The Confounding Effects of Population Structure, Genetic Diversity and the Sampling Scheme on the Detection and Quantification of Population Size Changes
The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium con...
Saved in:
Published in | Genetics (Austin) Vol. 186; no. 3; pp. 983 - 995 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Genetics Society of America
01.11.2010
Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 1943-2631 0016-6731 1943-2631 |
DOI | 10.1534/genetics.110.118661 |
Cover
Loading…
Abstract | The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g., panmictic population/mutation–drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright–Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration–drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating “spurious” bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species. |
---|---|
AbstractList | The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g., panmictic population/mutation-drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright-Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration-drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating "spurious" bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species. The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions ( e.g ., panmictic population/mutation–drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright–Fisher model ( i.e. , assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration–drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating “spurious” bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species. The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g., panmictic population/mutation-drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright-Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration-drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating "spurious" bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species. [PUBLICATION ABSTRACT] The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g., panmictic population/mutation-drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright-Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration-drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating "spurious" bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species.The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g., panmictic population/mutation-drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright-Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration-drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating "spurious" bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species. |
Author | Beaumont, Mark A Sousa, Vitor C Luisi, Pierre Chikhi, Lounès Goossens, Benoit |
AuthorAffiliation | Centre National de la Recherche Scientifique, Laboratoire Evolution et Diversité Biologique (CNRS, EDB), Unité Mixte de Recherche (UMR), CNRS/Université Paul Sabatier (UPS) 5174, F-31062 Toulouse, France, † Université de Toulouse, UPS, EDB, F-31062 Toulouse, France, ‡ Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal, § Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal, Institut National des Sciences Appliquées (INSA) de Toulouse, 31077 Toulouse Cedex 4, France, †† Institute of Evolutionary Biology, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Científicas (UPF-CSIC), CEXS-UPF-PRBB, 08003 Barcelona, Spain, ‡‡ School of Biosciences, Cardiff University, Cathays Park, Cardiff CF10 3TL, United Kingdom, §§ Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Malaysia and School of Biological Sciences, University of Reading, Reading RG6 6BX, United Kingdom |
AuthorAffiliation_xml | – name: Centre National de la Recherche Scientifique, Laboratoire Evolution et Diversité Biologique (CNRS, EDB), Unité Mixte de Recherche (UMR), CNRS/Université Paul Sabatier (UPS) 5174, F-31062 Toulouse, France, † Université de Toulouse, UPS, EDB, F-31062 Toulouse, France, ‡ Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal, § Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal, Institut National des Sciences Appliquées (INSA) de Toulouse, 31077 Toulouse Cedex 4, France, †† Institute of Evolutionary Biology, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Científicas (UPF-CSIC), CEXS-UPF-PRBB, 08003 Barcelona, Spain, ‡‡ School of Biosciences, Cardiff University, Cathays Park, Cardiff CF10 3TL, United Kingdom, §§ Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Malaysia and School of Biological Sciences, University of Reading, Reading RG6 6BX, United Kingdom |
Author_xml | – sequence: 1 givenname: Lounès surname: Chikhi fullname: Chikhi, Lounès – sequence: 2 givenname: Vitor C surname: Sousa fullname: Sousa, Vitor C – sequence: 3 givenname: Pierre surname: Luisi fullname: Luisi, Pierre – sequence: 4 givenname: Benoit surname: Goossens fullname: Goossens, Benoit – sequence: 5 givenname: Mark A surname: Beaumont fullname: Beaumont, Mark A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20739713$$D View this record in MEDLINE/PubMed https://hal.science/hal-00601940$$DView record in HAL |
BookMark | eNp9ks9u1DAQxi1URNuFJ0BCFheExBY7TuLkglRt_yGtBGjL2XK8442rxF5sZ6XyJrxtnaaLyh44eTT-vt_YM3OKjqyzgNBbSs5owfLPG7AQjQpndMzQqizpC3RC65zNs5LRo2fxMToN4Y4QUtZF9QodZ4SzmlN2gv7ctoAXzmo32LWxG3ypNagYsNP4u9sOnYzGWbyKflBx8PAJX09l8YXZgQ8m3mNp1zgmzEr2225krFQLPeDkG9MXEBNxpIzCH4O00WijJvBBGfM7vaaVdgPhNXqpZRfgzdM5Qz-vLm8XN_Plt-uvi_PlXBWMxnnFy7ysUgvqvNI5NJo0BHjDZS3zRrIcJEAKGl7lVGYZb1QKFJPrqqiJLho2Q18m7nZoelgrsNHLTmy96aW_F04a8e-NNa3YuJ3Ial5kFU-AjxOgPbDdnC_FmEttJ2kUZEeT9sNTMe9-DRCi6E1Q0HXSghuC4CXLOS3TfGfo_YHyzg3epk6I8bdFzTKWRO-ev_1v9f18k6CeBMq7EDxooUx87HX6iukEJWLcJbHfJUHHzOMuJS878O7x_3M9AGDz0i0 |
CODEN | GENTAE |
CitedBy_id | crossref_primary_10_1038_hdy_2016_72 crossref_primary_10_1111_mec_13972 crossref_primary_10_1038_hdy_2016_73 crossref_primary_10_1111_mec_13179 crossref_primary_10_1534_g3_112_002410 crossref_primary_10_1534_g3_117_300259 crossref_primary_10_1371_journal_pone_0036769 crossref_primary_10_1007_s10709_013_9711_z crossref_primary_10_1111_j_1365_294X_2011_05356_x crossref_primary_10_1007_s10344_011_0527_9 crossref_primary_10_1016_j_quascirev_2019_105867 crossref_primary_10_1038_s42003_021_02620_1 crossref_primary_10_1111_eva_70067 crossref_primary_10_1038_s41437_018_0148_0 crossref_primary_10_1111_jbi_12012 crossref_primary_10_1038_s41467_023_40104_4 crossref_primary_10_1098_rsbl_2014_0619 crossref_primary_10_1093_gbe_evae002 crossref_primary_10_1186_s12862_022_02100_y crossref_primary_10_1093_molbev_msw051 crossref_primary_10_1111_bij_12175 crossref_primary_10_1111_evo_12469 crossref_primary_10_1038_hdy_2017_31 crossref_primary_10_1038_hdy_2012_120 crossref_primary_10_1007_s10764_016_9932_y crossref_primary_10_1111_eva_12170 crossref_primary_10_1111_mec_12636 crossref_primary_10_1111_mec_13724 crossref_primary_10_1111_mec_14378 crossref_primary_10_1111_mec_12754 crossref_primary_10_2983_035_038_0317 crossref_primary_10_4236_ojs_2019_94032 crossref_primary_10_1111_mec_12629 crossref_primary_10_1016_j_mambio_2011_01_011 crossref_primary_10_1007_s00285_018_1272_4 crossref_primary_10_1038_s41598_024_57414_2 crossref_primary_10_1038_srep10216 crossref_primary_10_1534_genetics_110_121764 crossref_primary_10_1038_hdy_2015_104 crossref_primary_10_1111_mec_12741 crossref_primary_10_1111_brv_12580 crossref_primary_10_1111_eva_70049 crossref_primary_10_1111_mec_16302 crossref_primary_10_1007_s10530_011_0064_1 crossref_primary_10_1111_csp2_13075 crossref_primary_10_1016_j_scienta_2017_03_030 crossref_primary_10_1111_jbi_14774 crossref_primary_10_1111_gcb_16289 crossref_primary_10_1371_journal_pgen_1005877 crossref_primary_10_1371_journal_pntd_0006747 crossref_primary_10_1080_24701394_2017_1325478 crossref_primary_10_1111_mec_13027 crossref_primary_10_1186_s12862_018_1217_y crossref_primary_10_1371_journal_pbio_3001669 crossref_primary_10_1186_1471_2148_11_85 crossref_primary_10_1002_ece3_645 crossref_primary_10_1007_s10592_012_0371_9 crossref_primary_10_1038_s41437_022_00515_3 crossref_primary_10_1080_24701394_2020_1741565 crossref_primary_10_1002_ece3_1950 crossref_primary_10_1007_s10592_011_0194_0 crossref_primary_10_1007_s10592_012_0394_2 crossref_primary_10_1016_j_zool_2018_07_004 crossref_primary_10_1038_ncomms11842 crossref_primary_10_1111_1755_0998_13877 crossref_primary_10_1111_eva_70063 crossref_primary_10_1534_genetics_120_303143 crossref_primary_10_3389_fgene_2020_00870 crossref_primary_10_1371_journal_pone_0172319 crossref_primary_10_1002_ece3_98 crossref_primary_10_1098_rspb_2019_0304 crossref_primary_10_1371_journal_pone_0146295 crossref_primary_10_1534_genetics_112_147785 crossref_primary_10_1371_journal_pone_0099581 crossref_primary_10_1002_ece3_2490 crossref_primary_10_1007_s13127_012_0102_6 crossref_primary_10_1111_mec_16646 crossref_primary_10_1111_nph_16052 crossref_primary_10_1016_j_biocon_2015_12_019 crossref_primary_10_1111_1755_0998_13204 crossref_primary_10_1111_mec_15315 crossref_primary_10_1016_j_jaa_2015_04_005 crossref_primary_10_1007_s00300_015_1775_z crossref_primary_10_1093_molbev_msu192 crossref_primary_10_1098_rspb_2021_0073 crossref_primary_10_1007_s10764_024_00455_1 crossref_primary_10_1073_pnas_1109119108 crossref_primary_10_1111_mec_12157 crossref_primary_10_1371_journal_pone_0052803 crossref_primary_10_1111_mec_16632 crossref_primary_10_1111_mec_12039 crossref_primary_10_1111_jbi_13528 crossref_primary_10_1371_journal_pone_0149664 crossref_primary_10_1098_rsbl_2019_0560 crossref_primary_10_1038_s41559_024_02591_6 crossref_primary_10_3389_fcosc_2025_1553543 crossref_primary_10_1073_pnas_1111266108 crossref_primary_10_1017_S0030605318000029 crossref_primary_10_1093_jhered_esy065 crossref_primary_10_1093_molbev_msz191 crossref_primary_10_1111_eva_13215 crossref_primary_10_1007_s00606_018_1561_9 crossref_primary_10_1371_journal_pone_0070818 crossref_primary_10_1371_journal_pone_0062992 crossref_primary_10_1073_pnas_1414463112 crossref_primary_10_1093_sysbio_syad073 crossref_primary_10_1093_ve_vew003 crossref_primary_10_1038_s41598_017_07873_7 crossref_primary_10_1038_s41437_023_00643_4 crossref_primary_10_1098_rstb_2020_0418 crossref_primary_10_1111_mec_12498 crossref_primary_10_1007_s10592_019_01169_1 crossref_primary_10_1007_s10764_018_0015_0 crossref_primary_10_1016_j_ijpara_2020_10_002 crossref_primary_10_1111_1755_0998_13676 crossref_primary_10_1007_s10592_013_0542_3 crossref_primary_10_1007_s10530_012_0233_x crossref_primary_10_1111_jeb_12123 crossref_primary_10_1016_j_gde_2014_07_007 crossref_primary_10_1371_journal_pone_0049429 crossref_primary_10_1038_s41559_020_1215_5 crossref_primary_10_1111_j_1420_9101_2011_02362_x crossref_primary_10_1002_ece3_395 crossref_primary_10_3389_fgene_2019_00445 crossref_primary_10_1016_j_tpb_2025_03_003 crossref_primary_10_1038_s41598_020_75044_2 crossref_primary_10_1007_s10592_013_0550_3 crossref_primary_10_1111_1755_0998_13487 crossref_primary_10_1186_s12859_021_04048_0 crossref_primary_10_1002_ajpa_23230 crossref_primary_10_1146_annurev_anthro_102317_050006 crossref_primary_10_1093_g3journal_jkad030 crossref_primary_10_1111_j_1365_294X_2012_05671_x crossref_primary_10_1093_molbev_mss094 crossref_primary_10_3354_meps11573 crossref_primary_10_1093_molbev_msae191 crossref_primary_10_24072_pcjournal_352 crossref_primary_10_1038_s41598_017_05673_7 crossref_primary_10_1111_nph_13496 crossref_primary_10_1186_s12711_023_00859_2 crossref_primary_10_1007_s10592_016_0818_5 crossref_primary_10_1038_srep33753 crossref_primary_10_1007_s10750_016_2939_8 crossref_primary_10_1111_j_1365_294X_2012_05475_x crossref_primary_10_3390_genes10100779 crossref_primary_10_1016_j_meegid_2016_06_003 crossref_primary_10_1111_mec_16032 crossref_primary_10_4236_jbm_2020_811004 crossref_primary_10_1093_biolinnean_blz164 crossref_primary_10_1111_jbi_13052 crossref_primary_10_1093_jhered_est096 crossref_primary_10_1038_s41437_020_00396_4 crossref_primary_10_1163_15685381_00003035 crossref_primary_10_1371_journal_pone_0097061 crossref_primary_10_1186_s12864_015_1469_5 crossref_primary_10_1002_ece3_7886 crossref_primary_10_1111_mec_17597 crossref_primary_10_1186_s12862_019_1451_y crossref_primary_10_1186_s12862_018_1240_z crossref_primary_10_1038_s41467_024_52612_y crossref_primary_10_1002_ece3_1305 crossref_primary_10_1371_journal_pone_0133954 crossref_primary_10_1038_hdy_2013_62 crossref_primary_10_1016_j_jgg_2021_03_005 crossref_primary_10_1002_ajpa_21603 crossref_primary_10_1186_s12864_021_07618_x crossref_primary_10_1002_ajp_23453 crossref_primary_10_1038_s41437_017_0005_6 crossref_primary_10_1016_j_tpb_2015_06_003 crossref_primary_10_1111_jbi_12735 crossref_primary_10_1111_mec_17224 crossref_primary_10_1111_mec_13789 crossref_primary_10_1007_s10592_017_0960_8 crossref_primary_10_1002_ece3_5119 crossref_primary_10_1093_evolut_qpae168 crossref_primary_10_1093_jme_tjae127 crossref_primary_10_1007_s10592_011_0188_y crossref_primary_10_24072_pcjournal_72 crossref_primary_10_3390_jmse11030524 crossref_primary_10_1093_zoolinnean_zlx007 crossref_primary_10_1007_s00606_014_0995_y crossref_primary_10_1093_jhered_esw065 crossref_primary_10_1111_mec_12321 crossref_primary_10_1111_j_1365_294X_2011_05189_x crossref_primary_10_1007_s10592_013_0518_3 crossref_primary_10_1111_mec_16123 crossref_primary_10_1038_s41598_017_17042_5 crossref_primary_10_1186_1753_6561_5_S9_S8 crossref_primary_10_1002_ece3_998 crossref_primary_10_1111_eva_70031 crossref_primary_10_1111_fwb_12381 crossref_primary_10_1038_s41437_018_0120_z crossref_primary_10_3390_d14070542 crossref_primary_10_3389_fgene_2021_708871 crossref_primary_10_1007_s10764_015_9881_x crossref_primary_10_1111_j_1365_294X_2012_05696_x crossref_primary_10_1038_s41437_021_00426_9 crossref_primary_10_1186_s12862_021_01929_z crossref_primary_10_1111_eva_12535 crossref_primary_10_1111_j_1469_1795_2011_00488_x crossref_primary_10_1038_s41598_024_52556_9 crossref_primary_10_1186_1471_2148_13_195 crossref_primary_10_1093_icesjms_fsu058 crossref_primary_10_1093_molbev_msac118 crossref_primary_10_1111_j_1095_8312_2012_01911_x crossref_primary_10_1093_sysbio_syaa053 crossref_primary_10_1111_mec_16114 crossref_primary_10_1016_j_ympev_2017_04_006 crossref_primary_10_1093_sysbio_syz027 crossref_primary_10_1186_s40529_019_0267_9 crossref_primary_10_1002_ece3_2665 crossref_primary_10_1186_s13567_019_0692_5 crossref_primary_10_1098_rspb_2015_0425 crossref_primary_10_1111_mec_14173 crossref_primary_10_1146_annurev_ecolsys_110617_062431 crossref_primary_10_1111_fwb_12157 crossref_primary_10_1098_rspb_2013_2182 crossref_primary_10_1007_s00251_015_0827_4 crossref_primary_10_1016_j_tree_2024_10_008 crossref_primary_10_1093_bioinformatics_bty946 crossref_primary_10_1002_ece3_9746 crossref_primary_10_1111_j_1469_1795_2012_00557_x crossref_primary_10_1111_jfb_14696 crossref_primary_10_1111_mec_12668 crossref_primary_10_1038_s41437_023_00662_1 crossref_primary_10_1111_jbi_12037 crossref_primary_10_1093_molbev_msu212 crossref_primary_10_1111_afe_12437 crossref_primary_10_1093_sysbio_syv120 crossref_primary_10_1111_j_1095_8312_2011_01805_x crossref_primary_10_1111_jzs_12177 crossref_primary_10_1111_mec_12778 crossref_primary_10_1007_s10329_013_0373_3 crossref_primary_10_1534_genetics_115_179861 crossref_primary_10_1111_1755_0998_12746 crossref_primary_10_3390_ani11092633 crossref_primary_10_24072_pcjournal_285 crossref_primary_10_1002_ece3_1119 crossref_primary_10_1371_journal_pone_0118522 crossref_primary_10_3390_d15121173 crossref_primary_10_1111_mec_12094 |
Cites_doi | 10.1073/pnas.0708280104 10.1093/genetics/157.2.911 10.1093/genetics/158.3.1347 10.1111/j.1365-294X.2008.04059.x 10.1111/j.1365-294X.2009.04413.x 10.1093/bioinformatics/btn514 10.1111/j.1095-8649.1994.tb01239.x 10.1073/pnas.081068098 10.1016/j.biocon.2008.02.025 10.1093/genetics/129.2.555 10.1093/molbev/msp233 10.1093/genetics/16.2.97 10.1093/bioinformatics/bti803 10.3378/027.081.0303 10.1093/genetics/123.3.597 10.1093/bioinformatics/btp487 10.1073/pnas.0308064100 10.1093/molbev/msj057 10.1016/j.biocon.2007.04.002 10.1093/genetics/133.3.693 10.1093/genetics/49.4.561 10.1098/rspb.1996.0237 10.1371/journal.pbio.0030193 10.1093/molbev/msg009 10.1093/genetics/153.4.2013 10.2307/2407137 10.1093/genetics/123.3.585 10.1046/j.1471-8278.2001.00086.x 10.1534/genetics.107.080630 10.1038/sj.hdy.6800447 10.1093/genetics/144.4.2001 10.1111/j.1365-294X.2007.03645.x 10.1111/j.1365-294X.2008.03887.x 10.1038/nrg2611 10.1007/s10592-007-9399-7 10.1534/genetics.108.094904 10.1046/j.1365-294x.2001.01190.x 10.1016/S0140-6736(01)48686-7 10.1371/journal.pbio.0040285 10.1146/annurev.genom.3.022502.103200 10.1016/j.tpb.2005.02.001 10.1093/genetics/164.3.1139 10.1111/j.1365-294X.2008.03871.x 10.1101/gr.6409707 10.1534/genetics.103.024182 10.1016/0040-5809(75)90020-9 10.1111/j.1365-294X.2006.03046.x 10.1093/genetics/153.4.1863 10.1111/j.1365-294X.2009.04426.x 10.1534/genetics.104.036236 10.1111/j.1365-294X.2004.02421.x |
ContentType | Journal Article |
Copyright | Copyright Genetics Society of America Nov 2010 Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2010 by the Genetics Society of America 2010 |
Copyright_xml | – notice: Copyright Genetics Society of America Nov 2010 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2010 by the Genetics Society of America 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 4T- 4U- 7QP 7SS 7TK 7TM 7X2 7X7 7XB 88A 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. LK8 M0K M0R M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 1XC 5PM |
DOI | 10.1534/genetics.110.118661 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc University Readers Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Agricultural Science Collection ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection Consumer Health Database (Alumni Edition) ProQuest Health & Medical Complete (Alumni) Biological Sciences Agricultural Science Database Consumer Health Database Health & Medical Collection (Alumni) Medical Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Docstoc Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) University Readers Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1943-2631 |
EndPage | 995 |
ExternalDocumentID | PMC2975287 oai_HAL_hal_00601940v1 2197410661 20739713 10_1534_genetics_110_118661 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -~X 0R~ 18M 29H 2KS 2WC 34G 36B 39C 53G 5GY 5RE 5VS 5WD 7X2 7X7 85S 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AABZA AACZT AAPXW AARHZ AAUAY AAVAP AAYXX ABDFA ABDNZ ABEJV ABGNP ABMNT ABNHQ ABPPZ ABPTD ABUWG ABVGC ABXVV ABXZS ACFRR ACGOD ACIHN ACIPB ACNCT ACPRK ACUTJ ADBBV ADGKP ADIPN ADQBN ADVEK AEAQA AENEX AEUYN AFFZL AFGWE AFKRA AFRAH AGORE AHMBA AHMMS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AOIJS APEBS ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BES BEYMZ BHPHI BKNYI BKOMP BPHCQ BTFSW BVXVI C1A CCPQU CITATION CJ0 CS3 D0L DIK DU5 DWQXO E3Z EBS EJD EMB EMOBN F5P F8P F9R FD6 FLUFQ FOEOM FRP FYUFA GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HYE INIJC JXSIZ K9- KBUDW KOP KQ8 KSI KSN L7B LK8 M0K M0R M1P M2O M2P M7P MV1 NOMLY OBOKY OCZFY OJZSN OK1 OMK OPAEJ OWPYF PHGZM PHGZT PQQKQ PROAC PSQYO Q2X QF4 QM4 QM9 QN7 QO4 R0Z RHI ROX RXW SJN SV3 TAE TGS TH9 TN5 TR2 TWZ U5U UHB UKHRP UKR UNMZH UPT W8F WH7 WOQ XSW YHG YKV YSK YZZ ZCA ~KM .-4 .55 .GJ 186 3V. 88A 9M8 A8Z AAUTI AAYOK ABJNI ABTAH ACPVT ACYGS AFFDN AFFNX AGMDO CGR CUY CVF EBD ECM EIF H~9 M0L MVM NHB NPM OHT RHF RPM VQA VXZ WHG X7M XOL YIF YIN YYP YYQ ZGI ZXP ZY4 4T- 4U- 7QP 7SS 7TK 7TM 7XB 8FD 8FK FR3 K9. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 1XC ACVCV AHGBF AJBYB APJGH UMC 5PM |
ID | FETCH-LOGICAL-c531t-876468110948f4ebf0b0e7b7a9a4ba34eaee4bab7841a227bc841c3ad8590f5b3 |
IEDL.DBID | 7X7 |
ISSN | 1943-2631 0016-6731 |
IngestDate | Thu Aug 21 17:42:12 EDT 2025 Fri May 09 12:10:33 EDT 2025 Fri Jul 11 09:58:02 EDT 2025 Fri Jul 25 10:29:26 EDT 2025 Wed Feb 19 02:36:30 EST 2025 Thu Apr 24 23:03:33 EDT 2025 Tue Jul 01 01:55:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-876468110948f4ebf0b0e7b7a9a4ba34eaee4bab7841a227bc841c3ad8590f5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC2975287 Communicating editor: H. G. Spencer Supporting information is available online at http://www.genetics.org/cgi/content/full/genetics.110.118661/DC1. |
ORCID | 0000-0002-1140-0718 |
OpenAccessLink | https://academic.oup.com/genetics/article-pdf/186/3/983/42176289/genetics0983.pdf |
PMID | 20739713 |
PQID | 811059323 |
PQPubID | 47453 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2975287 hal_primary_oai_HAL_hal_00601940v1 proquest_miscellaneous_763471615 proquest_journals_811059323 pubmed_primary_20739713 crossref_citationtrail_10_1534_genetics_110_118661 crossref_primary_10_1534_genetics_110_118661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-11-01 |
PublicationDateYYYYMMDD | 2010-11-01 |
PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | Genetics (Austin) |
PublicationTitleAlternate | Genetics |
PublicationYear | 2010 |
Publisher | Genetics Society of America Oxford University Press |
Publisher_xml | – name: Genetics Society of America – name: Oxford University Press |
References | (2023030800095281000_) 1964; 49 (2023030800095281000_) 2008; 9 (2023030800095281000_) 2009; 81 (2023030800095281000_) 2006; 22 (2023030800095281000_) 2006; 23 (2023030800095281000_) 2002; 56 (2023030800095281000_) 2004; 101 (2023030800095281000_) 2006; 313 (2023030800095281000_) 2003; 20 (2023030800095281000_) 2001; 98 (2023030800095281000_) 2001; 10 (2023030800095281000_) 2005; 14 (2023030800095281000_) 1975; 7 (2023030800095281000_) 2009; 142 (2023030800095281000_) 2009; 182 (2023030800095281000_) 1999; 153 (2023030800095281000_) 1989; 123 (2023030800095281000_) 2009; 181 (2023030800095281000_) 1975; 29 (2023030800095281000_) 1992; 9 (2023030800095281000_) 1997; 320 (2023030800095281000_) 2006; 15 (2023030800095281000_) 2010; 27 (2023030800095281000_) 1991; 129 (2023030800095281000_) 2005; 68 (2023030800095281000_) 2001; 158 (2023030800095281000_) 2007; 17 (2023030800095281000_) 2001; 157 (2023030800095281000_) 1996; 263 (2023030800095281000_) 2006; 4 (2023030800095281000_) 2002; 3 (2023030800095281000_) 2008; 18 (2023030800095281000_) 2008; 17 (2023030800095281000_) 2005; 169 (2023030800095281000_) 2010 (2023030800095281000_) 2007; 104 (2023030800095281000_) 2009; 13 (2023030800095281000_) 2004; 167 (2023030800095281000_) 2008; 141 (2023030800095281000_) 2009; 11 (2023030800095281000_) 2009; 10 (2023030800095281000_) 2008; 62 (2023030800095281000_) 1996; 144 (2023030800095281000_) 2009; 18 (2023030800095281000_) 2003; 164 (2023030800095281000_) 2008; 24 (2023030800095281000_) 2005; 3 (2023030800095281000_) 2001; 1 (2023030800095281000_) 2009; 3 (2023030800095281000_) 2007; 138 (2023030800095281000_) 1990 (2023030800095281000_) 2009; 25 (2023030800095281000_) 2007 (2023030800095281000_) 2004; 92 (2023030800095281000_) 2008 (2023030800095281000_) 2009 (2023030800095281000_) 1919; 194 (2023030800095281000_) 2003 (2023030800095281000_) 1993; 133 (2023030800095281000_) 1992 (2023030800095281000_) 2004 (2023030800095281000_) 1994; 44 (2023030800095281000_) 2005 (2023030800095281000_) 1931; 16 |
References_xml | – volume: 104 start-page: 17614 year: 2007 ident: 2023030800095281000_ publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0708280104 – volume: 157 start-page: 911 year: 2001 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1093/genetics/157.2.911 – volume: 158 start-page: 1347 year: 2001 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1093/genetics/158.3.1347 – volume: 18 start-page: 1034 year: 2009 ident: 2023030800095281000_ publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2008.04059.x – volume: 9 start-page: 552 year: 1992 ident: 2023030800095281000_ publication-title: Mol. Biol. Evol. – volume: 18 start-page: 5030 year: 2009 ident: 2023030800095281000_ publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2009.04413.x – volume: 24 start-page: 2713 year: 2008 ident: 2023030800095281000_ publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn514 – volume: 44 start-page: 627 year: 1994 ident: 2023030800095281000_ publication-title: J. Fish Biol. doi: 10.1111/j.1095-8649.1994.tb01239.x – volume: 13 start-page: 162 year: 2009 ident: 2023030800095281000_ publication-title: Anim. Conserv. – volume: 98 start-page: 4563 year: 2001 ident: 2023030800095281000_ publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.081068098 – volume: 141 start-page: 1257 year: 2008 ident: 2023030800095281000_ publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2008.02.025 – volume: 11 start-page: 675 year: 2009 ident: 2023030800095281000_ publication-title: Conserv. Genet. – volume: 129 start-page: 555 year: 1991 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1093/genetics/129.2.555 – volume: 27 start-page: 297 year: 2010 ident: 2023030800095281000_ publication-title: A simulation study. Mol. Biol. Evol. doi: 10.1093/molbev/msp233 – volume: 16 start-page: 97 year: 1931 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1093/genetics/16.2.97 – volume: 22 start-page: 341 year: 2006 ident: 2023030800095281000_ publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti803 – volume: 142 start-page: 2861 year: 2009 ident: 2023030800095281000_ publication-title: Biol. Conserv. – volume: 81 start-page: 141 year: 2009 ident: 2023030800095281000_ publication-title: Hum. Biol. doi: 10.3378/027.081.0303 – volume: 123 start-page: 597 year: 1989 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1093/genetics/123.3.597 – volume: 25 start-page: 2747 year: 2009 ident: 2023030800095281000_ publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp487 – volume: 62 start-page: 1908 year: 2008 ident: 2023030800095281000_ publication-title: Evolution – volume: 101 start-page: 975 year: 2004 ident: 2023030800095281000_ publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0308064100 – volume: 23 start-page: 482 year: 2006 ident: 2023030800095281000_ publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msj057 – volume: 138 start-page: 60 year: 2007 ident: 2023030800095281000_ publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2007.04.002 – volume: 320 start-page: 289 year: 1997 ident: 2023030800095281000_ publication-title: Sciences III – volume: 133 start-page: 693 year: 1993 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1093/genetics/133.3.693 – volume: 49 start-page: 561 year: 1964 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1093/genetics/49.4.561 – volume: 263 start-page: 1619 year: 1996 ident: 2023030800095281000_ publication-title: Proc. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rspb.1996.0237 – year: 2005 ident: 2023030800095281000_ – volume: 3 start-page: e193 year: 2005 ident: 2023030800095281000_ publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030193 – volume: 20 start-page: 76 year: 2003 ident: 2023030800095281000_ publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msg009 – volume: 153 start-page: 2013 year: 1999 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1093/genetics/153.4.2013 – volume: 29 start-page: 1 year: 1975 ident: 2023030800095281000_ publication-title: Evolution doi: 10.2307/2407137 – volume: 123 start-page: 585 year: 1989 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1093/genetics/123.3.585 – volume: 56 start-page: 154 year: 2002 ident: 2023030800095281000_ publication-title: Evolution – year: 1990 ident: 2023030800095281000_ – volume: 1 start-page: 354 year: 2001 ident: 2023030800095281000_ publication-title: Mol. Ecol. Notes doi: 10.1046/j.1471-8278.2001.00086.x – year: 2009 ident: 2023030800095281000_ – volume: 181 start-page: 187 year: 2009 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1534/genetics.107.080630 – volume: 92 start-page: 365 year: 2004 ident: 2023030800095281000_ publication-title: Heredity doi: 10.1038/sj.hdy.6800447 – volume: 144 start-page: 2001 year: 1996 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1093/genetics/144.4.2001 – volume: 17 start-page: 1009 year: 2008 ident: 2023030800095281000_ publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2007.03645.x – year: 2004 ident: 2023030800095281000_ – volume: 17 start-page: 4015 year: 2008 ident: 2023030800095281000_ publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2008.03887.x – volume: 10 start-page: 639 year: 2009 ident: 2023030800095281000_ publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2611 – volume: 9 start-page: 791 year: 2008 ident: 2023030800095281000_ publication-title: Conserv. Genet. doi: 10.1007/s10592-007-9399-7 – volume: 182 start-page: 205 year: 2009 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1534/genetics.108.094904 – volume: 10 start-page: 305 year: 2001 ident: 2023030800095281000_ publication-title: Mol. Ecol. doi: 10.1046/j.1365-294x.2001.01190.x – volume: 194 start-page: 675 year: 1919 ident: 2023030800095281000_ publication-title: Lancet doi: 10.1016/S0140-6736(01)48686-7 – year: 2008 ident: 2023030800095281000_ – year: 2003 ident: 2023030800095281000_ – volume: 4 start-page: 285 year: 2006 ident: 2023030800095281000_ publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040285 – year: 2007 ident: 2023030800095281000_ – volume: 3 start-page: 129 year: 2002 ident: 2023030800095281000_ publication-title: Annu. Rev. Genomics Hum. Genet. doi: 10.1146/annurev.genom.3.022502.103200 – volume: 313 start-page: 172 year: 2006 ident: 2023030800095281000_ publication-title: Science – volume: 68 start-page: 41 year: 2005 ident: 2023030800095281000_ publication-title: Theor. Popul. Biol. doi: 10.1016/j.tpb.2005.02.001 – volume: 164 start-page: 1139 year: 2003 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1093/genetics/164.3.1139 – volume: 3 start-page: 538 year: 2009 ident: 2023030800095281000_ publication-title: Mol. Ecol. Resour. – volume: 18 start-page: 54 year: 2008 ident: 2023030800095281000_ publication-title: Mol. Ecol. – volume: 17 start-page: 3788 year: 2008 ident: 2023030800095281000_ publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2008.03871.x – volume: 17 start-page: 1505 year: 2007 ident: 2023030800095281000_ publication-title: Genome Res. doi: 10.1101/gr.6409707 – year: 2010 ident: 2023030800095281000_ – volume: 167 start-page: 747 year: 2004 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1534/genetics.103.024182 – volume: 7 start-page: 256 year: 1975 ident: 2023030800095281000_ publication-title: Theor. Popul. Biol. doi: 10.1016/0040-5809(75)90020-9 – year: 1992 ident: 2023030800095281000_ – volume: 15 start-page: 3601 year: 2006 ident: 2023030800095281000_ publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2006.03046.x – volume: 153 start-page: 1863 year: 1999 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1093/genetics/153.4.1863 – volume: 18 start-page: 5143 year: 2009 ident: 2023030800095281000_ publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2009.04426.x – volume: 169 start-page: 1727 year: 2005 ident: 2023030800095281000_ publication-title: Genetics doi: 10.1534/genetics.104.036236 – volume: 14 start-page: 441 year: 2005 ident: 2023030800095281000_ publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2004.02421.x |
SSID | ssj0006958 |
Score | 2.470998 |
Snippet | The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 983 |
SubjectTerms | Animals Bottlenecks Computer Simulation Confounding Factors (Epidemiology) Cyprinidae - genetics Endangered & extinct species Endangered species Gene flow Gene Flow - genetics Genetic diversity Genetic Loci - genetics Genetic Variation Genetics Genetics, Population Investigations Life Sciences Markov Chains Methods Models, Genetic Monte Carlo Method Monte Carlo simulation Mutation Natural populations Pongo - genetics Population Density Population Dynamics Population genetics Population number Population structure Sampling Studies Studies |
Title | The Confounding Effects of Population Structure, Genetic Diversity and the Sampling Scheme on the Detection and Quantification of Population Size Changes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20739713 https://www.proquest.com/docview/811059323 https://www.proquest.com/docview/763471615 https://hal.science/hal-00601940 https://pubmed.ncbi.nlm.nih.gov/PMC2975287 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xUKVeEIW2LLTIqjgS4SROYp8Qz64QRbRbpL1FduIIJMgC2a1U_gn_lhnHibpU4rCrKBknVsYejzPffAOwE6NlzGQRBVFZ8UBILQNdRiaQVlv0ZnklC4ro_rhIh1fibJyMPTan8bDKziY6Q11OCvpGvidD8gTiKN6_fwioaBQFV30FjUVYJuYyQnRl436_xVOVeEOcEsI99KRDSSz2UDmUI9gQCh5_Mk3DuYVp8Zpgkf_7nK-hk_-sRaersOKdSHbQav0DLNh6Dd61ZSX_rsMz6p5RKh-VTMKlibUUxQ2bVOyyL9jFRo46dvZod9n3tqPsuENpMF2XDH1DNtIEOcd7jFC7d5ZhOzp9bKcOw1U7wZ8z3WKO2hu_eszNE_bGJTE0H-Hq9OT30TDwJRiCAifnlGylSOnVKyErYU3FDbeZybTSwuhYoEYtHhiKXuooykyBB0WsS5koXiUm_gRL9aS2G8AU12mIgjExrnMtdKZCyXVhrLJcWTmAqHv_eeH5yalMxm1O-xRUWt4pDXcttHMhpQ1gt29039JzvC3-DRXbSxK19vDgPKdzjphGCf4HhbY6ved-Qjd5P_wGwPqrOBMpvKJrO5k1OVpqXOnRQxzA53aQ9A-KKB6ahdg4mxs-cz2Zv1LfXDuyb8p8xl3t5pud2oL3DtXgciS_wBKOH_sVnaWp2XZTAv_lUbgNy4cnF5e_XgD-pxis |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_AEaMvxG9PUDdG32jYbrft9sEQ9MBDjgt6kPBWdtttINEe2DsN_if-Ef6Pzmw_4mHCGw-XNO3udnLz29mZzhfAmwAlY6wy4Ym84J5UWnk6F8ZTVlvUZnmhMvLoHoyj4bH8dBKeLMGfNheGwipbmegEdT7N6Bv5pvJJEwhEsHVx6VHTKHKuth00alTs26ufaLFV7_YGyN63QuzuHH0Yek1TAS9DuM1o98uIFkukKqQ1BTfcxibWiZZGBxJptHhhyB-nhYhNhhdZoHMVJrwITYDrLsOKDNCS6cHK-53x4ZdO9EdJ2Ij-iGLq_abMURjITYQDZSVWFHePPxVF_sJRuHxGgZj_a7nXgzX_Of1278Nqo7ay7RpnD2DJlg_hTt3I8uoR_Ea0MUoepCZNeBiyuihyxaYFO-xahLGJK1Y7_2432MeaUDZo40KYLnOG2iibaApyxzUmiKdvluE8uj2wMxc1VrqBn-e6jnKqF772mvNfSI1Lm6gew_Gt8OcJ9MppaZ8BS7iOfBwYUI13rqWOE19xnRmbWJ5Y1QfR_v9p1lREp8YcX1OyjJBpacs0tJPIViKm9WGjm3RRFwS5efhrZGw3kop5D7dHKd1zpXASyX_goLWW72kjQqq0A3wfWPcU9z45dHRpp_MqxbMBdQvUSfvwtAZJ9yJBHtjYx8nxAnwWKFl8Up6fufLilGuNdvTzG4l6BXeHRwejdLQ33l-Dey6mwmVorkMPsWRfoKo2My-bDcLg9Lb35F_xiFT2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RSAuiDdLeVgIbo3WcZzEPiBUsSxbWqqipdLeUjtx1Eo025JdUPkn_BT-HTPOQ2yReuthpSgZO9bOeB7xNzMAryPUjKnKRSCKkgdSGRWYQthAOePQm-WlyulE9_N-MjmUn2bxbA3-dLkwBKvsdKJX1MU8p2_kQxWSJxCJaFi2qIiD0fjd2XlADaTooLXrptFIyK67-InRW_12Z4SsfiPE-MPX95OgbTAQ5Ch6C9IEMqGJtVSldLbklrvUpkYbaU0kcb0OLyydzRkhUpvjRR6ZQsWal7GNcN51uJFGcUhbLJ31sR5PdNwagYTQ9WFb8CiO5BAFg_ITa0Lg408lSbhiFNePCZL5v797Gbb5jx0c34U7rQPLthuJuwdrrroPN5uWlhcP4DfKHaM0QmrXhGaRNeWRazYv2UHfLIxNfdna5Xe3xT42C2WjDiHCTFUw9EvZ1BDcHeeYomSdOobj6PbILTx-rPKEX5amwTs1E196zckvXI1PoKgfwuG1cOcRbFTzyj0BprlJQiSMqNo7N9KkOlTc5NZpx7VTAxDd_5_lbW10atHxLaMYCZmWdUzDiImiJmLaALb6QWdNaZCryV8hY3tKKus92d7L6J4viqMl_4FEmx3fs1aZ1Fkv-gNg_VPUAnS0Yyo3X9YZWgn0MtA7HcDjRkj6Fwk6i01DHJyuiM_KSlafVCfHvtA4ZV1jRP30ykW9hFu4E7O9nf3dTbjtwRU-VfMZbKAouefosy3sC787GBxd93b8C9mIV8Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Confounding+Effects+of+Population+Structure%2C+Genetic+Diversity+and+the+Sampling+Scheme+on+the+Detection+and+Quantification+of+Population+Size+Changes&rft.jtitle=Genetics+%28Austin%29&rft.au=Chikhi%2C+Loun%C3%A8s&rft.au=Sousa%2C+Vitor+C&rft.au=Luisi%2C+Pierre&rft.au=Goossens%2C+Benoit&rft.date=2010-11-01&rft.pub=Genetics+Society+of+America&rft.issn=0016-6731&rft.eissn=1943-2631&rft.volume=186&rft.issue=3&rft.spage=983&rft_id=info:doi/10.1534%2Fgenetics.110.118661&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2197410661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-2631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-2631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-2631&client=summon |