Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses
Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccin...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 28; pp. 12658 - 12663 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
13.07.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG⁺ memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. |
---|---|
AbstractList | Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG⁺ memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG + memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG super(+) memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG + memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG(+) memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains.Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG(+) memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG+ memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. [PUBLICATION ABSTRACT] |
Author | Hammond, Philip W. Grandea, Andres G. Mitcham, Jennifer L. Pekosz, Andrew Chisari, Francis V. Cox, Thomas C. Kiso, Maki Olsen, Ole A. Kawaoka, Yoshihiro Renshaw, Mark Hatta, Masato Chan-Hui, Po-Ying Stewart, Shaun M. Cieplak, Witold Grantham, Michael L. Moyle, Matthew Shinya, Kyoko |
Author_xml | – sequence: 1 givenname: Andres G. surname: Grandea fullname: Grandea, Andres G. – sequence: 2 givenname: Ole A. surname: Olsen fullname: Olsen, Ole A. – sequence: 3 givenname: Thomas C. surname: Cox fullname: Cox, Thomas C. – sequence: 4 givenname: Mark surname: Renshaw fullname: Renshaw, Mark – sequence: 5 givenname: Philip W. surname: Hammond fullname: Hammond, Philip W. – sequence: 6 givenname: Po-Ying surname: Chan-Hui fullname: Chan-Hui, Po-Ying – sequence: 7 givenname: Jennifer L. surname: Mitcham fullname: Mitcham, Jennifer L. – sequence: 8 givenname: Witold surname: Cieplak fullname: Cieplak, Witold – sequence: 9 givenname: Shaun M. surname: Stewart fullname: Stewart, Shaun M. – sequence: 10 givenname: Michael L. surname: Grantham fullname: Grantham, Michael L. – sequence: 11 givenname: Andrew surname: Pekosz fullname: Pekosz, Andrew – sequence: 12 givenname: Maki surname: Kiso fullname: Kiso, Maki – sequence: 13 givenname: Kyoko surname: Shinya fullname: Shinya, Kyoko – sequence: 14 givenname: Masato surname: Hatta fullname: Hatta, Masato – sequence: 15 givenname: Yoshihiro surname: Kawaoka fullname: Kawaoka, Yoshihiro – sequence: 16 givenname: Matthew surname: Moyle fullname: Moyle, Matthew – sequence: 17 givenname: Francis V. surname: Chisari fullname: Chisari, Francis V. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20615945$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLcLZ04giwtctvVnnFwqVRVQpEpc4Gw5yWTjVdYOthOp_Hoc7dKWHsrJsueZd-Ydzxk6cd4BQm8pOadE8YvRmXhOKkpLUuSHF2hF821TiIqcoBUhTG1KwcQpOotxRwipZEleoVOWaVkJuULhZtobh41LtvathYgDzGAGbPAYfIIm2RkwjDb5EXDqTcI24t5u--EON95FCDO02Oy92-L-qNXi3ObhYl03TOB-G3yFZxumCPE1etmZIcKb47lGP798_nF9s7n9_vXb9dXtppGcpg3vwChZdkwArWtai0I2YKBUNeeqMswYwQlXvCsq2dZGEVlLplhbNF1jiBR8jS4PuuNU76FtwKVgBj0GuzfhTntj9b8RZ3u99bNmFSmkKLLAx6NA8L8miEnvbWxgGIwDP0WtpJBcMV79n-S8UqWqZCY_PUvSkklBZZmtrdGHJ-jOT8HlkemCcl4IIpfK7x-bvHf394czcHEAmuBjDNDdI5ToZYf0skP6YYdyhnyS0dhkkvXLlOzwTB4-trIEHqoozUpNWZFNrdG7A7KLyYdHzSomOCX8D7-54L8 |
CitedBy_id | crossref_primary_10_1128_mbio_00175_24 crossref_primary_10_1016_j_jmb_2017_05_015 crossref_primary_10_1146_annurev_immunol_032712_095916 crossref_primary_10_1007_s12250_012_3241_1 crossref_primary_10_1042_CS20160259 crossref_primary_10_4161_hv_8_1_18859 crossref_primary_10_1038_nm_3350 crossref_primary_10_1093_infdis_jiab540 crossref_primary_10_1016_j_isci_2022_105736 crossref_primary_10_1016_j_it_2011_08_007 crossref_primary_10_3390_vaccines8030434 crossref_primary_10_1093_infdis_jit811 crossref_primary_10_1371_journal_pone_0077084 crossref_primary_10_1038_s41577_019_0143_6 crossref_primary_10_1586_erv_13_35 crossref_primary_10_1371_journal_pone_0156418 crossref_primary_10_1080_22221751_2018_1558962 crossref_primary_10_1016_j_coviro_2022_101207 crossref_primary_10_1371_journal_pone_0048484 crossref_primary_10_1155_2013_316926 crossref_primary_10_1093_ofid_ofx023 crossref_primary_10_1111_xen_12091 crossref_primary_10_1093_aje_kwy145 crossref_primary_10_1038_srep20137 crossref_primary_10_3349_ymj_2013_54_2_271 crossref_primary_10_1016_j_virol_2016_08_010 crossref_primary_10_1093_infdis_jiv181 crossref_primary_10_3390_vaccines12040389 crossref_primary_10_1007_s10337_011_1988_4 crossref_primary_10_1016_j_vaccine_2011_07_139 crossref_primary_10_1016_j_coviro_2017_03_002 crossref_primary_10_2217_imt_11_167 crossref_primary_10_1371_journal_pone_0023791 crossref_primary_10_3390_vaccines7030117 crossref_primary_10_1371_journal_pone_0036032 crossref_primary_10_1021_acs_biochem_6b00727 crossref_primary_10_4161_mabs_36292 crossref_primary_10_1128_JVI_01027_20 crossref_primary_10_1016_j_jviromet_2011_10_016 crossref_primary_10_1371_journal_pone_0059674 crossref_primary_10_1371_journal_ppat_1006064 crossref_primary_10_1089_vim_2014_0061 crossref_primary_10_1099_jgv_0_000518 crossref_primary_10_1016_j_antiviral_2014_08_016 crossref_primary_10_1016_j_antiviral_2019_104562 crossref_primary_10_1016_j_jconrel_2020_11_057 crossref_primary_10_1016_j_vaccine_2011_09_110 crossref_primary_10_1155_2018_9747549 crossref_primary_10_1016_j_micinf_2020_06_003 crossref_primary_10_1146_annurev_biophys_070816_033712 crossref_primary_10_1016_j_jviromet_2013_08_038 crossref_primary_10_1111_imr_12395 crossref_primary_10_1007_s12250_014_3428_8 crossref_primary_10_1093_infdis_jiu539 crossref_primary_10_1371_journal_pone_0028309 crossref_primary_10_1016_j_vaccine_2016_08_057 crossref_primary_10_3389_fimmu_2021_790918 crossref_primary_10_1016_j_vaccine_2014_04_062 crossref_primary_10_1186_s12929_019_0572_3 crossref_primary_10_2174_1389201020666190809112704 crossref_primary_10_1128_mbio_01273_23 crossref_primary_10_1016_j_virusres_2013_05_011 crossref_primary_10_1128_CVI_00339_13 crossref_primary_10_1093_infdis_jiu543 crossref_primary_10_1371_journal_pone_0126650 crossref_primary_10_1128_mBio_00745_21 crossref_primary_10_1128_JVI_05193_11 crossref_primary_10_3390_v13061037 crossref_primary_10_1016_j_virusres_2012_05_002 crossref_primary_10_3390_v5112796 crossref_primary_10_1016_j_jaci_2017_07_001 crossref_primary_10_1128_JVI_02576_14 crossref_primary_10_1016_j_jviromet_2012_03_016 crossref_primary_10_2217_fvl_10_80 crossref_primary_10_1080_14728214_2018_1504020 crossref_primary_10_1016_j_molimm_2019_08_015 crossref_primary_10_3390_v5010352 crossref_primary_10_4161_hv_21025 crossref_primary_10_1101_cshperspect_a038448 crossref_primary_10_1007_s12275_015_4642_2 crossref_primary_10_2217_nnm_12_62 crossref_primary_10_1128_CMR_05012_11 crossref_primary_10_1080_14760584_2017_1240041 crossref_primary_10_1172_JCI148763 crossref_primary_10_3390_vaccines3010105 crossref_primary_10_1080_21645515_2015_1079676 crossref_primary_10_1586_14760584_2015_1068125 crossref_primary_10_1128_JVI_02105_15 crossref_primary_10_3389_fmicb_2017_00872 crossref_primary_10_3389_fmicb_2020_00135 crossref_primary_10_3390_v13060965 crossref_primary_10_1111_irv_12446 crossref_primary_10_1038_s41541_017_0019_3 crossref_primary_10_61186_jpsad_1_1_1 crossref_primary_10_1038_s41598_019_41023_5 crossref_primary_10_1016_j_vaccine_2022_10_003 crossref_primary_10_1111_irv_12045 crossref_primary_10_4049_jimmunol_1801054 crossref_primary_10_3390_vaccines9070739 |
Cites_doi | 10.1186/1743-422X-3-102 10.1002/(SICI)1096-9071(199708)52:4<451::AID-JMV18>3.0.CO;2-J 10.1016/S0928-8244(03)00009-9 10.1099/0022-1317-73-9-2375 10.1128/jvi.67.9.5585-5594.1993 10.1371/journal.pone.0003942 10.7326/0003-4819-145-8-200610170-00139 10.1186/1743-422X-6-224 10.1016/j.antiviral.2008.06.002 10.1186/1743-422X-6-67 10.1126/science.1154137 10.1038/nature08157 10.1128/jvi.64.3.1375-1377.1990 10.1016/0042-6822(81)90317-2 10.1128/jvi.62.8.2762-2772.1988 10.4049/jimmunol.166.12.7381 10.1016/j.vaccine.2004.02.021 10.3201/eid1303.061125 10.1001/jama.292.11.1333 10.1016/S0264-410X(03)00040-9 10.1038/74704 10.1016/j.imlet.2004.03.003 10.1073/pnas.0308352100 10.1128/jvi.67.5.2552-2558.1993 10.1016/0264-410X(95)92777-Y 10.1002/jmv.1890430412 10.3201/eid1506.090072 10.1128/JVI.79.11.6644-6654.2005 10.1016/S0140-6736(99)11433-8 10.1089/027245700750053913 10.1172/JCI41902 10.1016/j.vaccine.2007.07.027 10.1038/nsmb.1566 10.1016/j.vaccine.2008.12.034 10.4049/jimmunol.172.9.5598 10.1128/JVI.72.11.8682-8689.1998 10.1016/j.virol.2008.11.035 10.1038/13484 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jul 13, 2010 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jul 13, 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0911806107 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE AIDS and Cancer Research Abstracts CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Public Health |
EISSN | 1091-6490 |
EndPage | 12663 |
ExternalDocumentID | PMC2906546 2083898531 20615945 10_1073_pnas_0911806107 107_28_12658 20724310 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c531t-3fea758f24e1bb1b465ceae87b3379a2aa430373f695dba705b5272d6cfca0543 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:11:37 EDT 2025 Fri Jul 11 13:55:34 EDT 2025 Fri Jul 11 02:14:47 EDT 2025 Fri Jul 11 06:24:19 EDT 2025 Sat Aug 23 13:43:07 EDT 2025 Mon Jul 21 06:03:25 EDT 2025 Thu Apr 24 22:55:32 EDT 2025 Tue Jul 01 00:46:56 EDT 2025 Wed Nov 11 00:30:48 EST 2020 Thu May 29 08:40:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c531t-3fea758f24e1bb1b465ceae87b3379a2aa430373f695dba705b5272d6cfca0543 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Edited* by Francis V. Chisari, The Scripps Research Institute, La Jolla, CA, and approved June 1, 2010 (received for review October 12, 2009) Author contributions: A.G.G., O.A.O., J.L.M., W.C., A.P., Y.K., and M.M. designed research; A.G.G., T.C.C., M.R., W.C., S.M.S., M.L.G., M.K., and M.H. performed research; A.G.G., O.A.O., P.W.H., P.-Y.C.-H., A.P., K.S., M.H., Y.K., and M.M. analyzed data; and M.M. wrote the paper. This Direct Submission article had a prearranged editor. 1A.G.G. and O.A.O. contributed equally to this work. |
OpenAccessLink | http://doi.org/10.1073/pnas.0911806107 |
PMID | 20615945 |
PQID | 613364059 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_613364059 crossref_primary_10_1073_pnas_0911806107 proquest_miscellaneous_754537239 proquest_miscellaneous_733978795 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2906546 jstor_primary_20724310 proquest_miscellaneous_1825415830 pubmed_primary_20615945 pnas_primary_107_28_12658 crossref_citationtrail_10_1073_pnas_0911806107 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-07-13 |
PublicationDateYYYYMMDD | 2010-07-13 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Treanor JJ (e_1_3_4_16_2) 1990; 64 Furuse Y (e_1_3_4_32_2) 2009; 6 Wang C (e_1_3_4_4_2) 1993; 67 Liu W (e_1_3_4_14_2) 2004; 93 Lamb RA (e_1_3_4_30_2) 1981; 112 Thompson WW (e_1_3_4_1_2) 2004; 292 Mozdzanowska K (e_1_3_4_23_2) 2003; 21 Neumann G (e_1_3_4_34_2) 2009; 459 Fu TM (e_1_3_4_18_2) 2009; 27 Meyer H (e_1_3_4_25_2) 1992; 73 Huber VC (e_1_3_4_28_2) 2001; 166 Gubareva LV (e_1_3_4_3_2) 2000; 355 Fu TM (e_1_3_4_15_2) 2009; 385 Sui J (e_1_3_4_8_2) 2009; 16 Jameson J (e_1_3_4_33_2) 1998; 72 Corti D (e_1_3_4_9_2) 2010; 120 Nakamura M (e_1_3_4_27_2) 2000; 19 Fan J (e_1_3_4_19_2) 2004; 22 Throsby M (e_1_3_4_7_2) 2008; 3 Clynes RA (e_1_3_4_29_2) 2000; 6 Zebedee SL (e_1_3_4_24_2) 1988; 62 Okuno Y (e_1_3_4_6_2) 1993; 67 Wang R (e_1_3_4_13_2) 2008; 80 Jegerlehner A (e_1_3_4_26_2) 2004; 172 Neirynck S (e_1_3_4_21_2) 1999; 5 Feng J (e_1_3_4_35_2) 2006; 3 Belser JA (e_1_3_4_12_2) 2009; 15 Liu W (e_1_3_4_36_2) 2003; 35 Navarro D (e_1_3_4_38_2) 1997; 52 Beerli RR (e_1_3_4_17_2) 2009; 6 Zharikova D (e_1_3_4_31_2) 2005; 79 Luke TC (e_1_3_4_5_2) 2006; 145 Russell CA (e_1_3_4_10_2) 2008; 320 Slepushkin VA (e_1_3_4_20_2) 1995; 13 Ayata M (e_1_3_4_37_2) 1994; 43 Carrat F (e_1_3_4_2_2) 2007; 25 Fouchier RA (e_1_3_4_11_2) 2004; 101 Tompkins SM (e_1_3_4_22_2) 2007; 13 15367555 - JAMA. 2004 Sep 15;292(11):1333-40 17719149 - Vaccine. 2007 Sep 28;25(39-40):6852-62 16940336 - Ann Intern Med. 2006 Oct 17;145(8):599-609 15158608 - Immunol Lett. 2004 May 15;93(2-3):131-6 19146898 - Vaccine. 2009 Feb 25;27(9):1440-7 19523282 - Emerg Infect Dis. 2009 Jun;15(6):859-65 7525866 - J Med Virol. 1994 Aug;43(4):386-92 10711940 - Lancet. 2000 Mar 4;355(9206):827-35 7688826 - J Virol. 1993 Sep;67(9):5585-94 19525932 - Nature. 2009 Jun 18;459(7249):931-9 12744898 - Vaccine. 2003 Jun 2;21(19-20):2616-26 19234466 - Nat Struct Mol Biol. 2009 Mar;16(3):265-73 12628550 - FEMS Immunol Med Microbiol. 2003 Mar 20;35(2):141-6 2455818 - J Virol. 1988 Aug;62(8):2762-72 10502819 - Nat Med. 1999 Oct;5(10):1157-63 15297047 - Vaccine. 2004 Aug 13;22(23-24):2993-3003 7257188 - Virology. 1981 Jul 30;112(2):729-37 19476650 - Virol J. 2009;6:67 20389023 - J Clin Invest. 2010 May;120(5):1663-73 10742152 - Nat Med. 2000 Apr;6(4):443-6 1383409 - J Gen Virol. 1992 Sep;73 ( Pt 9):2375-83 8578816 - Vaccine. 1995;13(15):1399-402 17150104 - Virol J. 2006;3:102 11390489 - J Immunol. 2001 Jun 15;166(12):7381-8 20025741 - Virol J. 2009;6:224 14745020 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1356-61 9260696 - J Med Virol. 1997 Aug;52(4):451-9 18598723 - Antiviral Res. 2008 Nov;80(2):168-77 19079604 - PLoS One. 2008;3(12):e3942 11152394 - Hybridoma. 2000 Dec;19(6):427-34 19070878 - Virology. 2009 Mar 1;385(1):218-26 17552096 - Emerg Infect Dis. 2007 Mar;13(3):426-35 15100303 - J Immunol. 2004 May 1;172(9):5598-605 7682624 - J Virol. 1993 May;67(5):2552-8 15890902 - J Virol. 2005 Jun;79(11):6644-54 18420927 - Science. 2008 Apr 18;320(5874):340-6 2304147 - J Virol. 1990 Mar;64(3):1375-7 9765409 - J Virol. 1998 Nov;72(11):8682-9 |
References_xml | – volume: 3 start-page: 102 year: 2006 ident: e_1_3_4_35_2 article-title: Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2 publication-title: Virol J doi: 10.1186/1743-422X-3-102 – volume: 52 start-page: 451 year: 1997 ident: e_1_3_4_38_2 article-title: Humoral immune response to functional regions of human cytomegalovirus glycoprotein B publication-title: J Med Virol doi: 10.1002/(SICI)1096-9071(199708)52:4<451::AID-JMV18>3.0.CO;2-J – volume: 35 start-page: 141 year: 2003 ident: e_1_3_4_36_2 article-title: N-terminus of M2 protein could induce antibodies with inhibitory activity against influenza virus replication publication-title: FEMS Immunol Med Microbiol doi: 10.1016/S0928-8244(03)00009-9 – volume: 73 start-page: 2375 year: 1992 ident: e_1_3_4_25_2 article-title: Glycoprotein gp116 of human cytomegalovirus contains epitopes for strain-common and strain-specific antibodies publication-title: J Gen Virol doi: 10.1099/0022-1317-73-9-2375 – volume: 67 start-page: 5585 year: 1993 ident: e_1_3_4_4_2 article-title: Ion channel activity of influenza A virus M2 protein: Characterization of the amantadine block publication-title: J Virol doi: 10.1128/jvi.67.9.5585-5594.1993 – volume: 3 start-page: e3942 year: 2008 ident: e_1_3_4_7_2 article-title: Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0003942 – volume: 145 start-page: 599 year: 2006 ident: e_1_3_4_5_2 article-title: Meta-analysis: Convalescent blood products for Spanish influenza pneumonia: A future H5N1 treatment? publication-title: Ann Intern Med doi: 10.7326/0003-4819-145-8-200610170-00139 – volume: 6 start-page: 224 year: 2009 ident: e_1_3_4_17_2 article-title: Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against influenza A M2 protein publication-title: Virol J doi: 10.1186/1743-422X-6-224 – volume: 80 start-page: 168 year: 2008 ident: e_1_3_4_13_2 article-title: Therapeutic potential of a fully human monoclonal antibody against influenza A virus M2 protein publication-title: Antiviral Res doi: 10.1016/j.antiviral.2008.06.002 – volume: 6 start-page: 67 year: 2009 ident: e_1_3_4_32_2 article-title: Evolution of the M gene of the influenza A virus in different host species: Large-scale sequence analysis publication-title: Virol J doi: 10.1186/1743-422X-6-67 – volume: 320 start-page: 340 year: 2008 ident: e_1_3_4_10_2 article-title: The global circulation of seasonal influenza A (H3N2) viruses publication-title: Science doi: 10.1126/science.1154137 – volume: 459 start-page: 931 year: 2009 ident: e_1_3_4_34_2 article-title: Emergence and pandemic potential of swine-origin H1N1 influenza virus publication-title: Nature doi: 10.1038/nature08157 – volume: 64 start-page: 1375 year: 1990 ident: e_1_3_4_16_2 article-title: Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice publication-title: J Virol doi: 10.1128/jvi.64.3.1375-1377.1990 – volume: 112 start-page: 729 year: 1981 ident: e_1_3_4_30_2 article-title: Identification of a second protein (M2) encoded by RNA segment 7 of influenza virus publication-title: Virology doi: 10.1016/0042-6822(81)90317-2 – volume: 62 start-page: 2762 year: 1988 ident: e_1_3_4_24_2 article-title: Influenza A virus M2 protein: Monoclonal antibody restriction of virus growth and detection of M2 in virions publication-title: J Virol doi: 10.1128/jvi.62.8.2762-2772.1988 – volume: 166 start-page: 7381 year: 2001 ident: e_1_3_4_28_2 article-title: Fc receptor-mediated phagocytosis makes a significant contribution to clearance of influenza virus infections publication-title: J Immunol doi: 10.4049/jimmunol.166.12.7381 – volume: 22 start-page: 2993 year: 2004 ident: e_1_3_4_19_2 article-title: Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys publication-title: Vaccine doi: 10.1016/j.vaccine.2004.02.021 – volume: 13 start-page: 426 year: 2007 ident: e_1_3_4_22_2 article-title: Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1 publication-title: Emerg Infect Dis doi: 10.3201/eid1303.061125 – volume: 292 start-page: 1333 year: 2004 ident: e_1_3_4_1_2 article-title: Influenza-associated hospitalizations in the United States publication-title: JAMA doi: 10.1001/jama.292.11.1333 – volume: 21 start-page: 2616 year: 2003 ident: e_1_3_4_23_2 article-title: Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2 publication-title: Vaccine doi: 10.1016/S0264-410X(03)00040-9 – volume: 6 start-page: 443 year: 2000 ident: e_1_3_4_29_2 article-title: Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets publication-title: Nat Med doi: 10.1038/74704 – volume: 93 start-page: 131 year: 2004 ident: e_1_3_4_14_2 article-title: Monoclonal antibodies recognizing EVETPIRN epitope of influenza A virus M2 protein could protect mice from lethal influenza A virus challenge publication-title: Immunol Lett doi: 10.1016/j.imlet.2004.03.003 – volume: 101 start-page: 1356 year: 2004 ident: e_1_3_4_11_2 article-title: Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0308352100 – volume: 67 start-page: 2552 year: 1993 ident: e_1_3_4_6_2 article-title: A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains publication-title: J Virol doi: 10.1128/jvi.67.5.2552-2558.1993 – volume: 13 start-page: 1399 year: 1995 ident: e_1_3_4_20_2 article-title: Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein publication-title: Vaccine doi: 10.1016/0264-410X(95)92777-Y – volume: 43 start-page: 386 year: 1994 ident: e_1_3_4_37_2 article-title: Different antibody response to a neutralizing epitope of human cytomegalovirus glycoprotein B among seropositive individuals publication-title: J Med Virol doi: 10.1002/jmv.1890430412 – volume: 15 start-page: 859 year: 2009 ident: e_1_3_4_12_2 article-title: Past, present, and possible future human infection with influenza virus A subtype H7 publication-title: Emerg Infect Dis doi: 10.3201/eid1506.090072 – volume: 79 start-page: 6644 year: 2005 ident: e_1_3_4_31_2 article-title: Influenza type A virus escape mutants emerge in vivo in the presence of antibodies to the ectodomain of matrix protein 2 publication-title: J Virol doi: 10.1128/JVI.79.11.6644-6654.2005 – volume: 355 start-page: 827 year: 2000 ident: e_1_3_4_3_2 article-title: Influenza virus neuraminidase inhibitors publication-title: Lancet doi: 10.1016/S0140-6736(99)11433-8 – volume: 19 start-page: 427 year: 2000 ident: e_1_3_4_27_2 article-title: Virolysis and in vitro neutralization of HIV-1 by humanized monoclonal antibody hNM-01 publication-title: Hybridoma doi: 10.1089/027245700750053913 – volume: 120 start-page: 1663 year: 2010 ident: e_1_3_4_9_2 article-title: Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine publication-title: J Clin Invest doi: 10.1172/JCI41902 – volume: 25 start-page: 6852 year: 2007 ident: e_1_3_4_2_2 article-title: Influenza vaccine: The challenge of antigenic drift publication-title: Vaccine doi: 10.1016/j.vaccine.2007.07.027 – volume: 16 start-page: 265 year: 2009 ident: e_1_3_4_8_2 article-title: Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1566 – volume: 27 start-page: 1440 year: 2009 ident: e_1_3_4_18_2 article-title: Comparative immunogenicity evaluations of influenza A virus M2 peptide as recombinant virus like particle or conjugate vaccines in mice and monkeys publication-title: Vaccine doi: 10.1016/j.vaccine.2008.12.034 – volume: 172 start-page: 5598 year: 2004 ident: e_1_3_4_26_2 article-title: Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity publication-title: J Immunol doi: 10.4049/jimmunol.172.9.5598 – volume: 72 start-page: 8682 year: 1998 ident: e_1_3_4_33_2 article-title: Human cytotoxic T-lymphocyte repertoire to influenza A viruses publication-title: J Virol doi: 10.1128/JVI.72.11.8682-8689.1998 – volume: 385 start-page: 218 year: 2009 ident: e_1_3_4_15_2 article-title: Characterizations of four monoclonal antibodies against M2 protein ectodomain of influenza A virus publication-title: Virology doi: 10.1016/j.virol.2008.11.035 – volume: 5 start-page: 1157 year: 1999 ident: e_1_3_4_21_2 article-title: A universal influenza A vaccine based on the extracellular domain of the M2 protein publication-title: Nat Med doi: 10.1038/13484 – reference: 15890902 - J Virol. 2005 Jun;79(11):6644-54 – reference: 19070878 - Virology. 2009 Mar 1;385(1):218-26 – reference: 14745020 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1356-61 – reference: 19525932 - Nature. 2009 Jun 18;459(7249):931-9 – reference: 15158608 - Immunol Lett. 2004 May 15;93(2-3):131-6 – reference: 10742152 - Nat Med. 2000 Apr;6(4):443-6 – reference: 19476650 - Virol J. 2009;6:67 – reference: 11152394 - Hybridoma. 2000 Dec;19(6):427-34 – reference: 10502819 - Nat Med. 1999 Oct;5(10):1157-63 – reference: 12628550 - FEMS Immunol Med Microbiol. 2003 Mar 20;35(2):141-6 – reference: 18598723 - Antiviral Res. 2008 Nov;80(2):168-77 – reference: 15100303 - J Immunol. 2004 May 1;172(9):5598-605 – reference: 8578816 - Vaccine. 1995;13(15):1399-402 – reference: 2304147 - J Virol. 1990 Mar;64(3):1375-7 – reference: 11390489 - J Immunol. 2001 Jun 15;166(12):7381-8 – reference: 7688826 - J Virol. 1993 Sep;67(9):5585-94 – reference: 17719149 - Vaccine. 2007 Sep 28;25(39-40):6852-62 – reference: 7682624 - J Virol. 1993 May;67(5):2552-8 – reference: 19523282 - Emerg Infect Dis. 2009 Jun;15(6):859-65 – reference: 7525866 - J Med Virol. 1994 Aug;43(4):386-92 – reference: 19146898 - Vaccine. 2009 Feb 25;27(9):1440-7 – reference: 20025741 - Virol J. 2009;6:224 – reference: 9260696 - J Med Virol. 1997 Aug;52(4):451-9 – reference: 19234466 - Nat Struct Mol Biol. 2009 Mar;16(3):265-73 – reference: 1383409 - J Gen Virol. 1992 Sep;73 ( Pt 9):2375-83 – reference: 15297047 - Vaccine. 2004 Aug 13;22(23-24):2993-3003 – reference: 19079604 - PLoS One. 2008;3(12):e3942 – reference: 16940336 - Ann Intern Med. 2006 Oct 17;145(8):599-609 – reference: 17552096 - Emerg Infect Dis. 2007 Mar;13(3):426-35 – reference: 7257188 - Virology. 1981 Jul 30;112(2):729-37 – reference: 12744898 - Vaccine. 2003 Jun 2;21(19-20):2616-26 – reference: 10711940 - Lancet. 2000 Mar 4;355(9206):827-35 – reference: 15367555 - JAMA. 2004 Sep 15;292(11):1333-40 – reference: 20389023 - J Clin Invest. 2010 May;120(5):1663-73 – reference: 9765409 - J Virol. 1998 Nov;72(11):8682-9 – reference: 17150104 - Virol J. 2006;3:102 – reference: 18420927 - Science. 2008 Apr 18;320(5874):340-6 – reference: 2455818 - J Virol. 1988 Aug;62(8):2762-72 |
SSID | ssj0009580 |
Score | 2.3673491 |
Snippet | Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection.... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12658 |
SubjectTerms | Animals Antibodies Antibodies - genetics Antibodies - immunology Antibodies, Monoclonal - genetics Antibodies, Monoclonal - immunology Antigens antiviral agents Antiviral drugs B-lymphocytes Biological Sciences Birds Cells Cross Reactions - genetics Cross Reactions - immunology Disease Outbreaks Disease resistance Epitopes Epitopes - genetics Epitopes - immunology genome Genomes Genomics H1N1 subtype influenza A virus Health risks Humans Immunological memory Infection Infections influenza Influenza A Influenza A virus Influenza A virus - genetics Influenza A virus - immunology Influenza A Virus, H1N1 Subtype - genetics Influenza A Virus, H1N1 Subtype - immunology Influenza A Virus, H5N1 Subtype - genetics Influenza A Virus, H5N1 Subtype - immunology Influenza in Birds - genetics Influenza in Birds - immunology Influenza Vaccines - genetics Influenza Vaccines - immunology Influenza, Human - genetics Influenza, Human - immunology Influenza, Human - prevention & control Lymphocytes B manufacturing Memory cells Mice Molecular Sequence Data Monoclonal antibodies Orthomyxoviridae pandemic Pandemics Proteins Public health swine Swine flu Vaccination Vaccines Viruses |
Title | Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses |
URI | https://www.jstor.org/stable/20724310 http://www.pnas.org/content/107/28/12658.abstract https://www.ncbi.nlm.nih.gov/pubmed/20615945 https://www.proquest.com/docview/613364059 https://www.proquest.com/docview/1825415830 https://www.proquest.com/docview/733978795 https://www.proquest.com/docview/754537239 https://pubmed.ncbi.nlm.nih.gov/PMC2906546 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWCQDZCReBiqUpLYjpPHCm1UaGon1Ep7s-zUUStVadW0IPZf8B9zjp2kHR2_XqI2cS5R7sv57nL-DqF3hqKN5irzE8ZTn8pM-ZIr6esgzvJA01yqqkB2GA8m9PMNu-l0fuxULW03qpfdHlxX8j9ahX2gV7NK9h802wiFHfAb9Atb0DBs_0rHNgMPz2aulqYa0CxEMUTBsuvoF0xZkF7BS7vS4GHKjWlfbgiKF99NublJyIK_afsNzZysabdYFvbP3DYwuZVgPb7O19vS1Rs6X_a6mfvKutJgWKcW--1CFWc9yq7fvR62bY8_rU36WjZFlWXb5Wu0cGmh0UK3uVbXEdlWNLXJ3S8Qh8_kt711Ry6LYT7Ac98uQnWGF_wWP6a2dWhPH9hXW2vbJNfB0i0st8Y3jGJLA__LtAB2zPQyLmTZA5lhAk6ME7NHwD0cicvJ1ZUYX9yMH6CHEUQeVa3oYJfHObEEF-7WarYoTj7cEb_n6NhaV0OgC4MOBTN3a3J3nJzxE_TYRSe4b6F2jDq6eIqOaw3ic0dS_v4ZWlfYwy32sMUelrjFHnbYwwZ7eF5iiz3cYA9X2MMzJ2uKa-zhBnu4jx32nqPJ5cX448B3_Tv8DCz7xie5lhCO5hHVoVKhojHLtNQJV4TwVEZSUnCgOMnjlE2V5AFTLOLRFKxEJiGUICfoCC6rXyLMI5UomC8goNd0Gso0CzShMXgNAZNMcw_16octMkdub3qsLERVZMGJMA9etNrx0Hlzwsryutw_9KTSXjMuCngEfnfgIa8a2p7PRZSICoYeOqt1LJzFKAW4ziSGCCn10NvmKJhz841OFnq5LUVoMjYhSwhIx_eM4QSCiISn7DdDIDAigF640guLq527hyAmpXAy30NcM8AQzu8fKeazinjetIZgND79852doUftW_4KHW3WW_0avPeNelO9Tz8Bx_zzuA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+antibodies+reveal+a+protective+epitope+that+is+highly+conserved+among+human+and+nonhuman+influenza+A+viruses&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Grandea%2C+Andres+G&rft.au=Olsen%2C+Ole+A&rft.au=Cox%2C+Thomas+C&rft.au=Renshaw%2C+Mark&rft.date=2010-07-13&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=107&rft.issue=28&rft.spage=12658&rft_id=info:doi/10.1073%2Fpnas.0911806107&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F28.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F28.cover.gif |