Zwitterionic materials for antifouling membrane surface construction

[Display omitted] Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly util...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 40; pp. 142 - 152
Main Authors He, Mingrui, Gao, Kang, Zhou, Linjie, Jiao, Zhiwei, Wu, Mengyuan, Cao, Jialin, You, Xinda, Cai, Ziyi, Su, Yanlei, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes.
AbstractList Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Statement of Significance Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes.
[Display omitted] Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes.
UNLABELLEDMembrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes.STATEMENT OF SIGNIFICANCEMembrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes.
Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes.
Author Jiao, Zhiwei
Cai, Ziyi
You, Xinda
Gao, Kang
Cao, Jialin
Wu, Mengyuan
Jiang, Zhongyi
Su, Yanlei
He, Mingrui
Zhou, Linjie
Author_xml – sequence: 1
  givenname: Mingrui
  surname: He
  fullname: He, Mingrui
– sequence: 2
  givenname: Kang
  surname: Gao
  fullname: Gao, Kang
– sequence: 3
  givenname: Linjie
  surname: Zhou
  fullname: Zhou, Linjie
– sequence: 4
  givenname: Zhiwei
  surname: Jiao
  fullname: Jiao, Zhiwei
– sequence: 5
  givenname: Mengyuan
  surname: Wu
  fullname: Wu, Mengyuan
– sequence: 6
  givenname: Jialin
  surname: Cao
  fullname: Cao, Jialin
– sequence: 7
  givenname: Xinda
  surname: You
  fullname: You, Xinda
– sequence: 8
  givenname: Ziyi
  surname: Cai
  fullname: Cai, Ziyi
– sequence: 9
  givenname: Yanlei
  surname: Su
  fullname: Su, Yanlei
– sequence: 10
  givenname: Zhongyi
  surname: Jiang
  fullname: Jiang, Zhongyi
  email: zhyjiang@tju.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27025359$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9LHTEUxUNRqs_2G4jM0s285s8kudNFQbS1guDGbroJmcydksfMxCYZxW9vHs-6cFGFC7khv3O5OWdF9uYwIyHHjK4ZZerLZm1d7nxY83JbU1EKPpBDBhpqLRXslV43vNZUsQOySmlDC8E4fCQHXFMuhWwPycXvB58zRh9m76rJbls7pmoIsbJz9kNYRj__qSacumhnrNISB-uwcmFOOS4uF-Unsj8UEX5-Po_Irx_fb89_1tc3l1fnZ9e1k4LlWijqeN9LocABaCaFQ-CihQ6aTmjNQTCFEuzQ951kSnFoJXdcNlDeeiWOyOlu7l0MfxdM2Uw-ORzHslhYkmEgpJLli-IdKGPQtlq170CppsCANwU9eUaXbsLe3EU_2fho_vlZgGYHuBhSiji8IIyabWxmY3axmW1shopSUGRfX8mcz3ZrbY7Wj2-Jv-3EWKy_9xhNch5nh72P6LLpg___gCdKTbOG
CitedBy_id crossref_primary_10_1021_acs_iecr_7b02378
crossref_primary_10_1007_s11431_022_2048_1
crossref_primary_10_1016_j_jmgm_2022_108187
crossref_primary_10_1016_j_memsci_2022_120348
crossref_primary_10_3390_ma14205972
crossref_primary_10_1021_acsami_1c20674
crossref_primary_10_1016_j_memsci_2022_120592
crossref_primary_10_3390_pr12122681
crossref_primary_10_1021_acs_langmuir_4c03275
crossref_primary_10_3390_nano9050706
crossref_primary_10_1021_acs_nanolett_0c01969
crossref_primary_10_3390_coatings10070653
crossref_primary_10_1016_j_memsci_2020_117980
crossref_primary_10_3390_molecules27217394
crossref_primary_10_1039_D2BM00190J
crossref_primary_10_1016_j_biomaterials_2023_122464
crossref_primary_10_1021_acs_jpclett_4c03235
crossref_primary_10_3390_membranes11030187
crossref_primary_10_1016_j_cis_2023_102834
crossref_primary_10_1016_j_giant_2022_100094
crossref_primary_10_1016_j_memsci_2024_123174
crossref_primary_10_1021_acsami_9b09773
crossref_primary_10_1016_j_psep_2020_11_033
crossref_primary_10_1007_s12598_021_01807_z
crossref_primary_10_1016_j_memsci_2024_123293
crossref_primary_10_1021_acs_biomac_0c01525
crossref_primary_10_1016_j_jfca_2024_107178
crossref_primary_10_1021_acs_langmuir_0c01816
crossref_primary_10_1021_acs_nanolett_4c05480
crossref_primary_10_1021_acsami_4c01401
crossref_primary_10_1016_j_cej_2020_124393
crossref_primary_10_1016_j_seppur_2022_122743
crossref_primary_10_1021_acsami_0c13386
crossref_primary_10_1039_D2TB01704K
crossref_primary_10_1021_acs_est_4c05791
crossref_primary_10_1016_j_envres_2025_121305
crossref_primary_10_1021_acs_chemmater_1c01957
crossref_primary_10_1002_admi_202201081
crossref_primary_10_1016_j_apsusc_2021_151551
crossref_primary_10_1557_s43578_021_00146_0
crossref_primary_10_1002_term_3263
crossref_primary_10_1021_acs_langmuir_1c01477
crossref_primary_10_1016_j_porgcoat_2023_108060
crossref_primary_10_1016_j_sna_2022_113912
crossref_primary_10_1016_j_talanta_2024_125623
crossref_primary_10_7554_eLife_75798
crossref_primary_10_5301_ijao_5000559
crossref_primary_10_1016_j_jece_2024_112105
crossref_primary_10_1021_acsami_9b22748
crossref_primary_10_1021_acs_chemmater_3c01919
crossref_primary_10_1039_D1CS00658D
crossref_primary_10_1021_acs_analchem_1c04153
crossref_primary_10_1016_j_cis_2022_102637
crossref_primary_10_1016_j_memsci_2019_117276
crossref_primary_10_1021_acsapm_3c01217
crossref_primary_10_3390_nano12183166
crossref_primary_10_1002_adsr_202400056
crossref_primary_10_2139_ssrn_4180267
crossref_primary_10_1016_j_jcis_2023_07_185
crossref_primary_10_1021_acs_biomac_0c00456
crossref_primary_10_1016_j_polymer_2024_127817
crossref_primary_10_1016_j_colsurfa_2021_126369
crossref_primary_10_1016_j_eurpolymj_2022_111612
crossref_primary_10_1007_s10311_018_0717_8
crossref_primary_10_1016_j_memsci_2021_120148
crossref_primary_10_1016_j_seppur_2020_117738
crossref_primary_10_1021_acsapm_3c02234
crossref_primary_10_1002_pol_20210543
crossref_primary_10_1016_j_memsci_2019_03_094
crossref_primary_10_1021_acs_analchem_1c00089
crossref_primary_10_1016_j_memsci_2022_120498
crossref_primary_10_1016_j_memsci_2021_120038
crossref_primary_10_1016_j_memsci_2023_121641
crossref_primary_10_1016_j_scitotenv_2020_141777
crossref_primary_10_1021_acs_langmuir_6b03988
crossref_primary_10_1016_j_seppur_2019_116082
crossref_primary_10_1016_j_seppur_2020_117605
crossref_primary_10_1515_ntrev_2022_0552
crossref_primary_10_1016_j_seppur_2024_127801
crossref_primary_10_1016_j_talanta_2021_122360
crossref_primary_10_1016_j_memsci_2025_124011
crossref_primary_10_1021_acs_langmuir_4c04179
crossref_primary_10_1002_bkcs_11980
crossref_primary_10_1016_j_memsci_2025_124014
crossref_primary_10_1007_s13233_019_7163_8
crossref_primary_10_1002_app_47099
crossref_primary_10_1016_j_cej_2025_160964
crossref_primary_10_1038_s41545_022_00168_z
crossref_primary_10_1016_j_jscs_2019_05_011
crossref_primary_10_1021_acs_langmuir_9b00218
crossref_primary_10_1016_j_memsci_2021_120050
crossref_primary_10_1016_j_seppur_2024_131173
crossref_primary_10_1021_acsabm_0c00600
crossref_primary_10_1016_j_cej_2021_131803
crossref_primary_10_1021_acssuschemeng_2c03933
crossref_primary_10_1038_srep36327
crossref_primary_10_1016_j_memsci_2023_121622
crossref_primary_10_1016_j_memsci_2022_121205
crossref_primary_10_1016_j_memsci_2023_121745
crossref_primary_10_3390_polym12061303
crossref_primary_10_1039_D3SM00062A
crossref_primary_10_1002_jmr_2944
crossref_primary_10_1016_j_memsci_2021_120060
crossref_primary_10_1002_admi_202400954
crossref_primary_10_1039_D1TB02337C
crossref_primary_10_1016_j_memsci_2020_118929
crossref_primary_10_1016_j_mencom_2021_03_032
crossref_primary_10_1016_j_jwpe_2024_104792
crossref_primary_10_1016_j_memsci_2020_118421
crossref_primary_10_1111_wej_12811
crossref_primary_10_1021_acsapm_3c00407
crossref_primary_10_1016_j_seppur_2021_119310
crossref_primary_10_6023_A21120593
crossref_primary_10_1021_acsami_9b03259
crossref_primary_10_1111_1541_4337_13209
crossref_primary_10_1016_j_memsci_2022_121276
crossref_primary_10_1002_smtd_202301072
crossref_primary_10_1039_D0TB00540A
crossref_primary_10_1002_app_55820
crossref_primary_10_1016_j_snb_2024_136411
crossref_primary_10_1016_j_memsci_2020_118676
crossref_primary_10_1021_acs_macromol_8b01792
crossref_primary_10_1016_j_memsci_2020_118793
crossref_primary_10_1016_j_memsci_2017_09_016
crossref_primary_10_1016_j_memsci_2017_09_017
crossref_primary_10_1021_jacs_3c00953
crossref_primary_10_1016_j_memsci_2023_121569
crossref_primary_10_1016_j_memsci_2022_121144
crossref_primary_10_3762_bjnano_15_111
crossref_primary_10_1016_j_memsci_2023_121572
crossref_primary_10_1039_D2CC05102H
crossref_primary_10_1016_j_bea_2022_100026
crossref_primary_10_1039_D5RA00643K
crossref_primary_10_3390_membranes9080096
crossref_primary_10_1016_j_memsci_2019_117217
crossref_primary_10_1039_C9BM00469F
crossref_primary_10_1016_j_cis_2020_102280
crossref_primary_10_3390_polym12081716
crossref_primary_10_1016_j_jcis_2018_01_106
crossref_primary_10_1021_acsomega_1c04919
crossref_primary_10_1016_j_memsci_2018_01_039
crossref_primary_10_1021_acsapm_3c01964
crossref_primary_10_1016_j_colsurfb_2022_112372
crossref_primary_10_1016_j_seppur_2024_127438
crossref_primary_10_1002_app_52336
crossref_primary_10_2166_aqua_2024_244
crossref_primary_10_1021_acsapm_2c00302
crossref_primary_10_1016_j_cej_2020_125663
crossref_primary_10_1021_acs_langmuir_8b02184
crossref_primary_10_1016_j_cherd_2020_02_005
crossref_primary_10_1016_j_reactfunctpolym_2019_104330
crossref_primary_10_1016_j_mser_2019_06_002
crossref_primary_10_1016_j_giant_2022_100116
crossref_primary_10_1016_j_porgcoat_2020_105666
crossref_primary_10_1007_s11998_024_01023_1
crossref_primary_10_1021_acs_jpcc_7b06088
crossref_primary_10_3390_mi9050243
crossref_primary_10_1038_s41598_022_09046_7
crossref_primary_10_1016_j_memsci_2022_121253
crossref_primary_10_1016_j_petrol_2022_110643
crossref_primary_10_1016_j_actbio_2020_11_031
crossref_primary_10_1002_app_51256
crossref_primary_10_1016_j_mtcomm_2025_111944
crossref_primary_10_1016_j_seppur_2024_129848
crossref_primary_10_3390_ma13040943
crossref_primary_10_1016_j_memsci_2020_118568
crossref_primary_10_1016_j_colsurfa_2022_129752
crossref_primary_10_1016_j_memsci_2017_09_044
crossref_primary_10_1038_s41529_023_00362_5
crossref_primary_10_1016_j_jtice_2018_03_047
crossref_primary_10_1016_j_cej_2021_130085
crossref_primary_10_1021_acs_langmuir_2c02750
crossref_primary_10_1007_s11705_023_2340_x
crossref_primary_10_1016_j_memsci_2022_121083
crossref_primary_10_1021_acsabm_0c00666
crossref_primary_10_3390_biom13081165
crossref_primary_10_1016_j_memsci_2020_118753
crossref_primary_10_1016_j_desal_2022_116131
crossref_primary_10_1021_acsanm_4c04167
crossref_primary_10_1021_acsmacrolett_2c00665
crossref_primary_10_1016_j_csbj_2020_07_015
crossref_primary_10_1016_j_memsci_2018_02_063
crossref_primary_10_1002_smll_202308091
crossref_primary_10_1016_j_msec_2019_03_098
crossref_primary_10_1021_acsami_4c01045
crossref_primary_10_1002_jbm_a_37630
crossref_primary_10_1021_acs_biomac_0c00497
crossref_primary_10_1016_j_envint_2019_104970
crossref_primary_10_1016_j_seppur_2018_05_004
crossref_primary_10_1016_j_cej_2023_142457
crossref_primary_10_1016_j_cherd_2022_07_032
crossref_primary_10_1088_1748_605X_acb394
crossref_primary_10_1016_j_porgcoat_2024_108578
crossref_primary_10_1039_D2TB00429A
crossref_primary_10_1016_j_isci_2021_102369
crossref_primary_10_1002_jsde_12542
crossref_primary_10_1016_j_eurpolymj_2018_06_025
crossref_primary_10_1016_j_seppur_2022_120887
crossref_primary_10_1016_j_memsci_2020_118515
crossref_primary_10_1016_j_memsci_2020_118757
crossref_primary_10_1039_D0TB01990A
crossref_primary_10_1016_j_seppur_2021_118371
crossref_primary_10_1021_acs_langmuir_0c00114
crossref_primary_10_1021_acs_langmuir_8b03231
crossref_primary_10_1016_j_memsci_2018_01_001
crossref_primary_10_1007_s11783_020_1355_5
crossref_primary_10_1016_j_jhazmat_2017_06_042
crossref_primary_10_1016_j_memsci_2024_122731
crossref_primary_10_1016_j_chemosphere_2024_141373
crossref_primary_10_1021_acsengineeringau_2c00008
crossref_primary_10_1021_acsabm_1c00564
crossref_primary_10_1016_j_jelechem_2023_117982
crossref_primary_10_1016_j_surfin_2024_105010
crossref_primary_10_1016_j_cesx_2021_100103
crossref_primary_10_1016_j_jcis_2021_09_175
crossref_primary_10_1039_C9SC06155J
crossref_primary_10_1016_j_desal_2019_01_009
crossref_primary_10_1021_acs_analchem_0c05234
crossref_primary_10_1371_journal_pone_0252467
crossref_primary_10_1016_j_seppur_2025_131963
crossref_primary_10_3390_nano13010064
crossref_primary_10_1016_j_memsci_2018_03_055
crossref_primary_10_1002_adhm_202202790
crossref_primary_10_1016_j_jwpe_2024_105495
crossref_primary_10_1016_j_cej_2023_147439
crossref_primary_10_1016_j_seppur_2021_118870
crossref_primary_10_1021_acsami_0c07111
crossref_primary_10_1016_j_desal_2019_114072
crossref_primary_10_1016_j_porgcoat_2023_107636
crossref_primary_10_1002_pol_20240720
crossref_primary_10_1016_j_actbio_2017_08_007
crossref_primary_10_3390_jfb13040216
crossref_primary_10_1021_acsomega_3c07660
crossref_primary_10_3390_polym15010184
crossref_primary_10_1002_app_52846
crossref_primary_10_1002_advs_201800711
crossref_primary_10_1002_pat_4433
crossref_primary_10_1016_j_bios_2021_113477
crossref_primary_10_1016_j_jmst_2020_07_028
crossref_primary_10_1016_j_desal_2020_114664
crossref_primary_10_1016_j_isci_2021_102964
crossref_primary_10_1016_j_seppur_2022_121091
crossref_primary_10_1039_D1TB02561A
crossref_primary_10_1016_j_memsci_2024_122672
crossref_primary_10_1021_acs_langmuir_4c04809
crossref_primary_10_1021_acsabm_2c00586
crossref_primary_10_1016_j_apsusc_2022_153652
crossref_primary_10_1002_adma_202309355
crossref_primary_10_1002_pat_6529
crossref_primary_10_1021_acsami_9b18928
crossref_primary_10_1002_jbm_b_34085
crossref_primary_10_1016_j_jtice_2024_105821
crossref_primary_10_1021_acsabm_4c01776
crossref_primary_10_1016_j_eng_2024_04_019
crossref_primary_10_1016_j_memsci_2023_122114
crossref_primary_10_1039_D4PY00234B
crossref_primary_10_1021_acs_analchem_2c04541
crossref_primary_10_1016_j_colsurfa_2020_124788
crossref_primary_10_1016_j_mtcomm_2019_100687
crossref_primary_10_1016_j_watres_2024_121263
crossref_primary_10_3390_membranes11110832
crossref_primary_10_1016_j_mtchem_2019_100227
crossref_primary_10_1021_acsbiomaterials_3c00425
crossref_primary_10_3390_microorganisms12040639
crossref_primary_10_1016_j_apsusc_2023_158376
crossref_primary_10_1016_j_cej_2021_129139
crossref_primary_10_1016_j_advmem_2022_100031
crossref_primary_10_1016_j_jece_2022_108396
crossref_primary_10_3390_polym11111782
crossref_primary_10_3389_fbioe_2024_1403654
crossref_primary_10_1016_j_memsci_2017_01_009
crossref_primary_10_1039_C9NR08186K
crossref_primary_10_1007_s10570_019_02681_w
crossref_primary_10_1016_j_apmt_2021_101192
crossref_primary_10_1016_j_matchemphys_2023_128208
crossref_primary_10_1016_j_cej_2024_152287
crossref_primary_10_1016_j_surfcoat_2023_129497
crossref_primary_10_1007_s11814_018_0153_2
crossref_primary_10_1039_C7TB01017F
crossref_primary_10_1039_D3PY01286G
crossref_primary_10_1016_j_desal_2020_114857
crossref_primary_10_1016_j_tifs_2024_104374
crossref_primary_10_1021_acsnano_4c16946
crossref_primary_10_1016_j_memsci_2020_118337
crossref_primary_10_1016_j_snb_2024_136964
crossref_primary_10_1016_j_foodchem_2022_134974
crossref_primary_10_1021_acs_langmuir_0c03128
crossref_primary_10_1016_j_memsci_2020_118233
crossref_primary_10_1021_acsapm_1c00779
crossref_primary_10_1002_adma_202414743
crossref_primary_10_1021_acs_langmuir_8b02320
crossref_primary_10_1016_j_colsurfb_2021_111718
crossref_primary_10_1021_acs_langmuir_4c03512
crossref_primary_10_1016_j_seppur_2021_118316
crossref_primary_10_1016_j_jcis_2023_10_138
crossref_primary_10_1021_acsabm_3c00833
crossref_primary_10_1016_j_actbio_2024_10_015
crossref_primary_10_1016_j_advmem_2022_100038
crossref_primary_10_1002_app_50587
crossref_primary_10_1016_j_apsusc_2021_148985
crossref_primary_10_1016_j_seppur_2024_129540
crossref_primary_10_1021_acs_langmuir_7b01437
crossref_primary_10_1016_j_desal_2024_117614
crossref_primary_10_1016_j_memsci_2022_120925
crossref_primary_10_1016_j_polymer_2022_125616
crossref_primary_10_1016_j_biomaterials_2024_122593
crossref_primary_10_1016_j_chemosphere_2023_138070
crossref_primary_10_1016_j_colsurfb_2023_113271
crossref_primary_10_3389_fchem_2019_00770
crossref_primary_10_1016_j_jece_2025_115308
crossref_primary_10_1002_app_47653
crossref_primary_10_1021_acs_est_4c04850
crossref_primary_10_1016_j_memsci_2023_122032
crossref_primary_10_1007_s42247_024_00859_y
crossref_primary_10_1002_admi_202400287
crossref_primary_10_1021_acsami_1c02789
crossref_primary_10_3390_ma16145149
crossref_primary_10_1039_C9EW01134J
crossref_primary_10_1002_marc_202300606
crossref_primary_10_1016_j_rineng_2024_102055
crossref_primary_10_1021_acs_est_5c00916
crossref_primary_10_1016_j_jddst_2022_103325
crossref_primary_10_1016_j_memsci_2020_118379
crossref_primary_10_1039_D1MA00058F
crossref_primary_10_1002_macp_201900429
crossref_primary_10_1016_j_eurpolymj_2020_109883
crossref_primary_10_1016_j_jconrel_2023_12_017
crossref_primary_10_1016_j_seppur_2024_126494
crossref_primary_10_1021_acs_langmuir_4c04859
crossref_primary_10_3390_membranes7010013
crossref_primary_10_3390_separations10030188
crossref_primary_10_3390_ijms21239087
crossref_primary_10_1016_j_surfin_2021_101505
crossref_primary_10_1016_j_carbpol_2020_115860
crossref_primary_10_1016_j_memsci_2021_119121
crossref_primary_10_1016_j_biomaterials_2025_123138
crossref_primary_10_1016_j_cis_2024_103359
crossref_primary_10_1021_acs_analchem_0c00738
crossref_primary_10_1016_j_memsci_2021_119126
crossref_primary_10_1016_j_cej_2020_128244
crossref_primary_10_1016_j_jenvman_2025_124094
crossref_primary_10_1039_D4TB00899E
crossref_primary_10_3390_molecules26227043
crossref_primary_10_1016_j_jece_2023_110285
crossref_primary_10_1021_acs_est_6b05992
crossref_primary_10_1063_1_5052455
crossref_primary_10_1016_j_cej_2024_154098
crossref_primary_10_3389_fbioe_2021_807357
crossref_primary_10_1016_j_apsusc_2017_05_063
crossref_primary_10_1016_j_ejpb_2024_114175
crossref_primary_10_1134_S1070363221070112
crossref_primary_10_3389_fbioe_2021_686192
crossref_primary_10_1016_j_apsusc_2022_155447
crossref_primary_10_1021_acsami_9b13862
crossref_primary_10_1039_D2NJ01800D
crossref_primary_10_1016_j_desal_2023_117118
crossref_primary_10_1021_acsami_1c22683
crossref_primary_10_1021_acsapm_3c03010
crossref_primary_10_1016_j_jece_2022_107935
crossref_primary_10_1016_j_apsusc_2019_144098
crossref_primary_10_1111_wej_12475
crossref_primary_10_1016_j_psep_2018_03_029
crossref_primary_10_1016_j_porgcoat_2023_107923
crossref_primary_10_1021_acs_iecr_7b05025
crossref_primary_10_1016_j_polymer_2020_122340
crossref_primary_10_1002_admi_201900706
crossref_primary_10_1016_j_algal_2022_102797
crossref_primary_10_1016_j_seppur_2024_131012
crossref_primary_10_1016_j_watres_2019_115181
crossref_primary_10_1021_acsami_9b15811
crossref_primary_10_1021_acsami_4c09978
crossref_primary_10_1021_acsami_1c14979
crossref_primary_10_1016_j_memsci_2017_10_042
crossref_primary_10_1021_acs_est_6b03795
crossref_primary_10_1016_j_bioactmat_2024_04_002
crossref_primary_10_1016_j_memsci_2025_123896
crossref_primary_10_1021_acsami_9b05901
crossref_primary_10_2139_ssrn_4062365
crossref_primary_10_2494_photopolymer_32_529
crossref_primary_10_3390_membranes12111063
crossref_primary_10_1038_s41598_017_07369_4
crossref_primary_10_1016_j_snb_2020_128253
crossref_primary_10_1016_j_memsci_2021_119274
crossref_primary_10_1016_j_addr_2021_113884
crossref_primary_10_1021_acs_langmuir_9b01876
crossref_primary_10_1021_acsmacrolett_8b00888
crossref_primary_10_1016_j_mtchem_2022_100779
crossref_primary_10_1021_acs_langmuir_3c02492
crossref_primary_10_3390_gels8010026
crossref_primary_10_1016_j_jscs_2021_101281
crossref_primary_10_1016_j_desal_2019_114169
crossref_primary_10_1016_j_memsci_2020_118069
crossref_primary_10_1016_j_memsci_2018_11_019
crossref_primary_10_1016_j_jmst_2022_06_005
crossref_primary_10_1007_s00289_018_2356_4
crossref_primary_10_1016_j_polymer_2024_127890
crossref_primary_10_3390_ma14030569
crossref_primary_10_1016_j_chphi_2020_100008
crossref_primary_10_1002_advs_202402935
crossref_primary_10_1021_acs_langmuir_8b03810
crossref_primary_10_1039_D0BM01967D
crossref_primary_10_1016_j_desal_2024_118413
crossref_primary_10_1016_j_coche_2018_01_002
crossref_primary_10_1021_acsbiomaterials_8b01239
crossref_primary_10_1021_acs_biomac_2c00803
crossref_primary_10_1002_admi_202300324
crossref_primary_10_1016_j_jconrel_2017_04_043
crossref_primary_10_1016_j_memsci_2024_123499
crossref_primary_10_1021_acsbiomaterials_1c00758
crossref_primary_10_1016_j_jiec_2018_12_049
crossref_primary_10_1021_acsami_3c08250
crossref_primary_10_3390_polym11061014
crossref_primary_10_1016_j_matchemphys_2022_126937
crossref_primary_10_1016_j_memsci_2024_123251
crossref_primary_10_1021_acsami_4c08599
crossref_primary_10_2139_ssrn_3962719
crossref_primary_10_1002_adhm_202301945
crossref_primary_10_1016_j_reactfunctpolym_2024_105843
crossref_primary_10_1016_j_rsurfi_2023_100159
crossref_primary_10_1016_j_cej_2024_148980
crossref_primary_10_1016_j_jiec_2021_01_034
crossref_primary_10_1039_D1TB01374B
crossref_primary_10_1515_corrrev_2024_0033
crossref_primary_10_1038_s41467_019_12100_0
crossref_primary_10_1016_j_desal_2023_117195
crossref_primary_10_3390_bios12020071
crossref_primary_10_1016_j_seppur_2020_116585
crossref_primary_10_1039_C9RA02773D
crossref_primary_10_1016_j_memsci_2022_120760
crossref_primary_10_1016_j_memsci_2017_06_091
crossref_primary_10_1016_j_seppur_2024_129257
crossref_primary_10_1016_j_memsci_2024_123166
crossref_primary_10_1016_j_memsci_2024_123042
crossref_primary_10_1016_j_foodres_2022_111543
crossref_primary_10_1002_marc_201900447
crossref_primary_10_1016_j_snb_2022_133166
crossref_primary_10_1016_j_memsci_2021_119227
crossref_primary_10_1039_D1EW00188D
crossref_primary_10_1016_j_dental_2019_06_004
crossref_primary_10_1016_j_seppur_2023_125709
crossref_primary_10_1016_j_seppur_2019_116015
crossref_primary_10_1021_acs_chemrev_9b00739
crossref_primary_10_1016_j_memsci_2017_12_076
crossref_primary_10_3390_antibiotics12020310
crossref_primary_10_1016_j_jiec_2018_05_032
crossref_primary_10_1021_acsbiomaterials_1c00852
crossref_primary_10_1021_acs_jafc_4c05156
crossref_primary_10_1016_j_jece_2023_110588
crossref_primary_10_1016_j_jwpe_2023_103751
crossref_primary_10_1016_j_memsci_2024_123148
crossref_primary_10_1021_acs_langmuir_4c04226
crossref_primary_10_1016_j_desal_2018_02_008
crossref_primary_10_1116_1_5090396
crossref_primary_10_1016_j_seppur_2024_130593
crossref_primary_10_1007_s10965_024_04112_2
Cites_doi 10.2166/ws.2015.055
10.1016/j.memsci.2012.02.020
10.1016/j.apsusc.2012.03.049
10.1163/156856202320813800
10.1021/acs.jpcc.5b01649
10.1016/j.memsci.2015.07.025
10.1016/S0001-8686(02)00083-0
10.1016/j.memsci.2009.05.041
10.1039/C5TA08024J
10.1016/j.memsci.2014.04.032
10.1016/j.memsci.2007.06.002
10.1016/j.polymer.2010.08.022
10.1016/j.biomaterials.2008.08.021
10.1016/j.memsci.2010.10.046
10.1016/j.desal.2014.01.007
10.1126/science.175.4023.720
10.1016/j.memsci.2007.09.059
10.1002/adma.200305830
10.1163/156856202320253910
10.1002/adma.200290020
10.1002/anie.201400546
10.1038/nature06599
10.1021/cr800208y
10.1002/adma.201104849
10.1126/science.1147241
10.1002/pola.1993.080310426
10.1016/j.memsci.2006.08.035
10.1016/j.biomaterials.2009.05.058
10.1016/j.seppur.2015.08.006
10.1002/adma.200901407
10.1016/j.memsci.2007.01.024
10.1021/nn4011494
10.1016/j.memsci.2015.07.046
10.1039/C5RA18640D
10.1016/S0927-7765(02)00160-1
10.1039/C5NJ02030A
10.1038/nrm1102
10.1021/la300394c
10.1016/S1369-7021(05)71079-8
10.1021/la504907m
10.1021/am200055k
10.1016/j.memsci.2009.04.044
10.1016/j.memsci.2009.01.002
10.1002/adma.201304386
10.1016/S1369-7021(10)70058-4
10.1021/bm1009365
10.1039/c3py00565h
10.1016/S0927-7765(03)00069-9
10.1016/j.memsci.2014.11.004
10.1016/j.colsurfb.2010.01.025
10.1016/j.memsci.2013.04.012
10.1002/adfm.201201386
10.1002/(SICI)1521-4095(199911)11:16<1365::AID-ADMA1365>3.0.CO;2-F
10.1021/cm1031392
10.1016/j.memsci.2005.02.025
10.1021/ma0479060
10.1021/acsnano.5b03791
10.1163/016942410X520835
10.1002/adma.201404059
10.1016/j.biomaterials.2008.09.057
10.1016/S0927-796X(02)00004-9
10.1016/j.desal.2012.11.038
10.1016/S0376-7388(97)00263-9
10.1016/S0142-9612(00)00400-2
10.1016/0021-9797(91)90043-8
10.1016/j.desal.2014.01.006
10.1016/j.memsci.2013.11.043
10.1002/jbm.820251211
10.1016/j.memsci.2014.07.023
10.1021/la010384m
10.1016/S0927-7765(99)00152-6
10.1021/la062175d
10.1002/pi.2679
10.1021/ja054169u
10.1016/j.watres.2011.11.041
10.1021/jp057266i
10.1016/j.memsci.2015.03.040
10.1016/j.memsci.2010.06.048
10.1016/j.memsci.2010.01.015
10.1351/pac199466030491
10.1016/j.progpolymsci.2014.06.001
10.1016/j.polymer.2008.07.063
10.1016/j.memsci.2015.04.072
10.1039/C4TB01151A
10.1021/ma102065u
10.1016/j.memsci.2012.01.041
10.1016/j.desal.2011.06.063
10.1021/es980217h
10.1016/j.polymer.2006.01.084
10.1021/es1043694
10.1016/j.cis.2010.10.007
10.1021/cr020371t
10.1002/anie.201304060
10.1016/j.biomaterials.2005.07.006
10.1016/j.desal.2013.06.005
10.1021/cr500252u
10.1002/adma.201001215
10.1021/la500057j
10.1016/S0376-7388(99)00218-5
10.1021/cr200350v
10.1016/j.desal.2015.02.009
ContentType Journal Article
Copyright 2016 Acta Materialia Inc.
Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 Acta Materialia Inc.
– notice: Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
DOI 10.1016/j.actbio.2016.03.038
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Engineering Research Database
Materials Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 152
ExternalDocumentID 27025359
10_1016_j_actbio_2016_03_038
S1742706116301349
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
ID FETCH-LOGICAL-c531t-360c2dd5368c887153ce82398b84b37728316e58afddb516628952c2548728d63
IEDL.DBID .~1
ISSN 1742-7061
IngestDate Fri Jul 11 16:43:38 EDT 2025
Fri Jul 11 08:23:14 EDT 2025
Thu Jul 10 18:37:27 EDT 2025
Mon Jul 21 06:02:51 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Tue Jul 01 01:17:09 EDT 2025
Fri Feb 23 02:39:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biomimetic adhesion
Zwitterionic materials
Antifouling membrane surfaces
Surface segregation
Surface grafting
Language English
License Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-360c2dd5368c887153ce82398b84b37728316e58afddb516628952c2548728d63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Article-1
ObjectType-Feature-2
PMID 27025359
PQID 1807081824
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1835651283
proquest_miscellaneous_1811899769
proquest_miscellaneous_1807081824
pubmed_primary_27025359
crossref_primary_10_1016_j_actbio_2016_03_038
crossref_citationtrail_10_1016_j_actbio_2016_03_038
elsevier_sciencedirect_doi_10_1016_j_actbio_2016_03_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Zhang, Mao, Rohani, Ching, Lu (b0295) 2015; 152
Bengani, Kou, Asatekin (b0490) 2015; 493
Mi, Zhao, Ji, An, Gao (b0500) 2015; 490
Al-Amoudi, Lovitt (b0025) 2007; 303
Ko, Kim, Park, Lee, Lee, Dal Park, Kim, Lee, Ahn (b0325) 2001; 22
Chen, Li, Zhao, Zheng (b0105) 2010; 51
Lejars, Margaillan, Bressy (b0175) 2012; 112
Ye, Arazawa, Zhu, Shankarraman, Malkin, Kimmel, Gamble, Ishihara, Federspiel, Wagner (b0475) 2015; 31
Yu, Cao, Kang, Liu, Li, Yuan (b0305) 2009; 342
Shannon, Bohn, Elimelech, Georgiadis, Marinas, Mayes (b0010) 2008; 452
Zhao, Zhu, Yi, Zhu, Xu (b0375) 2014; 470
Li, Cheng, Xue, Chen, Zhang, Jiang (b0435) 2008; 29
Jeon, Lee, Andrade, Gennes (b0265) 1991; 142
Bernstein, Belfer, Freger (b0260) 2011; 45
Ma, Su, Sun, Wang, Jiang (b0405) 2007; 292
Razi, Sawada, Ohmukai, Maruyama, Matsuyama (b0310) 2012; 401
Rana, Matsuura (b0160) 2010; 110
Weng, Ji, Zhao, An, Gao (b0495) 2015; 5
Zhao, Chen, Xuan, He (b0515) 2016; 40
Ulbricht (b0290) 2006; 47
Azari, Zou (b0460) 2012; 401–402
Singer, Nicolson (b0245) 1972; 175
Huang, Brault, Li, Yu, Jiang (b0280) 2012; 24
Fujimoto, Takebayashi, Inoue, Ikada (b0320) 1993; 31
Wu, Lin, Wang, Chen, Chang (b0255) 2012; 28
Chang, Chang, Shih, Wei, Hsiue (b0135) 2011; 3
Choi, Jung, Han, Tak, Kwon (b0285) 2015; 486
Vermette, Meagher (b0380) 2003; 28
Grande, Tria, Jiang, Ponnapati, Advincula (b0370) 2011; 44
Su, Cheng, Li, Jiang (b0055) 2009; 329
Feng, Brash, Zhu (b0090) 2006; 27
Anh, Azari, Zou (b0455) 2013; 312
Jones, O’Melia (b0030) 2000; 165
Zhu, Tian, Hou, Wang, Lin, Zhang, Liu, Van der Bruggen (b0510) 2016; 4
Lee, Dellatore, Miller, Messersmith (b0425) 2007; 318
Yang, Xu, Ozaydin-Ince, Wong, Gleason (b0480) 2011; 23
Tria, Grande, Ponnapati, Advincula (b0365) 2010; 11
Zhang, Chao, Chen, Jiang (b0115) 2006; 22
Jiang, Cao (b0040) 2010; 22
Li, Imbrogno, Belfort, Wang (b0385) 2015; 132
Xuan, Liu (b0075) 2009; 58
Magin, Cooper, Brennan (b0225) 2010; 13
Gombotz, Wang, Horbett, Hoffman (b0060) 1991; 25
Zhang, Yuan, Yuan, Shen, Lin (b0360) 2003; 30
Chen, Zheng, Li, Jiang (b0080) 2005; 127
Liu, Chen, Li, Lin, Shen (b0015) 2014; 2
Ma, Hyun, Stiller, Chilkoti (b0050) 2004; 16
Birkner, Ulbricht (b0315) 2015; 494
Ostuni, Chapman, Holmlin, Takayama, Whitesides (b0070) 2001; 17
Mi, Jiang (b0140) 2014; 53
Chu, Chen, Wang, Huang (b0335) 2002; 36
Feng, Li, Li, Li, Zhang, Zhai, Song, Liu, Jiang, Zhu (b0415) 2002; 14
Cheng, Li, Xue, Chen, Bryers, Jiang (b0100) 2009; 30
Liu, Chen, Wu, Shen, Lin (b0130) 2010; 350
Tourney, Ngwenya, Mosselmans, Tetley, Cowie (b0235) 2008; 247
Tang, Chong, Fane (b0210) 2011; 164
Rossi, Mustafa, Jackson, Burt, Horte, Scott, Kizhakkedathu (b0045) 2009; 30
Dalsin, Messersmith (b0430) 2005; 8
Nakajima, Fujishima, Hashimoto, Watanabe (b0400) 1999; 11
Edidin (b0240) 2003; 4
Stamatialis, Papenburg, Girones, Saiful, Bettahalli, Schmitmeier, Wessling (b0020) 2008; 308
Shen, Martinson, Wagner, Castner, Ratner, Horbett (b0065) 2002; 13
Shao, Jiang (b0145) 2015; 27
Zhou, Ren, Yang, Xu (b0445) 2014; 466
Buffle, Wilkinson, Stoll, Filella, Zhang (b0220) 1998; 32
Lewis (b0250) 2000; 18
Krishnamoorthy, Hakobyan, Ramstedt, Gautrot (b0185) 2014; 114
Leng, Hung, Sieggreen, Li, Jiang, Chen (b0110) 2015; 119
Matin, Khan, Zaidi, Boyce (b0005) 2011; 281
Lowe, McCormick (b0085) 2002; 102
Hu, Brittain (b0345) 2005; 38
McGinty, Brittain (b0340) 2008; 49
Kosmulski, Maczka, Jartych, Rosenholm (b0215) 2003; 103
Chang, Shih, Lai, Kung, Jiang (b0275) 2013; 23
Kang, Cao (b0170) 2012; 46
Zhang, Chen, Chang, Jiang (b0095) 2006; 110
He, Duan, Chen, Liu, Yang, Wang (b0470) 2015; 9
Chiang, Chang, Higuchi, Chen, Ruaan (b0355) 2009; 339
Sun, Su, Ma, Wang, Jiang (b0120) 2006; 285
Schlenoff (b0155) 2014; 30
Habimana, Semião, Casey (b0230) 2014; 454
Yuan, Huang, Li, Li, Shen (b0300) 2013; 4
Norde (b0195) 1994; 66
Zhao, Zhao, Jiang, Li, Fan, Zhu, Wu, Su, Yang, Pan, Shi (b0395) 2014; 39
Li, Li, Miao, Wang, Shao, Zhang (b0410) 2012; 258
Yang, Jang, Stocker, Gleason (b0150) 2014; 26
Banerjee, Pangule, Kane (b0180) 2011; 23
Zhu, Liu, Yu, Gao, Xue (b0450) 2015; 475
Chan, Chen, Surapathi, Taylor, Shao, Marand, Johnson (b0505) 2013; 7
Zhou, Lei, Li, Yan, Zhang (b0350) 2014; 337
Yang, Li, Li, Wan, Xu (b0125) 2010; 362
Zhao, Chen, Su, Zhu, Peng, Jiang, Kong, Li, Liu (b0420) 2013; 441
Azari, Zou (b0390) 2013; 324
Karkhanechi, Takagi, Matsuyama (b0440) 2014; 337
Shafi, Khan, Yang, Gleason (b0485) 2015; 362
Zhao, Shi, Luan, Song, Yang, Shi, Jin, Li, Yin, Stagnaro (b0035) 2011; 369
Song (b0190) 1998; 139
Park, Kwon, Kim, Cho (b0270) 2005; 258
Gao, Hu, Guo, Li (b0205) 2010; 77
Yang, Wan, Xu (b0165) 2011; 25
Yuan, Al, Zhang, Zang, Shen, Lin (b0330) 2002; 13
Abdelhamid, Elawady, Abd El-Ghaffar, Rabie, Larsen, Christensen (b0465) 2015; 15
Wei, Becherer, Angioletti-Uberti, Dzubiella, Wischke, Neffe, Lendlein, Ballauff, Haag (b0200) 2014; 53
Wei (10.1016/j.actbio.2016.03.038_b0200) 2014; 53
Ma (10.1016/j.actbio.2016.03.038_b0405) 2007; 292
Ko (10.1016/j.actbio.2016.03.038_b0325) 2001; 22
McGinty (10.1016/j.actbio.2016.03.038_b0340) 2008; 49
Shen (10.1016/j.actbio.2016.03.038_b0065) 2002; 13
Sun (10.1016/j.actbio.2016.03.038_b0120) 2006; 285
Kang (10.1016/j.actbio.2016.03.038_b0170) 2012; 46
Nakajima (10.1016/j.actbio.2016.03.038_b0400) 1999; 11
Dalsin (10.1016/j.actbio.2016.03.038_b0430) 2005; 8
Zhang (10.1016/j.actbio.2016.03.038_b0115) 2006; 22
Liu (10.1016/j.actbio.2016.03.038_b0130) 2010; 350
Jiang (10.1016/j.actbio.2016.03.038_b0040) 2010; 22
Chen (10.1016/j.actbio.2016.03.038_b0105) 2010; 51
Lejars (10.1016/j.actbio.2016.03.038_b0175) 2012; 112
Habimana (10.1016/j.actbio.2016.03.038_b0230) 2014; 454
Fujimoto (10.1016/j.actbio.2016.03.038_b0320) 1993; 31
Shafi (10.1016/j.actbio.2016.03.038_b0485) 2015; 362
Chen (10.1016/j.actbio.2016.03.038_b0080) 2005; 127
Tang (10.1016/j.actbio.2016.03.038_b0210) 2011; 164
Gombotz (10.1016/j.actbio.2016.03.038_b0060) 1991; 25
Park (10.1016/j.actbio.2016.03.038_b0270) 2005; 258
Karkhanechi (10.1016/j.actbio.2016.03.038_b0440) 2014; 337
Shannon (10.1016/j.actbio.2016.03.038_b0010) 2008; 452
Zhu (10.1016/j.actbio.2016.03.038_b0510) 2016; 4
Al-Amoudi (10.1016/j.actbio.2016.03.038_b0025) 2007; 303
Bengani (10.1016/j.actbio.2016.03.038_b0490) 2015; 493
Buffle (10.1016/j.actbio.2016.03.038_b0220) 1998; 32
Yang (10.1016/j.actbio.2016.03.038_b0125) 2010; 362
Anh (10.1016/j.actbio.2016.03.038_b0455) 2013; 312
Chan (10.1016/j.actbio.2016.03.038_b0505) 2013; 7
Yuan (10.1016/j.actbio.2016.03.038_b0330) 2002; 13
Su (10.1016/j.actbio.2016.03.038_b0055) 2009; 329
Schlenoff (10.1016/j.actbio.2016.03.038_b0155) 2014; 30
Mi (10.1016/j.actbio.2016.03.038_b0140) 2014; 53
Zhang (10.1016/j.actbio.2016.03.038_b0095) 2006; 110
Zhao (10.1016/j.actbio.2016.03.038_b0515) 2016; 40
Hu (10.1016/j.actbio.2016.03.038_b0345) 2005; 38
Huang (10.1016/j.actbio.2016.03.038_b0280) 2012; 24
Tria (10.1016/j.actbio.2016.03.038_b0365) 2010; 11
Liu (10.1016/j.actbio.2016.03.038_b0295) 2015; 152
Vermette (10.1016/j.actbio.2016.03.038_b0380) 2003; 28
Zhou (10.1016/j.actbio.2016.03.038_b0445) 2014; 466
Zhao (10.1016/j.actbio.2016.03.038_b0395) 2014; 39
Matin (10.1016/j.actbio.2016.03.038_b0005) 2011; 281
Bernstein (10.1016/j.actbio.2016.03.038_b0260) 2011; 45
Song (10.1016/j.actbio.2016.03.038_b0190) 1998; 139
Jones (10.1016/j.actbio.2016.03.038_b0030) 2000; 165
Chang (10.1016/j.actbio.2016.03.038_b0275) 2013; 23
Zhao (10.1016/j.actbio.2016.03.038_b0375) 2014; 470
Singer (10.1016/j.actbio.2016.03.038_b0245) 1972; 175
Li (10.1016/j.actbio.2016.03.038_b0385) 2015; 132
Li (10.1016/j.actbio.2016.03.038_b0410) 2012; 258
Ye (10.1016/j.actbio.2016.03.038_b0475) 2015; 31
Zhou (10.1016/j.actbio.2016.03.038_b0350) 2014; 337
Mi (10.1016/j.actbio.2016.03.038_b0500) 2015; 490
Chang (10.1016/j.actbio.2016.03.038_b0135) 2011; 3
Lewis (10.1016/j.actbio.2016.03.038_b0250) 2000; 18
Chu (10.1016/j.actbio.2016.03.038_b0335) 2002; 36
Kosmulski (10.1016/j.actbio.2016.03.038_b0215) 2003; 103
He (10.1016/j.actbio.2016.03.038_b0470) 2015; 9
Feng (10.1016/j.actbio.2016.03.038_b0090) 2006; 27
Azari (10.1016/j.actbio.2016.03.038_b0390) 2013; 324
Feng (10.1016/j.actbio.2016.03.038_b0415) 2002; 14
Yu (10.1016/j.actbio.2016.03.038_b0305) 2009; 342
Grande (10.1016/j.actbio.2016.03.038_b0370) 2011; 44
Chiang (10.1016/j.actbio.2016.03.038_b0355) 2009; 339
Tourney (10.1016/j.actbio.2016.03.038_b0235) 2008; 247
Choi (10.1016/j.actbio.2016.03.038_b0285) 2015; 486
Gao (10.1016/j.actbio.2016.03.038_b0205) 2010; 77
Leng (10.1016/j.actbio.2016.03.038_b0110) 2015; 119
Birkner (10.1016/j.actbio.2016.03.038_b0315) 2015; 494
Shao (10.1016/j.actbio.2016.03.038_b0145) 2015; 27
Yang (10.1016/j.actbio.2016.03.038_b0480) 2011; 23
Cheng (10.1016/j.actbio.2016.03.038_b0100) 2009; 30
Lowe (10.1016/j.actbio.2016.03.038_b0085) 2002; 102
Yang (10.1016/j.actbio.2016.03.038_b0165) 2011; 25
Razi (10.1016/j.actbio.2016.03.038_b0310) 2012; 401
Rana (10.1016/j.actbio.2016.03.038_b0160) 2010; 110
Azari (10.1016/j.actbio.2016.03.038_b0460) 2012; 401–402
Zhao (10.1016/j.actbio.2016.03.038_b0420) 2013; 441
Norde (10.1016/j.actbio.2016.03.038_b0195) 1994; 66
Jeon (10.1016/j.actbio.2016.03.038_b0265) 1991; 142
Ulbricht (10.1016/j.actbio.2016.03.038_b0290) 2006; 47
Magin (10.1016/j.actbio.2016.03.038_b0225) 2010; 13
Edidin (10.1016/j.actbio.2016.03.038_b0240) 2003; 4
Banerjee (10.1016/j.actbio.2016.03.038_b0180) 2011; 23
Ma (10.1016/j.actbio.2016.03.038_b0050) 2004; 16
Yuan (10.1016/j.actbio.2016.03.038_b0300) 2013; 4
Yang (10.1016/j.actbio.2016.03.038_b0150) 2014; 26
Zhao (10.1016/j.actbio.2016.03.038_b0035) 2011; 369
Li (10.1016/j.actbio.2016.03.038_b0435) 2008; 29
Xuan (10.1016/j.actbio.2016.03.038_b0075) 2009; 58
Krishnamoorthy (10.1016/j.actbio.2016.03.038_b0185) 2014; 114
Zhang (10.1016/j.actbio.2016.03.038_b0360) 2003; 30
Lee (10.1016/j.actbio.2016.03.038_b0425) 2007; 318
Weng (10.1016/j.actbio.2016.03.038_b0495) 2015; 5
Abdelhamid (10.1016/j.actbio.2016.03.038_b0465) 2015; 15
Liu (10.1016/j.actbio.2016.03.038_b0015) 2014; 2
Ostuni (10.1016/j.actbio.2016.03.038_b0070) 2001; 17
Zhu (10.1016/j.actbio.2016.03.038_b0450) 2015; 475
Stamatialis (10.1016/j.actbio.2016.03.038_b0020) 2008; 308
Rossi (10.1016/j.actbio.2016.03.038_b0045) 2009; 30
Wu (10.1016/j.actbio.2016.03.038_b0255) 2012; 28
References_xml – volume: 25
  start-page: 245
  year: 2011
  end-page: 260
  ident: b0165
  article-title: Surface engineering of microporous polypropylene membrane for antifouling: a mini-review
  publication-title: J. Adhes. Sci. Technol.
– volume: 28
  start-page: 153
  year: 2003
  end-page: 198
  ident: b0380
  article-title: Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms
  publication-title: Colloids Surf., B
– volume: 15
  start-page: 999
  year: 2015
  end-page: 1010
  ident: b0465
  article-title: Surface modification of reverse osmosis membranes with zwitterionic polymer to reduce biofouling
  publication-title: Water Sci. Technol. Water Supply
– volume: 31
  start-page: 1035
  year: 1993
  end-page: 1043
  ident: b0320
  article-title: Ozone-induced graft polymerization onto polymer surface
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 26
  start-page: 1711
  year: 2014
  end-page: 1718
  ident: b0150
  article-title: Synergistic prevention of biofouling in seawater desalination by zwitterionic surfaces and low-level chlorination
  publication-title: Adv. Mater.
– volume: 24
  start-page: 1834
  year: 2012
  end-page: 1837
  ident: b0280
  article-title: Controlled hierarchical architecture in surface-initiated zwitterionic polymer brushes with structurally regulated functionalities
  publication-title: Adv. Mater.
– volume: 51
  start-page: 5283
  year: 2010
  end-page: 5293
  ident: b0105
  article-title: Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials
  publication-title: Polymer
– volume: 22
  start-page: 10072
  year: 2006
  end-page: 10077
  ident: b0115
  article-title: Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides
  publication-title: Langmuir
– volume: 493
  start-page: 755
  year: 2015
  end-page: 765
  ident: b0490
  article-title: Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity
  publication-title: J. Membr. Sci.
– volume: 32
  start-page: 2887
  year: 1998
  end-page: 2899
  ident: b0220
  article-title: A generalized description of aquatic colloidal interactions: the three-colloidal component approach
  publication-title: Environ. Sci. Technol.
– volume: 350
  start-page: 387
  year: 2010
  end-page: 394
  ident: b0130
  article-title: Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion
  publication-title: J. Membr. Sci.
– volume: 164
  start-page: 126
  year: 2011
  end-page: 143
  ident: b0210
  article-title: Colloidal interactions and fouling of NF and RO membranes: a review
  publication-title: Adv. Colloid Interface Sci.
– volume: 494
  start-page: 57
  year: 2015
  end-page: 67
  ident: b0315
  article-title: Ultrafiltration membranes with markedly different pH- and ion-responsivity by photografted zwitterionic polysulfobetain or polycarbobetain
  publication-title: J. Membr. Sci.
– volume: 46
  start-page: 584
  year: 2012
  end-page: 600
  ident: b0170
  article-title: Development of antifouling reverse osmosis membranes for water treatment: a review
  publication-title: Water Res.
– volume: 312
  start-page: 82
  year: 2013
  end-page: 87
  ident: b0455
  article-title: Coating zwitterionic amino acid L-DOPA to increase fouling resistance of forward osmosis membrane
  publication-title: Desalination
– volume: 18
  start-page: 261
  year: 2000
  end-page: 275
  ident: b0250
  article-title: Phosphorylcholine-based polymers and their use in the prevention of biofouling
  publication-title: Colloids Surf., B
– volume: 53
  start-page: 8004
  year: 2014
  end-page: 8031
  ident: b0200
  article-title: Protein interactions with polymer coatings and biomaterials
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  start-page: 149
  year: 1991
  end-page: 158
  ident: b0265
  article-title: Protein-surface interactions in the presence of polyethylene oxide
  publication-title: J. Colloid Interf. Sci.
– volume: 281
  start-page: 1
  year: 2011
  end-page: 16
  ident: b0005
  article-title: Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention
  publication-title: Desalination
– volume: 30
  start-page: 249
  year: 2003
  end-page: 257
  ident: b0360
  article-title: Chemical modification of cellulose membranes with sulfo ammonium zwitterionic vinyl monomer to improve hemocompatibility
  publication-title: Colloids Surf., B
– volume: 9
  start-page: 9188
  year: 2015
  end-page: 9198
  ident: b0470
  article-title: Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings: overcoming the imperative challenge of oil-water separation membranes
  publication-title: ACS Nano
– volume: 49
  start-page: 4350
  year: 2008
  end-page: 4357
  ident: b0340
  article-title: Hydrophilic surface modification of poly(vinyl chloride) film and tubing using physisorbed free radical grafting technique
  publication-title: Polymer
– volume: 4
  start-page: 5074
  year: 2013
  end-page: 5085
  ident: b0300
  article-title: Surface-initiated RAFT polymerization of sulfobetaine from cellulose membranes to improve hemocompatibility and antibiofouling property
  publication-title: Polym. Chem.
– volume: 339
  start-page: 151
  year: 2009
  end-page: 159
  ident: b0355
  article-title: Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property
  publication-title: J. Membr. Sci.
– volume: 452
  start-page: 301
  year: 2008
  end-page: 310
  ident: b0010
  article-title: Science and technology for water purification in the coming decades
  publication-title: Nature
– volume: 102
  start-page: 4177
  year: 2002
  end-page: 4189
  ident: b0085
  article-title: Synthesis and solution properties of zwitterionic polymers
  publication-title: Chem. Rev.
– volume: 25
  start-page: 1547
  year: 1991
  end-page: 1562
  ident: b0060
  article-title: Protein adsorption to poly(ethylene oxide) surfaces
  publication-title: J. Biomed. Mater. Res.
– volume: 114
  start-page: 10976
  year: 2014
  end-page: 11026
  ident: b0185
  article-title: Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings
  publication-title: Chem. Rev.
– volume: 369
  start-page: 5
  year: 2011
  end-page: 12
  ident: b0035
  article-title: Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer
  publication-title: J. Membr. Sci.
– volume: 11
  start-page: 1365
  year: 1999
  end-page: 1368
  ident: b0400
  article-title: Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate
  publication-title: Adv. Mater.
– volume: 5
  start-page: 98730
  year: 2015
  end-page: 98739
  ident: b0495
  article-title: Tailoring the structure of polyamide thin film composite membrane with zwitterions to achieve high water permeability and antifouling property
  publication-title: RSC Adv.
– volume: 11
  start-page: 3422
  year: 2010
  end-page: 3431
  ident: b0365
  article-title: Electrochemical deposition and surface-initiated RAFT polymerization: protein and cell-resistant PPEGMEMA polymer brushes
  publication-title: Biomacromolecules
– volume: 22
  start-page: 920
  year: 2010
  end-page: 932
  ident: b0040
  article-title: Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications
  publication-title: Adv. Mater.
– volume: 258
  start-page: 43
  year: 2005
  end-page: 54
  ident: b0270
  article-title: Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): characterizations, flux decline, and transport parameters
  publication-title: J. Membr. Sci.
– volume: 23
  start-page: 1100
  year: 2013
  end-page: 1110
  ident: b0275
  article-title: Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood
  publication-title: Adv. Funct. Mater.
– volume: 36
  start-page: 143
  year: 2002
  end-page: 206
  ident: b0335
  article-title: Plasma-surface modification of biomaterials
  publication-title: Mater. Sci. Eng., R
– volume: 40
  start-page: 441
  year: 2016
  end-page: 446
  ident: b0515
  article-title: Investigation of one-dimensional multi-functional zwitterionic Ag nanowires as a novel modifier for PVDF ultrafiltration membranes
  publication-title: New J. Chem.
– volume: 39
  start-page: 1668
  year: 2014
  end-page: 1720
  ident: b0395
  article-title: Biomimetic and bioinspired membranes: preparation and application
  publication-title: Prog. Polym. Sci.
– volume: 13
  start-page: 36
  year: 2010
  end-page: 44
  ident: b0225
  article-title: Non-toxic antifouling strategies
  publication-title: Mater. Today
– volume: 303
  start-page: 6
  year: 2007
  end-page: 28
  ident: b0025
  article-title: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency
  publication-title: J. Membr. Sci.
– volume: 362
  start-page: 93
  year: 2015
  end-page: 103
  ident: b0485
  article-title: Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling
  publication-title: Desalination
– volume: 152
  start-page: 55
  year: 2015
  end-page: 63
  ident: b0295
  article-title: Zwitterionic chitosan-silica-PVA hybrid ultrafiltration membranes for protein separation
  publication-title: Sep. Purif. Technol.
– volume: 31
  start-page: 2463
  year: 2015
  end-page: 2471
  ident: b0475
  article-title: Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs
  publication-title: Langmuir
– volume: 22
  start-page: 2115
  year: 2001
  end-page: 2123
  ident: b0325
  article-title: Immobilization of poly (ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation
  publication-title: Biomaterials
– volume: 2
  start-page: 7222
  year: 2014
  end-page: 7231
  ident: b0015
  article-title: Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane
  publication-title: J. Mater. Chem. B
– volume: 30
  start-page: 5234
  year: 2009
  end-page: 5240
  ident: b0100
  article-title: Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation
  publication-title: Biomaterials
– volume: 23
  start-page: 690
  year: 2011
  end-page: 718
  ident: b0180
  article-title: Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms
  publication-title: Adv. Mater.
– volume: 486
  start-page: 97
  year: 2015
  end-page: 105
  ident: b0285
  article-title: Surface modification of SWRO membranes using hydroxyl poly(oxyethylene) methacrylate and zwitterionic carboxylated polyethyleneimine
  publication-title: J. Membr. Sci.
– volume: 342
  start-page: 6
  year: 2009
  end-page: 13
  ident: b0305
  article-title: Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitterionic copolymer via UV-initiated polymerization
  publication-title: J. Membr. Sci.
– volume: 401
  start-page: 292
  year: 2012
  end-page: 299
  ident: b0310
  article-title: The improvement of antibiofouling efficiency of polyethersulfone membrane by functionalization with zwitterionic monomers
  publication-title: J. Membr. Sci.
– volume: 3
  start-page: 1228
  year: 2011
  end-page: 1237
  ident: b0135
  article-title: Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 966
  year: 2011
  end-page: 975
  ident: b0370
  article-title: Surface-grafted polymers from electropolymerized polythiophene RAFT agent
  publication-title: Macromolecules
– volume: 45
  start-page: 5973
  year: 2011
  end-page: 5980
  ident: b0260
  article-title: Bacterial attachment to RO membranes surface-modified by concentration-polarization-enhanced graft polymerization
  publication-title: Environ. Sci. Technol.
– volume: 362
  start-page: 255
  year: 2010
  end-page: 264
  ident: b0125
  article-title: Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling
  publication-title: J. Membr. Sci.
– volume: 17
  start-page: 5605
  year: 2001
  end-page: 5620
  ident: b0070
  article-title: A survey of structure-property relationships of surfaces that resist the adsorption of protein
  publication-title: Langmuir
– volume: 132
  year: 2015
  ident: b0385
  article-title: Making polymeric membranes antifouling via “grafting from” polymerization of zwitterions
  publication-title: J. Appl. Polym. Sci.
– volume: 247
  start-page: 1
  year: 2008
  end-page: 15
  ident: b0235
  article-title: The effect of extracellular polymers (EPS) on the proton adsorption characteristics of the thermophile Bacillus licheniformis S-86
  publication-title: ChGeo
– volume: 13
  start-page: 367
  year: 2002
  end-page: 390
  ident: b0065
  article-title: PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies
  publication-title: J. Biomater. Sci., Polym. Ed.
– volume: 119
  start-page: 8775
  year: 2015
  end-page: 8780
  ident: b0110
  article-title: Probing the surface hydration of nonfouling zwitterionic and poly(ethylene glycol) materials with isotopic dilution spectroscopy
  publication-title: J. Phys. Chem. C
– volume: 58
  start-page: 1350
  year: 2009
  end-page: 1361
  ident: b0075
  article-title: Preparation, characterization and application of zwitterionic polymers and membranes: current developments and perspective
  publication-title: Polym. Int.
– volume: 318
  start-page: 426
  year: 2007
  end-page: 430
  ident: b0425
  article-title: Mussel-inspired surface chemistry for multifunctional coatings
  publication-title: Science
– volume: 13
  start-page: 1081
  year: 2002
  end-page: 1092
  ident: b0330
  article-title: Grafting sulfobetaine monomer onto the segmented poly(ether-urethane) surface to improve hemocompatibility
  publication-title: J. Biomater. Sci., Polym. Ed.
– volume: 7
  start-page: 5308
  year: 2013
  end-page: 5319
  ident: b0505
  article-title: Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination
  publication-title: ACS Nano
– volume: 110
  start-page: 10799
  year: 2006
  end-page: 10804
  ident: b0095
  article-title: Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings
  publication-title: J. Phys. Chem. B
– volume: 308
  start-page: 1
  year: 2008
  end-page: 34
  ident: b0020
  article-title: Medical applications of membranes: drug delivery, artificial organs and tissue engineering
  publication-title: J. Membr. Sci.
– volume: 454
  start-page: 82
  year: 2014
  end-page: 96
  ident: b0230
  article-title: The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes
  publication-title: J. Membr. Sci.
– volume: 475
  start-page: 469
  year: 2015
  end-page: 479
  ident: b0450
  article-title: Surface zwitterionization of hemocompatible poly(lactic acid) membranes for hemodiafiltration
  publication-title: J. Membr. Sci.
– volume: 139
  start-page: 183
  year: 1998
  end-page: 200
  ident: b0190
  article-title: Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling
  publication-title: J. Membr. Sci.
– volume: 23
  start-page: 1263
  year: 2011
  end-page: 1272
  ident: b0480
  article-title: Surface-tethered zwitterionic ultrathin antifouling coatings on reverse osmosis membranes by initiated chemical vapor deposition
  publication-title: Chem. Mater.
– volume: 127
  start-page: 14473
  year: 2005
  end-page: 14478
  ident: b0080
  article-title: Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials
  publication-title: J. Am. Chem. Soc.
– volume: 285
  start-page: 299
  year: 2006
  end-page: 305
  ident: b0120
  article-title: Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer
  publication-title: J. Membr. Sci.
– volume: 466
  start-page: 18
  year: 2014
  end-page: 25
  ident: b0445
  article-title: Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition
  publication-title: J. Membr. Sci.
– volume: 30
  start-page: 9625
  year: 2014
  end-page: 9636
  ident: b0155
  article-title: Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption
  publication-title: Langmuir
– volume: 401–402
  start-page: 68
  year: 2012
  end-page: 75
  ident: b0460
  article-title: Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance
  publication-title: J. Membr. Sci.
– volume: 110
  start-page: 2448
  year: 2010
  end-page: 2471
  ident: b0160
  article-title: Surface modifications for antifouling membranes
  publication-title: Chem. Rev.
– volume: 38
  start-page: 6592
  year: 2005
  end-page: 6597
  ident: b0345
  article-title: Surface grafting on polymer surface using physisorbed free radical initiators
  publication-title: Macromolecules
– volume: 14
  start-page: 1857
  year: 2002
  end-page: 1860
  ident: b0415
  article-title: Super-hydrophobic surfaces: from natural to artificial
  publication-title: Adv. Mater.
– volume: 103
  start-page: 57
  year: 2003
  end-page: 76
  ident: b0215
  article-title: Synthesis and characterization of goethite and goethite-hematite composite: experimental study and literature survey
  publication-title: Adv. Colloid Interface Sci.
– volume: 329
  start-page: 246
  year: 2009
  end-page: 252
  ident: b0055
  article-title: Preparation of antifouling ultrafiltration membranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers
  publication-title: J. Membr. Sci.
– volume: 77
  start-page: 206
  year: 2010
  end-page: 213
  ident: b0205
  article-title: Preparation of polymethacrylic acid-grafted HEMA/PVP microspheres and preliminary study on basic protein adsorption
  publication-title: Colloids Surf., B
– volume: 165
  start-page: 31
  year: 2000
  end-page: 46
  ident: b0030
  article-title: Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength
  publication-title: J. Membr. Sci.
– volume: 27
  start-page: 15
  year: 2015
  end-page: 26
  ident: b0145
  article-title: Molecular understanding and design of zwitterionic materials
  publication-title: Adv. Mater.
– volume: 337
  start-page: 23
  year: 2014
  end-page: 30
  ident: b0440
  article-title: Enhanced antibiofouling of RO membranes via polydopamine coating and polyzwitterion immobilization
  publication-title: Desalination
– volume: 30
  start-page: 638
  year: 2009
  end-page: 648
  ident: b0045
  article-title: In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators
  publication-title: Biomaterials
– volume: 16
  start-page: 338
  year: 2004
  end-page: 341
  ident: b0050
  article-title: “Non-fouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization
  publication-title: Adv. Mater.
– volume: 53
  start-page: 1746
  year: 2014
  end-page: 1754
  ident: b0140
  article-title: Integrated Antimicrobial and Nonfouling Zwitterionic Polymers
  publication-title: Angew. Chem., Int. Ed.
– volume: 112
  start-page: 4347
  year: 2012
  end-page: 4390
  ident: b0175
  article-title: Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings
  publication-title: Chem. Rev.
– volume: 29
  start-page: 4592
  year: 2008
  end-page: 4597
  ident: b0435
  article-title: Ultra low fouling zwitterionic polymers with a biomimetic adhesive group
  publication-title: Biomaterials
– volume: 470
  start-page: 148
  year: 2014
  end-page: 158
  ident: b0375
  article-title: Zwitterionic hydrogel thin films as antifouling surface layers of polyethersulfone ultrafiltration membranes anchored via reactive copolymer additive
  publication-title: J. Membr. Sci.
– volume: 47
  start-page: 2217
  year: 2006
  end-page: 2262
  ident: b0290
  article-title: Advanced functional polymer membranes
  publication-title: Polymer
– volume: 66
  start-page: 491
  year: 1994
  end-page: 496
  ident: b0195
  article-title: Protein adsorption at solid surfaces: a thermodynamic approach
  publication-title: Pure Appl. Chem.
– volume: 490
  start-page: 311
  year: 2015
  end-page: 320
  ident: b0500
  article-title: A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance
  publication-title: J. Membr. Sci.
– volume: 175
  start-page: 720
  year: 1972
  end-page: 731
  ident: b0245
  article-title: The fluid mosaic model of the structure of cell membranes
  publication-title: Science
– volume: 27
  start-page: 847
  year: 2006
  end-page: 855
  ident: b0090
  article-title: Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion
  publication-title: Biomaterials
– volume: 337
  start-page: 6
  year: 2014
  end-page: 15
  ident: b0350
  article-title: Antifouling, adsorption and reversible flux properties of zwitterionic grafted PVDF membrane prepared via physisorbed free radical polymerization
  publication-title: Desalination
– volume: 292
  start-page: 116
  year: 2007
  end-page: 124
  ident: b0405
  article-title: Preparation of protein-adsorption-resistant polyethersulfone ultrafiltration membranes through surface segregation of amphiphilic comb copolymer
  publication-title: J. Membr. Sci.
– volume: 441
  start-page: 93
  year: 2013
  end-page: 101
  ident: b0420
  article-title: Hierarchically engineered membrane surfaces with superior antifouling and self-cleaning properties
  publication-title: J. Membr. Sci.
– volume: 4
  start-page: 1980
  year: 2016
  end-page: 1990
  ident: b0510
  article-title: Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane
  publication-title: J. Mater. Chem. A
– volume: 258
  start-page: 6398
  year: 2012
  end-page: 6405
  ident: b0410
  article-title: Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive
  publication-title: Appl. Surf. Sci.
– volume: 28
  start-page: 7436
  year: 2012
  end-page: 7441
  ident: b0255
  article-title: Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance
  publication-title: Langmuir
– volume: 324
  start-page: 79
  year: 2013
  end-page: 86
  ident: b0390
  article-title: Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid L-cysteine
  publication-title: Desalination
– volume: 4
  start-page: 414
  year: 2003
  end-page: 418
  ident: b0240
  article-title: Timeline-lipids on the frontier: a century of cell-membrane bilayers
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 8
  start-page: 38
  year: 2005
  end-page: 46
  ident: b0430
  article-title: Bioinspired antifouling polymers
  publication-title: Mater. Today
– volume: 15
  start-page: 999
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0465
  article-title: Surface modification of reverse osmosis membranes with zwitterionic polymer to reduce biofouling
  publication-title: Water Sci. Technol. Water Supply
  doi: 10.2166/ws.2015.055
– volume: 401
  start-page: 292
  year: 2012
  ident: 10.1016/j.actbio.2016.03.038_b0310
  article-title: The improvement of antibiofouling efficiency of polyethersulfone membrane by functionalization with zwitterionic monomers
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.02.020
– volume: 258
  start-page: 6398
  year: 2012
  ident: 10.1016/j.actbio.2016.03.038_b0410
  article-title: Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.03.049
– volume: 13
  start-page: 1081
  year: 2002
  ident: 10.1016/j.actbio.2016.03.038_b0330
  article-title: Grafting sulfobetaine monomer onto the segmented poly(ether-urethane) surface to improve hemocompatibility
  publication-title: J. Biomater. Sci., Polym. Ed.
  doi: 10.1163/156856202320813800
– volume: 119
  start-page: 8775
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0110
  article-title: Probing the surface hydration of nonfouling zwitterionic and poly(ethylene glycol) materials with isotopic dilution spectroscopy
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b01649
– volume: 493
  start-page: 755
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0490
  article-title: Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.07.025
– volume: 103
  start-page: 57
  year: 2003
  ident: 10.1016/j.actbio.2016.03.038_b0215
  article-title: Synthesis and characterization of goethite and goethite-hematite composite: experimental study and literature survey
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(02)00083-0
– volume: 342
  start-page: 6
  year: 2009
  ident: 10.1016/j.actbio.2016.03.038_b0305
  article-title: Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitterionic copolymer via UV-initiated polymerization
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.05.041
– volume: 4
  start-page: 1980
  year: 2016
  ident: 10.1016/j.actbio.2016.03.038_b0510
  article-title: Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08024J
– volume: 466
  start-page: 18
  year: 2014
  ident: 10.1016/j.actbio.2016.03.038_b0445
  article-title: Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.04.032
– volume: 303
  start-page: 6
  year: 2007
  ident: 10.1016/j.actbio.2016.03.038_b0025
  article-title: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.06.002
– volume: 51
  start-page: 5283
  year: 2010
  ident: 10.1016/j.actbio.2016.03.038_b0105
  article-title: Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.08.022
– volume: 29
  start-page: 4592
  year: 2008
  ident: 10.1016/j.actbio.2016.03.038_b0435
  article-title: Ultra low fouling zwitterionic polymers with a biomimetic adhesive group
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.08.021
– volume: 369
  start-page: 5
  year: 2011
  ident: 10.1016/j.actbio.2016.03.038_b0035
  article-title: Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.10.046
– volume: 337
  start-page: 23
  year: 2014
  ident: 10.1016/j.actbio.2016.03.038_b0440
  article-title: Enhanced antibiofouling of RO membranes via polydopamine coating and polyzwitterion immobilization
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.01.007
– volume: 175
  start-page: 720
  year: 1972
  ident: 10.1016/j.actbio.2016.03.038_b0245
  article-title: The fluid mosaic model of the structure of cell membranes
  publication-title: Science
  doi: 10.1126/science.175.4023.720
– volume: 308
  start-page: 1
  year: 2008
  ident: 10.1016/j.actbio.2016.03.038_b0020
  article-title: Medical applications of membranes: drug delivery, artificial organs and tissue engineering
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.09.059
– volume: 16
  start-page: 338
  year: 2004
  ident: 10.1016/j.actbio.2016.03.038_b0050
  article-title: “Non-fouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200305830
– volume: 13
  start-page: 367
  year: 2002
  ident: 10.1016/j.actbio.2016.03.038_b0065
  article-title: PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies
  publication-title: J. Biomater. Sci., Polym. Ed.
  doi: 10.1163/156856202320253910
– volume: 14
  start-page: 1857
  year: 2002
  ident: 10.1016/j.actbio.2016.03.038_b0415
  article-title: Super-hydrophobic surfaces: from natural to artificial
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200290020
– volume: 53
  start-page: 8004
  year: 2014
  ident: 10.1016/j.actbio.2016.03.038_b0200
  article-title: Protein interactions with polymer coatings and biomaterials
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201400546
– volume: 452
  start-page: 301
  year: 2008
  ident: 10.1016/j.actbio.2016.03.038_b0010
  article-title: Science and technology for water purification in the coming decades
  publication-title: Nature
  doi: 10.1038/nature06599
– volume: 110
  start-page: 2448
  year: 2010
  ident: 10.1016/j.actbio.2016.03.038_b0160
  article-title: Surface modifications for antifouling membranes
  publication-title: Chem. Rev.
  doi: 10.1021/cr800208y
– volume: 24
  start-page: 1834
  year: 2012
  ident: 10.1016/j.actbio.2016.03.038_b0280
  article-title: Controlled hierarchical architecture in surface-initiated zwitterionic polymer brushes with structurally regulated functionalities
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104849
– volume: 318
  start-page: 426
  year: 2007
  ident: 10.1016/j.actbio.2016.03.038_b0425
  article-title: Mussel-inspired surface chemistry for multifunctional coatings
  publication-title: Science
  doi: 10.1126/science.1147241
– volume: 31
  start-page: 1035
  year: 1993
  ident: 10.1016/j.actbio.2016.03.038_b0320
  article-title: Ozone-induced graft polymerization onto polymer surface
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.1993.080310426
– volume: 285
  start-page: 299
  year: 2006
  ident: 10.1016/j.actbio.2016.03.038_b0120
  article-title: Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.08.035
– volume: 30
  start-page: 5234
  year: 2009
  ident: 10.1016/j.actbio.2016.03.038_b0100
  article-title: Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.05.058
– volume: 152
  start-page: 55
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0295
  article-title: Zwitterionic chitosan-silica-PVA hybrid ultrafiltration membranes for protein separation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2015.08.006
– volume: 22
  start-page: 920
  year: 2010
  ident: 10.1016/j.actbio.2016.03.038_b0040
  article-title: Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901407
– volume: 292
  start-page: 116
  year: 2007
  ident: 10.1016/j.actbio.2016.03.038_b0405
  article-title: Preparation of protein-adsorption-resistant polyethersulfone ultrafiltration membranes through surface segregation of amphiphilic comb copolymer
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.01.024
– volume: 7
  start-page: 5308
  year: 2013
  ident: 10.1016/j.actbio.2016.03.038_b0505
  article-title: Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination
  publication-title: ACS Nano
  doi: 10.1021/nn4011494
– volume: 494
  start-page: 57
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0315
  article-title: Ultrafiltration membranes with markedly different pH- and ion-responsivity by photografted zwitterionic polysulfobetain or polycarbobetain
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.07.046
– volume: 5
  start-page: 98730
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0495
  article-title: Tailoring the structure of polyamide thin film composite membrane with zwitterions to achieve high water permeability and antifouling property
  publication-title: RSC Adv.
  doi: 10.1039/C5RA18640D
– volume: 28
  start-page: 153
  year: 2003
  ident: 10.1016/j.actbio.2016.03.038_b0380
  article-title: Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms
  publication-title: Colloids Surf., B
  doi: 10.1016/S0927-7765(02)00160-1
– volume: 40
  start-page: 441
  year: 2016
  ident: 10.1016/j.actbio.2016.03.038_b0515
  article-title: Investigation of one-dimensional multi-functional zwitterionic Ag nanowires as a novel modifier for PVDF ultrafiltration membranes
  publication-title: New J. Chem.
  doi: 10.1039/C5NJ02030A
– volume: 4
  start-page: 414
  year: 2003
  ident: 10.1016/j.actbio.2016.03.038_b0240
  article-title: Timeline-lipids on the frontier: a century of cell-membrane bilayers
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1102
– volume: 28
  start-page: 7436
  year: 2012
  ident: 10.1016/j.actbio.2016.03.038_b0255
  article-title: Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance
  publication-title: Langmuir
  doi: 10.1021/la300394c
– volume: 132
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0385
  article-title: Making polymeric membranes antifouling via “grafting from” polymerization of zwitterions
  publication-title: J. Appl. Polym. Sci.
– volume: 8
  start-page: 38
  year: 2005
  ident: 10.1016/j.actbio.2016.03.038_b0430
  article-title: Bioinspired antifouling polymers
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(05)71079-8
– volume: 31
  start-page: 2463
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0475
  article-title: Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs
  publication-title: Langmuir
  doi: 10.1021/la504907m
– volume: 3
  start-page: 1228
  year: 2011
  ident: 10.1016/j.actbio.2016.03.038_b0135
  article-title: Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200055k
– volume: 339
  start-page: 151
  year: 2009
  ident: 10.1016/j.actbio.2016.03.038_b0355
  article-title: Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.04.044
– volume: 329
  start-page: 246
  year: 2009
  ident: 10.1016/j.actbio.2016.03.038_b0055
  article-title: Preparation of antifouling ultrafiltration membranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.01.002
– volume: 26
  start-page: 1711
  year: 2014
  ident: 10.1016/j.actbio.2016.03.038_b0150
  article-title: Synergistic prevention of biofouling in seawater desalination by zwitterionic surfaces and low-level chlorination
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304386
– volume: 13
  start-page: 36
  year: 2010
  ident: 10.1016/j.actbio.2016.03.038_b0225
  article-title: Non-toxic antifouling strategies
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(10)70058-4
– volume: 11
  start-page: 3422
  year: 2010
  ident: 10.1016/j.actbio.2016.03.038_b0365
  article-title: Electrochemical deposition and surface-initiated RAFT polymerization: protein and cell-resistant PPEGMEMA polymer brushes
  publication-title: Biomacromolecules
  doi: 10.1021/bm1009365
– volume: 4
  start-page: 5074
  year: 2013
  ident: 10.1016/j.actbio.2016.03.038_b0300
  article-title: Surface-initiated RAFT polymerization of sulfobetaine from cellulose membranes to improve hemocompatibility and antibiofouling property
  publication-title: Polym. Chem.
  doi: 10.1039/c3py00565h
– volume: 30
  start-page: 249
  year: 2003
  ident: 10.1016/j.actbio.2016.03.038_b0360
  article-title: Chemical modification of cellulose membranes with sulfo ammonium zwitterionic vinyl monomer to improve hemocompatibility
  publication-title: Colloids Surf., B
  doi: 10.1016/S0927-7765(03)00069-9
– volume: 475
  start-page: 469
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0450
  article-title: Surface zwitterionization of hemocompatible poly(lactic acid) membranes for hemodiafiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.11.004
– volume: 77
  start-page: 206
  year: 2010
  ident: 10.1016/j.actbio.2016.03.038_b0205
  article-title: Preparation of polymethacrylic acid-grafted HEMA/PVP microspheres and preliminary study on basic protein adsorption
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2010.01.025
– volume: 441
  start-page: 93
  year: 2013
  ident: 10.1016/j.actbio.2016.03.038_b0420
  article-title: Hierarchically engineered membrane surfaces with superior antifouling and self-cleaning properties
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.04.012
– volume: 23
  start-page: 1100
  year: 2013
  ident: 10.1016/j.actbio.2016.03.038_b0275
  article-title: Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201386
– volume: 11
  start-page: 1365
  year: 1999
  ident: 10.1016/j.actbio.2016.03.038_b0400
  article-title: Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199911)11:16<1365::AID-ADMA1365>3.0.CO;2-F
– volume: 23
  start-page: 1263
  year: 2011
  ident: 10.1016/j.actbio.2016.03.038_b0480
  article-title: Surface-tethered zwitterionic ultrathin antifouling coatings on reverse osmosis membranes by initiated chemical vapor deposition
  publication-title: Chem. Mater.
  doi: 10.1021/cm1031392
– volume: 258
  start-page: 43
  year: 2005
  ident: 10.1016/j.actbio.2016.03.038_b0270
  article-title: Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): characterizations, flux decline, and transport parameters
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.02.025
– volume: 38
  start-page: 6592
  year: 2005
  ident: 10.1016/j.actbio.2016.03.038_b0345
  article-title: Surface grafting on polymer surface using physisorbed free radical initiators
  publication-title: Macromolecules
  doi: 10.1021/ma0479060
– volume: 9
  start-page: 9188
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0470
  article-title: Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings: overcoming the imperative challenge of oil-water separation membranes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03791
– volume: 25
  start-page: 245
  year: 2011
  ident: 10.1016/j.actbio.2016.03.038_b0165
  article-title: Surface engineering of microporous polypropylene membrane for antifouling: a mini-review
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1163/016942410X520835
– volume: 27
  start-page: 15
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0145
  article-title: Molecular understanding and design of zwitterionic materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404059
– volume: 30
  start-page: 638
  year: 2009
  ident: 10.1016/j.actbio.2016.03.038_b0045
  article-title: In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.09.057
– volume: 36
  start-page: 143
  year: 2002
  ident: 10.1016/j.actbio.2016.03.038_b0335
  article-title: Plasma-surface modification of biomaterials
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/S0927-796X(02)00004-9
– volume: 312
  start-page: 82
  year: 2013
  ident: 10.1016/j.actbio.2016.03.038_b0455
  article-title: Coating zwitterionic amino acid L-DOPA to increase fouling resistance of forward osmosis membrane
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.11.038
– volume: 139
  start-page: 183
  year: 1998
  ident: 10.1016/j.actbio.2016.03.038_b0190
  article-title: Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(97)00263-9
– volume: 22
  start-page: 2115
  year: 2001
  ident: 10.1016/j.actbio.2016.03.038_b0325
  article-title: Immobilization of poly (ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00400-2
– volume: 142
  start-page: 149
  year: 1991
  ident: 10.1016/j.actbio.2016.03.038_b0265
  article-title: Protein-surface interactions in the presence of polyethylene oxide
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/0021-9797(91)90043-8
– volume: 337
  start-page: 6
  year: 2014
  ident: 10.1016/j.actbio.2016.03.038_b0350
  article-title: Antifouling, adsorption and reversible flux properties of zwitterionic grafted PVDF membrane prepared via physisorbed free radical polymerization
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.01.006
– volume: 454
  start-page: 82
  year: 2014
  ident: 10.1016/j.actbio.2016.03.038_b0230
  article-title: The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.11.043
– volume: 25
  start-page: 1547
  year: 1991
  ident: 10.1016/j.actbio.2016.03.038_b0060
  article-title: Protein adsorption to poly(ethylene oxide) surfaces
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820251211
– volume: 470
  start-page: 148
  year: 2014
  ident: 10.1016/j.actbio.2016.03.038_b0375
  article-title: Zwitterionic hydrogel thin films as antifouling surface layers of polyethersulfone ultrafiltration membranes anchored via reactive copolymer additive
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.07.023
– volume: 17
  start-page: 5605
  year: 2001
  ident: 10.1016/j.actbio.2016.03.038_b0070
  article-title: A survey of structure-property relationships of surfaces that resist the adsorption of protein
  publication-title: Langmuir
  doi: 10.1021/la010384m
– volume: 18
  start-page: 261
  year: 2000
  ident: 10.1016/j.actbio.2016.03.038_b0250
  article-title: Phosphorylcholine-based polymers and their use in the prevention of biofouling
  publication-title: Colloids Surf., B
  doi: 10.1016/S0927-7765(99)00152-6
– volume: 22
  start-page: 10072
  year: 2006
  ident: 10.1016/j.actbio.2016.03.038_b0115
  article-title: Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides
  publication-title: Langmuir
  doi: 10.1021/la062175d
– volume: 58
  start-page: 1350
  year: 2009
  ident: 10.1016/j.actbio.2016.03.038_b0075
  article-title: Preparation, characterization and application of zwitterionic polymers and membranes: current developments and perspective
  publication-title: Polym. Int.
  doi: 10.1002/pi.2679
– volume: 127
  start-page: 14473
  year: 2005
  ident: 10.1016/j.actbio.2016.03.038_b0080
  article-title: Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054169u
– volume: 46
  start-page: 584
  year: 2012
  ident: 10.1016/j.actbio.2016.03.038_b0170
  article-title: Development of antifouling reverse osmosis membranes for water treatment: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.11.041
– volume: 110
  start-page: 10799
  year: 2006
  ident: 10.1016/j.actbio.2016.03.038_b0095
  article-title: Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp057266i
– volume: 486
  start-page: 97
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0285
  article-title: Surface modification of SWRO membranes using hydroxyl poly(oxyethylene) methacrylate and zwitterionic carboxylated polyethyleneimine
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.03.040
– volume: 362
  start-page: 255
  year: 2010
  ident: 10.1016/j.actbio.2016.03.038_b0125
  article-title: Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.06.048
– volume: 350
  start-page: 387
  year: 2010
  ident: 10.1016/j.actbio.2016.03.038_b0130
  article-title: Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.01.015
– volume: 66
  start-page: 491
  year: 1994
  ident: 10.1016/j.actbio.2016.03.038_b0195
  article-title: Protein adsorption at solid surfaces: a thermodynamic approach
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199466030491
– volume: 39
  start-page: 1668
  year: 2014
  ident: 10.1016/j.actbio.2016.03.038_b0395
  article-title: Biomimetic and bioinspired membranes: preparation and application
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2014.06.001
– volume: 49
  start-page: 4350
  year: 2008
  ident: 10.1016/j.actbio.2016.03.038_b0340
  article-title: Hydrophilic surface modification of poly(vinyl chloride) film and tubing using physisorbed free radical grafting technique
  publication-title: Polymer
  doi: 10.1016/j.polymer.2008.07.063
– volume: 490
  start-page: 311
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0500
  article-title: A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.04.072
– volume: 2
  start-page: 7222
  year: 2014
  ident: 10.1016/j.actbio.2016.03.038_b0015
  article-title: Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01151A
– volume: 44
  start-page: 966
  year: 2011
  ident: 10.1016/j.actbio.2016.03.038_b0370
  article-title: Surface-grafted polymers from electropolymerized polythiophene RAFT agent
  publication-title: Macromolecules
  doi: 10.1021/ma102065u
– volume: 401–402
  start-page: 68
  year: 2012
  ident: 10.1016/j.actbio.2016.03.038_b0460
  article-title: Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.01.041
– volume: 281
  start-page: 1
  year: 2011
  ident: 10.1016/j.actbio.2016.03.038_b0005
  article-title: Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.06.063
– volume: 32
  start-page: 2887
  year: 1998
  ident: 10.1016/j.actbio.2016.03.038_b0220
  article-title: A generalized description of aquatic colloidal interactions: the three-colloidal component approach
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es980217h
– volume: 247
  start-page: 1
  year: 2008
  ident: 10.1016/j.actbio.2016.03.038_b0235
  article-title: The effect of extracellular polymers (EPS) on the proton adsorption characteristics of the thermophile Bacillus licheniformis S-86
  publication-title: ChGeo
– volume: 47
  start-page: 2217
  year: 2006
  ident: 10.1016/j.actbio.2016.03.038_b0290
  article-title: Advanced functional polymer membranes
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.01.084
– volume: 45
  start-page: 5973
  year: 2011
  ident: 10.1016/j.actbio.2016.03.038_b0260
  article-title: Bacterial attachment to RO membranes surface-modified by concentration-polarization-enhanced graft polymerization
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1043694
– volume: 164
  start-page: 126
  year: 2011
  ident: 10.1016/j.actbio.2016.03.038_b0210
  article-title: Colloidal interactions and fouling of NF and RO membranes: a review
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2010.10.007
– volume: 102
  start-page: 4177
  year: 2002
  ident: 10.1016/j.actbio.2016.03.038_b0085
  article-title: Synthesis and solution properties of zwitterionic polymers
  publication-title: Chem. Rev.
  doi: 10.1021/cr020371t
– volume: 53
  start-page: 1746
  year: 2014
  ident: 10.1016/j.actbio.2016.03.038_b0140
  article-title: Integrated Antimicrobial and Nonfouling Zwitterionic Polymers
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201304060
– volume: 27
  start-page: 847
  year: 2006
  ident: 10.1016/j.actbio.2016.03.038_b0090
  article-title: Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.07.006
– volume: 324
  start-page: 79
  year: 2013
  ident: 10.1016/j.actbio.2016.03.038_b0390
  article-title: Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid L-cysteine
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.06.005
– volume: 114
  start-page: 10976
  year: 2014
  ident: 10.1016/j.actbio.2016.03.038_b0185
  article-title: Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings
  publication-title: Chem. Rev.
  doi: 10.1021/cr500252u
– volume: 23
  start-page: 690
  year: 2011
  ident: 10.1016/j.actbio.2016.03.038_b0180
  article-title: Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001215
– volume: 30
  start-page: 9625
  year: 2014
  ident: 10.1016/j.actbio.2016.03.038_b0155
  article-title: Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption
  publication-title: Langmuir
  doi: 10.1021/la500057j
– volume: 165
  start-page: 31
  year: 2000
  ident: 10.1016/j.actbio.2016.03.038_b0030
  article-title: Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(99)00218-5
– volume: 112
  start-page: 4347
  year: 2012
  ident: 10.1016/j.actbio.2016.03.038_b0175
  article-title: Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings
  publication-title: Chem. Rev.
  doi: 10.1021/cr200350v
– volume: 362
  start-page: 93
  year: 2015
  ident: 10.1016/j.actbio.2016.03.038_b0485
  article-title: Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling
  publication-title: Desalination
  doi: 10.1016/j.desal.2015.02.009
SSID ssj0038128
Score 2.6361837
SecondaryResourceType review_article
Snippet [Display omitted] Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric...
Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with...
UNLABELLEDMembrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 142
SubjectTerms Animals
Antifouling
Antifouling coatings
Antifouling membrane surfaces
Biomimetic adhesion
Biomimetic materials
Coatings
Construction materials
Fouling
Humans
Membranes
Membranes, Artificial
Separation
Surface grafting
Surface Properties
Surface segregation
Zwitterionic materials
Title Zwitterionic materials for antifouling membrane surface construction
URI https://dx.doi.org/10.1016/j.actbio.2016.03.038
https://www.ncbi.nlm.nih.gov/pubmed/27025359
https://www.proquest.com/docview/1807081824
https://www.proquest.com/docview/1811899769
https://www.proquest.com/docview/1835651283
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfFsfJYLX2GZ3s9kcS7VUxV60ULwsyWZXIjYttsWbv92ZPKqCVhBySZgNyexk9pvsfDOEnAPo5lxDdBLR2EKAwkI35Ia72lqs1RKYQCB3-G4g-kN-M_JHNdKtuDCYVln6_sKn5966vNIqtdmapmnrHrA0hft5gCjaWGQPGew8QCu_eF-mecCClPdXRWEXpSv6XJ7jFel5nCIF0BN5qVNkqfy8PP0GP_NlqLdFNkv86HSKR9wmNZPtkI0vVQV3yeXjW4ocHfzTqh1ApIWROQBPnQhzg7AJevbkjM0YQuXMOLPFq420cfTks5zsHhn2rh66fbdsluBq-IzmLhNtTZPEZ0JqcBzgyLSRWNwvljxmgKEl84TxZWSTJPY9ISDS8qmmGLFQmQi2T-rZJDOHxAmlNSyy2qchoi0ZGZvv7mHzPozPGoRVOlK6rCSODS1eVJUy9qwKzSrUrGozOGSDuMtR06KSxh_yQaV-9c0iFDj7P0aeVbOl4GPBHRBQ5mQxU54EDwcQhfJVMhBzhYDSwlUyDIAwKIM1yEFhDst3QoKfz_zw6N_Pf0zW8axIMzwhdZh5cwrQZx43c9tukrXO9W1_8AG4DQDy
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHxJvxLBLXamvTZOlxAqaOPS6AhLhEbZqiItZNbBN_H7sPHhIPCamn1qla13E-N_ZngHME3Z6nMToJ3SjBAIX5tu8Zz9ZJQlwtbdMWVDs8HIngzru-5_dLcFHVwlBaZen7C5-ee-vyTLPUZnOaps0bxNIu3s9BRNEikr1lqBM7Fa9BvdPrB6PKIeOalLdYJXmbBlQVdHmaV6jnUUpVgI7I2U6pUOX7FeonBJqvRN0NWC8hpNUpnnITlky2BWufiAW34fLhNaUyHfrZqi0EpYWdWYhQrZDSg6gPevZojc0Yo-XMWLPFSxJqY-nJB6PsDtx1r24vArvsl2BrnElzm4mWduOYMyE1-g70ZdpI4veLpBcxhNGSOcJwGSZxHHFHCAy2uKtdClpcGQu2C7Vskpl9sHyZGBYmmrs-AS4ZmiTf4KP-fRSiNYBVOlK6JBOnnhbPqsoae1KFZhVpVrUYHrIB9vuoaUGm8Yd8u1K_-mIUCv39HyPPqq-lcL7QJggqc7KYKUeik0OU4nq_yWDY5SNQ83-TYYiFURmsAXuFOby_E9X4ccb9g38__ymsBLfDgRr0Rv1DWKUrRdbhEdTQCswxIqF5dFJa-huEHwOj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zwitterionic+materials+for+antifouling+membrane+surface+construction&rft.jtitle=Acta+biomaterialia&rft.au=He%2C+Mingrui&rft.au=Gao%2C+Kang&rft.au=Zhou%2C+Linjie&rft.au=Jiao%2C+Zhiwei&rft.date=2016-08-01&rft.issn=1742-7061&rft.volume=40&rft.spage=142&rft.epage=152&rft_id=info:doi/10.1016%2Fj.actbio.2016.03.038&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon