Exploring hybrid models for identifying locations for active mobility pathways using real-time spatial Delphi and GANs

The spatial planning process is considered an extremely complex system, as it comprises different variables that interrelate and interact with each other. Effectively addressing this spatial complexity necessitates a multidisciplinary approach, as unified methodologies may prove insufficient. Specif...

Full description

Saved in:
Bibliographic Details
Published inEuropean Transport Research Review Vol. 16; no. 1; pp. 61 - 12
Main Authors Calleo, Yuri, Giuffrida, Nadia, Pilla, Francesco
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2024
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The spatial planning process is considered an extremely complex system, as it comprises different variables that interrelate and interact with each other. Effectively addressing this spatial complexity necessitates a multidisciplinary approach, as unified methodologies may prove insufficient. Specifically, in urban planning, it is increasingly crucial to prioritize bike lanes, bike stations, and pedestrian zones, for functional transportation infrastructures. This approach can enhance cities by improving air quality, reducing emissions, and boosting public health and safety through physical activity and accident prevention. However, implementing these changes requires careful planning, community engagement, and stakeholder collaboration. This paper proposes a hybrid model for identifying optimal locations for bike lanes, bike stations, and pedestrian zones adopting Real-Time Spatial Delphi and Generative Adversarial Networks (GANs). The Real-Time Spatial Delphi is a modified version of the traditional Delphi method that incorporates real-time feedback and visualization of group response in real-time, aiming to achieve a convergence of opinions among experts on the territory. Nevertheless, these judgments are a spatial representation not visible in reality, and with the spread of artificial intelligence models, different implementations can support the planning process, such as the use of GANs. In this case, GANs can be exploited by adopting pre-existing location images resulting from experts’ judgments to illustrate the proposed intervention’s visual impact. To demonstrate the effectiveness of our hybrid model, we apply it to the city of Dublin. The results showcased how the method helps stakeholders, policymakers, and citizens in visualizing the proposed changes and gauging their potential impact with greater precision.
AbstractList The spatial planning process is considered an extremely complex system, as it comprises different variables that interrelate and interact with each other. Effectively addressing this spatial complexity necessitates a multidisciplinary approach, as unified methodologies may prove insufficient. Specifically, in urban planning, it is increasingly crucial to prioritize bike lanes, bike stations, and pedestrian zones, for functional transportation infrastructures. This approach can enhance cities by improving air quality, reducing emissions, and boosting public health and safety through physical activity and accident prevention. However, implementing these changes requires careful planning, community engagement, and stakeholder collaboration. This paper proposes a hybrid model for identifying optimal locations for bike lanes, bike stations, and pedestrian zones adopting Real-Time Spatial Delphi and Generative Adversarial Networks (GANs). The Real-Time Spatial Delphi is a modified version of the traditional Delphi method that incorporates real-time feedback and visualization of group response in real-time, aiming to achieve a convergence of opinions among experts on the territory. Nevertheless, these judgments are a spatial representation not visible in reality, and with the spread of artificial intelligence models, different implementations can support the planning process, such as the use of GANs. In this case, GANs can be exploited by adopting pre-existing location images resulting from experts’ judgments to illustrate the proposed intervention’s visual impact. To demonstrate the effectiveness of our hybrid model, we apply it to the city of Dublin. The results showcased how the method helps stakeholders, policymakers, and citizens in visualizing the proposed changes and gauging their potential impact with greater precision.
Abstract The spatial planning process is considered an extremely complex system, as it comprises different variables that interrelate and interact with each other. Effectively addressing this spatial complexity necessitates a multidisciplinary approach, as unified methodologies may prove insufficient. Specifically, in urban planning, it is increasingly crucial to prioritize bike lanes, bike stations, and pedestrian zones, for functional transportation infrastructures. This approach can enhance cities by improving air quality, reducing emissions, and boosting public health and safety through physical activity and accident prevention. However, implementing these changes requires careful planning, community engagement, and stakeholder collaboration. This paper proposes a hybrid model for identifying optimal locations for bike lanes, bike stations, and pedestrian zones adopting Real-Time Spatial Delphi and Generative Adversarial Networks (GANs). The Real-Time Spatial Delphi is a modified version of the traditional Delphi method that incorporates real-time feedback and visualization of group response in real-time, aiming to achieve a convergence of opinions among experts on the territory. Nevertheless, these judgments are a spatial representation not visible in reality, and with the spread of artificial intelligence models, different implementations can support the planning process, such as the use of GANs. In this case, GANs can be exploited by adopting pre-existing location images resulting from experts’ judgments to illustrate the proposed intervention’s visual impact. To demonstrate the effectiveness of our hybrid model, we apply it to the city of Dublin. The results showcased how the method helps stakeholders, policymakers, and citizens in visualizing the proposed changes and gauging their potential impact with greater precision.
The spatial planning process is considered an extremely complex system, as it comprises different variables that interrelate and interact with each other. Effectively addressing this spatial complexity necessitates a multidisciplinary approach, as unified methodologies may prove insufficient. Specifically, in urban planning, it is increasingly crucial to prioritize bike lanes, bike stations, and pedestrian zones, for functional transportation infrastructures. This approach can enhance cities by improving air quality, reducing emissions, and boosting public health and safety through physical activity and accident prevention. However, implementing these changes requires careful planning, community engagement, and stakeholder collaboration. This paper proposes a hybrid model for identifying optimal locations for bike lanes, bike stations, and pedestrian zones adopting Real-Time Spatial Delphi and Generative Adversarial Networks (GANs). The Real-Time Spatial Delphi is a modified version of the traditional Delphi method that incorporates real-time feedback and visualization of group response in real-time, aiming to achieve a convergence of opinions among experts on the territory. Nevertheless, these judgments are a spatial representation not visible in reality, and with the spread of artificial intelligence models, different implementations can support the planning process, such as the use of GANs. In this case, GANs can be exploited by adopting pre-existing location images resulting from experts' judgments to illustrate the proposed intervention's visual impact. To demonstrate the effectiveness of our hybrid model, we apply it to the city of Dublin. The results showcased how the method helps stakeholders, policymakers, and citizens in visualizing the proposed changes and gauging their potential impact with greater precision.The spatial planning process is considered an extremely complex system, as it comprises different variables that interrelate and interact with each other. Effectively addressing this spatial complexity necessitates a multidisciplinary approach, as unified methodologies may prove insufficient. Specifically, in urban planning, it is increasingly crucial to prioritize bike lanes, bike stations, and pedestrian zones, for functional transportation infrastructures. This approach can enhance cities by improving air quality, reducing emissions, and boosting public health and safety through physical activity and accident prevention. However, implementing these changes requires careful planning, community engagement, and stakeholder collaboration. This paper proposes a hybrid model for identifying optimal locations for bike lanes, bike stations, and pedestrian zones adopting Real-Time Spatial Delphi and Generative Adversarial Networks (GANs). The Real-Time Spatial Delphi is a modified version of the traditional Delphi method that incorporates real-time feedback and visualization of group response in real-time, aiming to achieve a convergence of opinions among experts on the territory. Nevertheless, these judgments are a spatial representation not visible in reality, and with the spread of artificial intelligence models, different implementations can support the planning process, such as the use of GANs. In this case, GANs can be exploited by adopting pre-existing location images resulting from experts' judgments to illustrate the proposed intervention's visual impact. To demonstrate the effectiveness of our hybrid model, we apply it to the city of Dublin. The results showcased how the method helps stakeholders, policymakers, and citizens in visualizing the proposed changes and gauging their potential impact with greater precision.
ArticleNumber 61
Audience Academic
Author Pilla, Francesco
Giuffrida, Nadia
Calleo, Yuri
Author_xml – sequence: 1
  givenname: Yuri
  orcidid: 0000-0002-0190-6061
  surname: Calleo
  fullname: Calleo, Yuri
  email: yuri.calleo@ucdconnect.ie
  organization: University College Dublin
– sequence: 2
  givenname: Nadia
  surname: Giuffrida
  fullname: Giuffrida, Nadia
  organization: Polytechnic University of Bari
– sequence: 3
  givenname: Francesco
  surname: Pilla
  fullname: Pilla, Francesco
  organization: University College Dublin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39525405$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBIrFhkxLH8SMrNCptqVTBBtaW48eMR04c7GQg_743TSktC2JFsXy-e3J9dV5nR33oTZa9ReU5Qpx-TKgidV2UFbwl5aRgL7ITEGjBOWdHT_bH2VlK-xIejAjH-FV2jBsC1SU5yQ6Xvwcfouu3-W5uo9N5F7TxKbch5k6bfnR2XlQflBxd6FdFqtEdDLCt826c80GOu19yTvmUFjga6YvRdSZPoDjp88_GDzuXy17n15uv6U320kqfzNnD9zT7cXX5_eJLcfvt-uZic1sogtFY1Io1tWUWY8p4TUtLueUlYspIJmusFFPYIk4sbTS2pNa4otooWwGJmOX4NLtZfXWQezFE18k4iyCduD8IcStkHJ3yRrRKIoYaXCve1KRqG6WXeTUUUaqaCoHXp9VrmNrOaAWzidI_M32u9G4ntuEgECI1ZqwChw8PDjH8nEwaReeSMt7L3oQpCYwqzkgFMKDv_0H3YYo9zGqhoC3EcAnU-UptJdzA9TbAjxUsbTqnIDDWwfmGIzClBBMoePf0Do_N_wkEANUKqBhSisY-IqgUS_DEGjwBwRP3wRNLs3gtSsOSJBP_NvufqjvRutqL
Cites_doi 10.1017/CBO9780511754944
10.1016/j.scs.2020.102229
10.1080/713691907
10.1080/09537329508524202
10.1016/j.uclim.2014.01.006
10.1109/ICETCE48199.2020.9091779
10.1016/j.techfore.2016.09.029
10.1016/j.ypmed.2017.02.015
10.1080/09654310120049871
10.1016/j.jtrangeo.2022.103490
10.1016/j.compenvurbsys.2011.12.005
10.5604/01.3001.0015.9568
10.1002/ffo2.155
10.1016/j.futures.2023.103143
10.1016/j.mex.2024.102578
10.1108/14636680710727516
10.1016/j.ssci.2017.12.002
10.1016/j.agee.2011.05.013
10.1109/MSP.2017.2765202
10.1145/3097983.3098056
10.1016/j.tranpol.2011.09.008
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024.
COPYRIGHT 2024 Springer
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024.
– notice: COPYRIGHT 2024 Springer
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7WY
7WZ
7XB
87Z
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
HCIFZ
K60
K6~
L.-
L6V
M0C
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12544-024-00685-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


CrossRef


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Public Health
EISSN 1866-8887
EndPage 12
ExternalDocumentID oai_doaj_org_article_bca171934c89452b9cd315896166c921
PMC11543772
A815246535
39525405
10_1186_s12544_024_00685_7
Genre Journal Article
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: 101003534
  funderid: http://dx.doi.org/10.13039/100010663
– fundername: European Conference of Transport Research Institutes
GroupedDBID 0R~
29G
4.4
40G
5GY
5VS
6NX
7WY
8FE
8FG
8FL
AAFWJ
AAJSJ
AAKKN
AASML
ABDBF
ABEEZ
ABFTD
ABJCF
ABUWG
ACACY
ACGFO
ACGFS
ACIHN
ACIWK
ACUHS
ACULB
ADBBV
AEAQA
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
BAPOH
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CAG
DWQXO
EBLON
EBS
ESX
GROUPED_DOAJ
HCIFZ
IAO
K60
K6~
KQ8
L6V
M0C
M7S
OK1
P2P
PIMPY
PQBIZ
PQQKQ
PROAC
PTHSS
RNS
SDH
SEG
SOJ
U2A
AAYXX
AEUYN
CCPQU
CITATION
FRNLG
PHGZM
PHGZT
PQBZA
-A0
2VQ
3V.
ADINQ
ADQRH
AHSBF
COF
EJD
H13
HZ~
IPNFZ
M~E
NPM
O9-
RIG
ROL
RSV
7XB
8FK
AZQEC
L.-
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c531t-4c794f7f33678460f68f8017cea7a43cc7c3f185f69d3f54d326decf20f617f83
IEDL.DBID C24
ISSN 1866-8887
1867-0717
IngestDate Wed Aug 27 01:31:05 EDT 2025
Thu Aug 21 18:30:33 EDT 2025
Tue Aug 05 09:53:30 EDT 2025
Fri Jul 25 10:59:20 EDT 2025
Tue Nov 12 04:12:42 EST 2024
Wed Feb 19 02:17:06 EST 2025
Tue Jul 01 03:40:44 EDT 2025
Mon Jul 21 06:07:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Generative adversarial networks
Spatial planning
Real-time spatial Delphi
Artificial intelligence
Language English
License The Author(s) 2024.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-4c794f7f33678460f68f8017cea7a43cc7c3f185f69d3f54d326decf20f617f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0190-6061
OpenAccessLink https://link.springer.com/10.1186/s12544-024-00685-7
PMID 39525405
PQID 3125891730
PQPubID 2034765
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_bca171934c89452b9cd315896166c921
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11543772
proquest_miscellaneous_3128752437
proquest_journals_3125891730
gale_infotracacademiconefile_A815246535
pubmed_primary_39525405
crossref_primary_10_1186_s12544_024_00685_7
springer_journals_10_1186_s12544_024_00685_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle An Open Access Journal
PublicationTitle European Transport Research Review
PublicationTitleAbbrev Eur. Transp. Res. Rev
PublicationTitleAlternate Eur Transp Res Rev
PublicationYear 2024
Publisher Springer International Publishing
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References LaterraPOrúeMEBoomanGCSpatial complexity and ecosystem services in rural landscapesAgriculture, Ecosystems & Environment2012154566710.1016/j.agee.2011.05.013
MartinBRForesight in science and technologyTechnology analysis & strategic management19957213916810.1080/09537329508524202
Bao, J., He, T., Ruan, S., Li, Y., & Zheng, Y. (2017, August). Planning bike lanes based on sharing-bikes' trajectories. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1377–1386).
CreswellAWhiteTDumoulinVArulkumaranKSenguptaBBharathAAGenerative adversarial networks: An overviewIEEE Signal Processing Magazine2018351536510.1109/MSP.2017.2765202
FaludiAThe performance of spatial planningPlanning practice and Research200015429931810.1080/713691907
LassarreSBonnetEBodinFPapadimitriouEYannisGGoliasJA GIS-based methodology for identifying pedestrians’ crossing patternsComputers, Environment and Urban Systems201236432133010.1016/j.compenvurbsys.2011.12.005
BirkmannJGarschagenMSetiadiNNew challenges for adaptive urban governance in highly dynamic environments: Revisiting planning systems and tools for adaptive and strategic planningUrban Climate2014711513310.1016/j.uclim.2014.01.006
CalleoYDi ZioSPillaFFacilitating spatial consensus in complex future scenarios through real-time spatial Delphi: A novel web-based open platformFutures & Foresight Science202353–4e15510.1002/ffo2.155
RablADe NazelleABenefits of shift from car to active transportTransport policy201219112113110.1016/j.tranpol.2011.09.008
Di Gangi, M., Comi, A., Polimeni, A., & Belcore, O. M. (2022). E-bike use in urban commuting: empirical evidence from the home-work plan. Archives of transport, 62.
BishopPHinesACollinsTThe current state of scenario development: An overview of techniquesForesight20079152510.1108/14636680710727516
KondoMCMorrisonCGuerraEKaufmanEJWiebeDJWhere do bike lanes work best? A Bayesian spatial model of bicycle lanes and bicycle crashesSafety Science201810322523310.1016/j.ssci.2017.12.002
NaessPUrban planning and sustainable developmentEuropean Planning Studies20019450352410.1080/09654310120049871
Filippova, R., & Buchoud, N. (2020). A handbook on sustainable urban mobility and spatial planning: Promoting active mobility (No. ECE/TRANS/298).
CalleoYPillaFDelphi-based future scenarios: A bibliometric analysis of climate change case studiesFutures202314910314310.1016/j.futures.2023.103143
CirianniFMMComiALuongoASA sustainable approach for planning of urban pedestrian routes and footpaths in a pandemic scenarioTeMA2022151125140
Mishra, P., Rathore, T. S., Shivani, S., & Tendulkar, S. (2020). Text to image synthesis using residual GAN. In 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE), pp. 139–144. IEEE.
GiuffridaNPillaFCarrollPThe social sustainability of cycling: Assessing equity in the accessibility of bike-sharing servicesJournal of Transport Geography202310610349010.1016/j.jtrangeo.2022.103490
NevesABrandCAssessing the potential for carbon emissions savings from replacing short car trips with walking and cycling using a mixed GPS-travel diary approachTransportation Research Part A: Policy and Practice2019123130146
HainingRPSpatial data analysis: Theory and practice2003CambridgeCambridge University Press10.1017/CBO9780511754944
CalleoYPillaFOptimizing spatial survey administration adopting RT-GSCS: A statistical perspective on performance metricsMethodsX20241210257810.1016/j.mex.2024.102578
Di ZioSRosasJDCLamelzaLReal Time Spatial Delphi: Fast convergence of experts' opinions on the territoryTechnological Forecasting and Social Change201711514315410.1016/j.techfore.2016.09.029
BaumanACraneMDraytonBATitzeSThe unrealised potential of bike share schemes to influence population physical activity levels–A narrative reviewPreventive medicine2017103S7S1410.1016/j.ypmed.2017.02.015
LinstoneHATuroffMThe delphi method1975BostonAddison-Wesley312
TangJMcNabolaAMisstearBThe potential impacts of different traffic management strategies on air pollution and public health for a more sustainable city: A modelling case study from Dublin IrelandSustainable Cities and Society20206010222910.1016/j.scs.2020.102229
Brown, B. B. (1968). Delphi process: A methodology used for the elicitation of opinions of experts.
(685_CR20) 1975
S Lassarre (685_CR18) 2012; 36
BR Martin (685_CR21) 1995; 7
P Laterra (685_CR19) 2012; 154
Y Calleo (685_CR6) 2024; 12
P Naess (685_CR23) 2001; 9
Y Calleo (685_CR7) 2023; 149
685_CR22
A Faludi (685_CR13) 2000; 15
685_CR1
J Birkmann (685_CR3) 2014; 7
A Rabl (685_CR25) 2012; 19
Y Calleo (685_CR8) 2023; 5
MC Kondo (685_CR17) 2018; 103
N Giuffrida (685_CR15) 2023; 106
A Bauman (685_CR2) 2017; 103
685_CR5
P Bishop (685_CR4) 2007; 9
A Creswell (685_CR10) 2018; 35
A Neves (685_CR24) 2019; 123
RP Haining (685_CR16) 2003
S Di Zio (685_CR12) 2017; 115
FMM Cirianni (685_CR9) 2022; 15
685_CR14
J Tang (685_CR26) 2020; 60
685_CR11
References_xml – reference: LinstoneHATuroffMThe delphi method1975BostonAddison-Wesley312
– reference: FaludiAThe performance of spatial planningPlanning practice and Research200015429931810.1080/713691907
– reference: BaumanACraneMDraytonBATitzeSThe unrealised potential of bike share schemes to influence population physical activity levels–A narrative reviewPreventive medicine2017103S7S1410.1016/j.ypmed.2017.02.015
– reference: HainingRPSpatial data analysis: Theory and practice2003CambridgeCambridge University Press10.1017/CBO9780511754944
– reference: CalleoYPillaFDelphi-based future scenarios: A bibliometric analysis of climate change case studiesFutures202314910314310.1016/j.futures.2023.103143
– reference: GiuffridaNPillaFCarrollPThe social sustainability of cycling: Assessing equity in the accessibility of bike-sharing servicesJournal of Transport Geography202310610349010.1016/j.jtrangeo.2022.103490
– reference: Mishra, P., Rathore, T. S., Shivani, S., & Tendulkar, S. (2020). Text to image synthesis using residual GAN. In 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE), pp. 139–144. IEEE.
– reference: NevesABrandCAssessing the potential for carbon emissions savings from replacing short car trips with walking and cycling using a mixed GPS-travel diary approachTransportation Research Part A: Policy and Practice2019123130146
– reference: CalleoYDi ZioSPillaFFacilitating spatial consensus in complex future scenarios through real-time spatial Delphi: A novel web-based open platformFutures & Foresight Science202353–4e15510.1002/ffo2.155
– reference: RablADe NazelleABenefits of shift from car to active transportTransport policy201219112113110.1016/j.tranpol.2011.09.008
– reference: TangJMcNabolaAMisstearBThe potential impacts of different traffic management strategies on air pollution and public health for a more sustainable city: A modelling case study from Dublin IrelandSustainable Cities and Society20206010222910.1016/j.scs.2020.102229
– reference: CirianniFMMComiALuongoASA sustainable approach for planning of urban pedestrian routes and footpaths in a pandemic scenarioTeMA2022151125140
– reference: CalleoYPillaFOptimizing spatial survey administration adopting RT-GSCS: A statistical perspective on performance metricsMethodsX20241210257810.1016/j.mex.2024.102578
– reference: Brown, B. B. (1968). Delphi process: A methodology used for the elicitation of opinions of experts.
– reference: MartinBRForesight in science and technologyTechnology analysis & strategic management19957213916810.1080/09537329508524202
– reference: KondoMCMorrisonCGuerraEKaufmanEJWiebeDJWhere do bike lanes work best? A Bayesian spatial model of bicycle lanes and bicycle crashesSafety Science201810322523310.1016/j.ssci.2017.12.002
– reference: NaessPUrban planning and sustainable developmentEuropean Planning Studies20019450352410.1080/09654310120049871
– reference: BishopPHinesACollinsTThe current state of scenario development: An overview of techniquesForesight20079152510.1108/14636680710727516
– reference: LaterraPOrúeMEBoomanGCSpatial complexity and ecosystem services in rural landscapesAgriculture, Ecosystems & Environment2012154566710.1016/j.agee.2011.05.013
– reference: Di ZioSRosasJDCLamelzaLReal Time Spatial Delphi: Fast convergence of experts' opinions on the territoryTechnological Forecasting and Social Change201711514315410.1016/j.techfore.2016.09.029
– reference: Filippova, R., & Buchoud, N. (2020). A handbook on sustainable urban mobility and spatial planning: Promoting active mobility (No. ECE/TRANS/298).
– reference: CreswellAWhiteTDumoulinVArulkumaranKSenguptaBBharathAAGenerative adversarial networks: An overviewIEEE Signal Processing Magazine2018351536510.1109/MSP.2017.2765202
– reference: BirkmannJGarschagenMSetiadiNNew challenges for adaptive urban governance in highly dynamic environments: Revisiting planning systems and tools for adaptive and strategic planningUrban Climate2014711513310.1016/j.uclim.2014.01.006
– reference: Bao, J., He, T., Ruan, S., Li, Y., & Zheng, Y. (2017, August). Planning bike lanes based on sharing-bikes' trajectories. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1377–1386).
– reference: Di Gangi, M., Comi, A., Polimeni, A., & Belcore, O. M. (2022). E-bike use in urban commuting: empirical evidence from the home-work plan. Archives of transport, 62.
– reference: LassarreSBonnetEBodinFPapadimitriouEYannisGGoliasJA GIS-based methodology for identifying pedestrians’ crossing patternsComputers, Environment and Urban Systems201236432133010.1016/j.compenvurbsys.2011.12.005
– ident: 685_CR5
– ident: 685_CR14
– volume: 123
  start-page: 130
  year: 2019
  ident: 685_CR24
  publication-title: Transportation Research Part A: Policy and Practice
– volume-title: Spatial data analysis: Theory and practice
  year: 2003
  ident: 685_CR16
  doi: 10.1017/CBO9780511754944
– volume: 60
  start-page: 102229
  year: 2020
  ident: 685_CR26
  publication-title: Sustainable Cities and Society
  doi: 10.1016/j.scs.2020.102229
– volume: 15
  start-page: 125
  issue: 1
  year: 2022
  ident: 685_CR9
  publication-title: TeMA
– volume: 15
  start-page: 299
  issue: 4
  year: 2000
  ident: 685_CR13
  publication-title: Planning practice and Research
  doi: 10.1080/713691907
– volume: 7
  start-page: 139
  issue: 2
  year: 1995
  ident: 685_CR21
  publication-title: Technology analysis & strategic management
  doi: 10.1080/09537329508524202
– volume: 7
  start-page: 115
  year: 2014
  ident: 685_CR3
  publication-title: Urban Climate
  doi: 10.1016/j.uclim.2014.01.006
– ident: 685_CR22
  doi: 10.1109/ICETCE48199.2020.9091779
– volume: 115
  start-page: 143
  year: 2017
  ident: 685_CR12
  publication-title: Technological Forecasting and Social Change
  doi: 10.1016/j.techfore.2016.09.029
– volume: 103
  start-page: S7
  year: 2017
  ident: 685_CR2
  publication-title: Preventive medicine
  doi: 10.1016/j.ypmed.2017.02.015
– volume: 9
  start-page: 503
  issue: 4
  year: 2001
  ident: 685_CR23
  publication-title: European Planning Studies
  doi: 10.1080/09654310120049871
– volume: 106
  start-page: 103490
  year: 2023
  ident: 685_CR15
  publication-title: Journal of Transport Geography
  doi: 10.1016/j.jtrangeo.2022.103490
– start-page: 3
  volume-title: The delphi method
  year: 1975
  ident: 685_CR20
– volume: 36
  start-page: 321
  issue: 4
  year: 2012
  ident: 685_CR18
  publication-title: Computers, Environment and Urban Systems
  doi: 10.1016/j.compenvurbsys.2011.12.005
– ident: 685_CR11
  doi: 10.5604/01.3001.0015.9568
– volume: 5
  start-page: e155
  issue: 3–4
  year: 2023
  ident: 685_CR8
  publication-title: Futures & Foresight Science
  doi: 10.1002/ffo2.155
– volume: 149
  start-page: 103143
  year: 2023
  ident: 685_CR7
  publication-title: Futures
  doi: 10.1016/j.futures.2023.103143
– volume: 12
  start-page: 102578
  year: 2024
  ident: 685_CR6
  publication-title: MethodsX
  doi: 10.1016/j.mex.2024.102578
– volume: 9
  start-page: 5
  issue: 1
  year: 2007
  ident: 685_CR4
  publication-title: Foresight
  doi: 10.1108/14636680710727516
– volume: 103
  start-page: 225
  year: 2018
  ident: 685_CR17
  publication-title: Safety Science
  doi: 10.1016/j.ssci.2017.12.002
– volume: 154
  start-page: 56
  year: 2012
  ident: 685_CR19
  publication-title: Agriculture, Ecosystems & Environment
  doi: 10.1016/j.agee.2011.05.013
– volume: 35
  start-page: 53
  issue: 1
  year: 2018
  ident: 685_CR10
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2017.2765202
– ident: 685_CR1
  doi: 10.1145/3097983.3098056
– volume: 19
  start-page: 121
  issue: 1
  year: 2012
  ident: 685_CR25
  publication-title: Transport policy
  doi: 10.1016/j.tranpol.2011.09.008
SSID ssj0000315833
ssib044736607
Score 2.3145182
Snippet The spatial planning process is considered an extremely complex system, as it comprises different variables that interrelate and interact with each other....
Abstract The spatial planning process is considered an extremely complex system, as it comprises different variables that interrelate and interact with each...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 61
SubjectTerms Accident prevention
Air quality
Air quality management
Artificial intelligence
Automotive Engineering
Bicycles
Cities
Civil Engineering
Community involvement
Complex systems
Complex variables
Complexity
Convergence
Delphi method
Emissions control
Engineering
Forecasts and trends
Generative adversarial networks
Geospatial data
Original Paper
Outdoor air quality
Pedestrian areas
Pedestrians
Public health
Real time
Real variables
Real-time spatial Delphi
Regional/Spatial Science
Road design
Safety regulations
Spatial planning
TRA 2024 Dublin - Transport Transitions (Highlights of the 2024 Transport Research Arena conference)
Transportation
Transportation authorities
Urban planning
Urban transportation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXuCCgPIIFORKSBwgamInfhwXaKkq0ROVerNsJ2ZXqtKq2VLtv--Mkyy7RYgL19iHiWfG84088w3Ae1m2vNFtzI2vMUFppM6dp0de40vHVSO5pubk76fy-Kw6Oa_PN0Z9UU3YQA88HNyBD65UiDKqoE1Vc29CI8paG1lKGUxqIecY8zaSqXQH0x4hpi4ZLQ_6ksi4cgxJObVF1LnaikSJsP_Pa3kjLt2vmbz3cJri0dETeDwCSTYbfuApPGi7Z_Bw6jPud-HXuryOzVfUl8XS1JueIUxli9Sfm3qcGIWzZH1pxaULEPemqtkVo5HFt27VM6qQ_8kQY17kNJCe9VSLjRJ8bS-u5gvmuoZ9m532z-Hs6PDHl-N8nLKQB_S_ZV4FdMmoohAYtypZRKkjhi0VWqdcJUJQQUSM6lGaRsS6ahDwNW2IHHeWKmrxAna6y659Bax0iAhcLHzhVOWFdginnI-FUl7xWJsMPk4nbq8GMg2bkhAt7aAfi_qxST9WZfCZlLLeSUTY6QOahx3Nw_7LPDL4QCq15K6ot-DGrgMUmIiv7EwjgCGOuTqDvUnrdvTj3gqUSmNGK4oM9tfL6IH0rOK69vIm7cGkj4gdM3g5GMlaZmFqTpg4A71lPls_tb3SLeaJ5Zt4kgTmPhl8miztt1x_P7XX_-PU3sAjTp6Synb2YGd5fdO-RfC19O-Sn90BmeMpMg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7B9gASQjBgZAxkJCQeIFoTO7bzhDrYmJCoEGLS3izHiddKU1qWjqn_PXeO09EheK394PR-fWffdwfwRmZNXuvGp2VVYIJSS53aih55yyqzuaplromc_HUiT07Fl7PiLF64dbGscvCJwVHXc0d35AccI7HG3IKPPix-pjQ1il5X4wiNu7CNLlhj8rV9eDT59n3QKCEUlzImOME384xoRpSFaUl3dJkamDRaHnQZNexKMWylRJ0oUrURrUJT_79d9x-x63Zd5a3H1RCzjh_Bwwg22bjXjsdwp2l34N7ARe524EF_a8d6MtIT-LUuyWPTFXG5WJiU0zGEtmwWOL2BF8UoBAaNDSs2OE3cGyptV4zGHF_bVceoqv6cIS69SGmIPeuofhtP9Km5WExnzLY1-zyedE_h9Pjox8eTNE5mSB3a7DIVDs3YK885xjohR15qj6FOucYqK7hzynGPSMDLsua-EDWCxLpxPsedmfKaP4Otdt42z4FlFlGE9aNqZJWouLYIwWzlR0pVKvdFmcC7QQJm0TfgMCFx0dL08jIoLxPkZVQChySk9U5qnh1-mF-em2iLpnI2UwhchdOlKPKqdDWpRSkzKV2ZZwm8JREbMnGUo7ORqYAHpmZZZqwR9FBfuiKB_UELTLT9ztxoagKv18totfQUY9tmfhX2YKJIzSAT2O2VZn1mXhY54egE9IY6bXzU5ko7m4bO4NRbiWO-lMD7QfNuzvXvf23v_5_xAu7nZBOhiGcftpaXV81LhGLL6lW0t99oMy3T
  priority: 102
  providerName: ProQuest
Title Exploring hybrid models for identifying locations for active mobility pathways using real-time spatial Delphi and GANs
URI https://link.springer.com/article/10.1186/s12544-024-00685-7
https://www.ncbi.nlm.nih.gov/pubmed/39525405
https://www.proquest.com/docview/3125891730
https://www.proquest.com/docview/3128752437
https://pubmed.ncbi.nlm.nih.gov/PMC11543772
https://doaj.org/article/bca171934c89452b9cd315896166c921
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6x7QF4QDBgBEZlJCQeICKxE9t57Eq3CWkVQlTam-U48VppSqelA_WF386dm5R1wAMv9xBfpUvuzndX33cGeCvTmle69nFR5ligVFLHtqRD3qJMLVeV5JrAyWcTeTrNPp_n5x0orO273fsjybBTB7fW8mOb0jStGGNKTLiGPFY7sJdj7U52PeowDmH_FSlBiXqEzF9_uhWFwrD-P7fkWzHpbr_knUPTEIuOH8OjLolkw7XWn8C9utmH-z3GuN2Hh7fGDD6F75tGOzZbEUKLhftvWoYJK5sHpG5AOzEKbMEOw4oNWyHyhv7ZFaPLi3_YVcuoV_6CYbZ5GdPV9KylrmyU51N9eTWbM9tU7GQ4aZ_B9Hj8bXQad_ctxA49cRlnDp3TKy8ERrBMJl5qjwFMudoqmwnnlBMe47uXRSV8nlWY-lW18xw5U-W1eA67zaKpXwBLLeYG1idlYlVWCm0xsbKlT5QqFfd5EcH7_vubq_VYDRPKES3NWlsGtWWCtoyK4IhUtOGkkdjhweL6wnQeZkpnU4XpaOZ0keW8LFxFhlDIVEpX8DSCd6RgQ46LWnS2wx-gwDQCyww1pjI0bS6P4LC3AdN5dGsESqWxthVJBG82y-iLdMBim3pxE3iw_KMRjxEcrE1mI7Mock7ZcQR6y5i2Xmp7pZnPwrxvmpgksAqK4ENvd7_l-vdXe_l_7K_gAScPCa06h7C7vL6pX2PCtSwHsJMlJ0j1MdK9o_Hky9dB8DmicjQIf2QgPfs5Rjrlw1--XSqI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigSQlBegQJGAnGAqJs4sZ0DQgtlu6WPUyv15jpO3F2pZJdmS7V_it_IjJNs2SK49bq2Imfn9U083wzAGxGVcaFKF2Z5iglKIVRocrrkzfLIxLIQsSJy8v6BGB4l347T4xX41XFhqKyy84neURcTS9_INzlGYoW5Be99mv4IaWoU3a52IzQatdgt55eYstUfd7ZQvm_jePD18MswbKcKhBb1bRYmFlXQScc5-ulE9JxQDt20tKWRJuHWSssdRjEnsoK7NCkQ4BSldTHujKRTHJ97C24nnGdkUWqw3elvkkguRJtO-UjAIyI1Uc6nBH0RjGTH21Fis46oPViIQTIkokYayqXY6EcI_B0o_oiU16s4r13l-gg5uA_3WmjL-o0uPoCVslqHtY75XK_D3eYbIWuoTw_h56IAkI3mxBxjfi5PzRBIs7FnEHsWFqOA6-3DrxjvonGvr-udMxqqfGnmNaMa_lOGKPgsnI2_l6ymanE80VZ5Nh2NmakKtt0_qB_B0Y1I7DGsVpOqfAosMohZjOvlPSOTnCuDgM_kridlLmOXZgG87ySgp027D-3TJCV0Iy-N8tJeXloG8JmEtNhJrbr9D5PzU91avs6tiSTC5MSqLEnjPLMFqUUmIiFsFkcBvCMRa3IoKEdrWl4EHphac-m-QohFXfDSADY6LdCtp6n1lV0E8HqxjD6CLn5MVU4u_B5MS6n1ZABPGqVZnJlnaUyoPQC1pE5LL7W8Uo1Hvg85dXLimJ0F8KHTvKtz_ftfe_b_13gFa8PD_T29t3Ow-xzuxGQfvnxoA1Zn5xflCwSBs_yltzwGJzdt6r8BppZpAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQIkhGB8BQYYCcQDi5rEie08ILTRlY1BNSEm7c04TrxVGu1YOqb-a_x13DlJR4fgba-1FTm9r9_F97sDeCniKilV5cK8yDBBKYUKTUGXvHkRm0SWIlFETv48FNv76ceD7GAJfnVcGCqr7Hyid9TlxNI38h7HSKwwt-BRz7VlEXv9wbuTHyFNkKKb1m6cRqMiu9XsHNO3-u1OH2X9KkkGW1_fb4fthIHQou5Nw9SiOjrpOEefnYrICeXQZUtbGWlSbq203GFEcyIvucvSEsFOWVmX4M5YOsXxuddgRWJWFC3DyubWcO9Lp81pKrkQbXLl4wKPieJEGaAS9H0wlh2LR4leHVOzsBBDZki0jSyUC5HSDxT4O2z8ETcv13Reutj18XJwB263QJdtNJp5F5aq8Src6HjQ9Srcar4YsoYIdQ9-zssB2dGMeGTMT-mpGcJqNvJ8Ys_JYhR-vbX4FeMdNu71Vb4zRiOWz82sZlTRf8gQEx-H09H3itVUO44n6lfHJ0cjZsYl-7AxrO_D_pXI7AEsjyfj6hGw2CCCMS4qIiPTgiuD8M8ULpKykInL8gDedBLQJ03zD-2TJiV0Iy-N8tJeXloGsElCmu-kxt3-h8npoW79gC6siSWC5tSqPM2SIrclqUUuYiFsnsQBvCYRa3IvKEdrWpYEHpgadekNhYCLeuJlAax1WqBbv1PrCysJ4MV8GT0GXQOZcTU583swSaVGlAE8bJRmfmaeZwlh-ADUgjotvNTiynh05LuSU18njrlaAOud5l2c69__2uP_v8ZzuI5mrj_tDHefwM2EzMPXEq3B8vT0rHqKiHBaPGtNj8G3q7b23-BcbpM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+hybrid+models+for+identifying+locations+for+active+mobility+pathways+using+real-time+spatial+Delphi+and+GANs&rft.jtitle=European+Transport+Research+Review&rft.au=Calleo%2C+Yuri&rft.au=Giuffrida%2C+Nadia&rft.au=Pilla%2C+Francesco&rft.date=2024-12-01&rft.pub=Springer&rft.issn=1867-0717&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12544-024-00685-7&rft.externalDocID=A815246535
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-8887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-8887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-8887&client=summon