States
– name: 5 Center for Computational Surgery , Houston Methodist Research Institute , Houston , TX , United States
Author_xml – sequence: 1
  givenname: Mattia
  surname: Sarti
  fullname: Sarti, Mattia
– sequence: 2
  givenname: Maria
  surname: Parlani
  fullname: Parlani, Maria
– sequence: 3
  givenname: Luis
  surname: Diaz-Gomez
  fullname: Diaz-Gomez, Luis
– sequence: 4
  givenname: Antonios G.
  surname: Mikos
  fullname: Mikos, Antonios G.
– sequence: 5
  givenname: Pietro
  surname: Cerveri
  fullname: Cerveri, Pietro
– sequence: 6
  givenname: Stefano
  surname: Casarin
  fullname: Casarin, Stefano
– sequence: 7
  givenname: Eleonora
  surname: Dondossola
  fullname: Dondossola, Eleonora
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35145962$$D View this record in MEDLINE/PubMed
BookMark eNp1ks-O0zAQxiO0iP3DPgAX5COXltiJY-eCVMruUqkICcHZmjjj1qskDrazos_AS-O2W7SLhC-2Zr75jTXzXWZngxswy97QfF4Usn5vGutwznJG56IWnPMX2QVjdTUrqeRnT97n2XUI93meU8YFl-xVdl5wWvK6YhfZ70-II1kj-MEOG2KcJ4spuh4itmQxQLcLNhBnyBK7burAExhacvMretCnyNL1Y_rbEA_CuEVy6zzazUA-unZHvmFI6YDEDuTL1EU7bl106W21d0G7cUdWPWwwvM5eGugCXj_eV9mP25vvy8-z9de71XKxnmle0DiTUOdSAIiy4GiAVti2ouCyxqaVwERtKG255JqXrKFY8KQDFG2JeS6aqiqustWR2zq4V6O3PfidcmDVIeD8RoGPVneoGOWFEdoYXuqy4RqMqLlElgvgZVOLxPpwZI1T02Or0xQ8dM-gzzOD3aqNe1BSsnRoArx7BHj3c8IQVW_DfrQwoJuCYhWTrC7TwpL07dNef5uctpkE4ijYDzZ4NErbCNG6fWvbKZqrvXXUwTpqbx11tE6qpP9UnuD_r_kDj_nKXA
CitedBy_id crossref_primary_10_3390_ph15050562
crossref_primary_10_1002_jbio_202300223
crossref_primary_10_3390_technologies12070095
crossref_primary_10_1007_s43465_024_01189_1
Cites_doi 10.1038/nmeth.2075
10.1364/oe.22.022561
10.1038/nmeth.2089
10.1038/nmat4290
10.1073/pnas.1321139110
10.1002/adhm.201700370
10.1186/s12859-018-2375-z
10.1007/978-1-4939-7113-8_28
10.1016/j.addr.2019.08.010
10.1145/357994.358023
10.1063/1.118442
10.1016/j.media.2020.101841
10.1021/acsbiomaterials.6b00760
10.1016/j.jconrel.2015.07.021
10.1109/ISBI.2019.8759329
10.1016/j.biomaterials.2004.04.017
10.1016/s0146-664x(77)80024-5
10.3390/ma8095269
10.1016/j.actbio.2018.05.051
10.1109/ISCID.2016.1100
10.1038/s41467-020-19851-1
10.1242/jcs.236075
10.1016/j.biomaterials.2006.07.010
10.3390/jfb8040044
10.1016/0022-1759(94)90012-4
10.1038/nbt.3462
10.1109/cvpr.2019.00075
10.1007/s10237-011-0325-z
10.1038/s41578-021-00369-x
10.1208/s12248-010-9175-3
10.1371/journal.pone.0130386
10.1038/nm.2989
10.3389/fbioe.2020.00198
10.1007/978-3-319-24574-4_28
10.1016/j.biomaterials.2016.02.036
10.1208/aapsj070122
10.1038/s41592-020-01008-z
10.1002/adfm.202170040
10.1371/journal.pcbi.1009451
10.1109/tmi.2018.2806086
10.1038/nmeth.2019
10.1016/j.smim.2007.11.004
10.1038/s41551-016-0007
10.1038/nbt.2580
10.21037/qims-19-1090
10.1016/j.media.2021.102039
10.1016/j.media.2020.101786
ContentType Journal Article
Copyright Copyright © 2022 Sarti, Parlani, Diaz-Gomez, Mikos, Cerveri, Casarin and Dondossola.
Copyright © 2022 Sarti, Parlani, Diaz-Gomez, Mikos, Cerveri, Casarin and Dondossola. 2022 Sarti, Parlani, Diaz-Gomez, Mikos, Cerveri, Casarin and Dondossola
Copyright_xml – notice: Copyright © 2022 Sarti, Parlani, Diaz-Gomez, Mikos, Cerveri, Casarin and Dondossola.
– notice: Copyright © 2022 Sarti, Parlani, Diaz-Gomez, Mikos, Cerveri, Casarin and Dondossola. 2022 Sarti, Parlani, Diaz-Gomez, Mikos, Cerveri, Casarin and Dondossola
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fbioe.2021.797555
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Sarti et al
EISSN 2296-4185
ExternalDocumentID oai_doaj_org_article_2153f7cff54c4b5caf7958e207a54b97
PMC8822221
35145962
10_3389_fbioe_2021_797555
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P50 CA140388
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c531t-8a9087aa7435efa16edd73589ebd8a279f11d585c542b1e35435ae7d4e007b663
IEDL.DBID M48
ISSN 2296-4185
IngestDate Wed Aug 27 01:23:19 EDT 2025
Thu Aug 21 13:52:27 EDT 2025
Thu Jul 10 18:42:47 EDT 2025
Thu Apr 03 07:09:18 EDT 2025
Tue Jul 01 02:45:47 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
intravital multiphoton microscopy
foreign body response
image analysis
U-Net
Language English
License Copyright © 2022 Sarti, Parlani, Diaz-Gomez, Mikos, Cerveri, Casarin and Dondossola.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-8a9087aa7435efa16edd73589ebd8a279f11d585c542b1e35435ae7d4e007b663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: David Grainger, The University of Utah, United States
These authors have contributed equally to this work and share senior authorship
These authors have contributed equally to this work and share first authorship
Stefan G. Stanciu, Politehnica University of Bucharest, Romania
Edited by: Bryan Brown, University of Pittsburgh, United States
This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology
OpenAccessLink https://doaj.org/article/2153f7cff54c4b5caf7958e207a54b97
PMID 35145962
PQID 2628294514
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2153f7cff54c4b5caf7958e207a54b97
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8822221
proquest_miscellaneous_2628294514
pubmed_primary_35145962
crossref_citationtrail_10_3389_fbioe_2021_797555
crossref_primary_10_3389_fbioe_2021_797555
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-25
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in bioengineering and biotechnology
PublicationTitleAlternate Front Bioeng Biotechnol
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Kingma (B21) 2014
Dondossola (B11) 2022; 7
Morris (B30) 2017; 6
Vegas (B44) 2016; 34
Bancelin (B5) 2014; 22
Prakasam (B32) 2017; 8
Dumoulin (B13) 2016
Ronneberger (B36) 2015
de Vos (B9) 2006; 27
Veiseh (B46) 2019; 144
Moore (B28) 2016; 89
Schneider (B38) 2012; 9
Al-Kofahi (B3) 2018; 19
Anderson (B4) 2008; 20
Abraham (B1) 2019
Gurevich (B16) 2020; 133
Dondossola (B10) 2016; 1
Van Rooijen (B43) 1994; 174
Zhang (B49) 2021; 31
Ulku (B42) 2019
Liu (B25) 2017
Shayan (B39) 2018; 75
Zhang (B50) 2013; 31
Zhang (B51) 1984; 27
Masters (B26) 2018
Isensee (B19) 2021; 18
Kose (B23) 2021; 67
Dondossola (B12) 2013; 110
Kastellorizios (B20) 2015; 214
Fan (B14) 2020; 11
Novikov (B31) 2018; 37
Shen (B41) 2018
Veiseh (B45) 2015; 14
Galeska (B15) 2005; 7
Klueh (B22) 2005; 26
Rezatofighi (B34) 2019
Mihelic (B27) 2021; 17
Akilbekova (B2) 2015; 10
Barad (B6) 1997; 70
Robinson (B35) 1977; 6
Zhao (B52) 2020; 65
Liu (B24) 2020; 8
de Chaumont (B8) 2012; 9
LeBleu (B53) 2013; 19
Schindelin (B37) 2012; 9
Morais (B29) 2010; 12
Rezakhaniha (B33) 2012; 11
Yao (B48) 2016
Ioffe (B18) 2015
Cai (B7) 2020; 10
Sheikh (B40) 2015; 8
He (B17) 2021; 71
Witherel (B47) 2018; 4
References_xml – volume: 9
  start-page: 690
  year: 2012
  ident: B8
  article-title: Icy: an Open Bioimage Informatics Platform for Extended Reproducible Research
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2075
– volume: 22
  start-page: 22561
  year: 2014
  ident: B5
  article-title: Determination of Collagen Fiber Orientation in Histological Slides Using Mueller Microscopy and Validation by Second Harmonic Generation Imaging
  publication-title: Opt. Express
  doi: 10.1364/oe.22.022561
– volume: 9
  start-page: 671
  year: 2012
  ident: B38
  article-title: NIH Image to ImageJ: 25 Years of Image Analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume-title: On the Influence of Dice Loss Function in Multi-Class Organ Segmentation of Abdominal CT Using 3D Fully Convolutional Networks
  year: 2018
  ident: B41
– volume: 14
  start-page: 643
  year: 2015
  ident: B45
  article-title: Size- and Shape-dependent Foreign Body Immune Response to Materials Implanted in Rodents and Non-human Primates
  publication-title: Nat. Mater
  doi: 10.1038/nmat4290
– volume-title: Adam: A Method for Stochastic Optimization
  year: 2014
  ident: B21
– volume: 110
  start-page: 20717
  year: 2013
  ident: B12
  article-title: CD13-positive Bone Marrow-Derived Myeloid Cells Promote Angiogenesis, Tumor Growth, and Metastasis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1321139110
– volume: 6
  start-page: 1700370
  year: 2017
  ident: B30
  article-title: Multicompartment Drug Release System for Dynamic Modulation of Tissue Responses
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700370
– volume: 19
  start-page: 365
  year: 2018
  ident: B3
  article-title: A Deep Learning-Based Algorithm for 2-D Cell Segmentation in Microscopy Images
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2375-z
– start-page: 429
  volume-title: Fibrosis: Methods and Protocols
  year: 2017
  ident: B25
  article-title: Methods for Quantifying Fibrillar Collagen Alignment
  doi: 10.1007/978-1-4939-7113-8_28
– volume: 144
  start-page: 148
  year: 2019
  ident: B46
  article-title: Domesticating the Foreign Body Response: Recent Advances and Applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2019.08.010
– volume: 27
  start-page: 236
  year: 1984
  ident: B51
  article-title: A Fast Parallel Algorithm for Thinning Digital Patterns
  publication-title: Commun. ACM
  doi: 10.1145/357994.358023
– volume: 70
  start-page: 922
  year: 1997
  ident: B6
  article-title: Nonlinear Scanning Laser Microscopy by Third Harmonic Generation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.118442
– volume: 67
  start-page: 101841
  year: 2021
  ident: B23
  article-title: Segmentation of Cellular Patterns in Confocal Images of Melanocytic Lesions In Vivo via a Multiscale Encoder-Decoder Network (MED-Net)
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101841
– volume: 4
  start-page: 1233
  year: 2018
  ident: B47
  article-title: Host-Biomaterial Interactions in Zebrafish
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00760
– volume: 214
  start-page: 103
  year: 2015
  ident: B20
  article-title: Multiple Tissue Response Modifiers to Promote Angiogenesis and Prevent the Foreign Body Reaction Around Subcutaneous Implants
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2015.07.021
– year: 2019
  ident: B1
  article-title: A Novel Focal Tversky Loss Function with Improved Attention U-Net for Lesion Segmentation
  doi: 10.1109/ISBI.2019.8759329
– volume: 26
  start-page: 1155
  year: 2005
  ident: B22
  article-title: Enhancement of Implantable Glucose Sensor Function In Vivo Using Gene Transfer-Induced Neovascularization
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.04.017
– volume: 6
  start-page: 492
  year: 1977
  ident: B35
  article-title: Edge Detection by Compass Gradient Masks
  publication-title: Comput. Graphics Image Process.
  doi: 10.1016/s0146-664x(77)80024-5
– volume: 8
  start-page: 5671
  year: 2015
  ident: B40
  article-title: Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials
  publication-title: Materials
  doi: 10.3390/ma8095269
– volume: 75
  start-page: 427
  year: 2018
  ident: B39
  article-title: Nanopatterned Bulk Metallic Glass-Based Biomaterials Modulate Macrophage Polarization
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.05.051
– year: 2016
  ident: B48
  article-title: Convolutional Neural Network for Retinal Blood Vessel Segmentation
  doi: 10.1109/ISCID.2016.1100
– volume: 11
  start-page: 6020
  year: 2020
  ident: B14
  article-title: High-speed Volumetric Two-Photon Fluorescence Imaging of Neurovascular Dynamics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19851-1
– volume: 133
  start-page: jcs236075
  year: 2020
  ident: B16
  article-title: Live Imaging the Foreign Body Response in Zebrafish Reveals How Dampening Inflammation Reduces Fibrosis
  publication-title: J. Cel Sci
  doi: 10.1242/jcs.236075
– volume-title: Revisiting Small Batch Training for Deep Neural Networks
  year: 2018
  ident: B26
– volume: 27
  start-page: 5603
  year: 2006
  ident: B9
  article-title: Alginate-based Microcapsules for Immunoisolation of Pancreatic Islets
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.07.010
– volume: 8
  start-page: 44-58
  year: 2017
  ident: B32
  article-title: Biodegradable Materials and Metallic Implants-A Review
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb8040044
– volume: 174
  start-page: 83
  year: 1994
  ident: B43
  article-title: Liposome Mediated Depletion of Macrophages: Mechanism of Action, Preparation of Liposomes and Applications
  publication-title: J. Immunol. Methods
  doi: 10.1016/0022-1759(94)90012-4
– volume: 34
  start-page: 345
  year: 2016
  ident: B44
  article-title: Combinatorial Hydrogel Library Enables Identification of Materials that Mitigate the Foreign Body Response in Primates
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3462
– year: 2019
  ident: B34
  article-title: Generalized Intersection over Union: A Metric and a Loss for Bounding Box Regression
  doi: 10.1109/cvpr.2019.00075
– volume: 11
  start-page: 461
  year: 2012
  ident: B33
  article-title: Experimental Investigation of Collagen Waviness and Orientation in the Arterial Adventitia Using Confocal Laser Scanning Microscopy
  publication-title: Biomech. Model. Mechanobiol
  doi: 10.1007/s10237-011-0325-z
– volume: 7
  start-page: 6-22
  year: 2022
  ident: B11
  article-title: Host Responses to Implants Revealed by Intravital Microscopy
  publication-title: Nat. Rev. Mater
  doi: 10.1038/s41578-021-00369-x
– volume: 12
  start-page: 188
  year: 2010
  ident: B29
  article-title: Biomaterials/tissue Interactions: Possible Solutions to Overcome Foreign Body Response
  publication-title: AAPS J.
  doi: 10.1208/s12248-010-9175-3
– volume: 10
  start-page: e0130386
  year: 2015
  ident: B2
  article-title: Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130386
– volume: 19
  start-page: 227
  year: 2013
  ident: B53
  article-title: Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis
  publication-title: Nature Medicine
  doi: 10.1038/nm.2989
– volume: 8
  start-page: 198
  year: 2020
  ident: B24
  article-title: Fibrillar Collagen Quantification with Curvelet Transform Based Computational Methods
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00198
– volume-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
  year: 2015
  ident: B36
  article-title: Convolutional Networks for Biomedical Image Segmentation
  doi: 10.1007/978-3-319-24574-4_28
– volume: 89
  start-page: 127
  year: 2016
  ident: B28
  article-title: Nanoparticle Delivery of miR-223 to Attenuate Macrophage Fusion
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.02.036
– volume: 7
  start-page: E231
  year: 2005
  ident: B15
  article-title: Controlled Release of Dexamethasone from PLGA Microspheres Embedded within Polyacid-Containing PVA Hydrogels
  publication-title: Aaps J.
  doi: 10.1208/aapsj070122
– volume: 18
  start-page: 203
  year: 2021
  ident: B19
  article-title: nnU-Net: a Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– volume-title: A Survey on Deep Learning-Based Architectures for Semantic Segmentation on 2D Images
  year: 2019
  ident: B42
– volume: 31
  start-page: 2170040
  year: 2021
  ident: B49
  article-title: Dealing with the Foreign-Body Response to Implanted Biomaterials: Strategies and Applications of New Materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202170040
– volume: 17
  start-page: e1009451
  year: 2021
  ident: B27
  article-title: Segmentation-Less, Automated, Vascular Vectorization
  publication-title: Plos Comput. Biol.
  doi: 10.1371/journal.pcbi.1009451
– volume: 37
  start-page: 1865
  year: 2018
  ident: B31
  article-title: Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2018.2806086
– volume: 9
  start-page: 676
  year: 2012
  ident: B37
  article-title: Fiji: an Open-Source Platform for Biological-Image Analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– start-page: 448
  year: 2015
  ident: B18
  article-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
– volume: 20
  start-page: 86
  year: 2008
  ident: B4
  article-title: Foreign Body Reaction to Biomaterials
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2007.11.004
– volume: 1
  start-page: 0007
  year: 2016
  ident: B10
  article-title: Examination of the Foreign Body Response to Biomaterials by Nonlinear Intravital Microscopy
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-016-0007
– volume: 31
  start-page: 553
  year: 2013
  ident: B50
  article-title: Zwitterionic Hydrogels Implanted in Mice Resist the Foreign-Body Reaction
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2580
– volume: 10
  start-page: 1275
  year: 2020
  ident: B7
  article-title: Dense-UNet: a Novel Multiphoton In Vivo Cellular Image Segmentation Model Based on a Convolutional Neural Network
  publication-title: Quant Imaging Med. Surg.
  doi: 10.21037/qims-19-1090
– volume-title: A Guide to Convolution Arithmetic for Deep Learning
  year: 2016
  ident: B13
– volume: 71
  start-page: 102039
  year: 2021
  ident: B17
  article-title: MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise Prostate Segmentation via Online Sampling
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102039
– volume: 65
  start-page: 101786
  year: 2020
  ident: B52
  article-title: Triple U-Net: Hematoxylin-Aware Nuclei Segmentation with Progressive Dense Feature Aggregation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101786
SSID ssj0001257582
Score 2.2251098
Snippet The Foreign body response (FBR) is a major unresolved challenge that compromises medical implant integration and function by inflammation and fibrotic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 797555
SubjectTerms Bioengineering and Biotechnology
deep learning
foreign body response
image analysis
intravital multiphoton microscopy
U-Net
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAlGd4yUickEJjrx3bx7a0KkjlgKjUW-TYY7rSkqzortT-Bv40M3F2lUUILlwdW7Y8Y8838cw3jL3VCUAmU5c1OIkOik4leraiDCmpCsRMtUOS2Pnn-uxCfbrUl5NSXxQTlumB88YdoEmaJYNDtQqq1cEn47QFWRmvVeuGPHK0eRNnKv9dQRhiZX7GRC_MHaR23hMtphTvjTOaUvsmhmjg6_8TyPw9VnJifE4fsPsjauSHebX77A50D9m9CZfgI_bzA8CSj3Sp3zhiUX64XvUISCHyDfUI7xM_hsWCYk-57yI_ucHpwqaFLoe-o9AK6ojQkI-VO_lRH2_5lxxPC3ze8SFxd3nVI3Tk5xTUR-ktt_zjd7yfrh-zi9OTr8dn5VhpoQx4Blel9a6yxnuEExqSFzXEaGbaOmij9dK4JERExyJoJVsBM439PJioACFGi6DlCdvrcH3PGBeKOPe8S8GC8qayUROtF1ivwOsgClZttr0JIw05VcNYNOiOkKSaQVINSarJkirYu-2QZebg-FvnI5LltiPRZw8NqFTNqFTNv5SqYG82mtDgcSMx-A769XUja3p6VggzC_Y0a8Z2KkqKoGJGBTM7OrOzlt0v3fxqoPS2hNOkeP4_Fv-C3ZWUo1GJUuqXbG_1Yw2vEDmt2tfDIfkFuQoZlQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning for Automated Analysis of Cellular and Extracellular Components of the Foreign Body Response in Multiphoton Microscopy Images
URI https://www.ncbi.nlm.nih.gov/pubmed/35145962
https://www.proquest.com/docview/2628294514
https://pubmed.ncbi.nlm.nih.gov/PMC8822221
https://doaj.org/article/2153f7cff54c4b5caf7958e207a54b97
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SFEp6KOnbbRJU6Kng1NJKln0oJUkT0sL2ULqQm5HtUbKwtbf7gOxv6J_ujB9LNmx7lWVJaGakb6TRNwDvjUdU3sZhjKkiB8X4kDxbGRbe6wjlQOfNI7Hh9_hypL9dmasd6NNbdRM43-racT6p0WxyfPt79ZkM_hN7nLTffvT5uGbGSyWPbWqNMQ_gIW1MljM5DDu03x65EDZp0kcplcYh07a095zbW9mDRxzmzulpNjathtt_GyC9H1d5Z6O62IcnHcIUJ61KPIUdrJ7B4zu8g8_hzxfEqeioVa8F4VZxslzUBF6xFD1Niai9OMPJhONUhatKcX5L3RV9CS8kdcVhGFyRYKTosnyK07pciR9t7C2KcSWaR77Tm5pgphhyACA_hVmJr79oLZu_gNHF-c-zy7DLyhAWZK-LMHFplFjnCHoY9E7GWJZ2YJIU8zJxyqZeypKckMJolUscGKrn0JYaCY7kBHBewm5F43sNQmrm53OpLxLUzkZJaZgCDBOn0ZlCBhD1054VHWU5Z86YZOS6sNCyRmgZCy1rhRbAh_Uv05av43-VT1mW64pMtd0U1LPrrLPcjDDRwFvSXaMLnZvCeZuaBFVkndF5agN412tCRqbJYnAV1st5pmK-ptakQwG8ajVj3VWvWQHYDZ3ZGMvml2p809B_J4zplHzzzzbfwp7iRxqRDJU5gN3FbImHBJ0W-VFz5HDUmMVfVNAXZg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Automated+Analysis+of+Cellular+and+Extracellular+Components+of+the+Foreign+Body+Response+in+Multiphoton+Microscopy+Images&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Sarti%2C+Mattia&rft.au=Parlani%2C+Maria&rft.au=Diaz-Gomez%2C+Luis&rft.au=Mikos%2C+Antonios+G&rft.date=2022-01-25&rft.issn=2296-4185&rft.eissn=2296-4185&rft.volume=9&rft.spage=797555&rft_id=info:doi/10.3389%2Ffbioe.2021.797555&rft_id=info%3Apmid%2F35145962&rft.externalDocID=35145962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon