Release of antimony from contaminated soil induced by redox changes

•Sb(V) was rapidly reduced to Sb(III) in the anaerobic, calcareous soil.•Sb(III) was the dominant Sb species under reducing conditions.•The reduction of Sb(V) immobilized Sb, as Sb(III) binds more strongly to Fe phases.•The previously immobilized Sb(III) was released again under Fe-reducing conditio...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 275; pp. 215 - 221
Main Authors Hockmann, Kerstin, Lenz, Markus, Tandy, Susan, Nachtegaal, Maarten, Janousch, Markus, Schulin, Rainer
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 30.06.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Sb(V) was rapidly reduced to Sb(III) in the anaerobic, calcareous soil.•Sb(III) was the dominant Sb species under reducing conditions.•The reduction of Sb(V) immobilized Sb, as Sb(III) binds more strongly to Fe phases.•The previously immobilized Sb(III) was released again under Fe-reducing conditions. Soil contamination by toxic antimony (Sb) released from corroding ammunition has become an issue of public concern in various countries. Many of these soils are at least occasionally subject to waterlogging; yet mechanisms controlling Sb mobility under anaerobic conditions are still poorly understood. We investigated Sb concentration and speciation dynamics in a calcareous shooting range soil in terms of changing redox conditions using microcosm experiments. The transition to reducing conditions invoked by indigenous microbial activity at first led to the immobilization of Sb, as Sb(V) was converted to Sb(III), which binds more extensively to iron (hydr)oxides. When reducing conditions continued, the previously sorbed Sb(III) was gradually released into solution due to reductive dissolution of the iron (hydr)oxides. Speciation measurements in the solid phase by Sb K-edge XANES spectroscopy and in the soil solution by liquid chromatography ICP-MS provided the first evidence that Sb(III) predominated at low redox conditions (Eh <0.05V) in both phases. The results show that Sb(V) is less stable in reducing environments than commonly assumed. Given that Sb(III) is generally more toxic than Sb(V), the mobilization of Sb(III) under Fe-reducing conditions may significantly increase (eco)toxicological risks arising from Sb-contaminated soils that are prone to flooding or waterlogging.
AbstractList Soil contamination by toxic antimony (Sb) released from corroding ammunition has become an issue of public concern in various countries. Many of these soils are at least occasionally subject to waterlogging; yet mechanisms controlling Sb mobility under anaerobic conditions are still poorly understood. We investigated Sb concentration and speciation dynamics in a calcareous shooting range soil in terms of changing redox conditions using microcosm experiments. The transition to reducing conditions invoked by indigenous microbial activity at first led to the immobilization of Sb, as Sb(V) was converted to Sb(III), which binds more extensively to iron (hydr)oxides. When reducing conditions continued, the previously sorbed Sb(III) was gradually released into solution due to reductive dissolution of the iron (hydr)oxides. Speciation measurements in the solid phase by Sb K-edge XANES spectroscopy and in the soil solution by liquid chromatography ICP-MS provided the first evidence that Sb(III) predominated at low redox conditions (Eh <0.05V) in both phases. The results show that Sb(V) is less stable in reducing environments than commonly assumed. Given that Sb(III) is generally more toxic than Sb(V), the mobilization of Sb(III) under Fe-reducing conditions may significantly increase (eco)toxicological risks arising from Sb-contaminated soils that are prone to flooding or waterlogging.
Soil contamination by toxic antimony (Sb) released from corroding ammunition has become an issue of public concern in various countries. Many of these soils are at least occasionally subject to waterlogging; yet mechanisms controlling Sb mobility under anaerobic conditions are still poorly understood. We investigated Sb concentration and speciation dynamics in a calcareous shooting range soil in terms of changing redox conditions using microcosm experiments. The transition to reducing conditions invoked by indigenous microbial activity at first led to the immobilization of Sb, as Sb(V) was converted to Sb(III), which binds more extensively to iron (hydr)oxides. When reducing conditions continued, the previously sorbed Sb(III) was gradually released into solution due to reductive dissolution of the iron (hydr)oxides. Speciation measurements in the solid phase by Sb K-edge XANES spectroscopy and in the soil solution by liquid chromatography ICP-MS provided the first evidence that Sb(III) predominated at low redox conditions (Eh <0.05 V) in both phases. The results show that Sb(V) is less stable in reducing environments than commonly assumed. Given that Sb(III) is generally more toxic than Sb(V), the mobilization of Sb(III) under Fe-reducing conditions may significantly increase (eco)toxicological risks arising from Sb-contaminated soils that are prone to flooding or waterlogging.Soil contamination by toxic antimony (Sb) released from corroding ammunition has become an issue of public concern in various countries. Many of these soils are at least occasionally subject to waterlogging; yet mechanisms controlling Sb mobility under anaerobic conditions are still poorly understood. We investigated Sb concentration and speciation dynamics in a calcareous shooting range soil in terms of changing redox conditions using microcosm experiments. The transition to reducing conditions invoked by indigenous microbial activity at first led to the immobilization of Sb, as Sb(V) was converted to Sb(III), which binds more extensively to iron (hydr)oxides. When reducing conditions continued, the previously sorbed Sb(III) was gradually released into solution due to reductive dissolution of the iron (hydr)oxides. Speciation measurements in the solid phase by Sb K-edge XANES spectroscopy and in the soil solution by liquid chromatography ICP-MS provided the first evidence that Sb(III) predominated at low redox conditions (Eh <0.05 V) in both phases. The results show that Sb(V) is less stable in reducing environments than commonly assumed. Given that Sb(III) is generally more toxic than Sb(V), the mobilization of Sb(III) under Fe-reducing conditions may significantly increase (eco)toxicological risks arising from Sb-contaminated soils that are prone to flooding or waterlogging.
Soil contamination by toxic antimony (Sb) released from corroding ammunition has become an issue of public concern in various countries. Many of these soils are at least occasionally subject to waterlogging; yet mechanisms controlling Sb mobility under anaerobic conditions are still poorly understood. We investigated Sb concentration and speciation dynamics in a calcareous shooting range soil in terms of changing redox conditions using microcosm experiments. The transition to reducing conditions invoked by indigenous microbial activity at first led to the immobilization of Sb, as Sb(V) was converted to Sb(III), which binds more extensively to iron (hydr)oxides. When reducing conditions continued, the previously sorbed Sb(III) was gradually released into solution due to reductive dissolution of the iron (hydr)oxides. Speciation measurements in the solid phase by Sb K-edge XANES spectroscopy and in the soil solution by liquid chromatography ICP-MS provided the first evidence that Sb(III) predominated at low redox conditions (Eh <0.05 V) in both phases. The results show that Sb(V) is less stable in reducing environments than commonly assumed. Given that Sb(III) is generally more toxic than Sb(V), the mobilization of Sb(III) under Fe-reducing conditions may significantly increase (eco)toxicological risks arising from Sb-contaminated soils that are prone to flooding or waterlogging.
•Sb(V) was rapidly reduced to Sb(III) in the anaerobic, calcareous soil.•Sb(III) was the dominant Sb species under reducing conditions.•The reduction of Sb(V) immobilized Sb, as Sb(III) binds more strongly to Fe phases.•The previously immobilized Sb(III) was released again under Fe-reducing conditions. Soil contamination by toxic antimony (Sb) released from corroding ammunition has become an issue of public concern in various countries. Many of these soils are at least occasionally subject to waterlogging; yet mechanisms controlling Sb mobility under anaerobic conditions are still poorly understood. We investigated Sb concentration and speciation dynamics in a calcareous shooting range soil in terms of changing redox conditions using microcosm experiments. The transition to reducing conditions invoked by indigenous microbial activity at first led to the immobilization of Sb, as Sb(V) was converted to Sb(III), which binds more extensively to iron (hydr)oxides. When reducing conditions continued, the previously sorbed Sb(III) was gradually released into solution due to reductive dissolution of the iron (hydr)oxides. Speciation measurements in the solid phase by Sb K-edge XANES spectroscopy and in the soil solution by liquid chromatography ICP-MS provided the first evidence that Sb(III) predominated at low redox conditions (Eh <0.05V) in both phases. The results show that Sb(V) is less stable in reducing environments than commonly assumed. Given that Sb(III) is generally more toxic than Sb(V), the mobilization of Sb(III) under Fe-reducing conditions may significantly increase (eco)toxicological risks arising from Sb-contaminated soils that are prone to flooding or waterlogging.
Author Nachtegaal, Maarten
Lenz, Markus
Tandy, Susan
Janousch, Markus
Hockmann, Kerstin
Schulin, Rainer
Author_xml – sequence: 1
  givenname: Kerstin
  surname: Hockmann
  fullname: Hockmann, Kerstin
  email: kerstin.hockmann@env.ethz.ch
  organization: Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
– sequence: 2
  givenname: Markus
  surname: Lenz
  fullname: Lenz, Markus
  organization: Institute for Ecopreneurship, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Gründenstrasse 40, 4132 Muttenz, Switzerland
– sequence: 3
  givenname: Susan
  surname: Tandy
  fullname: Tandy, Susan
  organization: Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
– sequence: 4
  givenname: Maarten
  surname: Nachtegaal
  fullname: Nachtegaal, Maarten
  organization: Paul Scherrer Institut, 5232 Villigen, Switzerland
– sequence: 5
  givenname: Markus
  surname: Janousch
  fullname: Janousch, Markus
  organization: Paul Scherrer Institut, 5232 Villigen, Switzerland
– sequence: 6
  givenname: Rainer
  surname: Schulin
  fullname: Schulin, Rainer
  organization: Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28551617$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24862348$$D View this record in MEDLINE/PubMed
BookMark eNqNkk-LFDEQxYOsuLOrH0Hpi-Clx_xPNx5Ehl0VFgTRc6hOqt0M3cma9IjjpzfrzCJ4GaEgFPxeFZX3LshZTBEJec7omlGmX2_X21v4NcOy5pTJNa2l1SOyYp0RrRBCn5EVFVS2ouvlObkoZUspZUbJJ-Scy05zIbsV2XzGCaFgk8YG4hLmFPfNmNPcuBQXmEOEBX1TUpiaEP3O1WbYNxl9-tm4W4jfsDwlj0eYCj47vpfk6_XVl82H9ubT-4-bdzetU4ItraSosfcoHfeMKlAITqEw3IthcAaUcuCoH0bRUdEb6IVDMVDtqo4id-KSvDrMvcvp-w7LYudQHE4TREy7YvmfA1k97iTKtORcMq70f6Dc9Eb2HTuNKiFNT42RFX1xRHfDjN7e5TBD3tuHn6_AyyMAxcE0ZogulL9cpxTTzFTuzYFzOZWScbQuLLCE6k6GMFlG7X0e7NYe82Dv82BpLa2qWv2jflhwSvf2oMPq54-A2RYXMFb3Q0a3WJ_CiQm_AToY0JQ
CODEN JHMAD9
CitedBy_id crossref_primary_10_1016_j_envpol_2019_03_042
crossref_primary_10_1021_acs_est_7b04624
crossref_primary_10_1071_EN17188
crossref_primary_10_1016_j_jes_2021_06_009
crossref_primary_10_1016_j_jes_2018_05_023
crossref_primary_10_1016_j_chemgeo_2019_06_017
crossref_primary_10_5382_econgeo_4937
crossref_primary_10_1016_j_oregeorev_2024_106272
crossref_primary_10_1016_j_jhazmat_2024_135598
crossref_primary_10_1016_j_jhazmat_2024_134663
crossref_primary_10_1016_j_jhazmat_2023_131553
crossref_primary_10_1016_j_ecoenv_2024_116351
crossref_primary_10_1016_j_heliyon_2024_e39853
crossref_primary_10_1016_j_jhazmat_2021_126110
crossref_primary_10_1007_s00253_024_13133_2
crossref_primary_10_1016_j_jhazmat_2019_121285
crossref_primary_10_1016_j_jhazmat_2025_137380
crossref_primary_10_3390_soilsystems2020034
crossref_primary_10_1021_acs_est_8b06297
crossref_primary_10_1016_j_scitotenv_2019_05_305
crossref_primary_10_1021_acs_est_7b03882
crossref_primary_10_1007_s12666_022_02843_8
crossref_primary_10_1016_j_jes_2021_03_042
crossref_primary_10_1016_j_gca_2023_12_029
crossref_primary_10_1016_j_envpol_2021_117831
crossref_primary_10_1016_j_scitotenv_2021_151574
crossref_primary_10_1071_EN16198
crossref_primary_10_1016_j_scitotenv_2021_146424
crossref_primary_10_1039_C6TC04462J
crossref_primary_10_1016_j_gca_2018_11_005
crossref_primary_10_1016_j_chemosphere_2015_07_067
crossref_primary_10_1016_j_scitotenv_2017_12_193
crossref_primary_10_1016_j_micres_2019_04_008
crossref_primary_10_1016_j_scitotenv_2022_156631
crossref_primary_10_1016_j_scitotenv_2023_166993
crossref_primary_10_1016_j_gca_2024_12_030
crossref_primary_10_1016_j_scitotenv_2024_170606
crossref_primary_10_1111_sum_12968
crossref_primary_10_1016_j_chemosphere_2017_03_142
crossref_primary_10_1021_acs_est_1c00916
crossref_primary_10_3389_fmicb_2019_00360
crossref_primary_10_4028_www_scientific_net_AMR_1088_578
crossref_primary_10_1016_j_scitotenv_2020_143026
crossref_primary_10_3390_ijerph15122631
crossref_primary_10_1007_s41742_022_00491_w
crossref_primary_10_3389_fmicb_2021_738596
crossref_primary_10_1007_s00253_018_9165_4
crossref_primary_10_1016_j_envpol_2019_113112
crossref_primary_10_1016_j_chemgeo_2024_122567
crossref_primary_10_1111_ejss_12845
crossref_primary_10_1016_j_ecoenv_2023_115583
crossref_primary_10_1128_AEM_01375_16
crossref_primary_10_1016_j_jhazmat_2020_122112
crossref_primary_10_1093_plphys_kiae289
crossref_primary_10_1016_j_envint_2019_105046
crossref_primary_10_1007_s11368_016_1484_4
crossref_primary_10_1007_s11356_017_0168_y
crossref_primary_10_1016_j_jes_2020_07_009
crossref_primary_10_1021_acs_est_9b03924
crossref_primary_10_1016_j_envpol_2017_08_105
crossref_primary_10_1016_j_envpol_2021_118215
crossref_primary_10_1021_acs_est_9b00495
crossref_primary_10_3389_fpls_2024_1420408
crossref_primary_10_1016_j_gca_2021_06_021
crossref_primary_10_1029_2020WR028196
crossref_primary_10_1016_j_envpol_2018_03_014
crossref_primary_10_1016_j_gca_2020_08_007
crossref_primary_10_1016_j_apgeochem_2019_04_005
crossref_primary_10_1016_j_apgeochem_2019_04_006
crossref_primary_10_1016_j_heliyon_2021_e06275
crossref_primary_10_1007_s11356_016_7043_0
crossref_primary_10_1016_j_jhazmat_2019_121352
crossref_primary_10_1016_j_jhazmat_2023_132979
crossref_primary_10_1093_femsec_fiab057
crossref_primary_10_1016_j_heha_2023_100075
crossref_primary_10_1007_s11368_017_1739_8
crossref_primary_10_1016_j_envpol_2016_05_027
crossref_primary_10_1007_s11270_023_06607_y
crossref_primary_10_1016_j_envpol_2017_01_057
crossref_primary_10_1016_j_snb_2020_128322
crossref_primary_10_1016_j_eti_2024_103640
crossref_primary_10_1016_j_ecoleng_2020_105785
crossref_primary_10_1016_j_oregeorev_2022_104989
crossref_primary_10_1016_j_gca_2020_05_024
crossref_primary_10_1016_j_scitotenv_2023_167001
crossref_primary_10_1016_j_envpol_2019_113566
crossref_primary_10_1007_s11356_015_5699_5
crossref_primary_10_2139_ssrn_4091489
crossref_primary_10_1016_j_soilbio_2021_108194
crossref_primary_10_1016_j_envexpbot_2022_104996
crossref_primary_10_1029_2018JG004481
crossref_primary_10_1071_EN14123
crossref_primary_10_1007_s00244_017_0437_2
crossref_primary_10_1016_j_envpol_2024_124008
crossref_primary_10_1016_j_chemosphere_2014_12_020
crossref_primary_10_1016_j_jhazmat_2024_134230
crossref_primary_10_1021_acs_est_4c10829
crossref_primary_10_1039_D4EM00743C
crossref_primary_10_1016_j_envint_2020_105754
crossref_primary_10_1016_j_jhazmat_2022_128607
crossref_primary_10_17738_ajes_2024_0012
crossref_primary_10_1071_EN16029
crossref_primary_10_1080_10643389_2017_1419790
crossref_primary_10_1016_j_scitotenv_2023_163554
crossref_primary_10_1016_j_chemosphere_2022_136263
crossref_primary_10_1021_acsearthspacechem_0c00013
crossref_primary_10_1016_j_apgeochem_2017_12_012
crossref_primary_10_1016_j_apgeochem_2022_105311
crossref_primary_10_1016_j_scitotenv_2022_152922
Cites_doi 10.1021/es902942z
10.2134/jeq2010.0503
10.1021/es903901e
10.1016/j.envpol.2011.06.028
10.1016/j.jhazmat.2006.05.082
10.1080/03067319808032641
10.1016/j.envpol.2012.08.010
10.1016/S0065-2113(09)04003-6
10.1080/10807030701506124
10.1016/j.jhazmat.2010.05.090
10.1021/es060694x
10.1016/j.envpol.2009.10.045
10.1016/j.jenvman.2012.04.044
10.1021/es403312j
10.1016/j.envpol.2007.08.034
10.1021/es061540k
10.1021/es0353154
10.1021/es702625e
10.1016/j.chemosphere.2012.09.086
10.1016/j.ecoleng.2010.11.001
10.1016/S0012-8252(01)00070-8
10.1016/j.gca.2006.03.020
10.1021/es2022472
10.1021/es061284b
10.1016/S0009-2541(00)00287-4
10.1016/j.scitotenv.2005.12.019
10.1071/EN08111
10.1039/b823194j
10.1186/1939-8433-5-2
10.1016/S0012-8252(02)00089-2
10.1021/es302448k
10.1180/minmag.2008.072.1.185
10.1107/S0909049505012719
10.2134/jeq2005.0248
10.1021/es404098z
10.1080/15320380903085683
10.1016/j.apgeochem.2006.11.007
10.1021/es703061t
10.1039/an9750000549
10.1016/j.chemosphere.2007.07.021
ContentType Journal Article
Copyright 2014 Elsevier B.V.
2015 INIST-CNRS
Copyright © 2014 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7ST
7TV
7U1
7U7
C1K
SOI
7QQ
7SE
7SR
8BQ
8FD
FR3
JG9
KR7
7S9
L.6
DOI 10.1016/j.jhazmat.2014.04.065
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Environment Abstracts
Pollution Abstracts
Risk Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Risk Abstracts
Pollution Abstracts
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
Corrosion Abstracts
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE
Risk Abstracts
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
Applied Sciences
EISSN 1873-3336
EndPage 221
ExternalDocumentID 24862348
28551617
10_1016_j_jhazmat_2014_04_065
S0304389414003343
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
IQODW
UAO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7ST
7TV
7U1
7U7
C1K
SOI
7QQ
7SE
7SR
8BQ
8FD
FR3
JG9
KR7
7S9
L.6
ID FETCH-LOGICAL-c531t-40e6e9de4c2d105a5eac5e372d3bbc7a55cac0dbf380397a93ce3b06c0e60e2c3
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Fri Jul 11 11:12:52 EDT 2025
Mon Jul 21 11:27:37 EDT 2025
Thu Jul 10 22:25:45 EDT 2025
Tue Aug 05 11:32:54 EDT 2025
Thu Apr 03 07:02:26 EDT 2025
Wed Apr 02 07:26:31 EDT 2025
Tue Jul 01 00:50:31 EDT 2025
Thu Apr 24 23:06:54 EDT 2025
Fri Feb 23 02:18:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microbial reduction
Sb K-edge XANES
Redox speciation
Sb mobility
Shooting range soil
Microbial activity
XANES spectrometry
Pollutant behavior
Immobilization
Mobility
Liquid chromatography
Flooding
Soil pollution
Dissolution
Mobilization
Flood
ICP mass spectroscopy
Anaerobe
Ammunition
Speciation
Language English
License CC BY 4.0
Copyright © 2014 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-40e6e9de4c2d105a5eac5e372d3bbc7a55cac0dbf380397a93ce3b06c0e60e2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24862348
PQID 1534790774
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2000171248
proquest_miscellaneous_1642241256
proquest_miscellaneous_1627974981
proquest_miscellaneous_1534790774
pubmed_primary_24862348
pascalfrancis_primary_28551617
crossref_citationtrail_10_1016_j_jhazmat_2014_04_065
crossref_primary_10_1016_j_jhazmat_2014_04_065
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2014_04_065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-30
PublicationDateYYYYMMDD 2014-06-30
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-30
  day: 30
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wilson, Lockwood, Ashley, Tighe (bib0090) 2010; 158
Baes, Mesmer (bib0205) 1986
Okkenhaug, Zhu, He, Li, Luo, Mulder (bib0110) 2012; 46
Spuller, Weigand, Marb (bib0245) 2007; 141
Kocar, Herbel, Tufano, Fendorf (bib0210) 2006; 40
Mitsunobu, Takahashi, Terada, Sakata (bib0230) 2010; 44
Lintschinger, Michalke, Schulte-Hostede, Schramel (bib0135) 1998; 72
Leuz, Monch, Johnson (bib0085) 2006; 40
Kirsch, Scheinost, Rossberg, Banerjee, Charlet (bib0055) 2008; 72
Leuz, Hug, Moench, Wehrli, Johnson (bib0060) 2002; 66
Filella, Belzile, Chen (bib0050) 2002; 59
Mitsunobu, Takahashi, Terada (bib0115) 2010; 44
Evangelou, Hockmann, Pokharel, Jakob, Schulin (bib0040) 2012; 108
Filella, Belzile, Chen (bib0095) 2002; 57
Clausen, Korte (bib0030) 2009; 18
Ravel, Newville (bib0145) 2005; 12
Conesa, Wieser, Studer, Schulin (bib0130) 2011; 37
Wan, Tandy, Hockmann, Schulin (bib0195) 2013
2010.
Oorts, Smolders, Degryse, Buekers, Gasco, Cornelis, Mertens (bib0180) 2008; 42
Tufano, Fendorf (bib0215) 2008; 42
Schwertmann, Taylor (bib0165) 1989
Casiot, Ujevic, Munoz, Seidel, Elbaz-Poulichet (bib0100) 2007; 22
Biver, Krachler, Shotyk (bib0185) 2011; 40
Mitsunobu, Takahashi, Sakai (bib0065) 2008; 70
Nishiuchi, Yamauchi, Takahashi, Kotula, Nakazono (bib0225) 2012; 5
Stromseng, Ljones, Bakka, Mariussen (bib0025) 2009; 11
Álvarez-Ayuso, Otones, Murciego, García-Sánchez (bib0250) 2013; 90
I. Bormann, DigitizeIt Version 1.5.8
Abin, Hollibaugh (bib0070) 2013; 48
2011.
Belzile, Chen, Wang (bib0200) 2001; 174
Butterman, Carlin (bib0005) 2004
Fendorf, Kocar (bib0190) 2009
Sorvari (bib0015) 2007; 13
Soil Survey Division Staff, Soil survey manual, Soil Conservation Service. U.S. Department of Agriculture Handbook 18
Tschan, Robinson, Schulin (bib0240) 2009; 6
Conesa, Wieser, Gasser, Hockmann, Evangelou, Studer, Schulin (bib0170) 2010; 181
Wan, Tandy, Hockmann, Schulin (bib0120) 2013; 172
Okkenhaug, Amstätter, Lassen Bue, Cornelissen, Breedveld, Henriksen, Mulder (bib0255) 2013; 47
Sorvari, Antikainen, Pyy (bib0020) 2006; 366
Kirk (bib0045) 2004
1993.
Kulp, Miller, Braiotta, Webb, Kocar, Blum, Oremland (bib0075) 2013; 48
Robinson, Bischofberger, Stoll, Schroer, Furrer, Roulier, Gruenwald, Attinger, Schulin (bib0035) 2008; 153
Richmond, Loan, Morton, Parkinson (bib0235) 2004; 38
Mathys, Dittmar, Johnson (bib0010) 2007
Fadrus, Maly (bib0140) 1975; 100
Blay (bib0080) 1999
The R Foundation for Statistical Computing, R version 2.13.0
Mitsunobu, Harada, Takahashi (bib0105) 2006; 40
Okkenhaug, Zhu, Luo, Lei, Mulder (bib0150) 2011; 159
Scheinost, Rossberg, Vantelon, Xifra, Kretzschmar, Leuz, Funke, Johnson (bib0220) 2006; 70
Johnson, Moench, Wersin, Kugler, Wenger (bib0175) 2005; 34
Okkenhaug (10.1016/j.jhazmat.2014.04.065_bib0110) 2012; 46
10.1016/j.jhazmat.2014.04.065_bib0125
Okkenhaug (10.1016/j.jhazmat.2014.04.065_bib0150) 2011; 159
Conesa (10.1016/j.jhazmat.2014.04.065_bib0130) 2011; 37
10.1016/j.jhazmat.2014.04.065_bib0160
Leuz (10.1016/j.jhazmat.2014.04.065_bib0060) 2002; 66
Sorvari (10.1016/j.jhazmat.2014.04.065_bib0015) 2007; 13
Stromseng (10.1016/j.jhazmat.2014.04.065_bib0025) 2009; 11
Wan (10.1016/j.jhazmat.2014.04.065_bib0195) 2013
Mitsunobu (10.1016/j.jhazmat.2014.04.065_bib0115) 2010; 44
Mathys (10.1016/j.jhazmat.2014.04.065_bib0010) 2007
Filella (10.1016/j.jhazmat.2014.04.065_bib0050) 2002; 59
Kirk (10.1016/j.jhazmat.2014.04.065_bib0045) 2004
Mitsunobu (10.1016/j.jhazmat.2014.04.065_bib0065) 2008; 70
Conesa (10.1016/j.jhazmat.2014.04.065_bib0170) 2010; 181
Biver (10.1016/j.jhazmat.2014.04.065_bib0185) 2011; 40
Baes (10.1016/j.jhazmat.2014.04.065_bib0205) 1986
10.1016/j.jhazmat.2014.04.065_bib0155
Nishiuchi (10.1016/j.jhazmat.2014.04.065_bib0225) 2012; 5
Tufano (10.1016/j.jhazmat.2014.04.065_bib0215) 2008; 42
Fendorf (10.1016/j.jhazmat.2014.04.065_bib0190) 2009
Richmond (10.1016/j.jhazmat.2014.04.065_bib0235) 2004; 38
Butterman (10.1016/j.jhazmat.2014.04.065_bib0005) 2004
Wilson (10.1016/j.jhazmat.2014.04.065_bib0090) 2010; 158
Fadrus (10.1016/j.jhazmat.2014.04.065_bib0140) 1975; 100
Clausen (10.1016/j.jhazmat.2014.04.065_bib0030) 2009; 18
Kirsch (10.1016/j.jhazmat.2014.04.065_bib0055) 2008; 72
Leuz (10.1016/j.jhazmat.2014.04.065_bib0085) 2006; 40
Kocar (10.1016/j.jhazmat.2014.04.065_bib0210) 2006; 40
Casiot (10.1016/j.jhazmat.2014.04.065_bib0100) 2007; 22
Scheinost (10.1016/j.jhazmat.2014.04.065_bib0220) 2006; 70
Wan (10.1016/j.jhazmat.2014.04.065_bib0120) 2013; 172
Ravel (10.1016/j.jhazmat.2014.04.065_bib0145) 2005; 12
Evangelou (10.1016/j.jhazmat.2014.04.065_bib0040) 2012; 108
Spuller (10.1016/j.jhazmat.2014.04.065_bib0245) 2007; 141
Álvarez-Ayuso (10.1016/j.jhazmat.2014.04.065_bib0250) 2013; 90
Robinson (10.1016/j.jhazmat.2014.04.065_bib0035) 2008; 153
Kulp (10.1016/j.jhazmat.2014.04.065_bib0075) 2013; 48
Sorvari (10.1016/j.jhazmat.2014.04.065_bib0020) 2006; 366
Mitsunobu (10.1016/j.jhazmat.2014.04.065_bib0105) 2006; 40
Filella (10.1016/j.jhazmat.2014.04.065_bib0095) 2002; 57
Oorts (10.1016/j.jhazmat.2014.04.065_bib0180) 2008; 42
Schwertmann (10.1016/j.jhazmat.2014.04.065_bib0165) 1989
Belzile (10.1016/j.jhazmat.2014.04.065_bib0200) 2001; 174
Blay (10.1016/j.jhazmat.2014.04.065_bib0080) 1999
Johnson (10.1016/j.jhazmat.2014.04.065_bib0175) 2005; 34
Abin (10.1016/j.jhazmat.2014.04.065_bib0070) 2013; 48
Okkenhaug (10.1016/j.jhazmat.2014.04.065_bib0255) 2013; 47
Tschan (10.1016/j.jhazmat.2014.04.065_bib0240) 2009; 6
Lintschinger (10.1016/j.jhazmat.2014.04.065_bib0135) 1998; 72
Mitsunobu (10.1016/j.jhazmat.2014.04.065_bib0230) 2010; 44
References_xml – year: 2004
  ident: bib0005
  article-title: U.S. Geological Survey Mineral Commodity Profiles: Antimony (Open-File Report 03-019)
– volume: 46
  start-page: 3155
  year: 2012
  end-page: 3162
  ident: bib0110
  article-title: Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice
  publication-title: Environ. Sci. Technol.
– volume: 70
  start-page: 942
  year: 2008
  end-page: 947
  ident: bib0065
  article-title: Abiotic reduction of antimony(V) by green rust (Fe
  publication-title: Chemosphere
– volume: 90
  start-page: 2233
  year: 2013
  end-page: 2239
  ident: bib0250
  article-title: Evaluation of different amendments to stabilize antimony in mining polluted soils
  publication-title: Chemosphere
– volume: 34
  start-page: 248
  year: 2005
  end-page: 254
  ident: bib0175
  article-title: Solubility of antimony and other elements in samples taken from shooting ranges
  publication-title: J. Environ. Qual.
– year: 2007
  ident: bib0010
  article-title: Antimony in Switzerland: A Substance Flow Analysis
– volume: 13
  start-page: 1111
  year: 2007
  end-page: 1146
  ident: bib0015
  article-title: Environmental risks at Finnish shooting ranges – a case study
  publication-title: Hum. Ecol. Risk Assess.
– volume: 22
  start-page: 788
  year: 2007
  end-page: 798
  ident: bib0100
  article-title: Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France)
  publication-title: Appl. Geochem.
– volume: 70
  start-page: 3299
  year: 2006
  end-page: 3312
  ident: bib0220
  article-title: Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy
  publication-title: Geochim. Cosmochim. Acta
– reference: I. Bormann, DigitizeIt Version 1.5.8,
– volume: 48
  start-page: 218
  year: 2013
  end-page: 226
  ident: bib0075
  article-title: Microbiological reduction of Sb (V) in anoxic freshwater sediments
  publication-title: Environ. Sci. Technol.
– volume: 57
  start-page: 125
  year: 2002
  end-page: 176
  ident: bib0095
  article-title: Antimony in the environment: a review focused on natural waters I. Occurrence
  publication-title: Earth-Sci. Rev.
– volume: 153
  start-page: 668
  year: 2008
  end-page: 676
  ident: bib0035
  article-title: Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications
  publication-title: Environ. Pollut.
– reference: , 2010.
– volume: 5
  start-page: 1
  year: 2012
  end-page: 14
  ident: bib0225
  article-title: Mechanisms for coping with submergence and waterlogging in rice
  publication-title: Rice
– reference: Soil Survey Division Staff, Soil survey manual, Soil Conservation Service. U.S. Department of Agriculture Handbook 18,
– reference: The R Foundation for Statistical Computing, R version 2.13.0,
– volume: 181
  start-page: 845
  year: 2010
  end-page: 850
  ident: bib0170
  article-title: Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils
  publication-title: J. Hazard. Mater.
– volume: 48
  start-page: 681
  year: 2013
  end-page: 688
  ident: bib0070
  article-title: Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 7270
  year: 2006
  end-page: 7276
  ident: bib0105
  article-title: Comparison of antimony behavior with that of arsenic under various soil redox conditions
  publication-title: Environ. Sci. Technol.
– volume: 72
  start-page: 11
  year: 1998
  end-page: 25
  ident: bib0135
  article-title: Studies on speciation of antimony in soil contaminated by industrial activity
  publication-title: Int. J. Environ. Anal. Chem.
– volume: 37
  start-page: 654
  year: 2011
  end-page: 658
  ident: bib0130
  article-title: Effects of vegetation and fertilizer on metal and Sb plant uptake in a calcareous shooting range soil
  publication-title: Ecol. Eng.
– volume: 11
  start-page: 1259
  year: 2009
  end-page: 1267
  ident: bib0025
  article-title: Episodic discharge of lead, copper and antimony from a Norwegian small arm shooting range
  publication-title: J. Environ. Monit.
– volume: 42
  start-page: 4777
  year: 2008
  end-page: 4783
  ident: bib0215
  article-title: Confounding impacts of iron reduction on arsenic retention
  publication-title: Environ. Sci. Technol.
– year: 1999
  ident: bib0080
  article-title: Sorption wässriger Antimon-Spezies an bodenbildende Festphasen und Remobilisierung durch natürliche Komplexbildner
– volume: 158
  start-page: 1169
  year: 2010
  end-page: 1181
  ident: bib0090
  article-title: The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review
  publication-title: Environ. Pollut.
– volume: 6
  start-page: 106
  year: 2009
  end-page: 115
  ident: bib0240
  article-title: Antimony in the soil–plant system – a review
  publication-title: Environ. Chem.
– volume: 38
  start-page: 2368
  year: 2004
  end-page: 2372
  ident: bib0235
  article-title: Arsenic removal from aqueous solution via ferrihydrite crystallization control
  publication-title: Environ. Sci. Technol.
– volume: 72
  start-page: 185
  year: 2008
  end-page: 189
  ident: bib0055
  article-title: Reduction of antimony by nano-particulate magnetite and mackinawite
  publication-title: Mineral. Mag.
– reference: , 2011.
– volume: 18
  start-page: 546
  year: 2009
  end-page: 563
  ident: bib0030
  article-title: The distribution of metals in soils and pore water at three US military training facilities
  publication-title: Soil Sediment Contam.
– volume: 366
  start-page: 21
  year: 2006
  end-page: 31
  ident: bib0020
  article-title: Environmental contamination at Finnish shooting ranges – the scope of the problem and management options
  publication-title: Sci. Total Environ.
– start-page: 137
  year: 2009
  end-page: 164
  ident: bib0190
  article-title: Biogeochemical processes controlling the fate and transport of arsenic: implications for South and Southeast Asia
  publication-title: Adv. Agron.
– volume: 108
  start-page: 102
  year: 2012
  end-page: 107
  ident: bib0040
  article-title: Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils
  publication-title: J. Environ. Manage.
– volume: 59
  start-page: 265
  year: 2002
  end-page: 285
  ident: bib0050
  article-title: Antimony in the environment: a review focused on natural waters. II. Relevant solution chemistry
  publication-title: Earth-Sci. Rev.
– volume: 42
  start-page: 4378
  year: 2008
  end-page: 4383
  ident: bib0180
  article-title: Solubility and toxicity of antimony trioxide (Sb
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 7277
  year: 2006
  end-page: 7282
  ident: bib0085
  article-title: Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization
  publication-title: Environ. Sci. Technol.
– reference: , 1993.
– start-page: 379
  year: 1989
  end-page: 438
  ident: bib0165
  article-title: Iron oxides
  publication-title: Minerals in Soil Environments
– volume: 66
  year: 2002
  ident: bib0060
  article-title: The redox chemistry of antimony in lakes
  publication-title: Geochim. Cosmochim. Acta
– volume: 141
  start-page: 378
  year: 2007
  end-page: 387
  ident: bib0245
  article-title: Trace metal stabilisation in a shooting range soil: mobility and phytotoxicity
  publication-title: J. Hazard. Mater.
– volume: 100
  start-page: 549
  year: 1975
  end-page: 554
  ident: bib0140
  article-title: Supression of iron(III) interference in determination if iron(II) in water by 1,10 phenanthroline method
  publication-title: Analyst
– start-page: 1
  year: 2013
  end-page: 12
  ident: bib0195
  article-title: Effects of waterlogging on the solubility and redox state of Sb in a shooting range soil and its uptake by grasses: a tank experiment
  publication-title: Plant Soil
– volume: 172
  start-page: 53
  year: 2013
  end-page: 60
  ident: bib0120
  article-title: Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake
  publication-title: Environ. Pollut.
– volume: 174
  start-page: 379
  year: 2001
  end-page: 387
  ident: bib0200
  article-title: Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides
  publication-title: Chem. Geol.
– volume: 159
  start-page: 2427
  year: 2011
  end-page: 2434
  ident: bib0150
  article-title: Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area
  publication-title: Environ. Pollut.
– volume: 44
  start-page: 3712
  year: 2010
  end-page: 3718
  ident: bib0230
  article-title: Antimony(V) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 6715
  year: 2006
  end-page: 6721
  ident: bib0210
  article-title: Contrasting effects of dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 6431
  year: 2013
  end-page: 6439
  ident: bib0255
  article-title: Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 1281
  year: 2010
  end-page: 1287
  ident: bib0115
  article-title: mu-XANES evidence for the reduction of Sb(V) to Sb(III) in soil from Sb mine tailing
  publication-title: Environ. Sci. Technol.
– volume: 12
  start-page: 537
  year: 2005
  end-page: 541
  ident: bib0145
  article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J. Synchrotron Radiat.
– volume: 40
  start-page: 1143
  year: 2011
  end-page: 1152
  ident: bib0185
  article-title: The desorption of antimony(V) from sediments, hydrous oxides, and clay minerals by carbonate, phosphate, sulfate, nitrate, and chloride
  publication-title: J. Environ. Qual.
– year: 1986
  ident: bib0205
  article-title: The Hydrolysis of Cations
– year: 2004
  ident: bib0045
  article-title: The Biogeochemistry of Submerged Soils
– volume: 44
  start-page: 1281
  year: 2010
  ident: 10.1016/j.jhazmat.2014.04.065_bib0115
  article-title: mu-XANES evidence for the reduction of Sb(V) to Sb(III) in soil from Sb mine tailing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902942z
– volume: 40
  start-page: 1143
  year: 2011
  ident: 10.1016/j.jhazmat.2014.04.065_bib0185
  article-title: The desorption of antimony(V) from sediments, hydrous oxides, and clay minerals by carbonate, phosphate, sulfate, nitrate, and chloride
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2010.0503
– volume: 44
  start-page: 3712
  year: 2010
  ident: 10.1016/j.jhazmat.2014.04.065_bib0230
  article-title: Antimony(V) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903901e
– volume: 159
  start-page: 2427
  year: 2011
  ident: 10.1016/j.jhazmat.2014.04.065_bib0150
  article-title: Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.06.028
– volume: 141
  start-page: 378
  year: 2007
  ident: 10.1016/j.jhazmat.2014.04.065_bib0245
  article-title: Trace metal stabilisation in a shooting range soil: mobility and phytotoxicity
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.05.082
– volume: 72
  start-page: 11
  year: 1998
  ident: 10.1016/j.jhazmat.2014.04.065_bib0135
  article-title: Studies on speciation of antimony in soil contaminated by industrial activity
  publication-title: Int. J. Environ. Anal. Chem.
  doi: 10.1080/03067319808032641
– year: 2004
  ident: 10.1016/j.jhazmat.2014.04.065_bib0005
– volume: 172
  start-page: 53
  year: 2013
  ident: 10.1016/j.jhazmat.2014.04.065_bib0120
  article-title: Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2012.08.010
– ident: 10.1016/j.jhazmat.2014.04.065_bib0155
– start-page: 1
  year: 2013
  ident: 10.1016/j.jhazmat.2014.04.065_bib0195
  article-title: Effects of waterlogging on the solubility and redox state of Sb in a shooting range soil and its uptake by grasses: a tank experiment
  publication-title: Plant Soil
– start-page: 137
  year: 2009
  ident: 10.1016/j.jhazmat.2014.04.065_bib0190
  article-title: Biogeochemical processes controlling the fate and transport of arsenic: implications for South and Southeast Asia
  doi: 10.1016/S0065-2113(09)04003-6
– volume: 13
  start-page: 1111
  year: 2007
  ident: 10.1016/j.jhazmat.2014.04.065_bib0015
  article-title: Environmental risks at Finnish shooting ranges – a case study
  publication-title: Hum. Ecol. Risk Assess.
  doi: 10.1080/10807030701506124
– year: 1999
  ident: 10.1016/j.jhazmat.2014.04.065_bib0080
– volume: 181
  start-page: 845
  year: 2010
  ident: 10.1016/j.jhazmat.2014.04.065_bib0170
  article-title: Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.05.090
– volume: 40
  start-page: 7270
  year: 2006
  ident: 10.1016/j.jhazmat.2014.04.065_bib0105
  article-title: Comparison of antimony behavior with that of arsenic under various soil redox conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060694x
– volume: 158
  start-page: 1169
  year: 2010
  ident: 10.1016/j.jhazmat.2014.04.065_bib0090
  article-title: The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2009.10.045
– volume: 108
  start-page: 102
  year: 2012
  ident: 10.1016/j.jhazmat.2014.04.065_bib0040
  article-title: Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2012.04.044
– volume: 48
  start-page: 218
  year: 2013
  ident: 10.1016/j.jhazmat.2014.04.065_bib0075
  article-title: Microbiological reduction of Sb (V) in anoxic freshwater sediments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es403312j
– volume: 153
  start-page: 668
  year: 2008
  ident: 10.1016/j.jhazmat.2014.04.065_bib0035
  article-title: Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2007.08.034
– volume: 40
  start-page: 6715
  year: 2006
  ident: 10.1016/j.jhazmat.2014.04.065_bib0210
  article-title: Contrasting effects of dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061540k
– volume: 38
  start-page: 2368
  year: 2004
  ident: 10.1016/j.jhazmat.2014.04.065_bib0235
  article-title: Arsenic removal from aqueous solution via ferrihydrite crystallization control
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0353154
– year: 1986
  ident: 10.1016/j.jhazmat.2014.04.065_bib0205
– ident: 10.1016/j.jhazmat.2014.04.065_bib0125
– volume: 42
  start-page: 4777
  year: 2008
  ident: 10.1016/j.jhazmat.2014.04.065_bib0215
  article-title: Confounding impacts of iron reduction on arsenic retention
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702625e
– year: 2004
  ident: 10.1016/j.jhazmat.2014.04.065_bib0045
– volume: 90
  start-page: 2233
  year: 2013
  ident: 10.1016/j.jhazmat.2014.04.065_bib0250
  article-title: Evaluation of different amendments to stabilize antimony in mining polluted soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.09.086
– volume: 37
  start-page: 654
  year: 2011
  ident: 10.1016/j.jhazmat.2014.04.065_bib0130
  article-title: Effects of vegetation and fertilizer on metal and Sb plant uptake in a calcareous shooting range soil
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2010.11.001
– volume: 57
  start-page: 125
  year: 2002
  ident: 10.1016/j.jhazmat.2014.04.065_bib0095
  article-title: Antimony in the environment: a review focused on natural waters I. Occurrence
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/S0012-8252(01)00070-8
– volume: 70
  start-page: 3299
  year: 2006
  ident: 10.1016/j.jhazmat.2014.04.065_bib0220
  article-title: Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.03.020
– volume: 46
  start-page: 3155
  year: 2012
  ident: 10.1016/j.jhazmat.2014.04.065_bib0110
  article-title: Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2022472
– volume: 40
  start-page: 7277
  year: 2006
  ident: 10.1016/j.jhazmat.2014.04.065_bib0085
  article-title: Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061284b
– volume: 174
  start-page: 379
  year: 2001
  ident: 10.1016/j.jhazmat.2014.04.065_bib0200
  article-title: Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(00)00287-4
– volume: 366
  start-page: 21
  year: 2006
  ident: 10.1016/j.jhazmat.2014.04.065_bib0020
  article-title: Environmental contamination at Finnish shooting ranges – the scope of the problem and management options
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.12.019
– volume: 6
  start-page: 106
  year: 2009
  ident: 10.1016/j.jhazmat.2014.04.065_bib0240
  article-title: Antimony in the soil–plant system – a review
  publication-title: Environ. Chem.
  doi: 10.1071/EN08111
– volume: 66
  year: 2002
  ident: 10.1016/j.jhazmat.2014.04.065_bib0060
  article-title: The redox chemistry of antimony in lakes
  publication-title: Geochim. Cosmochim. Acta
– volume: 11
  start-page: 1259
  year: 2009
  ident: 10.1016/j.jhazmat.2014.04.065_bib0025
  article-title: Episodic discharge of lead, copper and antimony from a Norwegian small arm shooting range
  publication-title: J. Environ. Monit.
  doi: 10.1039/b823194j
– start-page: 379
  year: 1989
  ident: 10.1016/j.jhazmat.2014.04.065_bib0165
  article-title: Iron oxides
– volume: 5
  start-page: 1
  year: 2012
  ident: 10.1016/j.jhazmat.2014.04.065_bib0225
  article-title: Mechanisms for coping with submergence and waterlogging in rice
  publication-title: Rice
  doi: 10.1186/1939-8433-5-2
– volume: 59
  start-page: 265
  year: 2002
  ident: 10.1016/j.jhazmat.2014.04.065_bib0050
  article-title: Antimony in the environment: a review focused on natural waters. II. Relevant solution chemistry
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/S0012-8252(02)00089-2
– volume: 47
  start-page: 6431
  year: 2013
  ident: 10.1016/j.jhazmat.2014.04.065_bib0255
  article-title: Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302448k
– volume: 72
  start-page: 185
  year: 2008
  ident: 10.1016/j.jhazmat.2014.04.065_bib0055
  article-title: Reduction of antimony by nano-particulate magnetite and mackinawite
  publication-title: Mineral. Mag.
  doi: 10.1180/minmag.2008.072.1.185
– volume: 12
  start-page: 537
  year: 2005
  ident: 10.1016/j.jhazmat.2014.04.065_bib0145
  article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– ident: 10.1016/j.jhazmat.2014.04.065_bib0160
– volume: 34
  start-page: 248
  year: 2005
  ident: 10.1016/j.jhazmat.2014.04.065_bib0175
  article-title: Solubility of antimony and other elements in samples taken from shooting ranges
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2005.0248
– volume: 48
  start-page: 681
  year: 2013
  ident: 10.1016/j.jhazmat.2014.04.065_bib0070
  article-title: Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404098z
– volume: 18
  start-page: 546
  year: 2009
  ident: 10.1016/j.jhazmat.2014.04.065_bib0030
  article-title: The distribution of metals in soils and pore water at three US military training facilities
  publication-title: Soil Sediment Contam.
  doi: 10.1080/15320380903085683
– volume: 22
  start-page: 788
  year: 2007
  ident: 10.1016/j.jhazmat.2014.04.065_bib0100
  article-title: Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France)
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2006.11.007
– volume: 42
  start-page: 4378
  year: 2008
  ident: 10.1016/j.jhazmat.2014.04.065_bib0180
  article-title: Solubility and toxicity of antimony trioxide (Sb2O3) in soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es703061t
– year: 2007
  ident: 10.1016/j.jhazmat.2014.04.065_bib0010
– volume: 100
  start-page: 549
  year: 1975
  ident: 10.1016/j.jhazmat.2014.04.065_bib0140
  article-title: Supression of iron(III) interference in determination if iron(II) in water by 1,10 phenanthroline method
  publication-title: Analyst
  doi: 10.1039/an9750000549
– volume: 70
  start-page: 942
  year: 2008
  ident: 10.1016/j.jhazmat.2014.04.065_bib0065
  article-title: Abiotic reduction of antimony(V) by green rust (Fe4(II)Fe2(III)(OH)12SO4·3H2O)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.07.021
SSID ssj0001754
Score 2.4915476
Snippet •Sb(V) was rapidly reduced to Sb(III) in the anaerobic, calcareous soil.•Sb(III) was the dominant Sb species under reducing conditions.•The reduction of Sb(V)...
Soil contamination by toxic antimony (Sb) released from corroding ammunition has become an issue of public concern in various countries. Many of these soils...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 215
SubjectTerms Adsorption
anaerobic conditions
Antimony
Antimony - chemistry
Applied sciences
Decontamination. Miscellaneous
Exact sciences and technology
flooded conditions
Iron
Iron - chemistry
Lactic Acid - metabolism
Liquid chromatography
microbial activity
Microbial reduction
Oxidation-Reduction
polluted soils
Pollution
Redox speciation
Risk
Sb K-edge XANES
Sb mobility
Shooting range soil
Soil (material)
Soil and sediments pollution
Soil Microbiology
Soil Pollutants - chemistry
soil pollution
soil solution
Solubility
Speciation
Toxic
toxicity
Toxicology
X-ray absorption spectroscopy
Title Release of antimony from contaminated soil induced by redox changes
URI https://dx.doi.org/10.1016/j.jhazmat.2014.04.065
https://www.ncbi.nlm.nih.gov/pubmed/24862348
https://www.proquest.com/docview/1534790774
https://www.proquest.com/docview/1627974981
https://www.proquest.com/docview/1642241256
https://www.proquest.com/docview/2000171248
Volume 275
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB7S9NJSSpu-3IdRode15dVoH8dgGtxXDm0DuQlJq6U2YW1qhyQ99Ld3ZrUbN9AkUNjLLhpWzEj6vkGjTwDvKlkRCcUscc7ZBL0OCaGgTYLUAQuVhUlbPP7lMJsd4cdjfbwD0_4sDJdVdmt_XNPb1br7Mu68OV7N5-NvvKlHcIuUIkilkBU_EXMe5aPf2zIPgscoIcU7ANR6e4pnvBgtfthfRAy5wgtbxVPGmH_j04OVXZPX6njdxfV8tMWlg0fwsCOUYj_2-THshGYP7v8lM7gHdz7bsycw_UoIQ5gllrUgd1KMmgvBp0sEl6tbLokh9inWy_mJoESdQl4JdyFYUPRcxPPB66dwdPD--3SWdFcoJJ4m14ayw5CFsgro04qYlNW0zuqg8rRSzvncau2tl5WrVSGJmdhS-aCczDzZyZB69Qx2m2UTXoDQNQakbJBgj2X7LNmWVsnaEwyi1dUAsHec8Z2-OF9zcWL6QrKF6fxt2N9G0pPpAYwuzVZRYOM2g6KPirkyUgyBwG2mwytRvPxhWvB-4SQfwNs-rIamGe-d2CYsT9eGgAHzUhJZvqFNluaUnpXF5KY2yKSJiOb1bdKoYpRiMYDncWxte4qUgiosXv6_F17BPX6LRY-vYXfz8zS8IWa1ccN26gzh7v6HT7PDP772IgI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7xOLRVhSgtNG2hrtTrJs56vI9jFYECDRxakLhZttcrEqFN1AQVOPS3d7zeJUXiIVXa0-6M1pqx_X0jj2cAvha8IBKKSWSM0RFa6SJCQR05Lh1mInH9Onn8-CQZnuHRuTxfgUF7F8anVTZ7f9jT6926edNrrNmbjce9n_5Qj-AWKUTgQqBYhXWk5evbGHT_LPM8CB9DDSl_BEDiy2s8vUl3cqFviRn6FC-sS556kHkYoF7P9JzMVoZ-F48T0hqYDjZho2GU7FsY9BtYcdUWvPqnzuAWrI7077cw-EEQQ6DFpiUje5KTqhvmr5cwn6-ufU4M0U82n44vGUXq5POCmRvmK4pes3BBeP4Ozg72TwfDqOmhEFlaXQsKD13i8sKhjQuiUlrSRiudSONCGGNTLaXVlhemFBknaqJzYZ0wPLGkx11sxTasVdPKvQcmS3RI4SDhnq_bp0k314KXlnAQtSw6gK3hlG0KjPs-F5eqzSSbqMbeyttbcXoS2YHundosVNh4TiFrvaLuTRVFKPCc6t49L979MM78gWE_7cCX1q2K1pk_PNGVm17NFSEDpjkntvyETBKnFJ_lWf8pGfSsiZjm4zJxKGMUY9aBnTC3liNFikEFZh_-3wqf4cXw9HikRocn3z_CS_8lZEB-grXFryu3SzRrYfbqZfQXJakjkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Release+of+antimony+from+contaminated+soil+induced+by+redox+changes&rft.jtitle=Journal+of+hazardous+materials&rft.au=Hockmann%2C+Kerstin&rft.au=Lenz%2C+Markus&rft.au=Tandy%2C+Susan&rft.au=Nachtegaal%2C+Maarten&rft.date=2014-06-30&rft.pub=Elsevier+B.V&rft.issn=0304-3894&rft.eissn=1873-3336&rft.volume=275&rft.spage=215&rft.epage=221&rft_id=info:doi/10.1016%2Fj.jhazmat.2014.04.065&rft.externalDocID=S0304389414003343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon