Sphingolipids as a Culprit of Mitochondrial Dysfunction in Insulin Resistance and Type 2 Diabetes
Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the...
Saved in:
Published in | Frontiers in endocrinology (Lausanne) Vol. 12; p. 635175 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
18.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the major factors in the induction of insulin resistance and type 2 diabetes (T2D). A significant number of studies have described the involvement of ceramides and other sphingolipids in the inhibition of insulin-signaling pathway in both skeletal muscles and the liver. Adverse effects of sphingolipid accumulation have recently been linked to the activation of protein kinase Cζ (PKCζ) and protein phosphatase 2A (PP2A), which, in turn, negatively affect phosphorylation of serine/threonine kinase Akt [also known as protein kinase B (PKB)], leading to decreased glucose uptake in skeletal muscles as well as increased gluconeogenesis and glycogenolysis in the liver. Sphingolipids, in addition to their direct impact on the insulin signaling pathway, may be responsible for other negative aspects of diabetes, namely mitochondrial dysfunction and deficiency. Mitochondrial health, which is characterized by appropriate mitochondrial quantity, oxidative capacity, controlled oxidative stress, undisturbed respiratory chain function, adenosine triphosphate (ATP) production and mitochondrial proliferation through fission and fusion, is impaired in the skeletal muscles and liver of T2D subjects. Recent findings suggest that impaired mitochondrial function may play a key role in the development of insulin resistance. Mitochondria stay in contact with the endoplasmic reticulum (ER), Golgi membranes and mitochondria-associated membranes (MAM) that are the main places of sphingolipid synthesis. Moreover, mitochondria are capable of synthesizing ceramide though ceramide synthase (CerS) activity. Recently, ceramides have been demonstrated to negatively affect mitochondrial respiratory chain function and fission/fusion activity, which is also a hallmark of T2D. Despite a significant correlation between sphingolipids, mitochondrial dysfunction, insulin resistance and T2D, this subject has not received much attention compared to the direct effect of sphingolipids on the insulin signaling pathway. In this review, we focus on the current state of scientific knowledge regarding the involvement of sphingolipids in the induction of insulin resistance by inhibiting mitochondrial function. |
---|---|
AbstractList | Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the major factors in the induction of insulin resistance and type 2 diabetes (T2D). A significant number of studies have described the involvement of ceramides and other sphingolipids in the inhibition of insulin-signaling pathway in both skeletal muscles and the liver. Adverse effects of sphingolipid accumulation have recently been linked to the activation of protein kinase Cζ (PKCζ) and protein phosphatase 2A (PP2A), which, in turn, negatively affect phosphorylation of serine/threonine kinase Akt [also known as protein kinase B (PKB)], leading to decreased glucose uptake in skeletal muscles as well as increased gluconeogenesis and glycogenolysis in the liver. Sphingolipids, in addition to their direct impact on the insulin signaling pathway, may be responsible for other negative aspects of diabetes, namely mitochondrial dysfunction and deficiency. Mitochondrial health, which is characterized by appropriate mitochondrial quantity, oxidative capacity, controlled oxidative stress, undisturbed respiratory chain function, adenosine triphosphate (ATP) production and mitochondrial proliferation through fission and fusion, is impaired in the skeletal muscles and liver of T2D subjects. Recent findings suggest that impaired mitochondrial function may play a key role in the development of insulin resistance. Mitochondria stay in contact with the endoplasmic reticulum (ER), Golgi membranes and mitochondria-associated membranes (MAM) that are the main places of sphingolipid synthesis. Moreover, mitochondria are capable of synthesizing ceramide though ceramide synthase (CerS) activity. Recently, ceramides have been demonstrated to negatively affect mitochondrial respiratory chain function and fission/fusion activity, which is also a hallmark of T2D. Despite a significant correlation between sphingolipids, mitochondrial dysfunction, insulin resistance and T2D, this subject has not received much attention compared to the direct effect of sphingolipids on the insulin signaling pathway. In this review, we focus on the current state of scientific knowledge regarding the involvement of sphingolipids in the induction of insulin resistance by inhibiting mitochondrial function. Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the major factors in the induction of insulin resistance and type 2 diabetes (T2D). A significant number of studies have described the involvement of ceramides and other sphingolipids in the inhibition of insulin-signaling pathway in both skeletal muscles and the liver. Adverse effects of sphingolipid accumulation have recently been linked to the activation of protein kinase Cζ (PKCζ) and protein phosphatase 2A (PP2A), which, in turn, negatively affect phosphorylation of serine/threonine kinase Akt [also known as protein kinase B (PKB)], leading to decreased glucose uptake in skeletal muscles as well as increased gluconeogenesis and glycogenolysis in the liver. Sphingolipids, in addition to their direct impact on the insulin signaling pathway, may be responsible for other negative aspects of diabetes, namely mitochondrial dysfunction and deficiency. Mitochondrial health, which is characterized by appropriate mitochondrial quantity, oxidative capacity, controlled oxidative stress, undisturbed respiratory chain function, adenosine triphosphate (ATP) production and mitochondrial proliferation through fission and fusion, is impaired in the skeletal muscles and liver of T2D subjects. Recent findings suggest that impaired mitochondrial function may play a key role in the development of insulin resistance. Mitochondria stay in contact with the endoplasmic reticulum (ER), Golgi membranes and mitochondria-associated membranes (MAM) that are the main places of sphingolipid synthesis. Moreover, mitochondria are capable of synthesizing ceramide though ceramide synthase (CerS) activity. Recently, ceramides have been demonstrated to negatively affect mitochondrial respiratory chain function and fission/fusion activity, which is also a hallmark of T2D. Despite a significant correlation between sphingolipids, mitochondrial dysfunction, insulin resistance and T2D, this subject has not received much attention compared to the direct effect of sphingolipids on the insulin signaling pathway. In this review, we focus on the current state of scientific knowledge regarding the involvement of sphingolipids in the induction of insulin resistance by inhibiting mitochondrial function.Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the major factors in the induction of insulin resistance and type 2 diabetes (T2D). A significant number of studies have described the involvement of ceramides and other sphingolipids in the inhibition of insulin-signaling pathway in both skeletal muscles and the liver. Adverse effects of sphingolipid accumulation have recently been linked to the activation of protein kinase Cζ (PKCζ) and protein phosphatase 2A (PP2A), which, in turn, negatively affect phosphorylation of serine/threonine kinase Akt [also known as protein kinase B (PKB)], leading to decreased glucose uptake in skeletal muscles as well as increased gluconeogenesis and glycogenolysis in the liver. Sphingolipids, in addition to their direct impact on the insulin signaling pathway, may be responsible for other negative aspects of diabetes, namely mitochondrial dysfunction and deficiency. Mitochondrial health, which is characterized by appropriate mitochondrial quantity, oxidative capacity, controlled oxidative stress, undisturbed respiratory chain function, adenosine triphosphate (ATP) production and mitochondrial proliferation through fission and fusion, is impaired in the skeletal muscles and liver of T2D subjects. Recent findings suggest that impaired mitochondrial function may play a key role in the development of insulin resistance. Mitochondria stay in contact with the endoplasmic reticulum (ER), Golgi membranes and mitochondria-associated membranes (MAM) that are the main places of sphingolipid synthesis. Moreover, mitochondria are capable of synthesizing ceramide though ceramide synthase (CerS) activity. Recently, ceramides have been demonstrated to negatively affect mitochondrial respiratory chain function and fission/fusion activity, which is also a hallmark of T2D. Despite a significant correlation between sphingolipids, mitochondrial dysfunction, insulin resistance and T2D, this subject has not received much attention compared to the direct effect of sphingolipids on the insulin signaling pathway. In this review, we focus on the current state of scientific knowledge regarding the involvement of sphingolipids in the induction of insulin resistance by inhibiting mitochondrial function. |
Author | Roszczyc-Owsiejczuk, Kamila Zabielski, Piotr |
AuthorAffiliation | 1 Department of Medical Biology, Medical University of Bialystok , Bialystok , Poland 2 Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok , Bialystok , Poland |
AuthorAffiliation_xml | – name: 2 Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok , Bialystok , Poland – name: 1 Department of Medical Biology, Medical University of Bialystok , Bialystok , Poland |
Author_xml | – sequence: 1 givenname: Kamila surname: Roszczyc-Owsiejczuk fullname: Roszczyc-Owsiejczuk, Kamila – sequence: 2 givenname: Piotr surname: Zabielski fullname: Zabielski, Piotr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33815291$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kl1rFDEUhoNU7If9Ad5ILr3ZNR-TSXIjyFbrQkXQeh0y-dhNySbjJCPsvzfbbaUVDIFzSN7zvAnnnIOTlJMD4A1GS0qFfO9dsnlJEMHLnjLM2Qtwhvu-WxAqycmT_BRclnKH2uoQllK8AqcNgBmR-AzoH-M2pE2OYQy2QN02XM1xnEKF2cOvoWazzclOQUd4tS9-TqaGnGBIcJ3KHFv87kooVSfjoE4W3u5HBwm8Cnpw1ZXX4KXXsbjLh3gBfn7-dLv6srj5dr1efbxZGEZxXXA89K4nzCLRmc5Y4g2zg9WOa4ookoZw7ruBk6YzqBsIlhQbTC03klvG6AVYH7k26zvVPrDT015lHdT9QZ42Sk81mOgU84OjvWXei2YluDCIM2St7In1hvPG-nBkjfOwc9a4VCcdn0Gf36SwVZv8WwmEqRCkAd49AKb8a3alql0oxsWok8tzUYQhIWRH-eHdb596_TV57FET8KPATLmUyXllQtWHJjTrEBVGB61U9wOhDgOhjgPRKvE_lY_w_9f8ATptutc |
CitedBy_id | crossref_primary_10_1016_j_mrgentox_2021_503437 crossref_primary_10_3389_fgene_2023_1057068 crossref_primary_10_1016_j_jep_2023_117658 crossref_primary_10_1007_s00018_022_04401_3 crossref_primary_10_3390_life13061415 crossref_primary_10_1016_j_isci_2025_112110 crossref_primary_10_1111_jcmm_70378 crossref_primary_10_1186_s12944_024_02019_x crossref_primary_10_3390_ijms252313190 crossref_primary_10_61958_NDDO4801 crossref_primary_10_1016_j_jbior_2024_101058 crossref_primary_10_1016_j_arres_2024_100100 crossref_primary_10_1002_fft2_450 crossref_primary_10_1111_obr_13426 crossref_primary_10_1016_j_abb_2023_109644 crossref_primary_10_3390_cells13080663 crossref_primary_10_3892_etm_2023_12247 crossref_primary_10_3390_cells13030205 crossref_primary_10_1016_j_cellsig_2023_110794 crossref_primary_10_1002_jimd_12550 crossref_primary_10_3390_ijms23031254 crossref_primary_10_1007_s11306_025_02223_5 crossref_primary_10_3389_fcell_2023_1302472 crossref_primary_10_4330_wjc_v17_i2_102308 crossref_primary_10_3389_fgene_2024_1325401 crossref_primary_10_1007_s13167_024_00356_6 crossref_primary_10_1016_j_intimp_2023_110272 crossref_primary_10_1186_s12967_023_04088_5 crossref_primary_10_1136_bmjdrc_2024_004180 crossref_primary_10_1210_clinem_dgae179 crossref_primary_10_3389_fimmu_2025_1475160 crossref_primary_10_1007_s11306_021_01857_5 crossref_primary_10_1002_ehf2_14224 crossref_primary_10_3390_ijms241814015 crossref_primary_10_3389_fimmu_2022_956688 crossref_primary_10_1016_j_fbio_2024_105696 crossref_primary_10_1007_s00281_024_01033_6 crossref_primary_10_31083_j_fbl2703107 crossref_primary_10_1016_j_ecoenv_2023_115849 crossref_primary_10_1016_j_tjnut_2024_10_041 crossref_primary_10_1016_j_mce_2022_111754 crossref_primary_10_1080_07391102_2024_2446672 crossref_primary_10_1186_s12933_024_02202_5 crossref_primary_10_1007_s13258_022_01250_z crossref_primary_10_1016_j_biochi_2022_06_003 crossref_primary_10_1186_s12944_022_01634_w crossref_primary_10_3390_insects15070507 crossref_primary_10_1016_j_jdiacomp_2021_108048 crossref_primary_10_2147_DMSO_S451129 crossref_primary_10_1210_endocr_bqad128 crossref_primary_10_1016_j_heliyon_2023_e17411 crossref_primary_10_1016_j_cnd_2024_05_004 crossref_primary_10_1016_j_bbalip_2023_159348 crossref_primary_10_1210_jendso_bvac134 crossref_primary_10_1016_j_pestbp_2023_105756 crossref_primary_10_1016_j_cmet_2024_04_006 crossref_primary_10_1152_physrev_00008_2023 crossref_primary_10_3389_fnins_2023_1137893 crossref_primary_10_1007_s00467_023_06257_6 crossref_primary_10_1016_j_jchromb_2024_124446 crossref_primary_10_3390_molecules27186117 crossref_primary_10_1016_j_fbio_2025_106442 crossref_primary_10_3390_biom13101544 crossref_primary_10_34133_research_0343 crossref_primary_10_1021_acs_jproteome_3c00706 crossref_primary_10_3389_fnut_2024_1367589 crossref_primary_10_1097_MD_0000000000037185 |
Cites_doi | 10.1096/fj.10-167502 10.1042/BJ20111626 10.1172/jci.insight.96805 10.1111/joim.12071 10.1038/sj.cdd.4400780 10.1159/000453174 10.1074/jbc.M115.691212 10.1016/j.bbamcr.2013.01.028 10.1007/s00125-013-2913-1 10.1042/BJ20031819 10.1074/jbc.C000587200 10.1016/j.molmet.2020.101145 10.18926/AMO/54413 10.1074/jbc.272.17.11369 10.1074/jbc.M212307200 10.1152/ajpendo.91014.2008 10.1007/s10863-015-9602-3 10.1007/978-94-007-2869-1_1 10.1038/20959 10.1007/s11745-998-0246-2 10.3390/cells9030581 10.1007/s00125-014-3169-0 10.1016/j.celrep.2018.12.031 10.2337/db17-0316 10.1007/s10495-006-5882-8 10.1083/jcb.200604016 10.1016/j.bbabio.2010.01.021 10.1016/j.molmet.2018.12.008 10.1074/jbc.M111.255646 10.1038/s41419-018-0416-1 10.1194/jlr.R800080-JLR200 10.1007/s11010-018-3361-5 10.1242/jcs.194191 10.1074/jbc.M212430200 10.1016/j.biocel.2009.02.004 10.1016/j.str.2011.06.003 10.1126/science.aav3722 10.1016/S0014-5793(01)02242-6 10.1038/s41467-019-09654-4 10.1007/s11010-005-1979-6 10.1016/j.isci.2018.10.001 10.1101/cshperspect.a013326 10.1016/j.tcb.2005.04.006 10.1002/iub.319 10.1038/nature02188 10.1016/j.bbamem.2015.07.013 10.1007/s00125-007-0781-2 10.1128/MCB.05603-11 10.1002/oby.21448 10.1152/ajpcell.1994.266.2.C319 10.1074/jbc.M212754200 10.1172/JCI37048 10.1007/s11306-012-0400-1 10.1155/2018/7514383 10.1096/fj.201801417R 10.1074/jbc.M112.402719 10.1042/BST20160129 10.1016/j.freeradbiomed.2020.11.009 10.1016/S0014-5793(00)02332-2 10.1097/MED.0b013e32833c3026 10.1038/s41598-017-18351-5 10.1371/journal.pone.0101865 10.1691/ph.2019.9310 10.1101/cshperspect.a008706 10.1194/jlr.RA120000628 10.1016/j.ceb.2018.06.003 10.1194/jlr.M700480-JLR200 10.1016/j.bbamcr.2013.04.010 10.1128/MCB.00226-13 10.1093/jmcb/mjw004 10.1016/j.bbamem.2014.11.018 10.1006/mcne.1999.0813 10.1172/JCI97949 10.3389/fphys.2019.00532 10.1096/fj.01-0539com 10.1016/j.tox.2017.07.019 10.3810/pgm.2009.11.2074 10.1242/jcs.185165 10.1056/NEJMoa031314 10.1111/j.2040-1124.2010.00047.x 10.1074/jbc.M409290200 10.1242/jcs.01565 10.1016/j.diabet.2015.02.006 10.1016/j.cellsig.2007.12.006 10.2337/db05-1230 10.1016/j.bbalip.2016.09.019 10.1016/j.biocel.2017.12.019 10.1042/BJ20070936 10.1128/MCB.23.21.7794-7808.2003 10.1016/j.pharep.2015.12.008 10.1016/j.tcb.2008.12.002 10.1074/jbc.M701812200 10.1038/352073a0 10.1155/2013/293893 10.1016/j.diabres.2009.10.007 10.4161/cc.10.11.15824 10.1172/JCI21625 10.1016/j.cmet.2014.09.015 10.2337/diabetes.51.10.2944 10.1016/j.bbalip.2013.11.014 10.2337/diabetes.54.1.8 10.1590/1519-6984.228437 10.2337/diabetes.50.11.2563 10.1016/B978-0-12-817921-5.00001-1 10.1016/j.cmet.2014.08.002 10.1007/s11745-012-3722-x 10.1210/jc.2017-01727 10.1007/s00125-015-3704-7 10.2337/db06-0981 10.1074/jbc.275.18.13330 10.1038/s41467-018-05613-7 10.1016/j.jhep.2009.11.030 10.1073/pnas.0407043101 10.1002/em.20564 10.1128/MCB.12.3.991 10.1074/jbc.M110.102988 10.1182/blood-2007-08-106336 10.1007/978-1-4419-6741-1_1 10.1177/1479164119827611 10.1074/jbc.M116.737684 10.3390/ijms21072346 10.1073/pnas.1108220109 10.1038/nrm.2017.107 10.3389/fendo.2019.00665 10.1042/BJ20130807 10.1016/j.biochi.2013.07.027 10.1007/978-1-0716-0676-6_16 10.1074/jbc.M200754200 10.1021/bi9924415 10.1016/j.neuint.2017.03.010 10.1371/journal.pone.0044042 10.1038/s41366-019-0473-2 10.1139/apnm-2019-0208 10.1074/jbc.M113.530311 10.2337/db10-0174 10.1074/jbc.M110541200 10.1016/j.cell.2019.05.008 10.1152/ajpendo.00463.2019 10.1007/s00125-015-3850-y 10.1007/s00125-011-2130-8 10.1074/jbc.R200009200 10.1016/j.mito.2006.03.002 10.1074/jbc.272.39.24154 10.2337/db17-0901 10.1016/j.cmet.2012.04.010 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Roszczyc-Owsiejczuk and Zabielski. Copyright © 2021 Roszczyc-Owsiejczuk and Zabielski 2021 Roszczyc-Owsiejczuk and Zabielski |
Copyright_xml | – notice: Copyright © 2021 Roszczyc-Owsiejczuk and Zabielski. – notice: Copyright © 2021 Roszczyc-Owsiejczuk and Zabielski 2021 Roszczyc-Owsiejczuk and Zabielski |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3389/fendo.2021.635175 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1664-2392 |
ExternalDocumentID | oai_doaj_org_article_5fbe36d5ff8c4c878c0750dd962dfc77 PMC8013882 33815291 10_3389_fendo_2021_635175 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM CGR CUY CVF ECM EIF IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c531t-71b6e625d084c4cd2fc5dbdae7a30309c277f4b721b6c04b21931c13d7c97d553 |
IEDL.DBID | M48 |
ISSN | 1664-2392 |
IngestDate | Wed Aug 27 01:06:49 EDT 2025 Thu Aug 21 18:12:41 EDT 2025 Fri Jul 11 01:46:02 EDT 2025 Thu Jan 02 22:55:29 EST 2025 Thu Apr 24 23:04:08 EDT 2025 Tue Jul 01 04:27:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ceramide metabolism mitochondrial dysfunction type 2 diabetes sphingolipids insulin resistance |
Language | English |
License | Copyright © 2021 Roszczyc-Owsiejczuk and Zabielski. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-71b6e625d084c4cd2fc5dbdae7a30309c277f4b721b6c04b21931c13d7c97d553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Eric Hajduch, Institut National de la Santé et de la Recherche Médicale (INSERM), France Reviewed by: Pascal Ferre, Sorbonne Universités, France; Bhagirath Chaurasia, The University of Iowa, United States This article was submitted to Diabetes: Molecular Mechanisms, a section of the journal Frontiers in Endocrinology |
OpenAccessLink | https://doaj.org/article/5fbe36d5ff8c4c878c0750dd962dfc77 |
PMID | 33815291 |
PQID | 2508894375 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5fbe36d5ff8c4c878c0750dd962dfc77 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8013882 proquest_miscellaneous_2508894375 pubmed_primary_33815291 crossref_citationtrail_10_3389_fendo_2021_635175 crossref_primary_10_3389_fendo_2021_635175 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-18 |
PublicationDateYYYYMMDD | 2021-03-18 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in endocrinology (Lausanne) |
PublicationTitleAlternate | Front Endocrinol (Lausanne) |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | García-Ruiz (B144) 1997; 272 Li (B20) 2021; 162 Novgorodov (B37) 2014; 289 Hanada (B77) 2003; 426 Yue (B110) 2020; 21 Błachnio-Zabielska (B63) 2012; 47 Mogensen (B90) 2007; 56 Raichur (B60) 2019; 21 Hannun (B7) 2018; 19 D’Orsi (B102) 2017; 109 Huang (B85) 2019; 74 Merrill (B47) 2002; 277 Vance (B67) 2014; 1841 Futerman (B76) 2005; 15 Raichur (B65) 2014; 20 Turpin-Nolan (B57) 2019; 26 Tidhar (B59) 2013; 1833 Kim (B86) 2018; 8 Sebastián (B127) 2012; 109 McGlade (B28) 1992; 12 Shaw (B23) 2011; 10 Constantin-Teodosiu (B19) 2020; 44 Stiban (B72) 2008; 49 Chaurasia (B122) 2019; 365 Nolan (B2) 2019; 16 Sergi (B131) 2019; 10 Cai (B22) 2003; 278 Chang (B104) 2015; 1848 Hernández-Corbacho (B50) 2017; 1862 Papa (B11) 2012; 942 Wu (B46) 2010; 285 Strub (B38) 2011; 25 Turner (B58) 2018; 9 Lee (B24) 1994; 266 Schubert (B31) 2000; 275 Gavin (B14) 2018; 103 Siskind (B99) 2002; 277 Bird (B35) 2013; 9 Shimeno (B36) 1998; 33 Chen (B112) 2008; 111 Powell (B32) 2003; 23 Fugio (B45) 2020; 9 Ishihara (B139) 2004; 117 Tonks (B53) 2016; 24 Di Paola (B93) 2000; 39 Bionda (B39) 2004; 382 Lin (B135) 2018; 2018 Bach (B126) 2003; 278 Jiang (B116) 2019; 10 Pi-Sunyer (B1) 2009; 121 Turner (B56) 2013; 56 Gosejacob (B61) 2016; 291 Smith (B137) 2013; 456 Jain (B80) 2017; 130 Dos Santos (B16) 2018; 449 Turpin (B62) 2014; 20 Bienias (B81) 2016; 68 Sun (B25) 1991; 352 Patwardhan (B66) 2016; 48 Bourbon (B123) 2002; 277 Kogot-Levin (B9) 2014; 100 Jheng (B136) 2012; 32 Theurey (B75) 2016; 8 Ranieri (B138) 2013; 2013 Bartke (B6) 2009 Haththotuwa (B3) 2020 Obeng (B103) 2020; 81 Shaw (B4) 2010; 87 Wada (B17) 2016; 70 Tsujimoto (B108) 2000; 7 Rieusset (B70) 2015; 41 Gudz (B94) 1997; 272 Siddique (B120) 2013; 33 Hayashi (B68) 2009; 19 Hajduch (B26) 2001; 492 Mahfouz (B34) 2014; 9 Stiban (B125) 2006; 11 Dadsena (B107) 2019; 10 Meyer (B129) 2017; 391 Muoio (B143) 2012; 15 Montecinos-Franjola (B132) 2020; 2159 Breslow (B43) 2013; 5 Osellame (B133) 2016; 129 Lefort (B145) 2010; 59 Yang (B117) 2009; 297 Ferreira (B115) 2011; 54 Mullen (B48) 2012; 441 Zorzano (B13) 2009; 41 Straczkowski (B82) 2007; 50 Bergman (B54) 2016; 59 Park (B83) 2016; 291 Zamponi (B128) 2018; 8 Chaurasia (B118) 2020; 45 Tait (B97) 2013; 5 Stiban (B106) 2015; 1848 Salinas (B30) 2000; 15 Furukawa (B141) 2004; 114 Mignard (B69) 2020; 61 Kumagai (B78) 2005; 280 Anderson (B142) 2009; 119 Rieusset (B73) 2018; 9 Gundersen (B18) 2020; 45 Petersen (B87) 2004; 350 Siddique (B121) 2012; 7 Siskind (B100) 2006; 6 Birbes (B40) 2001; 15 Perreault (B52) 2018; 3 Asmann (B15) 2006; 55 Ritov (B88) 2005; 54 Shimizu (B109) 1999; 399 Simões (B113) 2018; 95 Ardail (B8) 2001; 488 Helle (B42) 2013; 1833 Borén (B21) 2013; 274 Cipolat (B140) 2004; 101 Bandet (B79) 2018; 67 Kong (B111) 2005; 278 Wang (B134) 2015; 58 Teruel (B124) 2001; 50 Chavez (B29) 2003; 278 Cohen (B41) 2018; 53 Bournat (B12) 2010; 17 Kitatani (B44) 2008; 20 Kalpage (B101) 2019; 33 Lee (B130) 2016; 44 Burke (B27) 2011; 19 Hajduch (B33) 2008; 410 Wahwah (B92) 2020; 318 Kwak (B10) 2010; 1 Kelley (B89) 2002; 51 Colombini (B105) 2010; 1797 Gault (B49) 2010; 688 Levy (B51) 2010; 62 Blachnio-Zabielska (B55) 2016; 40 Holloway (B91) 2014; 57 Trayssac (B5) 2018; 128 Mitsutake (B84) 2011; 286 Zigdon (B95) 2013; 288 Borutaite (B96) 2010; 51 Tubbs (B74) 2018; 67 Csordás (B71) 2006; 174 Siskind (B98) 2000; 275 Rector (B114) 2010; 52 Hammerschmidt (B64) 2019; 177 Yu (B119) 2007; 282 |
References_xml | – volume: 25 year: 2011 ident: B38 article-title: Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration publication-title: FASEB J doi: 10.1096/fj.10-167502 – volume: 441 start-page: 789 year: 2012 ident: B48 article-title: Ceramide synthases at the centre of sphingolipid metabolism and biology publication-title: Biochem J doi: 10.1042/BJ20111626 – volume: 3 year: 2018 ident: B52 article-title: Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle publication-title: JCI Insight doi: 10.1172/jci.insight.96805 – volume: 274 start-page: 25 year: 2013 ident: B21 article-title: Ectopic lipid storage and insulin resistance: a harmful relationship publication-title: J Intern Med doi: 10.1111/joim.12071 – volume: 7 year: 2000 ident: B108 article-title: VDAC regulation by the Bcl-2 family of proteins publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4400780 – volume: 40 year: 2016 ident: B55 article-title: The Crucial Role of C18-Cer in Fat-Induced Skeletal Muscle Insulin Resistance publication-title: Cell Physiol Biochem doi: 10.1159/000453174 – volume: 291 start-page: 6989 year: 2016 ident: B61 article-title: Ceramide Synthase 5 Is Essential to Maintain C16:0-Ceramide Pools and Contributes to the Development of Diet-induced Obesity publication-title: J Biol Chem doi: 10.1074/jbc.M115.691212 – volume: 1833 year: 2013 ident: B42 article-title: Organization and function of membrane contact sites publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2013.01.028 – volume: 56 year: 2013 ident: B56 article-title: Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding publication-title: Diabetologia doi: 10.1007/s00125-013-2913-1 – volume: 382 year: 2004 ident: B39 article-title: Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria publication-title: Biochem J doi: 10.1042/BJ20031819 – volume: 275 year: 2000 ident: B98 article-title: The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis publication-title: J Biol Chem doi: 10.1074/jbc.C000587200 – volume: 45 year: 2020 ident: B118 article-title: Ceramides are necessary and sufficient for diet-induced impairment of thermogenic adipocytes publication-title: Mol Metab doi: 10.1016/j.molmet.2020.101145 – volume: 70 year: 2016 ident: B17 article-title: Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes publication-title: Acta Med Okayama doi: 10.18926/AMO/54413 – volume: 272 year: 1997 ident: B144 article-title: Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione publication-title: J Biol Chem doi: 10.1074/jbc.272.17.11369 – volume: 278 year: 2003 ident: B29 article-title: A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids publication-title: J Biol Chem doi: 10.1074/jbc.M212307200 – volume: 297 start-page: E211 year: 2009 ident: B117 article-title: Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.91014.2008 – volume: 48 year: 2016 ident: B66 article-title: Sphingolipids and mitochondrial apoptosis publication-title: J Bioenerg Biomembr doi: 10.1007/s10863-015-9602-3 – volume: 942 start-page: 3 year: 2012 ident: B11 article-title: The oxidative phosphorylation system in mammalian mitochondria publication-title: Adv Exp Med Biol doi: 10.1007/978-94-007-2869-1_1 – volume: 399 year: 1999 ident: B109 article-title: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC publication-title: Nature doi: 10.1038/20959 – volume: 33 year: 1998 ident: B36 article-title: Partial purification and characterization of sphingosine N-acyltransferase (ceramide synthase) from bovine liver mitochondrion-rich fraction publication-title: Lipids doi: 10.1007/s11745-998-0246-2 – volume: 9 start-page: 581 year: 2020 ident: B45 article-title: Sphingolipids and Mitochondrial Dynamic publication-title: Cells doi: 10.3390/cells9030581 – volume: 57 year: 2014 ident: B91 article-title: Chronic muscle stimulation improves insulin sensitivity while increasing subcellular lipid droplets and reducing selected diacylglycerol and ceramide species in obese Zucker rats publication-title: Diabetologia doi: 10.1007/s00125-014-3169-0 – volume: 26 start-page: 1 year: 2019 ident: B57 article-title: CerS1-Derived C18:0 Ceramide in Skeletal Muscle Promotes Obesity-Induced Insulin Resistance publication-title: Cell Rep doi: 10.1016/j.celrep.2018.12.031 – volume: 67 year: 2018 ident: B74 article-title: Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans publication-title: Diabetes doi: 10.2337/db17-0316 – volume: 11 year: 2006 ident: B125 article-title: Dihydroceramide hinders ceramide channel formation: Implications on apoptosis publication-title: Apoptosis doi: 10.1007/s10495-006-5882-8 – volume: 174 year: 2006 ident: B71 article-title: Structural and functional features and significance of the physical linkage between ER and mitochondria publication-title: J Cell Biol doi: 10.1083/jcb.200604016 – volume: 1797 year: 2010 ident: B105 article-title: Ceramide channels and their role in mitochondria-mediated apoptosis publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2010.01.021 – volume: 21 start-page: 36 year: 2019 ident: B60 article-title: The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach publication-title: Mol Metab doi: 10.1016/j.molmet.2018.12.008 – volume: 286 year: 2011 ident: B84 article-title: Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes publication-title: J Biol Chem doi: 10.1074/jbc.M111.255646 – volume: 9 start-page: 388 year: 2018 ident: B73 article-title: The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: an update publication-title: Cell Death Dis doi: 10.1038/s41419-018-0416-1 – year: 2009 ident: B6 article-title: Bioactive sphingolipids: metabolism and function publication-title: J Lipid Res doi: 10.1194/jlr.R800080-JLR200 – volume: 449 year: 2018 ident: B16 article-title: The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes publication-title: Mol Cell Biochem doi: 10.1007/s11010-018-3361-5 – volume: 130 year: 2017 ident: B80 article-title: Diverting CERT-mediated ceramide transport to mitochondria triggers Bax-dependent apoptosis publication-title: J Cell Sci doi: 10.1242/jcs.194191 – volume: 278 year: 2003 ident: B22 article-title: Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5 publication-title: J Biol Chem doi: 10.1074/jbc.M212430200 – volume: 41 year: 2009 ident: B13 article-title: Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2009.02.004 – volume: 19 year: 2011 ident: B27 article-title: Dynamics of the phosphoinositide 3-kinase p110delta interaction with p85alpha and membranes reveals aspects of regulation distinct from p110alpha publication-title: Structure doi: 10.1016/j.str.2011.06.003 – volume: 365 year: 2019 ident: B122 article-title: Targeting a ceramide double bond improves insulin resistance and hepatic steatosis publication-title: Science (New York NY) doi: 10.1126/science.aav3722 – volume: 492 start-page: 199 year: 2001 ident: B26 article-title: (PKB/Akt) - a key regulator of glucose transport publication-title: FEBS Lett doi: 10.1016/S0014-5793(01)02242-6 – volume: 10 start-page: 1832 year: 2019 ident: B107 article-title: Ceramides bind VDAC2 to trigger mitochondrial apoptosis publication-title: Nat Commun doi: 10.1038/s41467-019-09654-4 – volume: 278 start-page: 39 year: 2005 ident: B111 article-title: Ceramide activates a mitochondrial p38 mitogen-activated protein kinase: a potential mechanism for loss of mitochondrial transmembrane potential and apoptosis publication-title: Mol Cell Biochem doi: 10.1007/s11010-005-1979-6 – volume: 8 year: 2018 ident: B86 article-title: GPRC5B-Mediated Sphingomyelin Synthase 2 Phosphorylation Plays a Critical Role in Insulin Resistance publication-title: iScience doi: 10.1016/j.isci.2018.10.001 – volume: 5 year: 2013 ident: B43 article-title: Sphingolipid homeostasis in the endoplasmic reticulum and beyond publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a013326 – volume: 15 year: 2005 ident: B76 article-title: The ins and outs of sphingolipid synthesis publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2005.04.006 – volume: 62 year: 2010 ident: B51 article-title: Mammalian ceramide synthases publication-title: IUBMB Life doi: 10.1002/iub.319 – volume: 426 year: 2003 ident: B77 article-title: Molecular machinery for non-vesicular trafficking of ceramide publication-title: Nature doi: 10.1038/nature02188 – volume: 1848 year: 2015 ident: B104 article-title: Ceramide channels: destabilization by Bcl-xL and role in apoptosis publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamem.2015.07.013 – volume: 50 year: 2007 ident: B82 article-title: Increased skeletal muscle ceramide level in men at risk of developing type 2 diabetes publication-title: Diabetologia doi: 10.1007/s00125-007-0781-2 – volume: 32 year: 2012 ident: B136 article-title: Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle publication-title: Mol Cell Biol doi: 10.1128/MCB.05603-11 – volume: 24 year: 2016 ident: B53 article-title: Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans publication-title: Obesity (Silver Spring) doi: 10.1002/oby.21448 – volume: 266 year: 1994 ident: B24 article-title: The insulin receptor: structure, function, and signaling publication-title: Am J Physiol doi: 10.1152/ajpcell.1994.266.2.C319 – volume: 278 year: 2003 ident: B126 article-title: Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity publication-title: J Biol Chem doi: 10.1074/jbc.M212754200 – volume: 119 year: 2009 ident: B142 article-title: Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans publication-title: J Clin Invest doi: 10.1172/JCI37048 – volume: 9 start-page: 67 year: 2013 ident: B35 article-title: Qualitative Characterization of the Rat Liver Mitochondrial Lipidome using LC-MS Profiling and High Energy Collisional Dissociation (HCD) All Ion Fragmentation publication-title: Metabolomics doi: 10.1007/s11306-012-0400-1 – volume: 2018 year: 2018 ident: B135 article-title: The Causal Role of Mitochondrial Dynamics in Regulating Insulin Resistance in Diabetes: Link through Mitochondrial Reactive Oxygen Species publication-title: Oxid Med Cell Longev doi: 10.1155/2018/7514383 – volume: 33 year: 2019 ident: B101 article-title: Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis publication-title: FASEB J doi: 10.1096/fj.201801417R – volume: 288 year: 2013 ident: B95 article-title: Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain publication-title: J Biol Chem doi: 10.1074/jbc.M112.402719 – volume: 44 year: 2016 ident: B130 article-title: Mitochondrial fission and fusion publication-title: Biochem Soc Trans doi: 10.1042/BST20160129 – volume: 162 year: 2021 ident: B20 article-title: Physiological evidence of mitochondrial permeability transition pore opening caused by lipid deposition leading to hepatic steatosis in db/db mice publication-title: Free Radical Biol Med doi: 10.1016/j.freeradbiomed.2020.11.009 – volume: 488 year: 2001 ident: B8 article-title: Occurrence of ceramides and neutral glycolipids with unusual long-chain base composition in purified rat liver mitochondria publication-title: FEBS Lett doi: 10.1016/S0014-5793(00)02332-2 – volume: 17 year: 2010 ident: B12 article-title: Mitochondrial dysfunction in obesity publication-title: Curr Opin Endocrinol Diabetes Obes doi: 10.1097/MED.0b013e32833c3026 – volume: 8 start-page: 363 year: 2018 ident: B128 article-title: Mitochondrial network complexity emerges from fission/fusion dynamics publication-title: Sci Rep doi: 10.1038/s41598-017-18351-5 – volume: 9 year: 2014 ident: B34 article-title: Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models: a mechanistic insight publication-title: PloS One doi: 10.1371/journal.pone.0101865 – volume: 74 year: 2019 ident: B85 article-title: A selective sphingomyelin synthase 2 inhibitor ameliorates diet induced insulin resistance via the IRS-1/Akt/GSK-3β signaling pathway publication-title: Pharmazie doi: 10.1691/ph.2019.9310 – volume: 5 year: 2013 ident: B97 article-title: Mitochondrial regulation of cell death publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a008706 – volume: 61 year: 2020 ident: B69 article-title: Sphingolipid distribution at mitochondria-associated membranes (MAMs) upon induction of apoptosis publication-title: J Lipid Res doi: 10.1194/jlr.RA120000628 – volume: 53 start-page: 84 year: 2018 ident: B41 article-title: Interacting organelles publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2018.06.003 – volume: 49 year: 2008 ident: B72 article-title: Ceramide synthesis in the endoplasmic reticulum can permeabilize mitochondria to proapoptotic proteins publication-title: J Lipid Res doi: 10.1194/jlr.M700480-JLR200 – volume: 1833 year: 2013 ident: B59 article-title: The complexity of sphingolipid biosynthesis in the endoplasmic reticulum publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2013.04.010 – volume: 33 year: 2013 ident: B120 article-title: Ablation of dihydroceramide desaturase 1, a therapeutic target for the treatment of metabolic diseases, simultaneously stimulates anabolic and catabolic signaling publication-title: Mol Cell Biol doi: 10.1128/MCB.00226-13 – volume: 8 year: 2016 ident: B75 article-title: Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver publication-title: J Mol Cell Biol doi: 10.1093/jmcb/mjw004 – volume: 1848 year: 2015 ident: B106 article-title: Very long chain ceramides interfere with C16-ceramide-induced channel formation: A plausible mechanism for regulating the initiation of intrinsic apoptosis publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamem.2014.11.018 – volume: 15 year: 2000 ident: B30 article-title: Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells publication-title: Mol Cell Neurosci doi: 10.1006/mcne.1999.0813 – volume: 128 year: 2018 ident: B5 article-title: Role of sphingolipids in senescence: implication in aging and age-related diseases publication-title: J Clin Invest doi: 10.1172/JCI97949 – volume: 10 year: 2019 ident: B131 article-title: Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet publication-title: Front Physiol doi: 10.3389/fphys.2019.00532 – volume: 15 year: 2001 ident: B40 article-title: Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis publication-title: FASEB J doi: 10.1096/fj.01-0539com – volume: 391 start-page: 42 year: 2017 ident: B129 article-title: Mitochondrial fusion, fission, and mitochondrial toxicity publication-title: Toxicology doi: 10.1016/j.tox.2017.07.019 – volume: 121 start-page: 21 year: 2009 ident: B1 article-title: The medical risks of obesity publication-title: Postgrad Med doi: 10.3810/pgm.2009.11.2074 – volume: 129 year: 2016 ident: B133 article-title: Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission publication-title: J Cell Sci doi: 10.1242/jcs.185165 – volume: 350 year: 2004 ident: B87 article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes publication-title: N Engl J Med doi: 10.1056/NEJMoa031314 – volume: 1 year: 2010 ident: B10 article-title: Mitochondrial metabolism and diabetes publication-title: J Diabetes Investig doi: 10.1111/j.2040-1124.2010.00047.x – volume: 280 year: 2005 ident: B78 article-title: CERT mediates intermembrane transfer of various molecular species of ceramides publication-title: J Biol Chem doi: 10.1074/jbc.M409290200 – volume: 117 year: 2004 ident: B139 article-title: Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity publication-title: J Cell Sci doi: 10.1242/jcs.01565 – volume: 41 year: 2015 ident: B70 article-title: Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles publication-title: Diabetes Metab doi: 10.1016/j.diabet.2015.02.006 – volume: 20 year: 2008 ident: B44 article-title: The sphingolipid salvage pathway in ceramide metabolism and signaling publication-title: Cell Signal doi: 10.1016/j.cellsig.2007.12.006 – volume: 55 year: 2006 ident: B15 article-title: Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia publication-title: Diabetes doi: 10.2337/db05-1230 – volume: 1862 start-page: 56 year: 2017 ident: B50 article-title: Sphingolipids in mitochondria publication-title: Biochim Biophys Acta Mol Cell Biol Lipids doi: 10.1016/j.bbalip.2016.09.019 – volume: 95 year: 2018 ident: B113 article-title: Mitochondria in non-alcoholic fatty liver disease publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2017.12.019 – volume: 410 year: 2008 ident: B33 article-title: Targeting of PKCzeta and PKB to caveolin-enriched microdomains represents a crucial step underpinning the disruption in PKB-directed signalling by ceramide publication-title: Biochem J doi: 10.1042/BJ20070936 – volume: 23 year: 2003 ident: B32 article-title: Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism publication-title: Mol Cell Biol doi: 10.1128/MCB.23.21.7794-7808.2003 – volume: 68 year: 2016 ident: B81 article-title: Regulation of sphingomyelin metabolism publication-title: Pharmacol Rep doi: 10.1016/j.pharep.2015.12.008 – volume: 19 year: 2009 ident: B68 article-title: MAM: more than just a housekeeper publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2008.12.002 – volume: 282 year: 2007 ident: B119 article-title: JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction publication-title: J Biol Chem doi: 10.1074/jbc.M701812200 – volume: 352 year: 1991 ident: B25 article-title: Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein publication-title: Nature doi: 10.1038/352073a0 – volume: 2013 year: 2013 ident: B138 article-title: Mitochondrial fusion proteins and human diseases publication-title: Neurol Res Int doi: 10.1155/2013/293893 – volume: 87 start-page: 4 year: 2010 ident: B4 article-title: Global estimates of the prevalence of diabetes for 2010 and 2030 publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2009.10.007 – volume: 10 year: 2011 ident: B23 article-title: The insulin receptor substrate (IRS) proteins: at the intersection of metabolism and cancer publication-title: Cell Cycle doi: 10.4161/cc.10.11.15824 – volume: 114 year: 2004 ident: B141 article-title: Increased oxidative stress in obesity and its impact on metabolic syndrome publication-title: J Clin Invest doi: 10.1172/JCI21625 – volume: 20 year: 2014 ident: B65 article-title: CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance publication-title: Cell Metab doi: 10.1016/j.cmet.2014.09.015 – volume: 51 year: 2002 ident: B89 article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.51.10.2944 – volume: 1841 start-page: 595 year: 2014 ident: B67 article-title: MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond publication-title: Biochim Biophys Acta doi: 10.1016/j.bbalip.2013.11.014 – volume: 54 start-page: 8 year: 2005 ident: B88 article-title: Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.54.1.8 – volume: 81 year: 2020 ident: B103 article-title: Apoptosis (programmed cell death) and its signals - A review publication-title: Braz J Biol doi: 10.1590/1519-6984.228437 – volume: 50 year: 2001 ident: B124 article-title: Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state publication-title: Diabetes doi: 10.2337/diabetes.50.11.2563 – start-page: 3 volume-title: Obesity and Obstetrics year: 2020 ident: B3 article-title: Chapter 1 - Worldwide epidemic of obesity doi: 10.1016/B978-0-12-817921-5.00001-1 – volume: 20 year: 2014 ident: B62 article-title: Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance publication-title: Cell Metab doi: 10.1016/j.cmet.2014.08.002 – volume: 47 year: 2012 ident: B63 article-title: Increased bioactive lipids content in human subcutaneous and epicardial fat tissue correlates with insulin resistance publication-title: Lipids doi: 10.1007/s11745-012-3722-x – volume: 103 year: 2018 ident: B14 article-title: High Incomplete Skeletal Muscle Fatty Acid Oxidation Explains Low Muscle Insulin Sensitivity in Poorly Controlled T2D publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2017-01727 – volume: 58 year: 2015 ident: B134 article-title: Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration publication-title: Diabetologia doi: 10.1007/s00125-015-3704-7 – volume: 56 year: 2007 ident: B90 article-title: Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes publication-title: Diabetes doi: 10.2337/db06-0981 – volume: 275 year: 2000 ident: B31 article-title: Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473 publication-title: J Biol Chem doi: 10.1074/jbc.275.18.13330 – volume: 9 start-page: 3165 year: 2018 ident: B58 article-title: A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism publication-title: Nat Commun doi: 10.1038/s41467-018-05613-7 – volume: 52 year: 2010 ident: B114 article-title: Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model publication-title: J Hepatol doi: 10.1016/j.jhep.2009.11.030 – volume: 101 year: 2004 ident: B140 article-title: OPA1 requires mitofusin 1 to promote mitochondrial fusion publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0407043101 – volume: 51 year: 2010 ident: B96 article-title: Mitochondria as decision-makers in cell death publication-title: Environ Mol Mutagen doi: 10.1002/em.20564 – volume: 12 year: 1992 ident: B28 article-title: SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors publication-title: Mol Cell Biol doi: 10.1128/MCB.12.3.991 – volume: 285 year: 2010 ident: B46 article-title: Identification and characterization of murine mitochondria-associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5 publication-title: J Biol Chem doi: 10.1074/jbc.M110.102988 – volume: 111 year: 2008 ident: B112 article-title: Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway publication-title: Blood doi: 10.1182/blood-2007-08-106336 – volume: 688 start-page: 1 year: 2010 ident: B49 article-title: An overview of sphingolipid metabolism: from synthesis to breakdown publication-title: Adv Exp Med Biol doi: 10.1007/978-1-4419-6741-1_1 – volume: 16 year: 2019 ident: B2 article-title: Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift publication-title: Diabetes Vasc Dis Res doi: 10.1177/1479164119827611 – volume: 291 year: 2016 ident: B83 article-title: but Not Sphingomyelins, as Antagonists of Insulin Signaling and Mitochondrial Metabolism in C2C12 Myotubes publication-title: J Biol Chem doi: 10.1074/jbc.M116.737684 – volume: 21 start-page: 2346 year: 2020 ident: B110 article-title: Understanding MAPK Signaling Pathways in Apoptosis publication-title: Int J Mol Sci doi: 10.3390/ijms21072346 – volume: 109 year: 2012 ident: B127 article-title: Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1108220109 – volume: 19 year: 2018 ident: B7 article-title: Sphingolipids and their metabolism in physiology and disease publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2017.107 – volume: 10 year: 2019 ident: B116 article-title: Inhibiting Ceramide Synthesis Attenuates Hepatic Steatosis and Fibrosis in Rats With Non-alcoholic Fatty Liver Disease publication-title: Front Endocrinol doi: 10.3389/fendo.2019.00665 – volume: 456 year: 2013 ident: B137 article-title: Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle publication-title: Biochem J doi: 10.1042/BJ20130807 – volume: 100 start-page: 88 year: 2014 ident: B9 article-title: Ceramide and the mitochondrial respiratory chain publication-title: Biochimie doi: 10.1016/j.biochi.2013.07.027 – volume: 2159 year: 2020 ident: B132 article-title: Imaging Dynamin-Related Protein 1 (Drp1)-Mediated Mitochondrial Fission in Living Cells publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-0676-6_16 – volume: 277 year: 2002 ident: B99 article-title: Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins publication-title: J Biol Chem doi: 10.1074/jbc.M200754200 – volume: 39 year: 2000 ident: B93 article-title: Ceramide interaction with the respiratory chain of heart mitochondria publication-title: Biochemistry doi: 10.1021/bi9924415 – volume: 109 year: 2017 ident: B102 article-title: Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok publication-title: Neurochem Int doi: 10.1016/j.neuint.2017.03.010 – volume: 7 year: 2012 ident: B121 article-title: Ablation of dihydroceramide desaturase confers resistance to etoposide-induced apoptosis in vitro publication-title: PloS One doi: 10.1371/journal.pone.0044042 – volume: 44 year: 2020 ident: B19 article-title: Mitochondrial DNA copy number associates with insulin sensitivity and aerobic capacity, and differs between sedentary, overweight middle-aged males with and without type 2 diabetes publication-title: Int J Obes (Lond) doi: 10.1038/s41366-019-0473-2 – volume: 45 year: 2020 ident: B18 article-title: Altered mitochondrial network morphology and regulatory proteins in mitochondrial quality control in myotubes from severely obese humans with or without type 2 diabetes publication-title: Appl Physiol Nutrn Metab doi: 10.1139/apnm-2019-0208 – volume: 289 year: 2014 ident: B37 article-title: Essential roles of neutral ceramidase and sphingosine in mitochondrial dysfunction due to traumatic brain injury publication-title: J Biol Chem doi: 10.1074/jbc.M113.530311 – volume: 59 year: 2010 ident: B145 article-title: Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle publication-title: Diabetes doi: 10.2337/db10-0174 – volume: 277 year: 2002 ident: B123 article-title: Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest publication-title: J Biol Chem doi: 10.1074/jbc.M110541200 – volume: 177 start-page: 1536 year: 2019 ident: B64 article-title: CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity publication-title: Cell doi: 10.1016/j.cell.2019.05.008 – volume: 318 start-page: E538 year: 2020 ident: B92 article-title: Subpopulation-specific differences in skeletal muscle mitochondria in humans with obesity: insights from studies employing acute nutritional and exercise stimuli publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00463.2019 – volume: 59 year: 2016 ident: B54 article-title: Muscle sphingolipids during rest and exercise: a C18:0 signature for insulin resistance in humans publication-title: Diabetologia doi: 10.1007/s00125-015-3850-y – volume: 54 year: 2011 ident: B115 article-title: Apoptosis and insulin resistance in liver and peripheral tissues of morbidly obese patients is associated with different stages of non-alcoholic fatty liver disease publication-title: Diabetologia doi: 10.1007/s00125-011-2130-8 – volume: 277 year: 2002 ident: B47 article-title: De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway publication-title: J Biol Chem doi: 10.1074/jbc.R200009200 – volume: 6 year: 2006 ident: B100 article-title: Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations publication-title: Mitochondrion doi: 10.1016/j.mito.2006.03.002 – volume: 272 year: 1997 ident: B94 article-title: Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide publication-title: J Biol Chem doi: 10.1074/jbc.272.39.24154 – volume: 67 year: 2018 ident: B79 article-title: Ceramide Transporter CERT Is Involved in Muscle Insulin Signaling Defects Under Lipotoxic Conditions publication-title: Diabetes doi: 10.2337/db17-0901 – volume: 15 start-page: 595 year: 2012 ident: B143 article-title: Lipid-induced mitochondrial stress and insulin action in muscle publication-title: Cell Metab doi: 10.1016/j.cmet.2012.04.010 |
SSID | ssj0000401998 |
Score | 2.5058632 |
SecondaryResourceType | review_article |
Snippet | Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 635175 |
SubjectTerms | Adenosine Triphosphate - metabolism Animals ceramide Ceramides - metabolism Diabetes Mellitus, Type 2 - metabolism Diet, High-Fat Endocrinology Endoplasmic Reticulum - metabolism Golgi Apparatus - metabolism Humans Insulin - metabolism Insulin Resistance Liver - metabolism metabolism Mitochondria - metabolism mitochondrial dysfunction Muscle, Skeletal - metabolism Obesity - complications Oxidative Stress Oxidoreductases - metabolism Signal Transduction sphingolipids Sphingolipids - metabolism type 2 diabetes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlh9BLaJI22bxQoKeCG1sPSz7m0ZAEtoe2C3sT1osuLNol3j3k32fGdpbdEpJLsU-2jIaZ0cx8ntGIkK-xLkOpmIbITdlMBFFkuqzKTIlgtXSMBY0bnIc_y7uReBjL8dpRX1gT1rUH7hh3IaMNvPQyRu2E00o7dHLeVyXz0al2Hzn4vDUw1dpggA0AJLo0JqCw6iKG5HGzHyu-g48tsK5wzRG1_fpfCzL_rZVccz63n8hOHzXSy47aXfIhpD2yPezz4vuk_j3HP0mz6WQ-8Q2t4abXy-kckD-dRTqEZQtmLnnUNnrz1KA3Q4nQSaL3XTU6_RUajCVBCWidPEWAShntK2aaz2R0--PP9V3WH56QOVhWi0wVFqTApM-1AMZ5Fp301tdB1RzTKo4pFYUFAGhLlwsLlosXruBeuUp5KfkXspVmKRwSKi2PuQQRehfB37uKR7BKNVxcO5eHAclfOGlc31kcD7iYGkAYyHzTMt8g803H_AH5tvpk3rXVeGvwFYpnNRA7YrcPQE9MryfmPT0ZkPMX4RpYQZgWqVOYLRvDMEatBMeJDjphr6YCgiDAqYoBURtqsEHL5ps0-dt26daYA9bs6H8Qf0w-Ij-w9q3QJ2Rr8bgMpxAMLexZq_fPkI8JvA priority: 102 providerName: Directory of Open Access Journals |
Title | Sphingolipids as a Culprit of Mitochondrial Dysfunction in Insulin Resistance and Type 2 Diabetes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33815291 https://www.proquest.com/docview/2508894375 https://pubmed.ncbi.nlm.nih.gov/PMC8013882 https://doaj.org/article/5fbe36d5ff8c4c878c0750dd962dfc77 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zi9RAEG7WFcQX8XY8lhZ8ErImfedBRFfXVRgf1IF5a9LXGhiScTID7r-3KskMjgyCJARyd-ro-irVXUXIi1SpqDQzgNy0y0QURWZUqTItojPSMxYNTnCeflEXM_F5LudHZFveaiRgd9C1w3pSs9Xi9NfPqzeg8K_R4wR7-yrFJuA8PlacgvkEe3iNXAfDpFFPpyPa7ztm8CXKvjpuoZTIGECDIc55-Cl7lqpP6H8Ihf49mPIP63R-m9waYSV9O8jBHXIUm7vkxnQMnN8j1bcl_mpqF_WyDh2tYKVnm8VyVa9pm-gU9BpI0QQUR_r-qkNzhyyjdUM_DcPV6dfYIdgEKaFVEyh6sJTRcUhNd5_Mzj98P7vIxuoKmQe9W2e6cMAmJkNuhBc-sORlcKGKuuIYd_FM6yQceIhO-Vw46Np44QsetC91kJI_IMdN28RHhErHUy6Bx8EnAAS-5Am6rQoWbrzP44TkW0paP6YexwoYCwsuCBLf9sS3SHw7EH9CXu5uWQ55N_518Ttkz-5CTJndH2hXl3bUQCuTi1wFmZKBzzXaeERLIZSKheS1npDnW-ZaUDGMm1RNbDedZQhiS8HxRQ8HZu9eBQ0CBFQWE6L3xGCvLftnmvpHn8bbYJDYsMf_86VPyE3cw0FwhXlKjterTXwGqGjtTvq_CbD9OC9Oern_DYgiDAI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sphingolipids+as+a+Culprit+of+Mitochondrial+Dysfunction+in+Insulin+Resistance+and+Type+2+Diabetes&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Roszczyc-Owsiejczuk%2C+Kamila&rft.au=Zabielski%2C+Piotr&rft.date=2021-03-18&rft.issn=1664-2392&rft.eissn=1664-2392&rft.volume=12&rft_id=info:doi/10.3389%2Ffendo.2021.635175&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fendo_2021_635175 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon |