Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses

Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccin...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 28; pp. 12658 - 12663
Main Authors Grandea, Andres G., Olsen, Ole A., Cox, Thomas C., Renshaw, Mark, Hammond, Philip W., Chan-Hui, Po-Ying, Mitcham, Jennifer L., Cieplak, Witold, Stewart, Shaun M., Grantham, Michael L., Pekosz, Andrew, Kiso, Maki, Shinya, Kyoko, Hatta, Masato, Kawaoka, Yoshihiro, Moyle, Matthew, Chisari, Francis V.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 13.07.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG⁺ memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains.
AbstractList Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG⁺ memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains.
Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG + memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains.
Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG super(+) memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains.
Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG + memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains.
Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG(+) memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains.Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG(+) memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains.
Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG+ memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. [PUBLICATION ABSTRACT]
Author Hammond, Philip W.
Grandea, Andres G.
Mitcham, Jennifer L.
Pekosz, Andrew
Chisari, Francis V.
Cox, Thomas C.
Kiso, Maki
Olsen, Ole A.
Kawaoka, Yoshihiro
Renshaw, Mark
Hatta, Masato
Chan-Hui, Po-Ying
Stewart, Shaun M.
Cieplak, Witold
Grantham, Michael L.
Moyle, Matthew
Shinya, Kyoko
Author_xml – sequence: 1
  givenname: Andres G.
  surname: Grandea
  fullname: Grandea, Andres G.
– sequence: 2
  givenname: Ole A.
  surname: Olsen
  fullname: Olsen, Ole A.
– sequence: 3
  givenname: Thomas C.
  surname: Cox
  fullname: Cox, Thomas C.
– sequence: 4
  givenname: Mark
  surname: Renshaw
  fullname: Renshaw, Mark
– sequence: 5
  givenname: Philip W.
  surname: Hammond
  fullname: Hammond, Philip W.
– sequence: 6
  givenname: Po-Ying
  surname: Chan-Hui
  fullname: Chan-Hui, Po-Ying
– sequence: 7
  givenname: Jennifer L.
  surname: Mitcham
  fullname: Mitcham, Jennifer L.
– sequence: 8
  givenname: Witold
  surname: Cieplak
  fullname: Cieplak, Witold
– sequence: 9
  givenname: Shaun M.
  surname: Stewart
  fullname: Stewart, Shaun M.
– sequence: 10
  givenname: Michael L.
  surname: Grantham
  fullname: Grantham, Michael L.
– sequence: 11
  givenname: Andrew
  surname: Pekosz
  fullname: Pekosz, Andrew
– sequence: 12
  givenname: Maki
  surname: Kiso
  fullname: Kiso, Maki
– sequence: 13
  givenname: Kyoko
  surname: Shinya
  fullname: Shinya, Kyoko
– sequence: 14
  givenname: Masato
  surname: Hatta
  fullname: Hatta, Masato
– sequence: 15
  givenname: Yoshihiro
  surname: Kawaoka
  fullname: Kawaoka, Yoshihiro
– sequence: 16
  givenname: Matthew
  surname: Moyle
  fullname: Moyle, Matthew
– sequence: 17
  givenname: Francis V.
  surname: Chisari
  fullname: Chisari, Francis V.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20615945$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLcLZ04giwtctvVnnFwqVRVQpEpc4Gw5yWTjVdYOthOp_Hoc7dKWHsrJsueZd-Ydzxk6cd4BQm8pOadE8YvRmXhOKkpLUuSHF2hF821TiIqcoBUhTG1KwcQpOotxRwipZEleoVOWaVkJuULhZtobh41LtvathYgDzGAGbPAYfIIm2RkwjDb5EXDqTcI24t5u--EON95FCDO02Oy92-L-qNXi3ObhYl03TOB-G3yFZxumCPE1etmZIcKb47lGP798_nF9s7n9_vXb9dXtppGcpg3vwChZdkwArWtai0I2YKBUNeeqMswYwQlXvCsq2dZGEVlLplhbNF1jiBR8jS4PuuNU76FtwKVgBj0GuzfhTntj9b8RZ3u99bNmFSmkKLLAx6NA8L8miEnvbWxgGIwDP0WtpJBcMV79n-S8UqWqZCY_PUvSkklBZZmtrdGHJ-jOT8HlkemCcl4IIpfK7x-bvHf394czcHEAmuBjDNDdI5ToZYf0skP6YYdyhnyS0dhkkvXLlOzwTB4-trIEHqoozUpNWZFNrdG7A7KLyYdHzSomOCX8D7-54L8
CitedBy_id crossref_primary_10_1128_mbio_00175_24
crossref_primary_10_1016_j_jmb_2017_05_015
crossref_primary_10_1146_annurev_immunol_032712_095916
crossref_primary_10_1007_s12250_012_3241_1
crossref_primary_10_1042_CS20160259
crossref_primary_10_4161_hv_8_1_18859
crossref_primary_10_1038_nm_3350
crossref_primary_10_1093_infdis_jiab540
crossref_primary_10_1016_j_isci_2022_105736
crossref_primary_10_1016_j_it_2011_08_007
crossref_primary_10_3390_vaccines8030434
crossref_primary_10_1093_infdis_jit811
crossref_primary_10_1371_journal_pone_0077084
crossref_primary_10_1038_s41577_019_0143_6
crossref_primary_10_1586_erv_13_35
crossref_primary_10_1371_journal_pone_0156418
crossref_primary_10_1080_22221751_2018_1558962
crossref_primary_10_1016_j_coviro_2022_101207
crossref_primary_10_1371_journal_pone_0048484
crossref_primary_10_1155_2013_316926
crossref_primary_10_1093_ofid_ofx023
crossref_primary_10_1111_xen_12091
crossref_primary_10_1093_aje_kwy145
crossref_primary_10_1038_srep20137
crossref_primary_10_3349_ymj_2013_54_2_271
crossref_primary_10_1016_j_virol_2016_08_010
crossref_primary_10_1093_infdis_jiv181
crossref_primary_10_3390_vaccines12040389
crossref_primary_10_1007_s10337_011_1988_4
crossref_primary_10_1016_j_vaccine_2011_07_139
crossref_primary_10_1016_j_coviro_2017_03_002
crossref_primary_10_2217_imt_11_167
crossref_primary_10_1371_journal_pone_0023791
crossref_primary_10_3390_vaccines7030117
crossref_primary_10_1371_journal_pone_0036032
crossref_primary_10_1021_acs_biochem_6b00727
crossref_primary_10_4161_mabs_36292
crossref_primary_10_1128_JVI_01027_20
crossref_primary_10_1016_j_jviromet_2011_10_016
crossref_primary_10_1371_journal_pone_0059674
crossref_primary_10_1371_journal_ppat_1006064
crossref_primary_10_1089_vim_2014_0061
crossref_primary_10_1099_jgv_0_000518
crossref_primary_10_1016_j_antiviral_2014_08_016
crossref_primary_10_1016_j_antiviral_2019_104562
crossref_primary_10_1016_j_jconrel_2020_11_057
crossref_primary_10_1016_j_vaccine_2011_09_110
crossref_primary_10_1155_2018_9747549
crossref_primary_10_1016_j_micinf_2020_06_003
crossref_primary_10_1146_annurev_biophys_070816_033712
crossref_primary_10_1016_j_jviromet_2013_08_038
crossref_primary_10_1111_imr_12395
crossref_primary_10_1007_s12250_014_3428_8
crossref_primary_10_1093_infdis_jiu539
crossref_primary_10_1371_journal_pone_0028309
crossref_primary_10_1016_j_vaccine_2016_08_057
crossref_primary_10_3389_fimmu_2021_790918
crossref_primary_10_1016_j_vaccine_2014_04_062
crossref_primary_10_1186_s12929_019_0572_3
crossref_primary_10_2174_1389201020666190809112704
crossref_primary_10_1128_mbio_01273_23
crossref_primary_10_1016_j_virusres_2013_05_011
crossref_primary_10_1128_CVI_00339_13
crossref_primary_10_1093_infdis_jiu543
crossref_primary_10_1371_journal_pone_0126650
crossref_primary_10_1128_mBio_00745_21
crossref_primary_10_1128_JVI_05193_11
crossref_primary_10_3390_v13061037
crossref_primary_10_1016_j_virusres_2012_05_002
crossref_primary_10_3390_v5112796
crossref_primary_10_1016_j_jaci_2017_07_001
crossref_primary_10_1128_JVI_02576_14
crossref_primary_10_1016_j_jviromet_2012_03_016
crossref_primary_10_2217_fvl_10_80
crossref_primary_10_1080_14728214_2018_1504020
crossref_primary_10_1016_j_molimm_2019_08_015
crossref_primary_10_3390_v5010352
crossref_primary_10_4161_hv_21025
crossref_primary_10_1101_cshperspect_a038448
crossref_primary_10_1007_s12275_015_4642_2
crossref_primary_10_2217_nnm_12_62
crossref_primary_10_1128_CMR_05012_11
crossref_primary_10_1080_14760584_2017_1240041
crossref_primary_10_1172_JCI148763
crossref_primary_10_3390_vaccines3010105
crossref_primary_10_1080_21645515_2015_1079676
crossref_primary_10_1586_14760584_2015_1068125
crossref_primary_10_1128_JVI_02105_15
crossref_primary_10_3389_fmicb_2017_00872
crossref_primary_10_3389_fmicb_2020_00135
crossref_primary_10_3390_v13060965
crossref_primary_10_1111_irv_12446
crossref_primary_10_1038_s41541_017_0019_3
crossref_primary_10_61186_jpsad_1_1_1
crossref_primary_10_1038_s41598_019_41023_5
crossref_primary_10_1016_j_vaccine_2022_10_003
crossref_primary_10_1111_irv_12045
crossref_primary_10_4049_jimmunol_1801054
crossref_primary_10_3390_vaccines9070739
Cites_doi 10.1186/1743-422X-3-102
10.1002/(SICI)1096-9071(199708)52:4<451::AID-JMV18>3.0.CO;2-J
10.1016/S0928-8244(03)00009-9
10.1099/0022-1317-73-9-2375
10.1128/jvi.67.9.5585-5594.1993
10.1371/journal.pone.0003942
10.7326/0003-4819-145-8-200610170-00139
10.1186/1743-422X-6-224
10.1016/j.antiviral.2008.06.002
10.1186/1743-422X-6-67
10.1126/science.1154137
10.1038/nature08157
10.1128/jvi.64.3.1375-1377.1990
10.1016/0042-6822(81)90317-2
10.1128/jvi.62.8.2762-2772.1988
10.4049/jimmunol.166.12.7381
10.1016/j.vaccine.2004.02.021
10.3201/eid1303.061125
10.1001/jama.292.11.1333
10.1016/S0264-410X(03)00040-9
10.1038/74704
10.1016/j.imlet.2004.03.003
10.1073/pnas.0308352100
10.1128/jvi.67.5.2552-2558.1993
10.1016/0264-410X(95)92777-Y
10.1002/jmv.1890430412
10.3201/eid1506.090072
10.1128/JVI.79.11.6644-6654.2005
10.1016/S0140-6736(99)11433-8
10.1089/027245700750053913
10.1172/JCI41902
10.1016/j.vaccine.2007.07.027
10.1038/nsmb.1566
10.1016/j.vaccine.2008.12.034
10.4049/jimmunol.172.9.5598
10.1128/JVI.72.11.8682-8689.1998
10.1016/j.virol.2008.11.035
10.1038/13484
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jul 13, 2010
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jul 13, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0911806107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA

MEDLINE
AIDS and Cancer Research Abstracts
CrossRef
MEDLINE - Academic
Virology and AIDS Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Public Health
EISSN 1091-6490
EndPage 12663
ExternalDocumentID PMC2906546
2083898531
20615945
10_1073_pnas_0911806107
107_28_12658
20724310
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c531t-3fea758f24e1bb1b465ceae87b3379a2aa430373f695dba705b5272d6cfca0543
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:11:37 EDT 2025
Fri Jul 11 13:55:34 EDT 2025
Fri Jul 11 02:14:47 EDT 2025
Fri Jul 11 06:24:19 EDT 2025
Sat Aug 23 13:43:07 EDT 2025
Mon Jul 21 06:03:25 EDT 2025
Thu Apr 24 22:55:32 EDT 2025
Tue Jul 01 00:46:56 EDT 2025
Wed Nov 11 00:30:48 EST 2020
Thu May 29 08:40:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c531t-3fea758f24e1bb1b465ceae87b3379a2aa430373f695dba705b5272d6cfca0543
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Edited* by Francis V. Chisari, The Scripps Research Institute, La Jolla, CA, and approved June 1, 2010 (received for review October 12, 2009)
Author contributions: A.G.G., O.A.O., J.L.M., W.C., A.P., Y.K., and M.M. designed research; A.G.G., T.C.C., M.R., W.C., S.M.S., M.L.G., M.K., and M.H. performed research; A.G.G., O.A.O., P.W.H., P.-Y.C.-H., A.P., K.S., M.H., Y.K., and M.M. analyzed data; and M.M. wrote the paper.
This Direct Submission article had a prearranged editor.
1A.G.G. and O.A.O. contributed equally to this work.
OpenAccessLink http://doi.org/10.1073/pnas.0911806107
PMID 20615945
PQID 613364059
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_613364059
crossref_primary_10_1073_pnas_0911806107
proquest_miscellaneous_754537239
proquest_miscellaneous_733978795
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2906546
jstor_primary_20724310
proquest_miscellaneous_1825415830
pubmed_primary_20615945
pnas_primary_107_28_12658
crossref_citationtrail_10_1073_pnas_0911806107
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-07-13
PublicationDateYYYYMMDD 2010-07-13
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Treanor JJ (e_1_3_4_16_2) 1990; 64
Furuse Y (e_1_3_4_32_2) 2009; 6
Wang C (e_1_3_4_4_2) 1993; 67
Liu W (e_1_3_4_14_2) 2004; 93
Lamb RA (e_1_3_4_30_2) 1981; 112
Thompson WW (e_1_3_4_1_2) 2004; 292
Mozdzanowska K (e_1_3_4_23_2) 2003; 21
Neumann G (e_1_3_4_34_2) 2009; 459
Fu TM (e_1_3_4_18_2) 2009; 27
Meyer H (e_1_3_4_25_2) 1992; 73
Huber VC (e_1_3_4_28_2) 2001; 166
Gubareva LV (e_1_3_4_3_2) 2000; 355
Fu TM (e_1_3_4_15_2) 2009; 385
Sui J (e_1_3_4_8_2) 2009; 16
Jameson J (e_1_3_4_33_2) 1998; 72
Corti D (e_1_3_4_9_2) 2010; 120
Nakamura M (e_1_3_4_27_2) 2000; 19
Fan J (e_1_3_4_19_2) 2004; 22
Throsby M (e_1_3_4_7_2) 2008; 3
Clynes RA (e_1_3_4_29_2) 2000; 6
Zebedee SL (e_1_3_4_24_2) 1988; 62
Okuno Y (e_1_3_4_6_2) 1993; 67
Wang R (e_1_3_4_13_2) 2008; 80
Jegerlehner A (e_1_3_4_26_2) 2004; 172
Neirynck S (e_1_3_4_21_2) 1999; 5
Feng J (e_1_3_4_35_2) 2006; 3
Belser JA (e_1_3_4_12_2) 2009; 15
Liu W (e_1_3_4_36_2) 2003; 35
Navarro D (e_1_3_4_38_2) 1997; 52
Beerli RR (e_1_3_4_17_2) 2009; 6
Zharikova D (e_1_3_4_31_2) 2005; 79
Luke TC (e_1_3_4_5_2) 2006; 145
Russell CA (e_1_3_4_10_2) 2008; 320
Slepushkin VA (e_1_3_4_20_2) 1995; 13
Ayata M (e_1_3_4_37_2) 1994; 43
Carrat F (e_1_3_4_2_2) 2007; 25
Fouchier RA (e_1_3_4_11_2) 2004; 101
Tompkins SM (e_1_3_4_22_2) 2007; 13
15367555 - JAMA. 2004 Sep 15;292(11):1333-40
17719149 - Vaccine. 2007 Sep 28;25(39-40):6852-62
16940336 - Ann Intern Med. 2006 Oct 17;145(8):599-609
15158608 - Immunol Lett. 2004 May 15;93(2-3):131-6
19146898 - Vaccine. 2009 Feb 25;27(9):1440-7
19523282 - Emerg Infect Dis. 2009 Jun;15(6):859-65
7525866 - J Med Virol. 1994 Aug;43(4):386-92
10711940 - Lancet. 2000 Mar 4;355(9206):827-35
7688826 - J Virol. 1993 Sep;67(9):5585-94
19525932 - Nature. 2009 Jun 18;459(7249):931-9
12744898 - Vaccine. 2003 Jun 2;21(19-20):2616-26
19234466 - Nat Struct Mol Biol. 2009 Mar;16(3):265-73
12628550 - FEMS Immunol Med Microbiol. 2003 Mar 20;35(2):141-6
2455818 - J Virol. 1988 Aug;62(8):2762-72
10502819 - Nat Med. 1999 Oct;5(10):1157-63
15297047 - Vaccine. 2004 Aug 13;22(23-24):2993-3003
7257188 - Virology. 1981 Jul 30;112(2):729-37
19476650 - Virol J. 2009;6:67
20389023 - J Clin Invest. 2010 May;120(5):1663-73
10742152 - Nat Med. 2000 Apr;6(4):443-6
1383409 - J Gen Virol. 1992 Sep;73 ( Pt 9):2375-83
8578816 - Vaccine. 1995;13(15):1399-402
17150104 - Virol J. 2006;3:102
11390489 - J Immunol. 2001 Jun 15;166(12):7381-8
20025741 - Virol J. 2009;6:224
14745020 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1356-61
9260696 - J Med Virol. 1997 Aug;52(4):451-9
18598723 - Antiviral Res. 2008 Nov;80(2):168-77
19079604 - PLoS One. 2008;3(12):e3942
11152394 - Hybridoma. 2000 Dec;19(6):427-34
19070878 - Virology. 2009 Mar 1;385(1):218-26
17552096 - Emerg Infect Dis. 2007 Mar;13(3):426-35
15100303 - J Immunol. 2004 May 1;172(9):5598-605
7682624 - J Virol. 1993 May;67(5):2552-8
15890902 - J Virol. 2005 Jun;79(11):6644-54
18420927 - Science. 2008 Apr 18;320(5874):340-6
2304147 - J Virol. 1990 Mar;64(3):1375-7
9765409 - J Virol. 1998 Nov;72(11):8682-9
References_xml – volume: 3
  start-page: 102
  year: 2006
  ident: e_1_3_4_35_2
  article-title: Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2
  publication-title: Virol J
  doi: 10.1186/1743-422X-3-102
– volume: 52
  start-page: 451
  year: 1997
  ident: e_1_3_4_38_2
  article-title: Humoral immune response to functional regions of human cytomegalovirus glycoprotein B
  publication-title: J Med Virol
  doi: 10.1002/(SICI)1096-9071(199708)52:4<451::AID-JMV18>3.0.CO;2-J
– volume: 35
  start-page: 141
  year: 2003
  ident: e_1_3_4_36_2
  article-title: N-terminus of M2 protein could induce antibodies with inhibitory activity against influenza virus replication
  publication-title: FEMS Immunol Med Microbiol
  doi: 10.1016/S0928-8244(03)00009-9
– volume: 73
  start-page: 2375
  year: 1992
  ident: e_1_3_4_25_2
  article-title: Glycoprotein gp116 of human cytomegalovirus contains epitopes for strain-common and strain-specific antibodies
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-73-9-2375
– volume: 67
  start-page: 5585
  year: 1993
  ident: e_1_3_4_4_2
  article-title: Ion channel activity of influenza A virus M2 protein: Characterization of the amantadine block
  publication-title: J Virol
  doi: 10.1128/jvi.67.9.5585-5594.1993
– volume: 3
  start-page: e3942
  year: 2008
  ident: e_1_3_4_7_2
  article-title: Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003942
– volume: 145
  start-page: 599
  year: 2006
  ident: e_1_3_4_5_2
  article-title: Meta-analysis: Convalescent blood products for Spanish influenza pneumonia: A future H5N1 treatment?
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-145-8-200610170-00139
– volume: 6
  start-page: 224
  year: 2009
  ident: e_1_3_4_17_2
  article-title: Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against influenza A M2 protein
  publication-title: Virol J
  doi: 10.1186/1743-422X-6-224
– volume: 80
  start-page: 168
  year: 2008
  ident: e_1_3_4_13_2
  article-title: Therapeutic potential of a fully human monoclonal antibody against influenza A virus M2 protein
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2008.06.002
– volume: 6
  start-page: 67
  year: 2009
  ident: e_1_3_4_32_2
  article-title: Evolution of the M gene of the influenza A virus in different host species: Large-scale sequence analysis
  publication-title: Virol J
  doi: 10.1186/1743-422X-6-67
– volume: 320
  start-page: 340
  year: 2008
  ident: e_1_3_4_10_2
  article-title: The global circulation of seasonal influenza A (H3N2) viruses
  publication-title: Science
  doi: 10.1126/science.1154137
– volume: 459
  start-page: 931
  year: 2009
  ident: e_1_3_4_34_2
  article-title: Emergence and pandemic potential of swine-origin H1N1 influenza virus
  publication-title: Nature
  doi: 10.1038/nature08157
– volume: 64
  start-page: 1375
  year: 1990
  ident: e_1_3_4_16_2
  article-title: Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice
  publication-title: J Virol
  doi: 10.1128/jvi.64.3.1375-1377.1990
– volume: 112
  start-page: 729
  year: 1981
  ident: e_1_3_4_30_2
  article-title: Identification of a second protein (M2) encoded by RNA segment 7 of influenza virus
  publication-title: Virology
  doi: 10.1016/0042-6822(81)90317-2
– volume: 62
  start-page: 2762
  year: 1988
  ident: e_1_3_4_24_2
  article-title: Influenza A virus M2 protein: Monoclonal antibody restriction of virus growth and detection of M2 in virions
  publication-title: J Virol
  doi: 10.1128/jvi.62.8.2762-2772.1988
– volume: 166
  start-page: 7381
  year: 2001
  ident: e_1_3_4_28_2
  article-title: Fc receptor-mediated phagocytosis makes a significant contribution to clearance of influenza virus infections
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.12.7381
– volume: 22
  start-page: 2993
  year: 2004
  ident: e_1_3_4_19_2
  article-title: Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2004.02.021
– volume: 13
  start-page: 426
  year: 2007
  ident: e_1_3_4_22_2
  article-title: Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1303.061125
– volume: 292
  start-page: 1333
  year: 2004
  ident: e_1_3_4_1_2
  article-title: Influenza-associated hospitalizations in the United States
  publication-title: JAMA
  doi: 10.1001/jama.292.11.1333
– volume: 21
  start-page: 2616
  year: 2003
  ident: e_1_3_4_23_2
  article-title: Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(03)00040-9
– volume: 6
  start-page: 443
  year: 2000
  ident: e_1_3_4_29_2
  article-title: Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets
  publication-title: Nat Med
  doi: 10.1038/74704
– volume: 93
  start-page: 131
  year: 2004
  ident: e_1_3_4_14_2
  article-title: Monoclonal antibodies recognizing EVETPIRN epitope of influenza A virus M2 protein could protect mice from lethal influenza A virus challenge
  publication-title: Immunol Lett
  doi: 10.1016/j.imlet.2004.03.003
– volume: 101
  start-page: 1356
  year: 2004
  ident: e_1_3_4_11_2
  article-title: Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0308352100
– volume: 67
  start-page: 2552
  year: 1993
  ident: e_1_3_4_6_2
  article-title: A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains
  publication-title: J Virol
  doi: 10.1128/jvi.67.5.2552-2558.1993
– volume: 13
  start-page: 1399
  year: 1995
  ident: e_1_3_4_20_2
  article-title: Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein
  publication-title: Vaccine
  doi: 10.1016/0264-410X(95)92777-Y
– volume: 43
  start-page: 386
  year: 1994
  ident: e_1_3_4_37_2
  article-title: Different antibody response to a neutralizing epitope of human cytomegalovirus glycoprotein B among seropositive individuals
  publication-title: J Med Virol
  doi: 10.1002/jmv.1890430412
– volume: 15
  start-page: 859
  year: 2009
  ident: e_1_3_4_12_2
  article-title: Past, present, and possible future human infection with influenza virus A subtype H7
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1506.090072
– volume: 79
  start-page: 6644
  year: 2005
  ident: e_1_3_4_31_2
  article-title: Influenza type A virus escape mutants emerge in vivo in the presence of antibodies to the ectodomain of matrix protein 2
  publication-title: J Virol
  doi: 10.1128/JVI.79.11.6644-6654.2005
– volume: 355
  start-page: 827
  year: 2000
  ident: e_1_3_4_3_2
  article-title: Influenza virus neuraminidase inhibitors
  publication-title: Lancet
  doi: 10.1016/S0140-6736(99)11433-8
– volume: 19
  start-page: 427
  year: 2000
  ident: e_1_3_4_27_2
  article-title: Virolysis and in vitro neutralization of HIV-1 by humanized monoclonal antibody hNM-01
  publication-title: Hybridoma
  doi: 10.1089/027245700750053913
– volume: 120
  start-page: 1663
  year: 2010
  ident: e_1_3_4_9_2
  article-title: Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine
  publication-title: J Clin Invest
  doi: 10.1172/JCI41902
– volume: 25
  start-page: 6852
  year: 2007
  ident: e_1_3_4_2_2
  article-title: Influenza vaccine: The challenge of antigenic drift
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2007.07.027
– volume: 16
  start-page: 265
  year: 2009
  ident: e_1_3_4_8_2
  article-title: Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1566
– volume: 27
  start-page: 1440
  year: 2009
  ident: e_1_3_4_18_2
  article-title: Comparative immunogenicity evaluations of influenza A virus M2 peptide as recombinant virus like particle or conjugate vaccines in mice and monkeys
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2008.12.034
– volume: 172
  start-page: 5598
  year: 2004
  ident: e_1_3_4_26_2
  article-title: Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.9.5598
– volume: 72
  start-page: 8682
  year: 1998
  ident: e_1_3_4_33_2
  article-title: Human cytotoxic T-lymphocyte repertoire to influenza A viruses
  publication-title: J Virol
  doi: 10.1128/JVI.72.11.8682-8689.1998
– volume: 385
  start-page: 218
  year: 2009
  ident: e_1_3_4_15_2
  article-title: Characterizations of four monoclonal antibodies against M2 protein ectodomain of influenza A virus
  publication-title: Virology
  doi: 10.1016/j.virol.2008.11.035
– volume: 5
  start-page: 1157
  year: 1999
  ident: e_1_3_4_21_2
  article-title: A universal influenza A vaccine based on the extracellular domain of the M2 protein
  publication-title: Nat Med
  doi: 10.1038/13484
– reference: 15890902 - J Virol. 2005 Jun;79(11):6644-54
– reference: 19070878 - Virology. 2009 Mar 1;385(1):218-26
– reference: 14745020 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1356-61
– reference: 19525932 - Nature. 2009 Jun 18;459(7249):931-9
– reference: 15158608 - Immunol Lett. 2004 May 15;93(2-3):131-6
– reference: 10742152 - Nat Med. 2000 Apr;6(4):443-6
– reference: 19476650 - Virol J. 2009;6:67
– reference: 11152394 - Hybridoma. 2000 Dec;19(6):427-34
– reference: 10502819 - Nat Med. 1999 Oct;5(10):1157-63
– reference: 12628550 - FEMS Immunol Med Microbiol. 2003 Mar 20;35(2):141-6
– reference: 18598723 - Antiviral Res. 2008 Nov;80(2):168-77
– reference: 15100303 - J Immunol. 2004 May 1;172(9):5598-605
– reference: 8578816 - Vaccine. 1995;13(15):1399-402
– reference: 2304147 - J Virol. 1990 Mar;64(3):1375-7
– reference: 11390489 - J Immunol. 2001 Jun 15;166(12):7381-8
– reference: 7688826 - J Virol. 1993 Sep;67(9):5585-94
– reference: 17719149 - Vaccine. 2007 Sep 28;25(39-40):6852-62
– reference: 7682624 - J Virol. 1993 May;67(5):2552-8
– reference: 19523282 - Emerg Infect Dis. 2009 Jun;15(6):859-65
– reference: 7525866 - J Med Virol. 1994 Aug;43(4):386-92
– reference: 19146898 - Vaccine. 2009 Feb 25;27(9):1440-7
– reference: 20025741 - Virol J. 2009;6:224
– reference: 9260696 - J Med Virol. 1997 Aug;52(4):451-9
– reference: 19234466 - Nat Struct Mol Biol. 2009 Mar;16(3):265-73
– reference: 1383409 - J Gen Virol. 1992 Sep;73 ( Pt 9):2375-83
– reference: 15297047 - Vaccine. 2004 Aug 13;22(23-24):2993-3003
– reference: 19079604 - PLoS One. 2008;3(12):e3942
– reference: 16940336 - Ann Intern Med. 2006 Oct 17;145(8):599-609
– reference: 17552096 - Emerg Infect Dis. 2007 Mar;13(3):426-35
– reference: 7257188 - Virology. 1981 Jul 30;112(2):729-37
– reference: 12744898 - Vaccine. 2003 Jun 2;21(19-20):2616-26
– reference: 10711940 - Lancet. 2000 Mar 4;355(9206):827-35
– reference: 15367555 - JAMA. 2004 Sep 15;292(11):1333-40
– reference: 20389023 - J Clin Invest. 2010 May;120(5):1663-73
– reference: 9765409 - J Virol. 1998 Nov;72(11):8682-9
– reference: 17150104 - Virol J. 2006;3:102
– reference: 18420927 - Science. 2008 Apr 18;320(5874):340-6
– reference: 2455818 - J Virol. 1988 Aug;62(8):2762-72
SSID ssj0009580
Score 2.3673491
Snippet Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection....
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12658
SubjectTerms Animals
Antibodies
Antibodies - genetics
Antibodies - immunology
Antibodies, Monoclonal - genetics
Antibodies, Monoclonal - immunology
Antigens
antiviral agents
Antiviral drugs
B-lymphocytes
Biological Sciences
Birds
Cells
Cross Reactions - genetics
Cross Reactions - immunology
Disease Outbreaks
Disease resistance
Epitopes
Epitopes - genetics
Epitopes - immunology
genome
Genomes
Genomics
H1N1 subtype influenza A virus
Health risks
Humans
Immunological memory
Infection
Infections
influenza
Influenza A
Influenza A virus
Influenza A virus - genetics
Influenza A virus - immunology
Influenza A Virus, H1N1 Subtype - genetics
Influenza A Virus, H1N1 Subtype - immunology
Influenza A Virus, H5N1 Subtype - genetics
Influenza A Virus, H5N1 Subtype - immunology
Influenza in Birds - genetics
Influenza in Birds - immunology
Influenza Vaccines - genetics
Influenza Vaccines - immunology
Influenza, Human - genetics
Influenza, Human - immunology
Influenza, Human - prevention & control
Lymphocytes B
manufacturing
Memory cells
Mice
Molecular Sequence Data
Monoclonal antibodies
Orthomyxoviridae
pandemic
Pandemics
Proteins
Public health
swine
Swine flu
Vaccination
Vaccines
Viruses
Title Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses
URI https://www.jstor.org/stable/20724310
http://www.pnas.org/content/107/28/12658.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20615945
https://www.proquest.com/docview/613364059
https://www.proquest.com/docview/1825415830
https://www.proquest.com/docview/733978795
https://www.proquest.com/docview/754537239
https://pubmed.ncbi.nlm.nih.gov/PMC2906546
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWCQDZCReBiqUpLYjpPHCm1UaGon1Ep7s-zUUStVadW0IPZf8B9zjp2kHR2_XqI2cS5R7sv57nL-DqF3hqKN5irzE8ZTn8pM-ZIr6esgzvJA01yqqkB2GA8m9PMNu-l0fuxULW03qpfdHlxX8j9ahX2gV7NK9h802wiFHfAb9Atb0DBs_0rHNgMPz2aulqYa0CxEMUTBsuvoF0xZkF7BS7vS4GHKjWlfbgiKF99NublJyIK_afsNzZysabdYFvbP3DYwuZVgPb7O19vS1Rs6X_a6mfvKutJgWKcW--1CFWc9yq7fvR62bY8_rU36WjZFlWXb5Wu0cGmh0UK3uVbXEdlWNLXJ3S8Qh8_kt711Ry6LYT7Ac98uQnWGF_wWP6a2dWhPH9hXW2vbJNfB0i0st8Y3jGJLA__LtAB2zPQyLmTZA5lhAk6ME7NHwD0cicvJ1ZUYX9yMH6CHEUQeVa3oYJfHObEEF-7WarYoTj7cEb_n6NhaV0OgC4MOBTN3a3J3nJzxE_TYRSe4b6F2jDq6eIqOaw3ic0dS_v4ZWlfYwy32sMUelrjFHnbYwwZ7eF5iiz3cYA9X2MMzJ2uKa-zhBnu4jx32nqPJ5cX448B3_Tv8DCz7xie5lhCO5hHVoVKhojHLtNQJV4TwVEZSUnCgOMnjlE2V5AFTLOLRFKxEJiGUICfoCC6rXyLMI5UomC8goNd0Gso0CzShMXgNAZNMcw_16octMkdub3qsLERVZMGJMA9etNrx0Hlzwsryutw_9KTSXjMuCngEfnfgIa8a2p7PRZSICoYeOqt1LJzFKAW4ziSGCCn10NvmKJhz841OFnq5LUVoMjYhSwhIx_eM4QSCiISn7DdDIDAigF640guLq527hyAmpXAy30NcM8AQzu8fKeazinjetIZgND79852doUftW_4KHW3WW_0avPeNelO9Tz8Bx_zzuA
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+antibodies+reveal+a+protective+epitope+that+is+highly+conserved+among+human+and+nonhuman+influenza+A+viruses&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Grandea%2C+Andres+G&rft.au=Olsen%2C+Ole+A&rft.au=Cox%2C+Thomas+C&rft.au=Renshaw%2C+Mark&rft.date=2010-07-13&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=107&rft.issue=28&rft.spage=12658&rft_id=info:doi/10.1073%2Fpnas.0911806107&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F28.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F28.cover.gif