Sphingolipids as a Culprit of Mitochondrial Dysfunction in Insulin Resistance and Type 2 Diabetes

Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in endocrinology (Lausanne) Vol. 12; p. 635175
Main Authors Roszczyc-Owsiejczuk, Kamila, Zabielski, Piotr
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 18.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the major factors in the induction of insulin resistance and type 2 diabetes (T2D). A significant number of studies have described the involvement of ceramides and other sphingolipids in the inhibition of insulin-signaling pathway in both skeletal muscles and the liver. Adverse effects of sphingolipid accumulation have recently been linked to the activation of protein kinase Cζ (PKCζ) and protein phosphatase 2A (PP2A), which, in turn, negatively affect phosphorylation of serine/threonine kinase Akt [also known as protein kinase B (PKB)], leading to decreased glucose uptake in skeletal muscles as well as increased gluconeogenesis and glycogenolysis in the liver. Sphingolipids, in addition to their direct impact on the insulin signaling pathway, may be responsible for other negative aspects of diabetes, namely mitochondrial dysfunction and deficiency. Mitochondrial health, which is characterized by appropriate mitochondrial quantity, oxidative capacity, controlled oxidative stress, undisturbed respiratory chain function, adenosine triphosphate (ATP) production and mitochondrial proliferation through fission and fusion, is impaired in the skeletal muscles and liver of T2D subjects. Recent findings suggest that impaired mitochondrial function may play a key role in the development of insulin resistance. Mitochondria stay in contact with the endoplasmic reticulum (ER), Golgi membranes and mitochondria-associated membranes (MAM) that are the main places of sphingolipid synthesis. Moreover, mitochondria are capable of synthesizing ceramide though ceramide synthase (CerS) activity. Recently, ceramides have been demonstrated to negatively affect mitochondrial respiratory chain function and fission/fusion activity, which is also a hallmark of T2D. Despite a significant correlation between sphingolipids, mitochondrial dysfunction, insulin resistance and T2D, this subject has not received much attention compared to the direct effect of sphingolipids on the insulin signaling pathway. In this review, we focus on the current state of scientific knowledge regarding the involvement of sphingolipids in the induction of insulin resistance by inhibiting mitochondrial function.
AbstractList Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the major factors in the induction of insulin resistance and type 2 diabetes (T2D). A significant number of studies have described the involvement of ceramides and other sphingolipids in the inhibition of insulin-signaling pathway in both skeletal muscles and the liver. Adverse effects of sphingolipid accumulation have recently been linked to the activation of protein kinase Cζ (PKCζ) and protein phosphatase 2A (PP2A), which, in turn, negatively affect phosphorylation of serine/threonine kinase Akt [also known as protein kinase B (PKB)], leading to decreased glucose uptake in skeletal muscles as well as increased gluconeogenesis and glycogenolysis in the liver. Sphingolipids, in addition to their direct impact on the insulin signaling pathway, may be responsible for other negative aspects of diabetes, namely mitochondrial dysfunction and deficiency. Mitochondrial health, which is characterized by appropriate mitochondrial quantity, oxidative capacity, controlled oxidative stress, undisturbed respiratory chain function, adenosine triphosphate (ATP) production and mitochondrial proliferation through fission and fusion, is impaired in the skeletal muscles and liver of T2D subjects. Recent findings suggest that impaired mitochondrial function may play a key role in the development of insulin resistance. Mitochondria stay in contact with the endoplasmic reticulum (ER), Golgi membranes and mitochondria-associated membranes (MAM) that are the main places of sphingolipid synthesis. Moreover, mitochondria are capable of synthesizing ceramide though ceramide synthase (CerS) activity. Recently, ceramides have been demonstrated to negatively affect mitochondrial respiratory chain function and fission/fusion activity, which is also a hallmark of T2D. Despite a significant correlation between sphingolipids, mitochondrial dysfunction, insulin resistance and T2D, this subject has not received much attention compared to the direct effect of sphingolipids on the insulin signaling pathway. In this review, we focus on the current state of scientific knowledge regarding the involvement of sphingolipids in the induction of insulin resistance by inhibiting mitochondrial function.
Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the major factors in the induction of insulin resistance and type 2 diabetes (T2D). A significant number of studies have described the involvement of ceramides and other sphingolipids in the inhibition of insulin-signaling pathway in both skeletal muscles and the liver. Adverse effects of sphingolipid accumulation have recently been linked to the activation of protein kinase Cζ (PKCζ) and protein phosphatase 2A (PP2A), which, in turn, negatively affect phosphorylation of serine/threonine kinase Akt [also known as protein kinase B (PKB)], leading to decreased glucose uptake in skeletal muscles as well as increased gluconeogenesis and glycogenolysis in the liver. Sphingolipids, in addition to their direct impact on the insulin signaling pathway, may be responsible for other negative aspects of diabetes, namely mitochondrial dysfunction and deficiency. Mitochondrial health, which is characterized by appropriate mitochondrial quantity, oxidative capacity, controlled oxidative stress, undisturbed respiratory chain function, adenosine triphosphate (ATP) production and mitochondrial proliferation through fission and fusion, is impaired in the skeletal muscles and liver of T2D subjects. Recent findings suggest that impaired mitochondrial function may play a key role in the development of insulin resistance. Mitochondria stay in contact with the endoplasmic reticulum (ER), Golgi membranes and mitochondria-associated membranes (MAM) that are the main places of sphingolipid synthesis. Moreover, mitochondria are capable of synthesizing ceramide though ceramide synthase (CerS) activity. Recently, ceramides have been demonstrated to negatively affect mitochondrial respiratory chain function and fission/fusion activity, which is also a hallmark of T2D. Despite a significant correlation between sphingolipids, mitochondrial dysfunction, insulin resistance and T2D, this subject has not received much attention compared to the direct effect of sphingolipids on the insulin signaling pathway. In this review, we focus on the current state of scientific knowledge regarding the involvement of sphingolipids in the induction of insulin resistance by inhibiting mitochondrial function.Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat diet lead to ectopic accumulation of bioactive lipids in insulin-sensitive tissues. Intracellular lipid accumulation is regarded as one of the major factors in the induction of insulin resistance and type 2 diabetes (T2D). A significant number of studies have described the involvement of ceramides and other sphingolipids in the inhibition of insulin-signaling pathway in both skeletal muscles and the liver. Adverse effects of sphingolipid accumulation have recently been linked to the activation of protein kinase Cζ (PKCζ) and protein phosphatase 2A (PP2A), which, in turn, negatively affect phosphorylation of serine/threonine kinase Akt [also known as protein kinase B (PKB)], leading to decreased glucose uptake in skeletal muscles as well as increased gluconeogenesis and glycogenolysis in the liver. Sphingolipids, in addition to their direct impact on the insulin signaling pathway, may be responsible for other negative aspects of diabetes, namely mitochondrial dysfunction and deficiency. Mitochondrial health, which is characterized by appropriate mitochondrial quantity, oxidative capacity, controlled oxidative stress, undisturbed respiratory chain function, adenosine triphosphate (ATP) production and mitochondrial proliferation through fission and fusion, is impaired in the skeletal muscles and liver of T2D subjects. Recent findings suggest that impaired mitochondrial function may play a key role in the development of insulin resistance. Mitochondria stay in contact with the endoplasmic reticulum (ER), Golgi membranes and mitochondria-associated membranes (MAM) that are the main places of sphingolipid synthesis. Moreover, mitochondria are capable of synthesizing ceramide though ceramide synthase (CerS) activity. Recently, ceramides have been demonstrated to negatively affect mitochondrial respiratory chain function and fission/fusion activity, which is also a hallmark of T2D. Despite a significant correlation between sphingolipids, mitochondrial dysfunction, insulin resistance and T2D, this subject has not received much attention compared to the direct effect of sphingolipids on the insulin signaling pathway. In this review, we focus on the current state of scientific knowledge regarding the involvement of sphingolipids in the induction of insulin resistance by inhibiting mitochondrial function.
Author Roszczyc-Owsiejczuk, Kamila
Zabielski, Piotr
AuthorAffiliation 1 Department of Medical Biology, Medical University of Bialystok , Bialystok , Poland
2 Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok , Bialystok , Poland
AuthorAffiliation_xml – name: 2 Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok , Bialystok , Poland
– name: 1 Department of Medical Biology, Medical University of Bialystok , Bialystok , Poland
Author_xml – sequence: 1
  givenname: Kamila
  surname: Roszczyc-Owsiejczuk
  fullname: Roszczyc-Owsiejczuk, Kamila
– sequence: 2
  givenname: Piotr
  surname: Zabielski
  fullname: Zabielski, Piotr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33815291$$D View this record in MEDLINE/PubMed
BookMark eNp1kl1rFDEUhoNU7If9Ad5ILr3ZNR-TSXIjyFbrQkXQeh0y-dhNySbjJCPsvzfbbaUVDIFzSN7zvAnnnIOTlJMD4A1GS0qFfO9dsnlJEMHLnjLM2Qtwhvu-WxAqycmT_BRclnKH2uoQllK8AqcNgBmR-AzoH-M2pE2OYQy2QN02XM1xnEKF2cOvoWazzclOQUd4tS9-TqaGnGBIcJ3KHFv87kooVSfjoE4W3u5HBwm8Cnpw1ZXX4KXXsbjLh3gBfn7-dLv6srj5dr1efbxZGEZxXXA89K4nzCLRmc5Y4g2zg9WOa4ookoZw7ruBk6YzqBsIlhQbTC03klvG6AVYH7k26zvVPrDT015lHdT9QZ42Sk81mOgU84OjvWXei2YluDCIM2St7In1hvPG-nBkjfOwc9a4VCcdn0Gf36SwVZv8WwmEqRCkAd49AKb8a3alql0oxsWok8tzUYQhIWRH-eHdb596_TV57FET8KPATLmUyXllQtWHJjTrEBVGB61U9wOhDgOhjgPRKvE_lY_w_9f8ATptutc
CitedBy_id crossref_primary_10_1016_j_mrgentox_2021_503437
crossref_primary_10_3389_fgene_2023_1057068
crossref_primary_10_1016_j_jep_2023_117658
crossref_primary_10_1007_s00018_022_04401_3
crossref_primary_10_3390_life13061415
crossref_primary_10_1016_j_isci_2025_112110
crossref_primary_10_1111_jcmm_70378
crossref_primary_10_1186_s12944_024_02019_x
crossref_primary_10_3390_ijms252313190
crossref_primary_10_61958_NDDO4801
crossref_primary_10_1016_j_jbior_2024_101058
crossref_primary_10_1016_j_arres_2024_100100
crossref_primary_10_1002_fft2_450
crossref_primary_10_1111_obr_13426
crossref_primary_10_1016_j_abb_2023_109644
crossref_primary_10_3390_cells13080663
crossref_primary_10_3892_etm_2023_12247
crossref_primary_10_3390_cells13030205
crossref_primary_10_1016_j_cellsig_2023_110794
crossref_primary_10_1002_jimd_12550
crossref_primary_10_3390_ijms23031254
crossref_primary_10_1007_s11306_025_02223_5
crossref_primary_10_3389_fcell_2023_1302472
crossref_primary_10_4330_wjc_v17_i2_102308
crossref_primary_10_3389_fgene_2024_1325401
crossref_primary_10_1007_s13167_024_00356_6
crossref_primary_10_1016_j_intimp_2023_110272
crossref_primary_10_1186_s12967_023_04088_5
crossref_primary_10_1136_bmjdrc_2024_004180
crossref_primary_10_1210_clinem_dgae179
crossref_primary_10_3389_fimmu_2025_1475160
crossref_primary_10_1007_s11306_021_01857_5
crossref_primary_10_1002_ehf2_14224
crossref_primary_10_3390_ijms241814015
crossref_primary_10_3389_fimmu_2022_956688
crossref_primary_10_1016_j_fbio_2024_105696
crossref_primary_10_1007_s00281_024_01033_6
crossref_primary_10_31083_j_fbl2703107
crossref_primary_10_1016_j_ecoenv_2023_115849
crossref_primary_10_1016_j_tjnut_2024_10_041
crossref_primary_10_1016_j_mce_2022_111754
crossref_primary_10_1080_07391102_2024_2446672
crossref_primary_10_1186_s12933_024_02202_5
crossref_primary_10_1007_s13258_022_01250_z
crossref_primary_10_1016_j_biochi_2022_06_003
crossref_primary_10_1186_s12944_022_01634_w
crossref_primary_10_3390_insects15070507
crossref_primary_10_1016_j_jdiacomp_2021_108048
crossref_primary_10_2147_DMSO_S451129
crossref_primary_10_1210_endocr_bqad128
crossref_primary_10_1016_j_heliyon_2023_e17411
crossref_primary_10_1016_j_cnd_2024_05_004
crossref_primary_10_1016_j_bbalip_2023_159348
crossref_primary_10_1210_jendso_bvac134
crossref_primary_10_1016_j_pestbp_2023_105756
crossref_primary_10_1016_j_cmet_2024_04_006
crossref_primary_10_1152_physrev_00008_2023
crossref_primary_10_3389_fnins_2023_1137893
crossref_primary_10_1007_s00467_023_06257_6
crossref_primary_10_1016_j_jchromb_2024_124446
crossref_primary_10_3390_molecules27186117
crossref_primary_10_1016_j_fbio_2025_106442
crossref_primary_10_3390_biom13101544
crossref_primary_10_34133_research_0343
crossref_primary_10_1021_acs_jproteome_3c00706
crossref_primary_10_3389_fnut_2024_1367589
crossref_primary_10_1097_MD_0000000000037185
Cites_doi 10.1096/fj.10-167502
10.1042/BJ20111626
10.1172/jci.insight.96805
10.1111/joim.12071
10.1038/sj.cdd.4400780
10.1159/000453174
10.1074/jbc.M115.691212
10.1016/j.bbamcr.2013.01.028
10.1007/s00125-013-2913-1
10.1042/BJ20031819
10.1074/jbc.C000587200
10.1016/j.molmet.2020.101145
10.18926/AMO/54413
10.1074/jbc.272.17.11369
10.1074/jbc.M212307200
10.1152/ajpendo.91014.2008
10.1007/s10863-015-9602-3
10.1007/978-94-007-2869-1_1
10.1038/20959
10.1007/s11745-998-0246-2
10.3390/cells9030581
10.1007/s00125-014-3169-0
10.1016/j.celrep.2018.12.031
10.2337/db17-0316
10.1007/s10495-006-5882-8
10.1083/jcb.200604016
10.1016/j.bbabio.2010.01.021
10.1016/j.molmet.2018.12.008
10.1074/jbc.M111.255646
10.1038/s41419-018-0416-1
10.1194/jlr.R800080-JLR200
10.1007/s11010-018-3361-5
10.1242/jcs.194191
10.1074/jbc.M212430200
10.1016/j.biocel.2009.02.004
10.1016/j.str.2011.06.003
10.1126/science.aav3722
10.1016/S0014-5793(01)02242-6
10.1038/s41467-019-09654-4
10.1007/s11010-005-1979-6
10.1016/j.isci.2018.10.001
10.1101/cshperspect.a013326
10.1016/j.tcb.2005.04.006
10.1002/iub.319
10.1038/nature02188
10.1016/j.bbamem.2015.07.013
10.1007/s00125-007-0781-2
10.1128/MCB.05603-11
10.1002/oby.21448
10.1152/ajpcell.1994.266.2.C319
10.1074/jbc.M212754200
10.1172/JCI37048
10.1007/s11306-012-0400-1
10.1155/2018/7514383
10.1096/fj.201801417R
10.1074/jbc.M112.402719
10.1042/BST20160129
10.1016/j.freeradbiomed.2020.11.009
10.1016/S0014-5793(00)02332-2
10.1097/MED.0b013e32833c3026
10.1038/s41598-017-18351-5
10.1371/journal.pone.0101865
10.1691/ph.2019.9310
10.1101/cshperspect.a008706
10.1194/jlr.RA120000628
10.1016/j.ceb.2018.06.003
10.1194/jlr.M700480-JLR200
10.1016/j.bbamcr.2013.04.010
10.1128/MCB.00226-13
10.1093/jmcb/mjw004
10.1016/j.bbamem.2014.11.018
10.1006/mcne.1999.0813
10.1172/JCI97949
10.3389/fphys.2019.00532
10.1096/fj.01-0539com
10.1016/j.tox.2017.07.019
10.3810/pgm.2009.11.2074
10.1242/jcs.185165
10.1056/NEJMoa031314
10.1111/j.2040-1124.2010.00047.x
10.1074/jbc.M409290200
10.1242/jcs.01565
10.1016/j.diabet.2015.02.006
10.1016/j.cellsig.2007.12.006
10.2337/db05-1230
10.1016/j.bbalip.2016.09.019
10.1016/j.biocel.2017.12.019
10.1042/BJ20070936
10.1128/MCB.23.21.7794-7808.2003
10.1016/j.pharep.2015.12.008
10.1016/j.tcb.2008.12.002
10.1074/jbc.M701812200
10.1038/352073a0
10.1155/2013/293893
10.1016/j.diabres.2009.10.007
10.4161/cc.10.11.15824
10.1172/JCI21625
10.1016/j.cmet.2014.09.015
10.2337/diabetes.51.10.2944
10.1016/j.bbalip.2013.11.014
10.2337/diabetes.54.1.8
10.1590/1519-6984.228437
10.2337/diabetes.50.11.2563
10.1016/B978-0-12-817921-5.00001-1
10.1016/j.cmet.2014.08.002
10.1007/s11745-012-3722-x
10.1210/jc.2017-01727
10.1007/s00125-015-3704-7
10.2337/db06-0981
10.1074/jbc.275.18.13330
10.1038/s41467-018-05613-7
10.1016/j.jhep.2009.11.030
10.1073/pnas.0407043101
10.1002/em.20564
10.1128/MCB.12.3.991
10.1074/jbc.M110.102988
10.1182/blood-2007-08-106336
10.1007/978-1-4419-6741-1_1
10.1177/1479164119827611
10.1074/jbc.M116.737684
10.3390/ijms21072346
10.1073/pnas.1108220109
10.1038/nrm.2017.107
10.3389/fendo.2019.00665
10.1042/BJ20130807
10.1016/j.biochi.2013.07.027
10.1007/978-1-0716-0676-6_16
10.1074/jbc.M200754200
10.1021/bi9924415
10.1016/j.neuint.2017.03.010
10.1371/journal.pone.0044042
10.1038/s41366-019-0473-2
10.1139/apnm-2019-0208
10.1074/jbc.M113.530311
10.2337/db10-0174
10.1074/jbc.M110541200
10.1016/j.cell.2019.05.008
10.1152/ajpendo.00463.2019
10.1007/s00125-015-3850-y
10.1007/s00125-011-2130-8
10.1074/jbc.R200009200
10.1016/j.mito.2006.03.002
10.1074/jbc.272.39.24154
10.2337/db17-0901
10.1016/j.cmet.2012.04.010
ContentType Journal Article
Copyright Copyright © 2021 Roszczyc-Owsiejczuk and Zabielski.
Copyright © 2021 Roszczyc-Owsiejczuk and Zabielski 2021 Roszczyc-Owsiejczuk and Zabielski
Copyright_xml – notice: Copyright © 2021 Roszczyc-Owsiejczuk and Zabielski.
– notice: Copyright © 2021 Roszczyc-Owsiejczuk and Zabielski 2021 Roszczyc-Owsiejczuk and Zabielski
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fendo.2021.635175
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2392
ExternalDocumentID oai_doaj_org_article_5fbe36d5ff8c4c878c0750dd962dfc77
PMC8013882
33815291
10_3389_fendo_2021_635175
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
CGR
CUY
CVF
ECM
EIF
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c531t-71b6e625d084c4cd2fc5dbdae7a30309c277f4b721b6c04b21931c13d7c97d553
IEDL.DBID M48
ISSN 1664-2392
IngestDate Wed Aug 27 01:06:49 EDT 2025
Thu Aug 21 18:12:41 EDT 2025
Fri Jul 11 01:46:02 EDT 2025
Thu Jan 02 22:55:29 EST 2025
Thu Apr 24 23:04:08 EDT 2025
Tue Jul 01 04:27:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ceramide
metabolism
mitochondrial dysfunction
type 2 diabetes
sphingolipids
insulin resistance
Language English
License Copyright © 2021 Roszczyc-Owsiejczuk and Zabielski.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-71b6e625d084c4cd2fc5dbdae7a30309c277f4b721b6c04b21931c13d7c97d553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Eric Hajduch, Institut National de la Santé et de la Recherche Médicale (INSERM), France
Reviewed by: Pascal Ferre, Sorbonne Universités, France; Bhagirath Chaurasia, The University of Iowa, United States
This article was submitted to Diabetes: Molecular Mechanisms, a section of the journal Frontiers in Endocrinology
OpenAccessLink https://doaj.org/article/5fbe36d5ff8c4c878c0750dd962dfc77
PMID 33815291
PQID 2508894375
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5fbe36d5ff8c4c878c0750dd962dfc77
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8013882
proquest_miscellaneous_2508894375
pubmed_primary_33815291
crossref_citationtrail_10_3389_fendo_2021_635175
crossref_primary_10_3389_fendo_2021_635175
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-18
PublicationDateYYYYMMDD 2021-03-18
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-18
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in endocrinology (Lausanne)
PublicationTitleAlternate Front Endocrinol (Lausanne)
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References García-Ruiz (B144) 1997; 272
Li (B20) 2021; 162
Novgorodov (B37) 2014; 289
Hanada (B77) 2003; 426
Yue (B110) 2020; 21
Błachnio-Zabielska (B63) 2012; 47
Mogensen (B90) 2007; 56
Raichur (B60) 2019; 21
Hannun (B7) 2018; 19
D’Orsi (B102) 2017; 109
Huang (B85) 2019; 74
Merrill (B47) 2002; 277
Vance (B67) 2014; 1841
Futerman (B76) 2005; 15
Raichur (B65) 2014; 20
Turpin-Nolan (B57) 2019; 26
Tidhar (B59) 2013; 1833
Kim (B86) 2018; 8
Sebastián (B127) 2012; 109
McGlade (B28) 1992; 12
Shaw (B23) 2011; 10
Constantin-Teodosiu (B19) 2020; 44
Stiban (B72) 2008; 49
Chaurasia (B122) 2019; 365
Nolan (B2) 2019; 16
Sergi (B131) 2019; 10
Cai (B22) 2003; 278
Chang (B104) 2015; 1848
Hernández-Corbacho (B50) 2017; 1862
Papa (B11) 2012; 942
Wu (B46) 2010; 285
Strub (B38) 2011; 25
Turner (B58) 2018; 9
Lee (B24) 1994; 266
Schubert (B31) 2000; 275
Gavin (B14) 2018; 103
Siskind (B99) 2002; 277
Bird (B35) 2013; 9
Shimeno (B36) 1998; 33
Chen (B112) 2008; 111
Powell (B32) 2003; 23
Fugio (B45) 2020; 9
Ishihara (B139) 2004; 117
Tonks (B53) 2016; 24
Di Paola (B93) 2000; 39
Bionda (B39) 2004; 382
Lin (B135) 2018; 2018
Bach (B126) 2003; 278
Jiang (B116) 2019; 10
Pi-Sunyer (B1) 2009; 121
Turner (B56) 2013; 56
Gosejacob (B61) 2016; 291
Smith (B137) 2013; 456
Jain (B80) 2017; 130
Dos Santos (B16) 2018; 449
Turpin (B62) 2014; 20
Bienias (B81) 2016; 68
Sun (B25) 1991; 352
Patwardhan (B66) 2016; 48
Bourbon (B123) 2002; 277
Kogot-Levin (B9) 2014; 100
Jheng (B136) 2012; 32
Theurey (B75) 2016; 8
Ranieri (B138) 2013; 2013
Bartke (B6) 2009
Haththotuwa (B3) 2020
Obeng (B103) 2020; 81
Shaw (B4) 2010; 87
Wada (B17) 2016; 70
Tsujimoto (B108) 2000; 7
Rieusset (B70) 2015; 41
Gudz (B94) 1997; 272
Siddique (B120) 2013; 33
Hayashi (B68) 2009; 19
Hajduch (B26) 2001; 492
Mahfouz (B34) 2014; 9
Stiban (B125) 2006; 11
Dadsena (B107) 2019; 10
Meyer (B129) 2017; 391
Muoio (B143) 2012; 15
Montecinos-Franjola (B132) 2020; 2159
Breslow (B43) 2013; 5
Osellame (B133) 2016; 129
Lefort (B145) 2010; 59
Yang (B117) 2009; 297
Ferreira (B115) 2011; 54
Mullen (B48) 2012; 441
Zorzano (B13) 2009; 41
Straczkowski (B82) 2007; 50
Bergman (B54) 2016; 59
Park (B83) 2016; 291
Zamponi (B128) 2018; 8
Chaurasia (B118) 2020; 45
Tait (B97) 2013; 5
Stiban (B106) 2015; 1848
Salinas (B30) 2000; 15
Furukawa (B141) 2004; 114
Mignard (B69) 2020; 61
Kumagai (B78) 2005; 280
Anderson (B142) 2009; 119
Rieusset (B73) 2018; 9
Gundersen (B18) 2020; 45
Petersen (B87) 2004; 350
Siddique (B121) 2012; 7
Siskind (B100) 2006; 6
Birbes (B40) 2001; 15
Perreault (B52) 2018; 3
Asmann (B15) 2006; 55
Ritov (B88) 2005; 54
Shimizu (B109) 1999; 399
Simões (B113) 2018; 95
Ardail (B8) 2001; 488
Helle (B42) 2013; 1833
Borén (B21) 2013; 274
Cipolat (B140) 2004; 101
Bandet (B79) 2018; 67
Kong (B111) 2005; 278
Wang (B134) 2015; 58
Teruel (B124) 2001; 50
Chavez (B29) 2003; 278
Cohen (B41) 2018; 53
Bournat (B12) 2010; 17
Kitatani (B44) 2008; 20
Kalpage (B101) 2019; 33
Lee (B130) 2016; 44
Burke (B27) 2011; 19
Hajduch (B33) 2008; 410
Wahwah (B92) 2020; 318
Kwak (B10) 2010; 1
Kelley (B89) 2002; 51
Colombini (B105) 2010; 1797
Gault (B49) 2010; 688
Levy (B51) 2010; 62
Blachnio-Zabielska (B55) 2016; 40
Holloway (B91) 2014; 57
Trayssac (B5) 2018; 128
Mitsutake (B84) 2011; 286
Zigdon (B95) 2013; 288
Borutaite (B96) 2010; 51
Tubbs (B74) 2018; 67
Csordás (B71) 2006; 174
Siskind (B98) 2000; 275
Rector (B114) 2010; 52
Hammerschmidt (B64) 2019; 177
Yu (B119) 2007; 282
References_xml – volume: 25
  year: 2011
  ident: B38
  article-title: Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration
  publication-title: FASEB J
  doi: 10.1096/fj.10-167502
– volume: 441
  start-page: 789
  year: 2012
  ident: B48
  article-title: Ceramide synthases at the centre of sphingolipid metabolism and biology
  publication-title: Biochem J
  doi: 10.1042/BJ20111626
– volume: 3
  year: 2018
  ident: B52
  article-title: Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.96805
– volume: 274
  start-page: 25
  year: 2013
  ident: B21
  article-title: Ectopic lipid storage and insulin resistance: a harmful relationship
  publication-title: J Intern Med
  doi: 10.1111/joim.12071
– volume: 7
  year: 2000
  ident: B108
  article-title: VDAC regulation by the Bcl-2 family of proteins
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4400780
– volume: 40
  year: 2016
  ident: B55
  article-title: The Crucial Role of C18-Cer in Fat-Induced Skeletal Muscle Insulin Resistance
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000453174
– volume: 291
  start-page: 6989
  year: 2016
  ident: B61
  article-title: Ceramide Synthase 5 Is Essential to Maintain C16:0-Ceramide Pools and Contributes to the Development of Diet-induced Obesity
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M115.691212
– volume: 1833
  year: 2013
  ident: B42
  article-title: Organization and function of membrane contact sites
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2013.01.028
– volume: 56
  year: 2013
  ident: B56
  article-title: Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding
  publication-title: Diabetologia
  doi: 10.1007/s00125-013-2913-1
– volume: 382
  year: 2004
  ident: B39
  article-title: Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria
  publication-title: Biochem J
  doi: 10.1042/BJ20031819
– volume: 275
  year: 2000
  ident: B98
  article-title: The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C000587200
– volume: 45
  year: 2020
  ident: B118
  article-title: Ceramides are necessary and sufficient for diet-induced impairment of thermogenic adipocytes
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2020.101145
– volume: 70
  year: 2016
  ident: B17
  article-title: Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes
  publication-title: Acta Med Okayama
  doi: 10.18926/AMO/54413
– volume: 272
  year: 1997
  ident: B144
  article-title: Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.17.11369
– volume: 278
  year: 2003
  ident: B29
  article-title: A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M212307200
– volume: 297
  start-page: E211
  year: 2009
  ident: B117
  article-title: Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.91014.2008
– volume: 48
  year: 2016
  ident: B66
  article-title: Sphingolipids and mitochondrial apoptosis
  publication-title: J Bioenerg Biomembr
  doi: 10.1007/s10863-015-9602-3
– volume: 942
  start-page: 3
  year: 2012
  ident: B11
  article-title: The oxidative phosphorylation system in mammalian mitochondria
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-94-007-2869-1_1
– volume: 399
  year: 1999
  ident: B109
  article-title: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC
  publication-title: Nature
  doi: 10.1038/20959
– volume: 33
  year: 1998
  ident: B36
  article-title: Partial purification and characterization of sphingosine N-acyltransferase (ceramide synthase) from bovine liver mitochondrion-rich fraction
  publication-title: Lipids
  doi: 10.1007/s11745-998-0246-2
– volume: 9
  start-page: 581
  year: 2020
  ident: B45
  article-title: Sphingolipids and Mitochondrial Dynamic
  publication-title: Cells
  doi: 10.3390/cells9030581
– volume: 57
  year: 2014
  ident: B91
  article-title: Chronic muscle stimulation improves insulin sensitivity while increasing subcellular lipid droplets and reducing selected diacylglycerol and ceramide species in obese Zucker rats
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3169-0
– volume: 26
  start-page: 1
  year: 2019
  ident: B57
  article-title: CerS1-Derived C18:0 Ceramide in Skeletal Muscle Promotes Obesity-Induced Insulin Resistance
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.12.031
– volume: 67
  year: 2018
  ident: B74
  article-title: Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans
  publication-title: Diabetes
  doi: 10.2337/db17-0316
– volume: 11
  year: 2006
  ident: B125
  article-title: Dihydroceramide hinders ceramide channel formation: Implications on apoptosis
  publication-title: Apoptosis
  doi: 10.1007/s10495-006-5882-8
– volume: 174
  year: 2006
  ident: B71
  article-title: Structural and functional features and significance of the physical linkage between ER and mitochondria
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200604016
– volume: 1797
  year: 2010
  ident: B105
  article-title: Ceramide channels and their role in mitochondria-mediated apoptosis
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbabio.2010.01.021
– volume: 21
  start-page: 36
  year: 2019
  ident: B60
  article-title: The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2018.12.008
– volume: 286
  year: 2011
  ident: B84
  article-title: Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.255646
– volume: 9
  start-page: 388
  year: 2018
  ident: B73
  article-title: The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: an update
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-018-0416-1
– year: 2009
  ident: B6
  article-title: Bioactive sphingolipids: metabolism and function
  publication-title: J Lipid Res
  doi: 10.1194/jlr.R800080-JLR200
– volume: 449
  year: 2018
  ident: B16
  article-title: The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes
  publication-title: Mol Cell Biochem
  doi: 10.1007/s11010-018-3361-5
– volume: 130
  year: 2017
  ident: B80
  article-title: Diverting CERT-mediated ceramide transport to mitochondria triggers Bax-dependent apoptosis
  publication-title: J Cell Sci
  doi: 10.1242/jcs.194191
– volume: 278
  year: 2003
  ident: B22
  article-title: Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M212430200
– volume: 41
  year: 2009
  ident: B13
  article-title: Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2009.02.004
– volume: 19
  year: 2011
  ident: B27
  article-title: Dynamics of the phosphoinositide 3-kinase p110delta interaction with p85alpha and membranes reveals aspects of regulation distinct from p110alpha
  publication-title: Structure
  doi: 10.1016/j.str.2011.06.003
– volume: 365
  year: 2019
  ident: B122
  article-title: Targeting a ceramide double bond improves insulin resistance and hepatic steatosis
  publication-title: Science (New York NY)
  doi: 10.1126/science.aav3722
– volume: 492
  start-page: 199
  year: 2001
  ident: B26
  article-title: (PKB/Akt) - a key regulator of glucose transport
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(01)02242-6
– volume: 10
  start-page: 1832
  year: 2019
  ident: B107
  article-title: Ceramides bind VDAC2 to trigger mitochondrial apoptosis
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09654-4
– volume: 278
  start-page: 39
  year: 2005
  ident: B111
  article-title: Ceramide activates a mitochondrial p38 mitogen-activated protein kinase: a potential mechanism for loss of mitochondrial transmembrane potential and apoptosis
  publication-title: Mol Cell Biochem
  doi: 10.1007/s11010-005-1979-6
– volume: 8
  year: 2018
  ident: B86
  article-title: GPRC5B-Mediated Sphingomyelin Synthase 2 Phosphorylation Plays a Critical Role in Insulin Resistance
  publication-title: iScience
  doi: 10.1016/j.isci.2018.10.001
– volume: 5
  year: 2013
  ident: B43
  article-title: Sphingolipid homeostasis in the endoplasmic reticulum and beyond
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a013326
– volume: 15
  year: 2005
  ident: B76
  article-title: The ins and outs of sphingolipid synthesis
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2005.04.006
– volume: 62
  year: 2010
  ident: B51
  article-title: Mammalian ceramide synthases
  publication-title: IUBMB Life
  doi: 10.1002/iub.319
– volume: 426
  year: 2003
  ident: B77
  article-title: Molecular machinery for non-vesicular trafficking of ceramide
  publication-title: Nature
  doi: 10.1038/nature02188
– volume: 1848
  year: 2015
  ident: B104
  article-title: Ceramide channels: destabilization by Bcl-xL and role in apoptosis
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamem.2015.07.013
– volume: 50
  year: 2007
  ident: B82
  article-title: Increased skeletal muscle ceramide level in men at risk of developing type 2 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-007-0781-2
– volume: 32
  year: 2012
  ident: B136
  article-title: Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.05603-11
– volume: 24
  year: 2016
  ident: B53
  article-title: Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.21448
– volume: 266
  year: 1994
  ident: B24
  article-title: The insulin receptor: structure, function, and signaling
  publication-title: Am J Physiol
  doi: 10.1152/ajpcell.1994.266.2.C319
– volume: 278
  year: 2003
  ident: B126
  article-title: Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M212754200
– volume: 119
  year: 2009
  ident: B142
  article-title: Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans
  publication-title: J Clin Invest
  doi: 10.1172/JCI37048
– volume: 9
  start-page: 67
  year: 2013
  ident: B35
  article-title: Qualitative Characterization of the Rat Liver Mitochondrial Lipidome using LC-MS Profiling and High Energy Collisional Dissociation (HCD) All Ion Fragmentation
  publication-title: Metabolomics
  doi: 10.1007/s11306-012-0400-1
– volume: 2018
  year: 2018
  ident: B135
  article-title: The Causal Role of Mitochondrial Dynamics in Regulating Insulin Resistance in Diabetes: Link through Mitochondrial Reactive Oxygen Species
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2018/7514383
– volume: 33
  year: 2019
  ident: B101
  article-title: Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis
  publication-title: FASEB J
  doi: 10.1096/fj.201801417R
– volume: 288
  year: 2013
  ident: B95
  article-title: Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.402719
– volume: 44
  year: 2016
  ident: B130
  article-title: Mitochondrial fission and fusion
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20160129
– volume: 162
  year: 2021
  ident: B20
  article-title: Physiological evidence of mitochondrial permeability transition pore opening caused by lipid deposition leading to hepatic steatosis in db/db mice
  publication-title: Free Radical Biol Med
  doi: 10.1016/j.freeradbiomed.2020.11.009
– volume: 488
  year: 2001
  ident: B8
  article-title: Occurrence of ceramides and neutral glycolipids with unusual long-chain base composition in purified rat liver mitochondria
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(00)02332-2
– volume: 17
  year: 2010
  ident: B12
  article-title: Mitochondrial dysfunction in obesity
  publication-title: Curr Opin Endocrinol Diabetes Obes
  doi: 10.1097/MED.0b013e32833c3026
– volume: 8
  start-page: 363
  year: 2018
  ident: B128
  article-title: Mitochondrial network complexity emerges from fission/fusion dynamics
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-18351-5
– volume: 9
  year: 2014
  ident: B34
  article-title: Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models: a mechanistic insight
  publication-title: PloS One
  doi: 10.1371/journal.pone.0101865
– volume: 74
  year: 2019
  ident: B85
  article-title: A selective sphingomyelin synthase 2 inhibitor ameliorates diet induced insulin resistance via the IRS-1/Akt/GSK-3β signaling pathway
  publication-title: Pharmazie
  doi: 10.1691/ph.2019.9310
– volume: 5
  year: 2013
  ident: B97
  article-title: Mitochondrial regulation of cell death
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a008706
– volume: 61
  year: 2020
  ident: B69
  article-title: Sphingolipid distribution at mitochondria-associated membranes (MAMs) upon induction of apoptosis
  publication-title: J Lipid Res
  doi: 10.1194/jlr.RA120000628
– volume: 53
  start-page: 84
  year: 2018
  ident: B41
  article-title: Interacting organelles
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2018.06.003
– volume: 49
  year: 2008
  ident: B72
  article-title: Ceramide synthesis in the endoplasmic reticulum can permeabilize mitochondria to proapoptotic proteins
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M700480-JLR200
– volume: 1833
  year: 2013
  ident: B59
  article-title: The complexity of sphingolipid biosynthesis in the endoplasmic reticulum
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2013.04.010
– volume: 33
  year: 2013
  ident: B120
  article-title: Ablation of dihydroceramide desaturase 1, a therapeutic target for the treatment of metabolic diseases, simultaneously stimulates anabolic and catabolic signaling
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00226-13
– volume: 8
  year: 2016
  ident: B75
  article-title: Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver
  publication-title: J Mol Cell Biol
  doi: 10.1093/jmcb/mjw004
– volume: 1848
  year: 2015
  ident: B106
  article-title: Very long chain ceramides interfere with C16-ceramide-induced channel formation: A plausible mechanism for regulating the initiation of intrinsic apoptosis
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamem.2014.11.018
– volume: 15
  year: 2000
  ident: B30
  article-title: Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells
  publication-title: Mol Cell Neurosci
  doi: 10.1006/mcne.1999.0813
– volume: 128
  year: 2018
  ident: B5
  article-title: Role of sphingolipids in senescence: implication in aging and age-related diseases
  publication-title: J Clin Invest
  doi: 10.1172/JCI97949
– volume: 10
  year: 2019
  ident: B131
  article-title: Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet
  publication-title: Front Physiol
  doi: 10.3389/fphys.2019.00532
– volume: 15
  year: 2001
  ident: B40
  article-title: Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis
  publication-title: FASEB J
  doi: 10.1096/fj.01-0539com
– volume: 391
  start-page: 42
  year: 2017
  ident: B129
  article-title: Mitochondrial fusion, fission, and mitochondrial toxicity
  publication-title: Toxicology
  doi: 10.1016/j.tox.2017.07.019
– volume: 121
  start-page: 21
  year: 2009
  ident: B1
  article-title: The medical risks of obesity
  publication-title: Postgrad Med
  doi: 10.3810/pgm.2009.11.2074
– volume: 129
  year: 2016
  ident: B133
  article-title: Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission
  publication-title: J Cell Sci
  doi: 10.1242/jcs.185165
– volume: 350
  year: 2004
  ident: B87
  article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa031314
– volume: 1
  year: 2010
  ident: B10
  article-title: Mitochondrial metabolism and diabetes
  publication-title: J Diabetes Investig
  doi: 10.1111/j.2040-1124.2010.00047.x
– volume: 280
  year: 2005
  ident: B78
  article-title: CERT mediates intermembrane transfer of various molecular species of ceramides
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M409290200
– volume: 117
  year: 2004
  ident: B139
  article-title: Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity
  publication-title: J Cell Sci
  doi: 10.1242/jcs.01565
– volume: 41
  year: 2015
  ident: B70
  article-title: Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles
  publication-title: Diabetes Metab
  doi: 10.1016/j.diabet.2015.02.006
– volume: 20
  year: 2008
  ident: B44
  article-title: The sphingolipid salvage pathway in ceramide metabolism and signaling
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2007.12.006
– volume: 55
  year: 2006
  ident: B15
  article-title: Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia
  publication-title: Diabetes
  doi: 10.2337/db05-1230
– volume: 1862
  start-page: 56
  year: 2017
  ident: B50
  article-title: Sphingolipids in mitochondria
  publication-title: Biochim Biophys Acta Mol Cell Biol Lipids
  doi: 10.1016/j.bbalip.2016.09.019
– volume: 95
  year: 2018
  ident: B113
  article-title: Mitochondria in non-alcoholic fatty liver disease
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2017.12.019
– volume: 410
  year: 2008
  ident: B33
  article-title: Targeting of PKCzeta and PKB to caveolin-enriched microdomains represents a crucial step underpinning the disruption in PKB-directed signalling by ceramide
  publication-title: Biochem J
  doi: 10.1042/BJ20070936
– volume: 23
  year: 2003
  ident: B32
  article-title: Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.21.7794-7808.2003
– volume: 68
  year: 2016
  ident: B81
  article-title: Regulation of sphingomyelin metabolism
  publication-title: Pharmacol Rep
  doi: 10.1016/j.pharep.2015.12.008
– volume: 19
  year: 2009
  ident: B68
  article-title: MAM: more than just a housekeeper
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2008.12.002
– volume: 282
  year: 2007
  ident: B119
  article-title: JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M701812200
– volume: 352
  year: 1991
  ident: B25
  article-title: Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein
  publication-title: Nature
  doi: 10.1038/352073a0
– volume: 2013
  year: 2013
  ident: B138
  article-title: Mitochondrial fusion proteins and human diseases
  publication-title: Neurol Res Int
  doi: 10.1155/2013/293893
– volume: 87
  start-page: 4
  year: 2010
  ident: B4
  article-title: Global estimates of the prevalence of diabetes for 2010 and 2030
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2009.10.007
– volume: 10
  year: 2011
  ident: B23
  article-title: The insulin receptor substrate (IRS) proteins: at the intersection of metabolism and cancer
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.11.15824
– volume: 114
  year: 2004
  ident: B141
  article-title: Increased oxidative stress in obesity and its impact on metabolic syndrome
  publication-title: J Clin Invest
  doi: 10.1172/JCI21625
– volume: 20
  year: 2014
  ident: B65
  article-title: CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2014.09.015
– volume: 51
  year: 2002
  ident: B89
  article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.10.2944
– volume: 1841
  start-page: 595
  year: 2014
  ident: B67
  article-title: MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbalip.2013.11.014
– volume: 54
  start-page: 8
  year: 2005
  ident: B88
  article-title: Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.1.8
– volume: 81
  year: 2020
  ident: B103
  article-title: Apoptosis (programmed cell death) and its signals - A review
  publication-title: Braz J Biol
  doi: 10.1590/1519-6984.228437
– volume: 50
  year: 2001
  ident: B124
  article-title: Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.11.2563
– start-page: 3
  volume-title: Obesity and Obstetrics
  year: 2020
  ident: B3
  article-title: Chapter 1 - Worldwide epidemic of obesity
  doi: 10.1016/B978-0-12-817921-5.00001-1
– volume: 20
  year: 2014
  ident: B62
  article-title: Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2014.08.002
– volume: 47
  year: 2012
  ident: B63
  article-title: Increased bioactive lipids content in human subcutaneous and epicardial fat tissue correlates with insulin resistance
  publication-title: Lipids
  doi: 10.1007/s11745-012-3722-x
– volume: 103
  year: 2018
  ident: B14
  article-title: High Incomplete Skeletal Muscle Fatty Acid Oxidation Explains Low Muscle Insulin Sensitivity in Poorly Controlled T2D
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2017-01727
– volume: 58
  year: 2015
  ident: B134
  article-title: Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3704-7
– volume: 56
  year: 2007
  ident: B90
  article-title: Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/db06-0981
– volume: 275
  year: 2000
  ident: B31
  article-title: Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473
  publication-title: J Biol Chem
  doi: 10.1074/jbc.275.18.13330
– volume: 9
  start-page: 3165
  year: 2018
  ident: B58
  article-title: A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05613-7
– volume: 52
  year: 2010
  ident: B114
  article-title: Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2009.11.030
– volume: 101
  year: 2004
  ident: B140
  article-title: OPA1 requires mitofusin 1 to promote mitochondrial fusion
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0407043101
– volume: 51
  year: 2010
  ident: B96
  article-title: Mitochondria as decision-makers in cell death
  publication-title: Environ Mol Mutagen
  doi: 10.1002/em.20564
– volume: 12
  year: 1992
  ident: B28
  article-title: SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.12.3.991
– volume: 285
  year: 2010
  ident: B46
  article-title: Identification and characterization of murine mitochondria-associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.102988
– volume: 111
  year: 2008
  ident: B112
  article-title: Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway
  publication-title: Blood
  doi: 10.1182/blood-2007-08-106336
– volume: 688
  start-page: 1
  year: 2010
  ident: B49
  article-title: An overview of sphingolipid metabolism: from synthesis to breakdown
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-1-4419-6741-1_1
– volume: 16
  year: 2019
  ident: B2
  article-title: Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift
  publication-title: Diabetes Vasc Dis Res
  doi: 10.1177/1479164119827611
– volume: 291
  year: 2016
  ident: B83
  article-title: but Not Sphingomyelins, as Antagonists of Insulin Signaling and Mitochondrial Metabolism in C2C12 Myotubes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.737684
– volume: 21
  start-page: 2346
  year: 2020
  ident: B110
  article-title: Understanding MAPK Signaling Pathways in Apoptosis
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21072346
– volume: 109
  year: 2012
  ident: B127
  article-title: Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1108220109
– volume: 19
  year: 2018
  ident: B7
  article-title: Sphingolipids and their metabolism in physiology and disease
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2017.107
– volume: 10
  year: 2019
  ident: B116
  article-title: Inhibiting Ceramide Synthesis Attenuates Hepatic Steatosis and Fibrosis in Rats With Non-alcoholic Fatty Liver Disease
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2019.00665
– volume: 456
  year: 2013
  ident: B137
  article-title: Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle
  publication-title: Biochem J
  doi: 10.1042/BJ20130807
– volume: 100
  start-page: 88
  year: 2014
  ident: B9
  article-title: Ceramide and the mitochondrial respiratory chain
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2013.07.027
– volume: 2159
  year: 2020
  ident: B132
  article-title: Imaging Dynamin-Related Protein 1 (Drp1)-Mediated Mitochondrial Fission in Living Cells
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-0676-6_16
– volume: 277
  year: 2002
  ident: B99
  article-title: Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M200754200
– volume: 39
  year: 2000
  ident: B93
  article-title: Ceramide interaction with the respiratory chain of heart mitochondria
  publication-title: Biochemistry
  doi: 10.1021/bi9924415
– volume: 109
  year: 2017
  ident: B102
  article-title: Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok
  publication-title: Neurochem Int
  doi: 10.1016/j.neuint.2017.03.010
– volume: 7
  year: 2012
  ident: B121
  article-title: Ablation of dihydroceramide desaturase confers resistance to etoposide-induced apoptosis in vitro
  publication-title: PloS One
  doi: 10.1371/journal.pone.0044042
– volume: 44
  year: 2020
  ident: B19
  article-title: Mitochondrial DNA copy number associates with insulin sensitivity and aerobic capacity, and differs between sedentary, overweight middle-aged males with and without type 2 diabetes
  publication-title: Int J Obes (Lond)
  doi: 10.1038/s41366-019-0473-2
– volume: 45
  year: 2020
  ident: B18
  article-title: Altered mitochondrial network morphology and regulatory proteins in mitochondrial quality control in myotubes from severely obese humans with or without type 2 diabetes
  publication-title: Appl Physiol Nutrn Metab
  doi: 10.1139/apnm-2019-0208
– volume: 289
  year: 2014
  ident: B37
  article-title: Essential roles of neutral ceramidase and sphingosine in mitochondrial dysfunction due to traumatic brain injury
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.530311
– volume: 59
  year: 2010
  ident: B145
  article-title: Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle
  publication-title: Diabetes
  doi: 10.2337/db10-0174
– volume: 277
  year: 2002
  ident: B123
  article-title: Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110541200
– volume: 177
  start-page: 1536
  year: 2019
  ident: B64
  article-title: CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.008
– volume: 318
  start-page: E538
  year: 2020
  ident: B92
  article-title: Subpopulation-specific differences in skeletal muscle mitochondria in humans with obesity: insights from studies employing acute nutritional and exercise stimuli
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00463.2019
– volume: 59
  year: 2016
  ident: B54
  article-title: Muscle sphingolipids during rest and exercise: a C18:0 signature for insulin resistance in humans
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3850-y
– volume: 54
  year: 2011
  ident: B115
  article-title: Apoptosis and insulin resistance in liver and peripheral tissues of morbidly obese patients is associated with different stages of non-alcoholic fatty liver disease
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2130-8
– volume: 277
  year: 2002
  ident: B47
  article-title: De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R200009200
– volume: 6
  year: 2006
  ident: B100
  article-title: Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2006.03.002
– volume: 272
  year: 1997
  ident: B94
  article-title: Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.39.24154
– volume: 67
  year: 2018
  ident: B79
  article-title: Ceramide Transporter CERT Is Involved in Muscle Insulin Signaling Defects Under Lipotoxic Conditions
  publication-title: Diabetes
  doi: 10.2337/db17-0901
– volume: 15
  start-page: 595
  year: 2012
  ident: B143
  article-title: Lipid-induced mitochondrial stress and insulin action in muscle
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2012.04.010
SSID ssj0000401998
Score 2.5058632
SecondaryResourceType review_article
Snippet Insulin resistance is defined as a complex pathological condition of abnormal cellular and metabolic response to insulin. Obesity and consumption of high-fat...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 635175
SubjectTerms Adenosine Triphosphate - metabolism
Animals
ceramide
Ceramides - metabolism
Diabetes Mellitus, Type 2 - metabolism
Diet, High-Fat
Endocrinology
Endoplasmic Reticulum - metabolism
Golgi Apparatus - metabolism
Humans
Insulin - metabolism
Insulin Resistance
Liver - metabolism
metabolism
Mitochondria - metabolism
mitochondrial dysfunction
Muscle, Skeletal - metabolism
Obesity - complications
Oxidative Stress
Oxidoreductases - metabolism
Signal Transduction
sphingolipids
Sphingolipids - metabolism
type 2 diabetes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlh9BLaJI22bxQoKeCG1sPSz7m0ZAEtoe2C3sT1osuLNol3j3k32fGdpbdEpJLsU-2jIaZ0cx8ntGIkK-xLkOpmIbITdlMBFFkuqzKTIlgtXSMBY0bnIc_y7uReBjL8dpRX1gT1rUH7hh3IaMNvPQyRu2E00o7dHLeVyXz0al2Hzn4vDUw1dpggA0AJLo0JqCw6iKG5HGzHyu-g48tsK5wzRG1_fpfCzL_rZVccz63n8hOHzXSy47aXfIhpD2yPezz4vuk_j3HP0mz6WQ-8Q2t4abXy-kckD-dRTqEZQtmLnnUNnrz1KA3Q4nQSaL3XTU6_RUajCVBCWidPEWAShntK2aaz2R0--PP9V3WH56QOVhWi0wVFqTApM-1AMZ5Fp301tdB1RzTKo4pFYUFAGhLlwsLlosXruBeuUp5KfkXspVmKRwSKi2PuQQRehfB37uKR7BKNVxcO5eHAclfOGlc31kcD7iYGkAYyHzTMt8g803H_AH5tvpk3rXVeGvwFYpnNRA7YrcPQE9MryfmPT0ZkPMX4RpYQZgWqVOYLRvDMEatBMeJDjphr6YCgiDAqYoBURtqsEHL5ps0-dt26daYA9bs6H8Qf0w-Ij-w9q3QJ2Rr8bgMpxAMLexZq_fPkI8JvA
  priority: 102
  providerName: Directory of Open Access Journals
Title Sphingolipids as a Culprit of Mitochondrial Dysfunction in Insulin Resistance and Type 2 Diabetes
URI https://www.ncbi.nlm.nih.gov/pubmed/33815291
https://www.proquest.com/docview/2508894375
https://pubmed.ncbi.nlm.nih.gov/PMC8013882
https://doaj.org/article/5fbe36d5ff8c4c878c0750dd962dfc77
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zi9RAEG7WFcQX8XY8lhZ8ErImfedBRFfXVRgf1IF5a9LXGhiScTID7r-3KskMjgyCJARyd-ro-irVXUXIi1SpqDQzgNy0y0QURWZUqTItojPSMxYNTnCeflEXM_F5LudHZFveaiRgd9C1w3pSs9Xi9NfPqzeg8K_R4wR7-yrFJuA8PlacgvkEe3iNXAfDpFFPpyPa7ztm8CXKvjpuoZTIGECDIc55-Cl7lqpP6H8Ihf49mPIP63R-m9waYSV9O8jBHXIUm7vkxnQMnN8j1bcl_mpqF_WyDh2tYKVnm8VyVa9pm-gU9BpI0QQUR_r-qkNzhyyjdUM_DcPV6dfYIdgEKaFVEyh6sJTRcUhNd5_Mzj98P7vIxuoKmQe9W2e6cMAmJkNuhBc-sORlcKGKuuIYd_FM6yQceIhO-Vw46Np44QsetC91kJI_IMdN28RHhErHUy6Bx8EnAAS-5Am6rQoWbrzP44TkW0paP6YexwoYCwsuCBLf9sS3SHw7EH9CXu5uWQ55N_518Ttkz-5CTJndH2hXl3bUQCuTi1wFmZKBzzXaeERLIZSKheS1npDnW-ZaUDGMm1RNbDedZQhiS8HxRQ8HZu9eBQ0CBFQWE6L3xGCvLftnmvpHn8bbYJDYsMf_86VPyE3cw0FwhXlKjterTXwGqGjtTvq_CbD9OC9Oern_DYgiDAI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sphingolipids+as+a+Culprit+of+Mitochondrial+Dysfunction+in+Insulin+Resistance+and+Type+2+Diabetes&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Roszczyc-Owsiejczuk%2C+Kamila&rft.au=Zabielski%2C+Piotr&rft.date=2021-03-18&rft.issn=1664-2392&rft.eissn=1664-2392&rft.volume=12&rft_id=info:doi/10.3389%2Ffendo.2021.635175&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fendo_2021_635175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon