The Confounding Effects of Population Structure, Genetic Diversity and the Sampling Scheme on the Detection and Quantification of Population Size Changes

The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium con...

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 186; no. 3; pp. 983 - 995
Main Authors Chikhi, Lounès, Sousa, Vitor C, Luisi, Pierre, Goossens, Benoit, Beaumont, Mark A
Format Journal Article
LanguageEnglish
Published United States Genetics Society of America 01.11.2010
Oxford University Press
Subjects
Online AccessGet full text
ISSN1943-2631
0016-6731
1943-2631
DOI10.1534/genetics.110.118661

Cover

Loading…
Abstract The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g., panmictic population/mutation–drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright–Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration–drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating “spurious” bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species.
AbstractList The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g., panmictic population/mutation-drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright-Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration-drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating "spurious" bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species.
The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions ( e.g ., panmictic population/mutation–drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright–Fisher model ( i.e. , assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration–drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating “spurious” bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species.
The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g., panmictic population/mutation-drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright-Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration-drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating "spurious" bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species. [PUBLICATION ABSTRACT]
The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g., panmictic population/mutation-drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright-Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration-drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating "spurious" bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species.The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g., panmictic population/mutation-drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright-Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration-drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating "spurious" bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species.
Author Beaumont, Mark A
Sousa, Vitor C
Luisi, Pierre
Chikhi, Lounès
Goossens, Benoit
AuthorAffiliation Centre National de la Recherche Scientifique, Laboratoire Evolution et Diversité Biologique (CNRS, EDB), Unité Mixte de Recherche (UMR), CNRS/Université Paul Sabatier (UPS) 5174, F-31062 Toulouse, France, † Université de Toulouse, UPS, EDB, F-31062 Toulouse, France, ‡ Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal, § Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal, Institut National des Sciences Appliquées (INSA) de Toulouse, 31077 Toulouse Cedex 4, France, †† Institute of Evolutionary Biology, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Científicas (UPF-CSIC), CEXS-UPF-PRBB, 08003 Barcelona, Spain, ‡‡ School of Biosciences, Cardiff University, Cathays Park, Cardiff CF10 3TL, United Kingdom, §§ Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Malaysia and School of Biological Sciences, University of Reading, Reading RG6 6BX, United Kingdom
AuthorAffiliation_xml – name: Centre National de la Recherche Scientifique, Laboratoire Evolution et Diversité Biologique (CNRS, EDB), Unité Mixte de Recherche (UMR), CNRS/Université Paul Sabatier (UPS) 5174, F-31062 Toulouse, France, † Université de Toulouse, UPS, EDB, F-31062 Toulouse, France, ‡ Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal, § Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal, Institut National des Sciences Appliquées (INSA) de Toulouse, 31077 Toulouse Cedex 4, France, †† Institute of Evolutionary Biology, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Científicas (UPF-CSIC), CEXS-UPF-PRBB, 08003 Barcelona, Spain, ‡‡ School of Biosciences, Cardiff University, Cathays Park, Cardiff CF10 3TL, United Kingdom, §§ Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Malaysia and School of Biological Sciences, University of Reading, Reading RG6 6BX, United Kingdom
Author_xml – sequence: 1
  givenname: Lounès
  surname: Chikhi
  fullname: Chikhi, Lounès
– sequence: 2
  givenname: Vitor C
  surname: Sousa
  fullname: Sousa, Vitor C
– sequence: 3
  givenname: Pierre
  surname: Luisi
  fullname: Luisi, Pierre
– sequence: 4
  givenname: Benoit
  surname: Goossens
  fullname: Goossens, Benoit
– sequence: 5
  givenname: Mark A
  surname: Beaumont
  fullname: Beaumont, Mark A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20739713$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00601940$$DView record in HAL
BookMark eNp9ks9u1DAQxi1URNuFJ0BCFheExBY7TuLkglRt_yGtBGjL2XK8442rxF5sZ6XyJrxtnaaLyh44eTT-vt_YM3OKjqyzgNBbSs5owfLPG7AQjQpndMzQqizpC3RC65zNs5LRo2fxMToN4Y4QUtZF9QodZ4SzmlN2gv7ctoAXzmo32LWxG3ypNagYsNP4u9sOnYzGWbyKflBx8PAJX09l8YXZgQ8m3mNp1zgmzEr2225krFQLPeDkG9MXEBNxpIzCH4O00WijJvBBGfM7vaaVdgPhNXqpZRfgzdM5Qz-vLm8XN_Plt-uvi_PlXBWMxnnFy7ysUgvqvNI5NJo0BHjDZS3zRrIcJEAKGl7lVGYZb1QKFJPrqqiJLho2Q18m7nZoelgrsNHLTmy96aW_F04a8e-NNa3YuJ3Ial5kFU-AjxOgPbDdnC_FmEttJ2kUZEeT9sNTMe9-DRCi6E1Q0HXSghuC4CXLOS3TfGfo_YHyzg3epk6I8bdFzTKWRO-ev_1v9f18k6CeBMq7EDxooUx87HX6iukEJWLcJbHfJUHHzOMuJS878O7x_3M9AGDz0i0
CODEN GENTAE
CitedBy_id crossref_primary_10_1038_hdy_2016_72
crossref_primary_10_1111_mec_13972
crossref_primary_10_1038_hdy_2016_73
crossref_primary_10_1111_mec_13179
crossref_primary_10_1534_g3_112_002410
crossref_primary_10_1534_g3_117_300259
crossref_primary_10_1371_journal_pone_0036769
crossref_primary_10_1007_s10709_013_9711_z
crossref_primary_10_1111_j_1365_294X_2011_05356_x
crossref_primary_10_1007_s10344_011_0527_9
crossref_primary_10_1016_j_quascirev_2019_105867
crossref_primary_10_1038_s42003_021_02620_1
crossref_primary_10_1111_eva_70067
crossref_primary_10_1038_s41437_018_0148_0
crossref_primary_10_1111_jbi_12012
crossref_primary_10_1038_s41467_023_40104_4
crossref_primary_10_1098_rsbl_2014_0619
crossref_primary_10_1093_gbe_evae002
crossref_primary_10_1186_s12862_022_02100_y
crossref_primary_10_1093_molbev_msw051
crossref_primary_10_1111_bij_12175
crossref_primary_10_1111_evo_12469
crossref_primary_10_1038_hdy_2017_31
crossref_primary_10_1038_hdy_2012_120
crossref_primary_10_1007_s10764_016_9932_y
crossref_primary_10_1111_eva_12170
crossref_primary_10_1111_mec_12636
crossref_primary_10_1111_mec_13724
crossref_primary_10_1111_mec_14378
crossref_primary_10_1111_mec_12754
crossref_primary_10_2983_035_038_0317
crossref_primary_10_4236_ojs_2019_94032
crossref_primary_10_1111_mec_12629
crossref_primary_10_1016_j_mambio_2011_01_011
crossref_primary_10_1007_s00285_018_1272_4
crossref_primary_10_1038_s41598_024_57414_2
crossref_primary_10_1038_srep10216
crossref_primary_10_1534_genetics_110_121764
crossref_primary_10_1038_hdy_2015_104
crossref_primary_10_1111_mec_12741
crossref_primary_10_1111_brv_12580
crossref_primary_10_1111_eva_70049
crossref_primary_10_1111_mec_16302
crossref_primary_10_1007_s10530_011_0064_1
crossref_primary_10_1111_csp2_13075
crossref_primary_10_1016_j_scienta_2017_03_030
crossref_primary_10_1111_jbi_14774
crossref_primary_10_1111_gcb_16289
crossref_primary_10_1371_journal_pgen_1005877
crossref_primary_10_1371_journal_pntd_0006747
crossref_primary_10_1080_24701394_2017_1325478
crossref_primary_10_1111_mec_13027
crossref_primary_10_1186_s12862_018_1217_y
crossref_primary_10_1371_journal_pbio_3001669
crossref_primary_10_1186_1471_2148_11_85
crossref_primary_10_1002_ece3_645
crossref_primary_10_1007_s10592_012_0371_9
crossref_primary_10_1038_s41437_022_00515_3
crossref_primary_10_1080_24701394_2020_1741565
crossref_primary_10_1002_ece3_1950
crossref_primary_10_1007_s10592_011_0194_0
crossref_primary_10_1007_s10592_012_0394_2
crossref_primary_10_1016_j_zool_2018_07_004
crossref_primary_10_1038_ncomms11842
crossref_primary_10_1111_1755_0998_13877
crossref_primary_10_1111_eva_70063
crossref_primary_10_1534_genetics_120_303143
crossref_primary_10_3389_fgene_2020_00870
crossref_primary_10_1371_journal_pone_0172319
crossref_primary_10_1002_ece3_98
crossref_primary_10_1098_rspb_2019_0304
crossref_primary_10_1371_journal_pone_0146295
crossref_primary_10_1534_genetics_112_147785
crossref_primary_10_1371_journal_pone_0099581
crossref_primary_10_1002_ece3_2490
crossref_primary_10_1007_s13127_012_0102_6
crossref_primary_10_1111_mec_16646
crossref_primary_10_1111_nph_16052
crossref_primary_10_1016_j_biocon_2015_12_019
crossref_primary_10_1111_1755_0998_13204
crossref_primary_10_1111_mec_15315
crossref_primary_10_1016_j_jaa_2015_04_005
crossref_primary_10_1007_s00300_015_1775_z
crossref_primary_10_1093_molbev_msu192
crossref_primary_10_1098_rspb_2021_0073
crossref_primary_10_1007_s10764_024_00455_1
crossref_primary_10_1073_pnas_1109119108
crossref_primary_10_1111_mec_12157
crossref_primary_10_1371_journal_pone_0052803
crossref_primary_10_1111_mec_16632
crossref_primary_10_1111_mec_12039
crossref_primary_10_1111_jbi_13528
crossref_primary_10_1371_journal_pone_0149664
crossref_primary_10_1098_rsbl_2019_0560
crossref_primary_10_1038_s41559_024_02591_6
crossref_primary_10_3389_fcosc_2025_1553543
crossref_primary_10_1073_pnas_1111266108
crossref_primary_10_1017_S0030605318000029
crossref_primary_10_1093_jhered_esy065
crossref_primary_10_1093_molbev_msz191
crossref_primary_10_1111_eva_13215
crossref_primary_10_1007_s00606_018_1561_9
crossref_primary_10_1371_journal_pone_0070818
crossref_primary_10_1371_journal_pone_0062992
crossref_primary_10_1073_pnas_1414463112
crossref_primary_10_1093_sysbio_syad073
crossref_primary_10_1093_ve_vew003
crossref_primary_10_1038_s41598_017_07873_7
crossref_primary_10_1038_s41437_023_00643_4
crossref_primary_10_1098_rstb_2020_0418
crossref_primary_10_1111_mec_12498
crossref_primary_10_1007_s10592_019_01169_1
crossref_primary_10_1007_s10764_018_0015_0
crossref_primary_10_1016_j_ijpara_2020_10_002
crossref_primary_10_1111_1755_0998_13676
crossref_primary_10_1007_s10592_013_0542_3
crossref_primary_10_1007_s10530_012_0233_x
crossref_primary_10_1111_jeb_12123
crossref_primary_10_1016_j_gde_2014_07_007
crossref_primary_10_1371_journal_pone_0049429
crossref_primary_10_1038_s41559_020_1215_5
crossref_primary_10_1111_j_1420_9101_2011_02362_x
crossref_primary_10_1002_ece3_395
crossref_primary_10_3389_fgene_2019_00445
crossref_primary_10_1016_j_tpb_2025_03_003
crossref_primary_10_1038_s41598_020_75044_2
crossref_primary_10_1007_s10592_013_0550_3
crossref_primary_10_1111_1755_0998_13487
crossref_primary_10_1186_s12859_021_04048_0
crossref_primary_10_1002_ajpa_23230
crossref_primary_10_1146_annurev_anthro_102317_050006
crossref_primary_10_1093_g3journal_jkad030
crossref_primary_10_1111_j_1365_294X_2012_05671_x
crossref_primary_10_1093_molbev_mss094
crossref_primary_10_3354_meps11573
crossref_primary_10_1093_molbev_msae191
crossref_primary_10_24072_pcjournal_352
crossref_primary_10_1038_s41598_017_05673_7
crossref_primary_10_1111_nph_13496
crossref_primary_10_1186_s12711_023_00859_2
crossref_primary_10_1007_s10592_016_0818_5
crossref_primary_10_1038_srep33753
crossref_primary_10_1007_s10750_016_2939_8
crossref_primary_10_1111_j_1365_294X_2012_05475_x
crossref_primary_10_3390_genes10100779
crossref_primary_10_1016_j_meegid_2016_06_003
crossref_primary_10_1111_mec_16032
crossref_primary_10_4236_jbm_2020_811004
crossref_primary_10_1093_biolinnean_blz164
crossref_primary_10_1111_jbi_13052
crossref_primary_10_1093_jhered_est096
crossref_primary_10_1038_s41437_020_00396_4
crossref_primary_10_1163_15685381_00003035
crossref_primary_10_1371_journal_pone_0097061
crossref_primary_10_1186_s12864_015_1469_5
crossref_primary_10_1002_ece3_7886
crossref_primary_10_1111_mec_17597
crossref_primary_10_1186_s12862_019_1451_y
crossref_primary_10_1186_s12862_018_1240_z
crossref_primary_10_1038_s41467_024_52612_y
crossref_primary_10_1002_ece3_1305
crossref_primary_10_1371_journal_pone_0133954
crossref_primary_10_1038_hdy_2013_62
crossref_primary_10_1016_j_jgg_2021_03_005
crossref_primary_10_1002_ajpa_21603
crossref_primary_10_1186_s12864_021_07618_x
crossref_primary_10_1002_ajp_23453
crossref_primary_10_1038_s41437_017_0005_6
crossref_primary_10_1016_j_tpb_2015_06_003
crossref_primary_10_1111_jbi_12735
crossref_primary_10_1111_mec_17224
crossref_primary_10_1111_mec_13789
crossref_primary_10_1007_s10592_017_0960_8
crossref_primary_10_1002_ece3_5119
crossref_primary_10_1093_evolut_qpae168
crossref_primary_10_1093_jme_tjae127
crossref_primary_10_1007_s10592_011_0188_y
crossref_primary_10_24072_pcjournal_72
crossref_primary_10_3390_jmse11030524
crossref_primary_10_1093_zoolinnean_zlx007
crossref_primary_10_1007_s00606_014_0995_y
crossref_primary_10_1093_jhered_esw065
crossref_primary_10_1111_mec_12321
crossref_primary_10_1111_j_1365_294X_2011_05189_x
crossref_primary_10_1007_s10592_013_0518_3
crossref_primary_10_1111_mec_16123
crossref_primary_10_1038_s41598_017_17042_5
crossref_primary_10_1186_1753_6561_5_S9_S8
crossref_primary_10_1002_ece3_998
crossref_primary_10_1111_eva_70031
crossref_primary_10_1111_fwb_12381
crossref_primary_10_1038_s41437_018_0120_z
crossref_primary_10_3390_d14070542
crossref_primary_10_3389_fgene_2021_708871
crossref_primary_10_1007_s10764_015_9881_x
crossref_primary_10_1111_j_1365_294X_2012_05696_x
crossref_primary_10_1038_s41437_021_00426_9
crossref_primary_10_1186_s12862_021_01929_z
crossref_primary_10_1111_eva_12535
crossref_primary_10_1111_j_1469_1795_2011_00488_x
crossref_primary_10_1038_s41598_024_52556_9
crossref_primary_10_1186_1471_2148_13_195
crossref_primary_10_1093_icesjms_fsu058
crossref_primary_10_1093_molbev_msac118
crossref_primary_10_1111_j_1095_8312_2012_01911_x
crossref_primary_10_1093_sysbio_syaa053
crossref_primary_10_1111_mec_16114
crossref_primary_10_1016_j_ympev_2017_04_006
crossref_primary_10_1093_sysbio_syz027
crossref_primary_10_1186_s40529_019_0267_9
crossref_primary_10_1002_ece3_2665
crossref_primary_10_1186_s13567_019_0692_5
crossref_primary_10_1098_rspb_2015_0425
crossref_primary_10_1111_mec_14173
crossref_primary_10_1146_annurev_ecolsys_110617_062431
crossref_primary_10_1111_fwb_12157
crossref_primary_10_1098_rspb_2013_2182
crossref_primary_10_1007_s00251_015_0827_4
crossref_primary_10_1016_j_tree_2024_10_008
crossref_primary_10_1093_bioinformatics_bty946
crossref_primary_10_1002_ece3_9746
crossref_primary_10_1111_j_1469_1795_2012_00557_x
crossref_primary_10_1111_jfb_14696
crossref_primary_10_1111_mec_12668
crossref_primary_10_1038_s41437_023_00662_1
crossref_primary_10_1111_jbi_12037
crossref_primary_10_1093_molbev_msu212
crossref_primary_10_1111_afe_12437
crossref_primary_10_1093_sysbio_syv120
crossref_primary_10_1111_j_1095_8312_2011_01805_x
crossref_primary_10_1111_jzs_12177
crossref_primary_10_1111_mec_12778
crossref_primary_10_1007_s10329_013_0373_3
crossref_primary_10_1534_genetics_115_179861
crossref_primary_10_1111_1755_0998_12746
crossref_primary_10_3390_ani11092633
crossref_primary_10_24072_pcjournal_285
crossref_primary_10_1002_ece3_1119
crossref_primary_10_1371_journal_pone_0118522
crossref_primary_10_3390_d15121173
crossref_primary_10_1111_mec_12094
Cites_doi 10.1073/pnas.0708280104
10.1093/genetics/157.2.911
10.1093/genetics/158.3.1347
10.1111/j.1365-294X.2008.04059.x
10.1111/j.1365-294X.2009.04413.x
10.1093/bioinformatics/btn514
10.1111/j.1095-8649.1994.tb01239.x
10.1073/pnas.081068098
10.1016/j.biocon.2008.02.025
10.1093/genetics/129.2.555
10.1093/molbev/msp233
10.1093/genetics/16.2.97
10.1093/bioinformatics/bti803
10.3378/027.081.0303
10.1093/genetics/123.3.597
10.1093/bioinformatics/btp487
10.1073/pnas.0308064100
10.1093/molbev/msj057
10.1016/j.biocon.2007.04.002
10.1093/genetics/133.3.693
10.1093/genetics/49.4.561
10.1098/rspb.1996.0237
10.1371/journal.pbio.0030193
10.1093/molbev/msg009
10.1093/genetics/153.4.2013
10.2307/2407137
10.1093/genetics/123.3.585
10.1046/j.1471-8278.2001.00086.x
10.1534/genetics.107.080630
10.1038/sj.hdy.6800447
10.1093/genetics/144.4.2001
10.1111/j.1365-294X.2007.03645.x
10.1111/j.1365-294X.2008.03887.x
10.1038/nrg2611
10.1007/s10592-007-9399-7
10.1534/genetics.108.094904
10.1046/j.1365-294x.2001.01190.x
10.1016/S0140-6736(01)48686-7
10.1371/journal.pbio.0040285
10.1146/annurev.genom.3.022502.103200
10.1016/j.tpb.2005.02.001
10.1093/genetics/164.3.1139
10.1111/j.1365-294X.2008.03871.x
10.1101/gr.6409707
10.1534/genetics.103.024182
10.1016/0040-5809(75)90020-9
10.1111/j.1365-294X.2006.03046.x
10.1093/genetics/153.4.1863
10.1111/j.1365-294X.2009.04426.x
10.1534/genetics.104.036236
10.1111/j.1365-294X.2004.02421.x
ContentType Journal Article
Copyright Copyright Genetics Society of America Nov 2010
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2010 by the Genetics Society of America 2010
Copyright_xml – notice: Copyright Genetics Society of America Nov 2010
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2010 by the Genetics Society of America 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
4U-
7QP
7SS
7TK
7TM
7X2
7X7
7XB
88A
88E
88I
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
LK8
M0K
M0R
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
1XC
5PM
DOI 10.1534/genetics.110.118661
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Docstoc
University Readers
Calcium & Calcified Tissue Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Consumer Health Database (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
Consumer Health Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Docstoc
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
University Readers
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Agricultural Science Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1943-2631
EndPage 995
ExternalDocumentID PMC2975287
oai_HAL_hal_00601940v1
2197410661
20739713
10_1534_genetics_110_118661
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-~X
0R~
18M
29H
2KS
2WC
34G
36B
39C
53G
5GY
5RE
5VS
5WD
7X2
7X7
85S
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AABZA
AACZT
AAPXW
AARHZ
AAUAY
AAVAP
AAYXX
ABDFA
ABDNZ
ABEJV
ABGNP
ABMNT
ABNHQ
ABPPZ
ABPTD
ABUWG
ABVGC
ABXVV
ABXZS
ACFRR
ACGOD
ACIHN
ACIPB
ACNCT
ACPRK
ACUTJ
ADBBV
ADGKP
ADIPN
ADQBN
ADVEK
AEAQA
AENEX
AEUYN
AFFZL
AFGWE
AFKRA
AFRAH
AGORE
AHMBA
AHMMS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AOIJS
APEBS
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BES
BEYMZ
BHPHI
BKNYI
BKOMP
BPHCQ
BTFSW
BVXVI
C1A
CCPQU
CITATION
CJ0
CS3
D0L
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMB
EMOBN
F5P
F8P
F9R
FD6
FLUFQ
FOEOM
FRP
FYUFA
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HYE
INIJC
JXSIZ
K9-
KBUDW
KOP
KQ8
KSI
KSN
L7B
LK8
M0K
M0R
M1P
M2O
M2P
M7P
MV1
NOMLY
OBOKY
OCZFY
OJZSN
OK1
OMK
OPAEJ
OWPYF
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QM9
QN7
QO4
R0Z
RHI
ROX
RXW
SJN
SV3
TAE
TGS
TH9
TN5
TR2
TWZ
U5U
UHB
UKHRP
UKR
UNMZH
UPT
W8F
WH7
WOQ
XSW
YHG
YKV
YSK
YZZ
ZCA
~KM
.-4
.55
.GJ
186
3V.
88A
9M8
A8Z
AAUTI
AAYOK
ABJNI
ABTAH
ACPVT
ACYGS
AFFDN
AFFNX
AGMDO
CGR
CUY
CVF
EBD
ECM
EIF
H~9
M0L
MVM
NHB
NPM
OHT
RHF
RPM
VQA
VXZ
WHG
X7M
XOL
YIF
YIN
YYP
YYQ
ZGI
ZXP
ZY4
4T-
4U-
7QP
7SS
7TK
7TM
7XB
8FD
8FK
FR3
K9.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
1XC
ACVCV
AHGBF
AJBYB
APJGH
UMC
5PM
ID FETCH-LOGICAL-c531t-876468110948f4ebf0b0e7b7a9a4ba34eaee4bab7841a227bc841c3ad8590f5b3
IEDL.DBID 7X7
ISSN 1943-2631
0016-6731
IngestDate Thu Aug 21 17:42:12 EDT 2025
Fri May 09 12:10:33 EDT 2025
Fri Jul 11 09:58:02 EDT 2025
Fri Jul 25 10:29:26 EDT 2025
Wed Feb 19 02:36:30 EST 2025
Thu Apr 24 23:03:33 EDT 2025
Tue Jul 01 01:55:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-876468110948f4ebf0b0e7b7a9a4ba34eaee4bab7841a227bc841c3ad8590f5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC2975287
Communicating editor: H. G. Spencer
Supporting information is available online at http://www.genetics.org/cgi/content/full/genetics.110.118661/DC1.
ORCID 0000-0002-1140-0718
OpenAccessLink https://academic.oup.com/genetics/article-pdf/186/3/983/42176289/genetics0983.pdf
PMID 20739713
PQID 811059323
PQPubID 47453
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2975287
hal_primary_oai_HAL_hal_00601940v1
proquest_miscellaneous_763471615
proquest_journals_811059323
pubmed_primary_20739713
crossref_citationtrail_10_1534_genetics_110_118661
crossref_primary_10_1534_genetics_110_118661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-11-01
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle Genetics (Austin)
PublicationTitleAlternate Genetics
PublicationYear 2010
Publisher Genetics Society of America
Oxford University Press
Publisher_xml – name: Genetics Society of America
– name: Oxford University Press
References (2023030800095281000_) 1964; 49
(2023030800095281000_) 2008; 9
(2023030800095281000_) 2009; 81
(2023030800095281000_) 2006; 22
(2023030800095281000_) 2006; 23
(2023030800095281000_) 2002; 56
(2023030800095281000_) 2004; 101
(2023030800095281000_) 2006; 313
(2023030800095281000_) 2003; 20
(2023030800095281000_) 2001; 98
(2023030800095281000_) 2001; 10
(2023030800095281000_) 2005; 14
(2023030800095281000_) 1975; 7
(2023030800095281000_) 2009; 142
(2023030800095281000_) 2009; 182
(2023030800095281000_) 1999; 153
(2023030800095281000_) 1989; 123
(2023030800095281000_) 2009; 181
(2023030800095281000_) 1975; 29
(2023030800095281000_) 1992; 9
(2023030800095281000_) 1997; 320
(2023030800095281000_) 2006; 15
(2023030800095281000_) 2010; 27
(2023030800095281000_) 1991; 129
(2023030800095281000_) 2005; 68
(2023030800095281000_) 2001; 158
(2023030800095281000_) 2007; 17
(2023030800095281000_) 2001; 157
(2023030800095281000_) 1996; 263
(2023030800095281000_) 2006; 4
(2023030800095281000_) 2002; 3
(2023030800095281000_) 2008; 18
(2023030800095281000_) 2008; 17
(2023030800095281000_) 2005; 169
(2023030800095281000_) 2010
(2023030800095281000_) 2007; 104
(2023030800095281000_) 2009; 13
(2023030800095281000_) 2004; 167
(2023030800095281000_) 2008; 141
(2023030800095281000_) 2009; 11
(2023030800095281000_) 2009; 10
(2023030800095281000_) 2008; 62
(2023030800095281000_) 1996; 144
(2023030800095281000_) 2009; 18
(2023030800095281000_) 2003; 164
(2023030800095281000_) 2008; 24
(2023030800095281000_) 2005; 3
(2023030800095281000_) 2001; 1
(2023030800095281000_) 2009; 3
(2023030800095281000_) 2007; 138
(2023030800095281000_) 1990
(2023030800095281000_) 2009; 25
(2023030800095281000_) 2007
(2023030800095281000_) 2004; 92
(2023030800095281000_) 2008
(2023030800095281000_) 2009
(2023030800095281000_) 1919; 194
(2023030800095281000_) 2003
(2023030800095281000_) 1993; 133
(2023030800095281000_) 1992
(2023030800095281000_) 2004
(2023030800095281000_) 1994; 44
(2023030800095281000_) 2005
(2023030800095281000_) 1931; 16
References_xml – volume: 104
  start-page: 17614
  year: 2007
  ident: 2023030800095281000_
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0708280104
– volume: 157
  start-page: 911
  year: 2001
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1093/genetics/157.2.911
– volume: 158
  start-page: 1347
  year: 2001
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1093/genetics/158.3.1347
– volume: 18
  start-page: 1034
  year: 2009
  ident: 2023030800095281000_
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2008.04059.x
– volume: 9
  start-page: 552
  year: 1992
  ident: 2023030800095281000_
  publication-title: Mol. Biol. Evol.
– volume: 18
  start-page: 5030
  year: 2009
  ident: 2023030800095281000_
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2009.04413.x
– volume: 24
  start-page: 2713
  year: 2008
  ident: 2023030800095281000_
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn514
– volume: 44
  start-page: 627
  year: 1994
  ident: 2023030800095281000_
  publication-title: J. Fish Biol.
  doi: 10.1111/j.1095-8649.1994.tb01239.x
– volume: 13
  start-page: 162
  year: 2009
  ident: 2023030800095281000_
  publication-title: Anim. Conserv.
– volume: 98
  start-page: 4563
  year: 2001
  ident: 2023030800095281000_
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.081068098
– volume: 141
  start-page: 1257
  year: 2008
  ident: 2023030800095281000_
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2008.02.025
– volume: 11
  start-page: 675
  year: 2009
  ident: 2023030800095281000_
  publication-title: Conserv. Genet.
– volume: 129
  start-page: 555
  year: 1991
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1093/genetics/129.2.555
– volume: 27
  start-page: 297
  year: 2010
  ident: 2023030800095281000_
  publication-title: A simulation study. Mol. Biol. Evol.
  doi: 10.1093/molbev/msp233
– volume: 16
  start-page: 97
  year: 1931
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1093/genetics/16.2.97
– volume: 22
  start-page: 341
  year: 2006
  ident: 2023030800095281000_
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti803
– volume: 142
  start-page: 2861
  year: 2009
  ident: 2023030800095281000_
  publication-title: Biol. Conserv.
– volume: 81
  start-page: 141
  year: 2009
  ident: 2023030800095281000_
  publication-title: Hum. Biol.
  doi: 10.3378/027.081.0303
– volume: 123
  start-page: 597
  year: 1989
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1093/genetics/123.3.597
– volume: 25
  start-page: 2747
  year: 2009
  ident: 2023030800095281000_
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp487
– volume: 62
  start-page: 1908
  year: 2008
  ident: 2023030800095281000_
  publication-title: Evolution
– volume: 101
  start-page: 975
  year: 2004
  ident: 2023030800095281000_
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0308064100
– volume: 23
  start-page: 482
  year: 2006
  ident: 2023030800095281000_
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msj057
– volume: 138
  start-page: 60
  year: 2007
  ident: 2023030800095281000_
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2007.04.002
– volume: 320
  start-page: 289
  year: 1997
  ident: 2023030800095281000_
  publication-title: Sciences III
– volume: 133
  start-page: 693
  year: 1993
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1093/genetics/133.3.693
– volume: 49
  start-page: 561
  year: 1964
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1093/genetics/49.4.561
– volume: 263
  start-page: 1619
  year: 1996
  ident: 2023030800095281000_
  publication-title: Proc. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rspb.1996.0237
– year: 2005
  ident: 2023030800095281000_
– volume: 3
  start-page: e193
  year: 2005
  ident: 2023030800095281000_
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030193
– volume: 20
  start-page: 76
  year: 2003
  ident: 2023030800095281000_
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msg009
– volume: 153
  start-page: 2013
  year: 1999
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1093/genetics/153.4.2013
– volume: 29
  start-page: 1
  year: 1975
  ident: 2023030800095281000_
  publication-title: Evolution
  doi: 10.2307/2407137
– volume: 123
  start-page: 585
  year: 1989
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1093/genetics/123.3.585
– volume: 56
  start-page: 154
  year: 2002
  ident: 2023030800095281000_
  publication-title: Evolution
– year: 1990
  ident: 2023030800095281000_
– volume: 1
  start-page: 354
  year: 2001
  ident: 2023030800095281000_
  publication-title: Mol. Ecol. Notes
  doi: 10.1046/j.1471-8278.2001.00086.x
– year: 2009
  ident: 2023030800095281000_
– volume: 181
  start-page: 187
  year: 2009
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1534/genetics.107.080630
– volume: 92
  start-page: 365
  year: 2004
  ident: 2023030800095281000_
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6800447
– volume: 144
  start-page: 2001
  year: 1996
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1093/genetics/144.4.2001
– volume: 17
  start-page: 1009
  year: 2008
  ident: 2023030800095281000_
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2007.03645.x
– year: 2004
  ident: 2023030800095281000_
– volume: 17
  start-page: 4015
  year: 2008
  ident: 2023030800095281000_
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2008.03887.x
– volume: 10
  start-page: 639
  year: 2009
  ident: 2023030800095281000_
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2611
– volume: 9
  start-page: 791
  year: 2008
  ident: 2023030800095281000_
  publication-title: Conserv. Genet.
  doi: 10.1007/s10592-007-9399-7
– volume: 182
  start-page: 205
  year: 2009
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1534/genetics.108.094904
– volume: 10
  start-page: 305
  year: 2001
  ident: 2023030800095281000_
  publication-title: Mol. Ecol.
  doi: 10.1046/j.1365-294x.2001.01190.x
– volume: 194
  start-page: 675
  year: 1919
  ident: 2023030800095281000_
  publication-title: Lancet
  doi: 10.1016/S0140-6736(01)48686-7
– year: 2008
  ident: 2023030800095281000_
– year: 2003
  ident: 2023030800095281000_
– volume: 4
  start-page: 285
  year: 2006
  ident: 2023030800095281000_
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040285
– year: 2007
  ident: 2023030800095281000_
– volume: 3
  start-page: 129
  year: 2002
  ident: 2023030800095281000_
  publication-title: Annu. Rev. Genomics Hum. Genet.
  doi: 10.1146/annurev.genom.3.022502.103200
– volume: 313
  start-page: 172
  year: 2006
  ident: 2023030800095281000_
  publication-title: Science
– volume: 68
  start-page: 41
  year: 2005
  ident: 2023030800095281000_
  publication-title: Theor. Popul. Biol.
  doi: 10.1016/j.tpb.2005.02.001
– volume: 164
  start-page: 1139
  year: 2003
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1093/genetics/164.3.1139
– volume: 3
  start-page: 538
  year: 2009
  ident: 2023030800095281000_
  publication-title: Mol. Ecol. Resour.
– volume: 18
  start-page: 54
  year: 2008
  ident: 2023030800095281000_
  publication-title: Mol. Ecol.
– volume: 17
  start-page: 3788
  year: 2008
  ident: 2023030800095281000_
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2008.03871.x
– volume: 17
  start-page: 1505
  year: 2007
  ident: 2023030800095281000_
  publication-title: Genome Res.
  doi: 10.1101/gr.6409707
– year: 2010
  ident: 2023030800095281000_
– volume: 167
  start-page: 747
  year: 2004
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1534/genetics.103.024182
– volume: 7
  start-page: 256
  year: 1975
  ident: 2023030800095281000_
  publication-title: Theor. Popul. Biol.
  doi: 10.1016/0040-5809(75)90020-9
– year: 1992
  ident: 2023030800095281000_
– volume: 15
  start-page: 3601
  year: 2006
  ident: 2023030800095281000_
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2006.03046.x
– volume: 153
  start-page: 1863
  year: 1999
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1093/genetics/153.4.1863
– volume: 18
  start-page: 5143
  year: 2009
  ident: 2023030800095281000_
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2009.04426.x
– volume: 169
  start-page: 1727
  year: 2005
  ident: 2023030800095281000_
  publication-title: Genetics
  doi: 10.1534/genetics.104.036236
– volume: 14
  start-page: 441
  year: 2005
  ident: 2023030800095281000_
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2004.02421.x
SSID ssj0006958
Score 2.470998
Snippet The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 983
SubjectTerms Animals
Bottlenecks
Computer Simulation
Confounding Factors (Epidemiology)
Cyprinidae - genetics
Endangered & extinct species
Endangered species
Gene flow
Gene Flow - genetics
Genetic diversity
Genetic Loci - genetics
Genetic Variation
Genetics
Genetics, Population
Investigations
Life Sciences
Markov Chains
Methods
Models, Genetic
Monte Carlo Method
Monte Carlo simulation
Mutation
Natural populations
Pongo - genetics
Population Density
Population Dynamics
Population genetics
Population number
Population structure
Sampling Studies
Studies
Title The Confounding Effects of Population Structure, Genetic Diversity and the Sampling Scheme on the Detection and Quantification of Population Size Changes
URI https://www.ncbi.nlm.nih.gov/pubmed/20739713
https://www.proquest.com/docview/811059323
https://www.proquest.com/docview/763471615
https://hal.science/hal-00601940
https://pubmed.ncbi.nlm.nih.gov/PMC2975287
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xUKVeEIW2LLTIqjgS4SROYp8Qz64QRbRbpL1FduIIJMgC2a1U_gn_lhnHibpU4rCrKBknVsYejzPffAOwE6NlzGQRBVFZ8UBILQNdRiaQVlv0ZnklC4ro_rhIh1fibJyMPTan8bDKziY6Q11OCvpGvidD8gTiKN6_fwioaBQFV30FjUVYJuYyQnRl436_xVOVeEOcEsI99KRDSSz2UDmUI9gQCh5_Mk3DuYVp8Zpgkf_7nK-hk_-sRaersOKdSHbQav0DLNh6Dd61ZSX_rsMz6p5RKh-VTMKlibUUxQ2bVOyyL9jFRo46dvZod9n3tqPsuENpMF2XDH1DNtIEOcd7jFC7d5ZhOzp9bKcOw1U7wZ8z3WKO2hu_eszNE_bGJTE0H-Hq9OT30TDwJRiCAifnlGylSOnVKyErYU3FDbeZybTSwuhYoEYtHhiKXuooykyBB0WsS5koXiUm_gRL9aS2G8AU12mIgjExrnMtdKZCyXVhrLJcWTmAqHv_eeH5yalMxm1O-xRUWt4pDXcttHMhpQ1gt29039JzvC3-DRXbSxK19vDgPKdzjphGCf4HhbY6ved-Qjd5P_wGwPqrOBMpvKJrO5k1OVpqXOnRQxzA53aQ9A-KKB6ahdg4mxs-cz2Zv1LfXDuyb8p8xl3t5pud2oL3DtXgciS_wBKOH_sVnaWp2XZTAv_lUbgNy4cnF5e_XgD-pxis
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_AEaMvxG9PUDdG32jYbrft9sEQ9MBDjgt6kPBWdtttINEe2DsN_if-Ef6Pzmw_4mHCGw-XNO3udnLz29mZzhfAmwAlY6wy4Ym84J5UWnk6F8ZTVlvUZnmhMvLoHoyj4bH8dBKeLMGfNheGwipbmegEdT7N6Bv5pvJJEwhEsHVx6VHTKHKuth00alTs26ufaLFV7_YGyN63QuzuHH0Yek1TAS9DuM1o98uIFkukKqQ1BTfcxibWiZZGBxJptHhhyB-nhYhNhhdZoHMVJrwITYDrLsOKDNCS6cHK-53x4ZdO9EdJ2Ij-iGLq_abMURjITYQDZSVWFHePPxVF_sJRuHxGgZj_a7nXgzX_Of1278Nqo7ay7RpnD2DJlg_hTt3I8uoR_Ea0MUoepCZNeBiyuihyxaYFO-xahLGJK1Y7_2432MeaUDZo40KYLnOG2iibaApyxzUmiKdvluE8uj2wMxc1VrqBn-e6jnKqF772mvNfSI1Lm6gew_Gt8OcJ9MppaZ8BS7iOfBwYUI13rqWOE19xnRmbWJ5Y1QfR_v9p1lREp8YcX1OyjJBpacs0tJPIViKm9WGjm3RRFwS5efhrZGw3kop5D7dHKd1zpXASyX_goLWW72kjQqq0A3wfWPcU9z45dHRpp_MqxbMBdQvUSfvwtAZJ9yJBHtjYx8nxAnwWKFl8Up6fufLilGuNdvTzG4l6BXeHRwejdLQ33l-Dey6mwmVorkMPsWRfoKo2My-bDcLg9Lb35F_xiFT2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RSAuiDdLeVgIbo3WcZzEPiBUsSxbWqqipdLeUjtx1Eo025JdUPkn_BT-HTPOQ2yReuthpSgZO9bOeB7xNzMAryPUjKnKRSCKkgdSGRWYQthAOePQm-WlyulE9_N-MjmUn2bxbA3-dLkwBKvsdKJX1MU8p2_kQxWSJxCJaFi2qIiD0fjd2XlADaTooLXrptFIyK67-InRW_12Z4SsfiPE-MPX95OgbTAQ5Ch6C9IEMqGJtVSldLbklrvUpkYbaU0kcb0OLyydzRkhUpvjRR6ZQsWal7GNcN51uJFGcUhbLJ31sR5PdNwagYTQ9WFb8CiO5BAFg_ITa0Lg408lSbhiFNePCZL5v797Gbb5jx0c34U7rQPLthuJuwdrrroPN5uWlhcP4DfKHaM0QmrXhGaRNeWRazYv2UHfLIxNfdna5Xe3xT42C2WjDiHCTFUw9EvZ1BDcHeeYomSdOobj6PbILTx-rPKEX5amwTs1E196zckvXI1PoKgfwuG1cOcRbFTzyj0BprlJQiSMqNo7N9KkOlTc5NZpx7VTAxDd_5_lbW10atHxLaMYCZmWdUzDiImiJmLaALb6QWdNaZCryV8hY3tKKus92d7L6J4viqMl_4FEmx3fs1aZ1Fkv-gNg_VPUAnS0Yyo3X9YZWgn0MtA7HcDjRkj6Fwk6i01DHJyuiM_KSlafVCfHvtA4ZV1jRP30ykW9hFu4E7O9nf3dTbjtwRU-VfMZbKAouefosy3sC787GBxd93b8C9mIV8Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Confounding+Effects+of+Population+Structure%2C+Genetic+Diversity+and+the+Sampling+Scheme+on+the+Detection+and+Quantification+of+Population+Size+Changes&rft.jtitle=Genetics+%28Austin%29&rft.au=Chikhi%2C+Loun%C3%A8s&rft.au=Sousa%2C+Vitor+C&rft.au=Luisi%2C+Pierre&rft.au=Goossens%2C+Benoit&rft.date=2010-11-01&rft.pub=Genetics+Society+of+America&rft.issn=0016-6731&rft.eissn=1943-2631&rft.volume=186&rft.issue=3&rft.spage=983&rft_id=info:doi/10.1534%2Fgenetics.110.118661&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2197410661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-2631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-2631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-2631&client=summon