Global analysis of trans-splicing in Drosophila

Precursor mRNA (pre-mRNA) splicing can join exons contained on either a single pre-mRNA (cis) or on separate pre-mRNAs (trans). It is exceedingly rare to have trans-splicing between protein-coding exons and has been demonstrated for only two Drosophila genes: mod(mdg4) and lola. It has also been sug...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 29; pp. 12975 - 12979
Main Authors McManus, C. Joel, Duff, Michael O., Eipper-Mains, Jodi, Graveley, Brenton R., Maniatis, Tom
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 20.07.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Precursor mRNA (pre-mRNA) splicing can join exons contained on either a single pre-mRNA (cis) or on separate pre-mRNAs (trans). It is exceedingly rare to have trans-splicing between protein-coding exons and has been demonstrated for only two Drosophila genes: mod(mdg4) and lola. It has also been suggested that trans-splicing is a mechanism for the generation of chimeric RNA products containing sequence from multiple distant genomic sites. Because most high-throughput approaches cannot distinguish cis- and transsplicing events, the extent to which trans-splicing occurs between protein-coding exons in any organism is unknown. Here, we used paired-end deep sequencing of mRNA to identify genes that undergo trans-splicing in Drosophila interspecies hybrids. We did not observe credible evidence for the existence of chimeric RNAs generated by trans-splicing of RNAs transcribed from distant genomic loci. Rather, our data suggest that experimental artifacts are the source of most, if not all, apparent chimeric RNA products. We did, however, identify 80 genes that appear to undergo trans-splicing between homologous alleles and can be classified into three categories based on their organization: (i) genes with multiple 3' terminal exons, (ii) genes with multiple first exons, and (iii) genes with very large introns, often containing other genes. Our results suggest that trans-splicing between homologous alleles occurs more commonly in Drosophila than previously believed and may facilitate expression of architecturally complex genes.
AbstractList Precursor mRNA (pre-mRNA) splicing can join exons contained on either a single pre-mRNA (cis) or on separate pre-mRNAs (trans). It is exceedingly rare to have trans-splicing between protein-coding exons and has been demonstrated for only two Drosophila genes: mod(mdg4) and lola. It has also been suggested that trans-splicing is a mechanism for the generation of chimeric RNA products containing sequence from multiple distant genomic sites. Because most high-throughput approaches cannot distinguish cis- and trans-splicing events, the extent to which trans-splicing occurs between protein-coding exons in any organism is unknown. Here, we used paired-end deep sequencing of mRNA to identify genes that undergo trans-splicing in Drosophila interspecies hybrids. We did not observe credible evidence for the existence of chimeric RNAs generated by trans-splicing of RNAs transcribed from distant genomic loci. Rather, our data suggest that experimental artifacts are the source of most, if not all, apparent chimeric RNA products. We did, however, identify 80 genes that appear to undergo trans-splicing between homologous alleles and can be classified into three categories based on their organization: (i) genes with multiple 3' terminal exons, (ii) genes with multiple first exons, and (iii) genes with very large introns, often containing other genes. Our results suggest that trans-splicing between homologous alleles occurs more commonly in Drosophila than previously believed and may facilitate expression of architecturally complex genes. [PUBLICATION ABSTRACT]
Precursor mRNA (pre-mRNA) splicing can join exons contained on either a single pre-mRNA (cis) or on separate pre-mRNAs (trans). It is exceedingly rare to have trans-splicing between protein-coding exons and has been demonstrated for only two Drosophila genes: mod(mdg4) and lola. It has also been suggested that trans-splicing is a mechanism for the generation of chimeric RNA products containing sequence from multiple distant genomic sites. Because most high-throughput approaches cannot distinguish cis- and trans-splicing events, the extent to which trans-splicing occurs between protein-coding exons in any organism is unknown. Here, we used paired-end deep sequencing of mRNA to identify genes that undergo trans-splicing in Drosophila interspecies hybrids. We did not observe credible evidence for the existence of chimeric RNAs generated by trans-splicing of RNAs transcribed from distant genomic loci. Rather, our data suggest that experimental artifacts are the source of most, if not all, apparent chimeric RNA products. We did, however, identify 80 genes that appear to undergo trans-splicing between homologous alleles and can be classified into three categories based on their organization: (i) genes with multiple 3' terminal exons, (ii) genes with multiple first exons, and (iii) genes with very large introns, often containing other genes. Our results suggest that trans-splicing between homologous alleles occurs more commonly in Drosophila than previously believed and may facilitate expression of architecturally complex genes.
Precursor mRNA (pre-mRNA) splicing can join exons contained on either a single pre-mRNA (cis) or on separate pre-mRNAs (trans). It is exceedingly rare to have trans-splicing between protein-coding exons and has been demonstrated for only two Drosophila genes: mod(mdg4) and lola. It has also been suggested that trans-splicing is a mechanism for the generation of chimeric RNA products containing sequence from multiple distant genomic sites. Because most high-throughput approaches cannot distinguish cis- and transsplicing events, the extent to which trans-splicing occurs between protein-coding exons in any organism is unknown. Here, we used paired-end deep sequencing of mRNA to identify genes that undergo trans-splicing in Drosophila interspecies hybrids. We did not observe credible evidence for the existence of chimeric RNAs generated by trans-splicing of RNAs transcribed from distant genomic loci. Rather, our data suggest that experimental artifacts are the source of most, if not all, apparent chimeric RNA products. We did, however, identify 80 genes that appear to undergo trans-splicing between homologous alleles and can be classified into three categories based on their organization: (i) genes with multiple 3' terminal exons, (ii) genes with multiple first exons, and (iii) genes with very large introns, often containing other genes. Our results suggest that trans-splicing between homologous alleles occurs more commonly in Drosophila than previously believed and may facilitate expression of architecturally complex genes.
Precursor mRNA (pre-mRNA) splicing can join exons contained on either a single pre-mRNA (cis) or on separate pre-mRNAs (trans). It is exceedingly rare to have trans-splicing between protein-coding exons and has been demonstrated for only two Drosophila genes: mod(mdg4) and lola. It has also been suggested that trans-splicing is a mechanism for the generation of chimeric RNA products containing sequence from multiple distant genomic sites. Because most high-throughput approaches cannot distinguish cis- and trans-splicing events, the extent to which trans-splicing occurs between protein-coding exons in any organism is unknown. Here, we used paired-end deep sequencing of mRNA to identify genes that undergo trans-splicing in Drosophila interspecies hybrids. We did not observe credible evidence for the existence of chimeric RNAs generated by trans-splicing of RNAs transcribed from distant genomic loci. Rather, our data suggest that experimental artifacts are the source of most, if not all, apparent chimeric RNA products. We did, however, identify 80 genes that appear to undergo trans-splicing between homologous alleles and can be classified into three categories based on their organization: (i) genes with multiple 3' terminal exons, (ii) genes with multiple first exons, and (iii) genes with very large introns, often containing other genes. Our results suggest that trans-splicing between homologous alleles occurs more commonly in Drosophila than previously believed and may facilitate expression of architecturally complex genes.Precursor mRNA (pre-mRNA) splicing can join exons contained on either a single pre-mRNA (cis) or on separate pre-mRNAs (trans). It is exceedingly rare to have trans-splicing between protein-coding exons and has been demonstrated for only two Drosophila genes: mod(mdg4) and lola. It has also been suggested that trans-splicing is a mechanism for the generation of chimeric RNA products containing sequence from multiple distant genomic sites. Because most high-throughput approaches cannot distinguish cis- and trans-splicing events, the extent to which trans-splicing occurs between protein-coding exons in any organism is unknown. Here, we used paired-end deep sequencing of mRNA to identify genes that undergo trans-splicing in Drosophila interspecies hybrids. We did not observe credible evidence for the existence of chimeric RNAs generated by trans-splicing of RNAs transcribed from distant genomic loci. Rather, our data suggest that experimental artifacts are the source of most, if not all, apparent chimeric RNA products. We did, however, identify 80 genes that appear to undergo trans-splicing between homologous alleles and can be classified into three categories based on their organization: (i) genes with multiple 3' terminal exons, (ii) genes with multiple first exons, and (iii) genes with very large introns, often containing other genes. Our results suggest that trans-splicing between homologous alleles occurs more commonly in Drosophila than previously believed and may facilitate expression of architecturally complex genes.
Precursor mRNA (pre-mRNA) splicing can join exons contained on either a single pre-mRNA ( cis ) or on separate pre-mRNAs ( trans ). It is exceedingly rare to have trans -splicing between protein-coding exons and has been demonstrated for only two Drosophila genes: mod(mdg4) and lola . It has also been suggested that trans -splicing is a mechanism for the generation of chimeric RNA products containing sequence from multiple distant genomic sites. Because most high-throughput approaches cannot distinguish cis - and trans -splicing events, the extent to which trans -splicing occurs between protein-coding exons in any organism is unknown. Here, we used paired-end deep sequencing of mRNA to identify genes that undergo trans -splicing in Drosophila interspecies hybrids. We did not observe credible evidence for the existence of chimeric RNAs generated by trans -splicing of RNAs transcribed from distant genomic loci. Rather, our data suggest that experimental artifacts are the source of most, if not all, apparent chimeric RNA products. We did, however, identify 80 genes that appear to undergo trans -splicing between homologous alleles and can be classified into three categories based on their organization: ( i ) genes with multiple 3′ terminal exons, ( ii ) genes with multiple first exons, and ( iii ) genes with very large introns, often containing other genes. Our results suggest that trans -splicing between homologous alleles occurs more commonly in Drosophila than previously believed and may facilitate expression of architecturally complex genes.
Author Maniatis, Tom
Duff, Michael O.
Graveley, Brenton R.
Eipper-Mains, Jodi
McManus, C. Joel
Author_xml – sequence: 1
  givenname: C. Joel
  surname: McManus
  fullname: McManus, C. Joel
– sequence: 2
  givenname: Michael O.
  surname: Duff
  fullname: Duff, Michael O.
– sequence: 3
  givenname: Jodi
  surname: Eipper-Mains
  fullname: Eipper-Mains, Jodi
– sequence: 4
  givenname: Brenton R.
  surname: Graveley
  fullname: Graveley, Brenton R.
– sequence: 5
  givenname: Tom
  surname: Maniatis
  fullname: Maniatis, Tom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20615941$$D View this record in MEDLINE/PubMed
BookMark eNqFkjtvFDEUhS0URDaBmgo0ooFmsr5-u4mEAiSRItFAbXm8nsQrrz2MZ5Hy7_FolyxJESpbvt89vo9zgo5STh6ht4DPAEu6HJIt9YYlV6I-vEALwBpawTQ-QguMiWwVI-wYnZSyxhhrrvArdEywAK4ZLNDyMubOxsYmG-9LKE3um2m0qbRliMGFdNuE1HwZc8nDXYj2NXrZ21j8m_15in5--_rj4qq9-X55ffH5pnWcwtQKZTlZaUtwrcR5zplT1GnhKe2kXpEa6ZSkijLRYa3BYsc4kw4YWN3Lnp6i853usO02fuV8qlVFM4xhY8d7k20wjyMp3Jnb_NsQDVVPV4GPe4Ex_9r6MplNKM7HaJPP22IkZ1xUmPyfpGyeHJ41Pz1LgiKcAQXgFf3wBF3n7ViHXIwQDISu26vQ-3-bfOju73oqsNwBri6gjL5_QACb2QBmNoA5GKBm8CcZLkx2CnmeUojP5DX7UubA4RdZB2qAaDm39G6HrMuUx0OxXGJVDUf_AKI-xhs
CitedBy_id crossref_primary_10_1002_jez_b_22542
crossref_primary_10_1002_wrna_71
crossref_primary_10_1093_nargab_lqab074
crossref_primary_10_1186_1471_2105_12_270
crossref_primary_10_1517_17460441_2012_660145
crossref_primary_10_1038_s41598_020_73077_1
crossref_primary_10_1093_nar_gku643
crossref_primary_10_1534_genetics_113_153544
crossref_primary_10_3390_biology13120994
crossref_primary_10_1093_gbe_evw025
crossref_primary_10_1101_gad_258863_115
crossref_primary_10_1155_2018_3178789
crossref_primary_10_3389_fvets_2021_742593
crossref_primary_10_1371_journal_pone_0033947
crossref_primary_10_1007_s40484_016_0069_y
crossref_primary_10_1371_journal_pone_0079703
crossref_primary_10_1371_journal_pone_0028213
crossref_primary_10_4161_rna_27866
crossref_primary_10_1371_journal_pcbi_1004325
crossref_primary_10_1093_nar_gku1199
crossref_primary_10_1371_journal_pone_0021022
crossref_primary_10_26508_lsa_202201793
crossref_primary_10_1186_1471_2164_12_552
crossref_primary_10_3390_genes9010040
crossref_primary_10_1093_nar_gkw032
crossref_primary_10_1371_journal_pcbi_1006158
crossref_primary_10_1186_s13059_015_0777_z
crossref_primary_10_1093_bioinformatics_bts216
crossref_primary_10_1371_journal_pgen_1011241
crossref_primary_10_1111_pbi_14296
crossref_primary_10_1134_S1607672924601021
crossref_primary_10_1261_rna_066225_118
crossref_primary_10_1002_wrna_1294
crossref_primary_10_1038_nbt_2890
crossref_primary_10_1038_cr_2013_86
crossref_primary_10_1038_nrg_2016_46
crossref_primary_10_18632_oncotarget_8917
crossref_primary_10_1261_rna_029751_111
crossref_primary_10_1038_nprot_2014_121
crossref_primary_10_1093_nar_gkz1025
crossref_primary_10_1016_j_cub_2011_01_032
crossref_primary_10_1002_wrna_1427
crossref_primary_10_1186_1471_2164_13_429
crossref_primary_10_1002_wrna_1626
crossref_primary_10_1101_gr_130062_111
crossref_primary_10_3390_epigenomes3030014
crossref_primary_10_1016_j_jgg_2020_04_005
crossref_primary_10_1534_g3_115_018937
crossref_primary_10_1002_wrna_1187
crossref_primary_10_1186_s12859_018_2589_0
crossref_primary_10_1101_gr_107854_110
crossref_primary_10_1016_j_ygeno_2011_05_005
crossref_primary_10_1098_rsob_170150
crossref_primary_10_1261_rna_079623_123
crossref_primary_10_1146_annurev_genom_090413_025448
crossref_primary_10_1126_sciadv_abn9458
crossref_primary_10_1186_1745_6150_7_11
crossref_primary_10_1101_gr_159483_113
crossref_primary_10_1016_j_celrep_2014_10_062
crossref_primary_10_1134_S0006297914130021
crossref_primary_10_3389_fgene_2019_00176
crossref_primary_10_1093_nar_gkad623
crossref_primary_10_1093_nar_gky716
crossref_primary_10_1101_gr_161521_113
crossref_primary_10_1093_nar_gkw1127
crossref_primary_10_1016_j_conbuildmat_2022_130209
crossref_primary_10_1016_j_cub_2011_01_025
crossref_primary_10_1038_ncomms9734
crossref_primary_10_4161_rna_24570
crossref_primary_10_1016_j_molcel_2013_01_031
crossref_primary_10_1093_nar_gkv1013
crossref_primary_10_3390_cells10020297
crossref_primary_10_1038_nrg2934
crossref_primary_10_1007_s11427_019_1609_6
crossref_primary_10_1158_2159_8290_CD_12_0042
crossref_primary_10_1038_nbt_4259
crossref_primary_10_1146_annurev_ecolsys_110411_160513
Cites_doi 10.1534/genetics.107.070938
10.1073/pnas.151268698
10.1186/gb-2009-10-3-r25
10.1038/35059000
10.1016/j.ygeno.2005.12.013
10.1101/gad.1137303
10.1126/science.1156725
10.1007/s00239-008-9187-0
10.1016/S0168-9525(01)02499-4
10.1093/nar/23.11.2049
10.1038/nature08390
10.1038/nature06341
10.1016/S0092-8674(85)80112-4
10.1016/S0092-8674(85)80111-2
10.1534/genetics.103.020842
10.1038/nmeth.1417
10.1016/0092-8674(86)90617-3
10.1101/gr.102491.109
10.1038/nature08452
10.1016/S1097-2765(02)00578-6
10.1002/jez.1400210204
10.1038/ng2049
10.1101/gr.100677.109
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jul 20, 2010
Copyright_xml – notice: Copyright National Academy of Sciences Jul 20, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1007586107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
AGRICOLA
Entomology Abstracts


MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12979
ExternalDocumentID PMC2919919
2090170551
20615941
10_1073_pnas_1007586107
107_29_12975
25708649
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM062516
– fundername: NIGMS NIH HHS
  grantid: GM062516
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c531t-68a52d9a20490ce554c83c96e33b79d29a2b8738346b0991a0c4547c141a9f7f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:48:35 EDT 2025
Fri Jul 11 12:40:56 EDT 2025
Fri Jul 11 10:08:46 EDT 2025
Fri Jul 11 12:20:37 EDT 2025
Mon Jun 30 08:10:17 EDT 2025
Wed Feb 19 02:32:07 EST 2025
Tue Jul 01 00:46:56 EDT 2025
Thu Apr 24 22:55:39 EDT 2025
Wed Nov 11 00:30:48 EST 2020
Thu May 29 08:40:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c531t-68a52d9a20490ce554c83c96e33b79d29a2b8738346b0991a0c4547c141a9f7f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Communicated by Tom Maniatis, Columbia University Medical Center, New York, NY, June 8, 2010 (received for review April 20, 2010)
Author contributions: C.J.M. and B.R.G. designed research; C.J.M. performed research; C.J.M., M.O.D., and J.E.-M. contributed new reagents/analytic tools; C.J.M., M.O.D., and B.R.G. analyzed data; and C.J.M. and B.R.G. wrote the paper.
OpenAccessLink http://doi.org/10.1073/pnas.1007586107
PMID 20615941
PQID 664169073
PQPubID 42026
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2919919
pubmed_primary_20615941
proquest_miscellaneous_754562912
crossref_primary_10_1073_pnas_1007586107
pnas_primary_107_29_12975
proquest_journals_664169073
proquest_miscellaneous_734000909
jstor_primary_25708649
proquest_miscellaneous_1825413115
crossref_citationtrail_10_1073_pnas_1007586107
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-07-20
PublicationDateYYYYMMDD 2010-07-20
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Tasic B (e_1_3_4_11_2) 2002; 10
McManus CJ (e_1_3_4_23_2) 2010; 20
Li H (e_1_3_4_15_2) 2008; 321
Clark AG (e_1_3_4_21_2) 2007; 450
Zhang G (e_1_3_4_13_2) 2010; 20
Ozsolak F (e_1_3_4_19_2) 2009; 461
Sutton RE (e_1_3_4_3_2) 1986; 47
Solnick D (e_1_3_4_2_2) 1985; 42
Horiuchi T (e_1_3_4_7_2) 2003; 17
Langmead B (e_1_3_4_22_2) 2009; 10
Li X (e_1_3_4_12_2) 2009; 68
Nilsen TW (e_1_3_4_4_2) 2001; 17
Gingeras TR (e_1_3_4_8_2) 2009; 461
Cocquet J (e_1_3_4_9_2) 2006; 88
Dorn R (e_1_3_4_5_2) 2001; 98
Chintapalli VR (e_1_3_4_16_2) 2007; 39
Robertson HM (e_1_3_4_18_2) 2007; 176
Gabler M (e_1_3_4_14_2) 2005; 169
Metz CW (e_1_3_4_17_2) 1916; 21
Mamanova L (e_1_3_4_20_2) 2010; 7
Labrador M (e_1_3_4_6_2) 2001; 409
Odelberg SJ (e_1_3_4_10_2) 1995; 23
Konarska MM (e_1_3_4_1_2) 1985; 42
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7958
References_xml – volume: 176
  start-page: 1351
  year: 2007
  ident: e_1_3_4_18_2
  article-title: The bursicon gene in mosquitoes: An unusual example of mRNA trans-splicing
  publication-title: Genetics
  doi: 10.1534/genetics.107.070938
– volume: 98
  start-page: 9724
  year: 2001
  ident: e_1_3_4_5_2
  article-title: Transgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.151268698
– volume: 10
  start-page: R25
  year: 2009
  ident: e_1_3_4_22_2
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 409
  start-page: 1000
  year: 2001
  ident: e_1_3_4_6_2
  article-title: Protein encoding by both DNA strands
  publication-title: Nature
  doi: 10.1038/35059000
– volume: 88
  start-page: 127
  year: 2006
  ident: e_1_3_4_9_2
  article-title: Reverse transcriptase template switching and false alternative transcripts
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2005.12.013
– volume: 17
  start-page: 2496
  year: 2003
  ident: e_1_3_4_7_2
  article-title: Alternative trans-splicing of constant and variable exons of a Drosophila axon guidance gene, lola
  publication-title: Genes Dev
  doi: 10.1101/gad.1137303
– volume: 321
  start-page: 1357
  year: 2008
  ident: e_1_3_4_15_2
  article-title: A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells
  publication-title: Science
  doi: 10.1126/science.1156725
– volume: 68
  start-page: 56
  year: 2009
  ident: e_1_3_4_12_2
  article-title: Short homologous sequences are strongly associated with the generation of chimeric RNAs in eukaryotes
  publication-title: J Mol Evol
  doi: 10.1007/s00239-008-9187-0
– volume: 17
  start-page: 678
  year: 2001
  ident: e_1_3_4_4_2
  article-title: Evolutionary origin of SL-addition trans-splicing: Still an enigma
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(01)02499-4
– volume: 23
  start-page: 2049
  year: 1995
  ident: e_1_3_4_10_2
  article-title: Template-switching during DNA synthesis by Thermus aquaticus DNA polymerase I
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/23.11.2049
– volume: 461
  start-page: 814
  year: 2009
  ident: e_1_3_4_19_2
  article-title: Direct RNA sequencing
  publication-title: Nature
  doi: 10.1038/nature08390
– volume: 450
  start-page: 203
  year: 2007
  ident: e_1_3_4_21_2
  article-title: Evolution of genes and genomes on the Drosophila phylogeny
  publication-title: Nature
  doi: 10.1038/nature06341
– volume: 42
  start-page: 165
  year: 1985
  ident: e_1_3_4_1_2
  article-title: Trans splicing of mRNA precursors in vitro
  publication-title: Cell
  doi: 10.1016/S0092-8674(85)80112-4
– volume: 42
  start-page: 157
  year: 1985
  ident: e_1_3_4_2_2
  article-title: Trans splicing of mRNA precursors
  publication-title: Cell
  doi: 10.1016/S0092-8674(85)80111-2
– volume: 169
  start-page: 723
  year: 2005
  ident: e_1_3_4_14_2
  article-title: Trans-splicing of the mod(mdg4) complex locus is conserved between the distantly related species Drosophila melanogaster and D. virilis
  publication-title: Genetics
  doi: 10.1534/genetics.103.020842
– volume: 7
  start-page: 130
  year: 2010
  ident: e_1_3_4_20_2
  article-title: FRT-seq: Amplification-free, strand-specific transcriptome sequencing
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1417
– volume: 47
  start-page: 527
  year: 1986
  ident: e_1_3_4_3_2
  article-title: Evidence for trans splicing in trypanosomes
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90617-3
– volume: 20
  start-page: 816
  year: 2010
  ident: e_1_3_4_23_2
  article-title: Regulatory divergence in Drosophila revealed by mRNA-seq
  publication-title: Genome Res
  doi: 10.1101/gr.102491.109
– volume: 461
  start-page: 206
  year: 2009
  ident: e_1_3_4_8_2
  article-title: Implications of chimaeric non-co-linear transcripts
  publication-title: Nature
  doi: 10.1038/nature08452
– volume: 10
  start-page: 21
  year: 2002
  ident: e_1_3_4_11_2
  article-title: Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(02)00578-6
– volume: 21
  start-page: 213
  year: 1916
  ident: e_1_3_4_17_2
  article-title: Chromosome studies on the Diptera II. The paired association of chromosomes in the Diptera and its significance
  publication-title: J Exp Zool
  doi: 10.1002/jez.1400210204
– volume: 39
  start-page: 715
  year: 2007
  ident: e_1_3_4_16_2
  article-title: Using FlyAtlas to identify better Drosophila melanogaster models of human disease
  publication-title: Nat Genet
  doi: 10.1038/ng2049
– volume: 20
  start-page: 646
  year: 2010
  ident: e_1_3_4_13_2
  article-title: Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome
  publication-title: Genome Res
  doi: 10.1101/gr.100677.109
– reference: - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7958
SSID ssj0009580
Score 2.3117864
Snippet Precursor mRNA (pre-mRNA) splicing can join exons contained on either a single pre-mRNA (cis) or on separate pre-mRNAs (trans). It is exceedingly rare to have...
Precursor mRNA (pre-mRNA) splicing can join exons contained on either a single pre-mRNA ( cis ) or on separate pre-mRNAs ( trans ). It is exceedingly rare to...
Precursor mRNA (pre-mRNA) splicing can join exons contained on either a single pre-mRNA ( cis ) or on separate pre-mRNAs ( trans ). It is exceedingly rare to...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12975
SubjectTerms alleles
Animals
Base Sequence
Biological Sciences
chimerism
Drosophila
Drosophila melanogaster - genetics
Drosophila Proteins - genetics
Exons
Gene expression
Genes
Genes, Insect - genetics
Genetics
Genomes
high-throughput nucleotide sequencing
Hybridity
Hybrids
Insects
introns
loci
Messenger RNA
Models, Genetic
Proteins
Reproducibility of Results
Reverse Transcriptase Polymerase Chain Reaction
Ribonucleic acid
RNA
RNA - genetics
RNA precursors
RNA, Messenger - genetics
RNA, Messenger - metabolism
Sequence Analysis, DNA
Sequencing
Trans splicing
Trans-Splicing - genetics
Transcription Factors - genetics
Title Global analysis of trans-splicing in Drosophila
URI https://www.jstor.org/stable/25708649
http://www.pnas.org/content/107/29/12975.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20615941
https://www.proquest.com/docview/664169073
https://www.proquest.com/docview/1825413115
https://www.proquest.com/docview/734000909
https://www.proquest.com/docview/754562912
https://pubmed.ncbi.nlm.nih.gov/PMC2919919
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZ97KXsW7r5nYbHuyhIziNJUWyHsu6UQLJymihb0aWZRYoTsjHy_rP986SP1KSsu3FJPZZFrqT7k66-x0hXwwrlJacR7HOODooMKVoTiOemaLILSgcU6F9TsXlDR_fjm57vftudsk6G5g_O_NK_oercA_4ilmy_8DZplG4Ab-Bv3AFDsP1r3jsAPv7ugMsskbdE63wVNpnq1wsq1IFszvdNUSvGsW1qsMEpvW-4HmbZeKn_qof9a-mbc3iiZnocuPQCQb98dw2cRoXGwfz6MPx-z8Hjc0-WyzsMppov8M9nuezNvpHYwEMV_Qa8aJAJn8NujsSeJguIzpsAzae6G13KaagHrlLoG6WYlcB18uc3wpxK2uMKcAdNY3_1U4dAIsWFi4u9aoKARklom52G1gb6_clgqtn5DkFH4PVWz0NYnPi8pd8P2tcKMnOHrW9ZdK4qFaEygWiXW7L4-jbjjlz_Yq89H5IeO6E6pD0bPmaHNYDGJ56OPKvb8iZk7KwlrJwXoTbUhbOyrCVsrfk5sf362-XkS-zERlYgNeRSPSI5kpTPAQ2FuxLkzCjhGUskyqn8CRLJEsYFxn4E7EeGkSBMzGPtSpkwY7IQTkv7XsS5swWAgxem4BbP8rzJBcjXWhhWJ6ANlMBGdQjlRqPQY-lUO7SKhZCshRHLW2HNiCnzQsLB7-yn_SoGvqGruZvQIKKtH1fplSllUAF5KRmUOon9ioVguPhsWQB-dw8hVUXj9J0aecb-CxurFRIVQEJ99BIxlGMhuoJEvRfqIppQN45oWh7j76G4nFA5Ja4NASIC7_9pJz9rvDhoUFgkzreNyAn5EU7bT-Qg_VyYz-Cab3OPlVT4AG_Q8ty
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+analysis+of+trans-splicing+in+Drosophila&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=McManus%2C+C.+Joel&rft.au=Duff%2C+Michael+O.&rft.au=Eipper-Mains%2C+Jodi&rft.au=Graveley%2C+Brenton+R.&rft.date=2010-07-20&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=107&rft.issue=29&rft.spage=12975&rft.epage=12979&rft_id=info:doi/10.1073%2Fpnas.1007586107&rft.externalDocID=25708649
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F29.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F29.cover.gif