Zwitterionic materials for antifouling membrane surface construction
[Display omitted] Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly util...
Saved in:
Published in | Acta biomaterialia Vol. 40; pp. 142 - 152 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes.
Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. |
---|---|
AbstractList | Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Statement of Significance Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. [Display omitted] Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. UNLABELLEDMembrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes.STATEMENT OF SIGNIFICANCEMembrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. |
Author | Jiao, Zhiwei Cai, Ziyi You, Xinda Gao, Kang Cao, Jialin Wu, Mengyuan Jiang, Zhongyi Su, Yanlei He, Mingrui Zhou, Linjie |
Author_xml | – sequence: 1 givenname: Mingrui surname: He fullname: He, Mingrui – sequence: 2 givenname: Kang surname: Gao fullname: Gao, Kang – sequence: 3 givenname: Linjie surname: Zhou fullname: Zhou, Linjie – sequence: 4 givenname: Zhiwei surname: Jiao fullname: Jiao, Zhiwei – sequence: 5 givenname: Mengyuan surname: Wu fullname: Wu, Mengyuan – sequence: 6 givenname: Jialin surname: Cao fullname: Cao, Jialin – sequence: 7 givenname: Xinda surname: You fullname: You, Xinda – sequence: 8 givenname: Ziyi surname: Cai fullname: Cai, Ziyi – sequence: 9 givenname: Yanlei surname: Su fullname: Su, Yanlei – sequence: 10 givenname: Zhongyi surname: Jiang fullname: Jiang, Zhongyi email: zhyjiang@tju.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27025359$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9LHTEUxUNRqs_2G4jM0s285s8kudNFQbS1guDGbroJmcydksfMxCYZxW9vHs-6cFGFC7khv3O5OWdF9uYwIyHHjK4ZZerLZm1d7nxY83JbU1EKPpBDBhpqLRXslV43vNZUsQOySmlDC8E4fCQHXFMuhWwPycXvB58zRh9m76rJbls7pmoIsbJz9kNYRj__qSacumhnrNISB-uwcmFOOS4uF-Unsj8UEX5-Po_Irx_fb89_1tc3l1fnZ9e1k4LlWijqeN9LocABaCaFQ-CihQ6aTmjNQTCFEuzQ951kSnFoJXdcNlDeeiWOyOlu7l0MfxdM2Uw-ORzHslhYkmEgpJLli-IdKGPQtlq170CppsCANwU9eUaXbsLe3EU_2fho_vlZgGYHuBhSiji8IIyabWxmY3axmW1shopSUGRfX8mcz3ZrbY7Wj2-Jv-3EWKy_9xhNch5nh72P6LLpg___gCdKTbOG |
CitedBy_id | crossref_primary_10_1021_acs_iecr_7b02378 crossref_primary_10_1007_s11431_022_2048_1 crossref_primary_10_1016_j_jmgm_2022_108187 crossref_primary_10_1016_j_memsci_2022_120348 crossref_primary_10_3390_ma14205972 crossref_primary_10_1021_acsami_1c20674 crossref_primary_10_1016_j_memsci_2022_120592 crossref_primary_10_3390_pr12122681 crossref_primary_10_1021_acs_langmuir_4c03275 crossref_primary_10_3390_nano9050706 crossref_primary_10_1021_acs_nanolett_0c01969 crossref_primary_10_3390_coatings10070653 crossref_primary_10_1016_j_memsci_2020_117980 crossref_primary_10_3390_molecules27217394 crossref_primary_10_1039_D2BM00190J crossref_primary_10_1016_j_biomaterials_2023_122464 crossref_primary_10_1021_acs_jpclett_4c03235 crossref_primary_10_3390_membranes11030187 crossref_primary_10_1016_j_cis_2023_102834 crossref_primary_10_1016_j_giant_2022_100094 crossref_primary_10_1016_j_memsci_2024_123174 crossref_primary_10_1021_acsami_9b09773 crossref_primary_10_1016_j_psep_2020_11_033 crossref_primary_10_1007_s12598_021_01807_z crossref_primary_10_1016_j_memsci_2024_123293 crossref_primary_10_1021_acs_biomac_0c01525 crossref_primary_10_1016_j_jfca_2024_107178 crossref_primary_10_1021_acs_langmuir_0c01816 crossref_primary_10_1021_acs_nanolett_4c05480 crossref_primary_10_1021_acsami_4c01401 crossref_primary_10_1016_j_cej_2020_124393 crossref_primary_10_1016_j_seppur_2022_122743 crossref_primary_10_1021_acsami_0c13386 crossref_primary_10_1039_D2TB01704K crossref_primary_10_1021_acs_est_4c05791 crossref_primary_10_1016_j_envres_2025_121305 crossref_primary_10_1021_acs_chemmater_1c01957 crossref_primary_10_1002_admi_202201081 crossref_primary_10_1016_j_apsusc_2021_151551 crossref_primary_10_1557_s43578_021_00146_0 crossref_primary_10_1002_term_3263 crossref_primary_10_1021_acs_langmuir_1c01477 crossref_primary_10_1016_j_porgcoat_2023_108060 crossref_primary_10_1016_j_sna_2022_113912 crossref_primary_10_1016_j_talanta_2024_125623 crossref_primary_10_7554_eLife_75798 crossref_primary_10_5301_ijao_5000559 crossref_primary_10_1016_j_jece_2024_112105 crossref_primary_10_1021_acsami_9b22748 crossref_primary_10_1021_acs_chemmater_3c01919 crossref_primary_10_1039_D1CS00658D crossref_primary_10_1021_acs_analchem_1c04153 crossref_primary_10_1016_j_cis_2022_102637 crossref_primary_10_1016_j_memsci_2019_117276 crossref_primary_10_1021_acsapm_3c01217 crossref_primary_10_3390_nano12183166 crossref_primary_10_1002_adsr_202400056 crossref_primary_10_2139_ssrn_4180267 crossref_primary_10_1016_j_jcis_2023_07_185 crossref_primary_10_1021_acs_biomac_0c00456 crossref_primary_10_1016_j_polymer_2024_127817 crossref_primary_10_1016_j_colsurfa_2021_126369 crossref_primary_10_1016_j_eurpolymj_2022_111612 crossref_primary_10_1007_s10311_018_0717_8 crossref_primary_10_1016_j_memsci_2021_120148 crossref_primary_10_1016_j_seppur_2020_117738 crossref_primary_10_1021_acsapm_3c02234 crossref_primary_10_1002_pol_20210543 crossref_primary_10_1016_j_memsci_2019_03_094 crossref_primary_10_1021_acs_analchem_1c00089 crossref_primary_10_1016_j_memsci_2022_120498 crossref_primary_10_1016_j_memsci_2021_120038 crossref_primary_10_1016_j_memsci_2023_121641 crossref_primary_10_1016_j_scitotenv_2020_141777 crossref_primary_10_1021_acs_langmuir_6b03988 crossref_primary_10_1016_j_seppur_2019_116082 crossref_primary_10_1016_j_seppur_2020_117605 crossref_primary_10_1515_ntrev_2022_0552 crossref_primary_10_1016_j_seppur_2024_127801 crossref_primary_10_1016_j_talanta_2021_122360 crossref_primary_10_1016_j_memsci_2025_124011 crossref_primary_10_1021_acs_langmuir_4c04179 crossref_primary_10_1002_bkcs_11980 crossref_primary_10_1016_j_memsci_2025_124014 crossref_primary_10_1007_s13233_019_7163_8 crossref_primary_10_1002_app_47099 crossref_primary_10_1016_j_cej_2025_160964 crossref_primary_10_1038_s41545_022_00168_z crossref_primary_10_1016_j_jscs_2019_05_011 crossref_primary_10_1021_acs_langmuir_9b00218 crossref_primary_10_1016_j_memsci_2021_120050 crossref_primary_10_1016_j_seppur_2024_131173 crossref_primary_10_1021_acsabm_0c00600 crossref_primary_10_1016_j_cej_2021_131803 crossref_primary_10_1021_acssuschemeng_2c03933 crossref_primary_10_1038_srep36327 crossref_primary_10_1016_j_memsci_2023_121622 crossref_primary_10_1016_j_memsci_2022_121205 crossref_primary_10_1016_j_memsci_2023_121745 crossref_primary_10_3390_polym12061303 crossref_primary_10_1039_D3SM00062A crossref_primary_10_1002_jmr_2944 crossref_primary_10_1016_j_memsci_2021_120060 crossref_primary_10_1002_admi_202400954 crossref_primary_10_1039_D1TB02337C crossref_primary_10_1016_j_memsci_2020_118929 crossref_primary_10_1016_j_mencom_2021_03_032 crossref_primary_10_1016_j_jwpe_2024_104792 crossref_primary_10_1016_j_memsci_2020_118421 crossref_primary_10_1111_wej_12811 crossref_primary_10_1021_acsapm_3c00407 crossref_primary_10_1016_j_seppur_2021_119310 crossref_primary_10_6023_A21120593 crossref_primary_10_1021_acsami_9b03259 crossref_primary_10_1111_1541_4337_13209 crossref_primary_10_1016_j_memsci_2022_121276 crossref_primary_10_1002_smtd_202301072 crossref_primary_10_1039_D0TB00540A crossref_primary_10_1002_app_55820 crossref_primary_10_1016_j_snb_2024_136411 crossref_primary_10_1016_j_memsci_2020_118676 crossref_primary_10_1021_acs_macromol_8b01792 crossref_primary_10_1016_j_memsci_2020_118793 crossref_primary_10_1016_j_memsci_2017_09_016 crossref_primary_10_1016_j_memsci_2017_09_017 crossref_primary_10_1021_jacs_3c00953 crossref_primary_10_1016_j_memsci_2023_121569 crossref_primary_10_1016_j_memsci_2022_121144 crossref_primary_10_3762_bjnano_15_111 crossref_primary_10_1016_j_memsci_2023_121572 crossref_primary_10_1039_D2CC05102H crossref_primary_10_1016_j_bea_2022_100026 crossref_primary_10_1039_D5RA00643K crossref_primary_10_3390_membranes9080096 crossref_primary_10_1016_j_memsci_2019_117217 crossref_primary_10_1039_C9BM00469F crossref_primary_10_1016_j_cis_2020_102280 crossref_primary_10_3390_polym12081716 crossref_primary_10_1016_j_jcis_2018_01_106 crossref_primary_10_1021_acsomega_1c04919 crossref_primary_10_1016_j_memsci_2018_01_039 crossref_primary_10_1021_acsapm_3c01964 crossref_primary_10_1016_j_colsurfb_2022_112372 crossref_primary_10_1016_j_seppur_2024_127438 crossref_primary_10_1002_app_52336 crossref_primary_10_2166_aqua_2024_244 crossref_primary_10_1021_acsapm_2c00302 crossref_primary_10_1016_j_cej_2020_125663 crossref_primary_10_1021_acs_langmuir_8b02184 crossref_primary_10_1016_j_cherd_2020_02_005 crossref_primary_10_1016_j_reactfunctpolym_2019_104330 crossref_primary_10_1016_j_mser_2019_06_002 crossref_primary_10_1016_j_giant_2022_100116 crossref_primary_10_1016_j_porgcoat_2020_105666 crossref_primary_10_1007_s11998_024_01023_1 crossref_primary_10_1021_acs_jpcc_7b06088 crossref_primary_10_3390_mi9050243 crossref_primary_10_1038_s41598_022_09046_7 crossref_primary_10_1016_j_memsci_2022_121253 crossref_primary_10_1016_j_petrol_2022_110643 crossref_primary_10_1016_j_actbio_2020_11_031 crossref_primary_10_1002_app_51256 crossref_primary_10_1016_j_mtcomm_2025_111944 crossref_primary_10_1016_j_seppur_2024_129848 crossref_primary_10_3390_ma13040943 crossref_primary_10_1016_j_memsci_2020_118568 crossref_primary_10_1016_j_colsurfa_2022_129752 crossref_primary_10_1016_j_memsci_2017_09_044 crossref_primary_10_1038_s41529_023_00362_5 crossref_primary_10_1016_j_jtice_2018_03_047 crossref_primary_10_1016_j_cej_2021_130085 crossref_primary_10_1021_acs_langmuir_2c02750 crossref_primary_10_1007_s11705_023_2340_x crossref_primary_10_1016_j_memsci_2022_121083 crossref_primary_10_1021_acsabm_0c00666 crossref_primary_10_3390_biom13081165 crossref_primary_10_1016_j_memsci_2020_118753 crossref_primary_10_1016_j_desal_2022_116131 crossref_primary_10_1021_acsanm_4c04167 crossref_primary_10_1021_acsmacrolett_2c00665 crossref_primary_10_1016_j_csbj_2020_07_015 crossref_primary_10_1016_j_memsci_2018_02_063 crossref_primary_10_1002_smll_202308091 crossref_primary_10_1016_j_msec_2019_03_098 crossref_primary_10_1021_acsami_4c01045 crossref_primary_10_1002_jbm_a_37630 crossref_primary_10_1021_acs_biomac_0c00497 crossref_primary_10_1016_j_envint_2019_104970 crossref_primary_10_1016_j_seppur_2018_05_004 crossref_primary_10_1016_j_cej_2023_142457 crossref_primary_10_1016_j_cherd_2022_07_032 crossref_primary_10_1088_1748_605X_acb394 crossref_primary_10_1016_j_porgcoat_2024_108578 crossref_primary_10_1039_D2TB00429A crossref_primary_10_1016_j_isci_2021_102369 crossref_primary_10_1002_jsde_12542 crossref_primary_10_1016_j_eurpolymj_2018_06_025 crossref_primary_10_1016_j_seppur_2022_120887 crossref_primary_10_1016_j_memsci_2020_118515 crossref_primary_10_1016_j_memsci_2020_118757 crossref_primary_10_1039_D0TB01990A crossref_primary_10_1016_j_seppur_2021_118371 crossref_primary_10_1021_acs_langmuir_0c00114 crossref_primary_10_1021_acs_langmuir_8b03231 crossref_primary_10_1016_j_memsci_2018_01_001 crossref_primary_10_1007_s11783_020_1355_5 crossref_primary_10_1016_j_jhazmat_2017_06_042 crossref_primary_10_1016_j_memsci_2024_122731 crossref_primary_10_1016_j_chemosphere_2024_141373 crossref_primary_10_1021_acsengineeringau_2c00008 crossref_primary_10_1021_acsabm_1c00564 crossref_primary_10_1016_j_jelechem_2023_117982 crossref_primary_10_1016_j_surfin_2024_105010 crossref_primary_10_1016_j_cesx_2021_100103 crossref_primary_10_1016_j_jcis_2021_09_175 crossref_primary_10_1039_C9SC06155J crossref_primary_10_1016_j_desal_2019_01_009 crossref_primary_10_1021_acs_analchem_0c05234 crossref_primary_10_1371_journal_pone_0252467 crossref_primary_10_1016_j_seppur_2025_131963 crossref_primary_10_3390_nano13010064 crossref_primary_10_1016_j_memsci_2018_03_055 crossref_primary_10_1002_adhm_202202790 crossref_primary_10_1016_j_jwpe_2024_105495 crossref_primary_10_1016_j_cej_2023_147439 crossref_primary_10_1016_j_seppur_2021_118870 crossref_primary_10_1021_acsami_0c07111 crossref_primary_10_1016_j_desal_2019_114072 crossref_primary_10_1016_j_porgcoat_2023_107636 crossref_primary_10_1002_pol_20240720 crossref_primary_10_1016_j_actbio_2017_08_007 crossref_primary_10_3390_jfb13040216 crossref_primary_10_1021_acsomega_3c07660 crossref_primary_10_3390_polym15010184 crossref_primary_10_1002_app_52846 crossref_primary_10_1002_advs_201800711 crossref_primary_10_1002_pat_4433 crossref_primary_10_1016_j_bios_2021_113477 crossref_primary_10_1016_j_jmst_2020_07_028 crossref_primary_10_1016_j_desal_2020_114664 crossref_primary_10_1016_j_isci_2021_102964 crossref_primary_10_1016_j_seppur_2022_121091 crossref_primary_10_1039_D1TB02561A crossref_primary_10_1016_j_memsci_2024_122672 crossref_primary_10_1021_acs_langmuir_4c04809 crossref_primary_10_1021_acsabm_2c00586 crossref_primary_10_1016_j_apsusc_2022_153652 crossref_primary_10_1002_adma_202309355 crossref_primary_10_1002_pat_6529 crossref_primary_10_1021_acsami_9b18928 crossref_primary_10_1002_jbm_b_34085 crossref_primary_10_1016_j_jtice_2024_105821 crossref_primary_10_1021_acsabm_4c01776 crossref_primary_10_1016_j_eng_2024_04_019 crossref_primary_10_1016_j_memsci_2023_122114 crossref_primary_10_1039_D4PY00234B crossref_primary_10_1021_acs_analchem_2c04541 crossref_primary_10_1016_j_colsurfa_2020_124788 crossref_primary_10_1016_j_mtcomm_2019_100687 crossref_primary_10_1016_j_watres_2024_121263 crossref_primary_10_3390_membranes11110832 crossref_primary_10_1016_j_mtchem_2019_100227 crossref_primary_10_1021_acsbiomaterials_3c00425 crossref_primary_10_3390_microorganisms12040639 crossref_primary_10_1016_j_apsusc_2023_158376 crossref_primary_10_1016_j_cej_2021_129139 crossref_primary_10_1016_j_advmem_2022_100031 crossref_primary_10_1016_j_jece_2022_108396 crossref_primary_10_3390_polym11111782 crossref_primary_10_3389_fbioe_2024_1403654 crossref_primary_10_1016_j_memsci_2017_01_009 crossref_primary_10_1039_C9NR08186K crossref_primary_10_1007_s10570_019_02681_w crossref_primary_10_1016_j_apmt_2021_101192 crossref_primary_10_1016_j_matchemphys_2023_128208 crossref_primary_10_1016_j_cej_2024_152287 crossref_primary_10_1016_j_surfcoat_2023_129497 crossref_primary_10_1007_s11814_018_0153_2 crossref_primary_10_1039_C7TB01017F crossref_primary_10_1039_D3PY01286G crossref_primary_10_1016_j_desal_2020_114857 crossref_primary_10_1016_j_tifs_2024_104374 crossref_primary_10_1021_acsnano_4c16946 crossref_primary_10_1016_j_memsci_2020_118337 crossref_primary_10_1016_j_snb_2024_136964 crossref_primary_10_1016_j_foodchem_2022_134974 crossref_primary_10_1021_acs_langmuir_0c03128 crossref_primary_10_1016_j_memsci_2020_118233 crossref_primary_10_1021_acsapm_1c00779 crossref_primary_10_1002_adma_202414743 crossref_primary_10_1021_acs_langmuir_8b02320 crossref_primary_10_1016_j_colsurfb_2021_111718 crossref_primary_10_1021_acs_langmuir_4c03512 crossref_primary_10_1016_j_seppur_2021_118316 crossref_primary_10_1016_j_jcis_2023_10_138 crossref_primary_10_1021_acsabm_3c00833 crossref_primary_10_1016_j_actbio_2024_10_015 crossref_primary_10_1016_j_advmem_2022_100038 crossref_primary_10_1002_app_50587 crossref_primary_10_1016_j_apsusc_2021_148985 crossref_primary_10_1016_j_seppur_2024_129540 crossref_primary_10_1021_acs_langmuir_7b01437 crossref_primary_10_1016_j_desal_2024_117614 crossref_primary_10_1016_j_memsci_2022_120925 crossref_primary_10_1016_j_polymer_2022_125616 crossref_primary_10_1016_j_biomaterials_2024_122593 crossref_primary_10_1016_j_chemosphere_2023_138070 crossref_primary_10_1016_j_colsurfb_2023_113271 crossref_primary_10_3389_fchem_2019_00770 crossref_primary_10_1016_j_jece_2025_115308 crossref_primary_10_1002_app_47653 crossref_primary_10_1021_acs_est_4c04850 crossref_primary_10_1016_j_memsci_2023_122032 crossref_primary_10_1007_s42247_024_00859_y crossref_primary_10_1002_admi_202400287 crossref_primary_10_1021_acsami_1c02789 crossref_primary_10_3390_ma16145149 crossref_primary_10_1039_C9EW01134J crossref_primary_10_1002_marc_202300606 crossref_primary_10_1016_j_rineng_2024_102055 crossref_primary_10_1021_acs_est_5c00916 crossref_primary_10_1016_j_jddst_2022_103325 crossref_primary_10_1016_j_memsci_2020_118379 crossref_primary_10_1039_D1MA00058F crossref_primary_10_1002_macp_201900429 crossref_primary_10_1016_j_eurpolymj_2020_109883 crossref_primary_10_1016_j_jconrel_2023_12_017 crossref_primary_10_1016_j_seppur_2024_126494 crossref_primary_10_1021_acs_langmuir_4c04859 crossref_primary_10_3390_membranes7010013 crossref_primary_10_3390_separations10030188 crossref_primary_10_3390_ijms21239087 crossref_primary_10_1016_j_surfin_2021_101505 crossref_primary_10_1016_j_carbpol_2020_115860 crossref_primary_10_1016_j_memsci_2021_119121 crossref_primary_10_1016_j_biomaterials_2025_123138 crossref_primary_10_1016_j_cis_2024_103359 crossref_primary_10_1021_acs_analchem_0c00738 crossref_primary_10_1016_j_memsci_2021_119126 crossref_primary_10_1016_j_cej_2020_128244 crossref_primary_10_1016_j_jenvman_2025_124094 crossref_primary_10_1039_D4TB00899E crossref_primary_10_3390_molecules26227043 crossref_primary_10_1016_j_jece_2023_110285 crossref_primary_10_1021_acs_est_6b05992 crossref_primary_10_1063_1_5052455 crossref_primary_10_1016_j_cej_2024_154098 crossref_primary_10_3389_fbioe_2021_807357 crossref_primary_10_1016_j_apsusc_2017_05_063 crossref_primary_10_1016_j_ejpb_2024_114175 crossref_primary_10_1134_S1070363221070112 crossref_primary_10_3389_fbioe_2021_686192 crossref_primary_10_1016_j_apsusc_2022_155447 crossref_primary_10_1021_acsami_9b13862 crossref_primary_10_1039_D2NJ01800D crossref_primary_10_1016_j_desal_2023_117118 crossref_primary_10_1021_acsami_1c22683 crossref_primary_10_1021_acsapm_3c03010 crossref_primary_10_1016_j_jece_2022_107935 crossref_primary_10_1016_j_apsusc_2019_144098 crossref_primary_10_1111_wej_12475 crossref_primary_10_1016_j_psep_2018_03_029 crossref_primary_10_1016_j_porgcoat_2023_107923 crossref_primary_10_1021_acs_iecr_7b05025 crossref_primary_10_1016_j_polymer_2020_122340 crossref_primary_10_1002_admi_201900706 crossref_primary_10_1016_j_algal_2022_102797 crossref_primary_10_1016_j_seppur_2024_131012 crossref_primary_10_1016_j_watres_2019_115181 crossref_primary_10_1021_acsami_9b15811 crossref_primary_10_1021_acsami_4c09978 crossref_primary_10_1021_acsami_1c14979 crossref_primary_10_1016_j_memsci_2017_10_042 crossref_primary_10_1021_acs_est_6b03795 crossref_primary_10_1016_j_bioactmat_2024_04_002 crossref_primary_10_1016_j_memsci_2025_123896 crossref_primary_10_1021_acsami_9b05901 crossref_primary_10_2139_ssrn_4062365 crossref_primary_10_2494_photopolymer_32_529 crossref_primary_10_3390_membranes12111063 crossref_primary_10_1038_s41598_017_07369_4 crossref_primary_10_1016_j_snb_2020_128253 crossref_primary_10_1016_j_memsci_2021_119274 crossref_primary_10_1016_j_addr_2021_113884 crossref_primary_10_1021_acs_langmuir_9b01876 crossref_primary_10_1021_acsmacrolett_8b00888 crossref_primary_10_1016_j_mtchem_2022_100779 crossref_primary_10_1021_acs_langmuir_3c02492 crossref_primary_10_3390_gels8010026 crossref_primary_10_1016_j_jscs_2021_101281 crossref_primary_10_1016_j_desal_2019_114169 crossref_primary_10_1016_j_memsci_2020_118069 crossref_primary_10_1016_j_memsci_2018_11_019 crossref_primary_10_1016_j_jmst_2022_06_005 crossref_primary_10_1007_s00289_018_2356_4 crossref_primary_10_1016_j_polymer_2024_127890 crossref_primary_10_3390_ma14030569 crossref_primary_10_1016_j_chphi_2020_100008 crossref_primary_10_1002_advs_202402935 crossref_primary_10_1021_acs_langmuir_8b03810 crossref_primary_10_1039_D0BM01967D crossref_primary_10_1016_j_desal_2024_118413 crossref_primary_10_1016_j_coche_2018_01_002 crossref_primary_10_1021_acsbiomaterials_8b01239 crossref_primary_10_1021_acs_biomac_2c00803 crossref_primary_10_1002_admi_202300324 crossref_primary_10_1016_j_jconrel_2017_04_043 crossref_primary_10_1016_j_memsci_2024_123499 crossref_primary_10_1021_acsbiomaterials_1c00758 crossref_primary_10_1016_j_jiec_2018_12_049 crossref_primary_10_1021_acsami_3c08250 crossref_primary_10_3390_polym11061014 crossref_primary_10_1016_j_matchemphys_2022_126937 crossref_primary_10_1016_j_memsci_2024_123251 crossref_primary_10_1021_acsami_4c08599 crossref_primary_10_2139_ssrn_3962719 crossref_primary_10_1002_adhm_202301945 crossref_primary_10_1016_j_reactfunctpolym_2024_105843 crossref_primary_10_1016_j_rsurfi_2023_100159 crossref_primary_10_1016_j_cej_2024_148980 crossref_primary_10_1016_j_jiec_2021_01_034 crossref_primary_10_1039_D1TB01374B crossref_primary_10_1515_corrrev_2024_0033 crossref_primary_10_1038_s41467_019_12100_0 crossref_primary_10_1016_j_desal_2023_117195 crossref_primary_10_3390_bios12020071 crossref_primary_10_1016_j_seppur_2020_116585 crossref_primary_10_1039_C9RA02773D crossref_primary_10_1016_j_memsci_2022_120760 crossref_primary_10_1016_j_memsci_2017_06_091 crossref_primary_10_1016_j_seppur_2024_129257 crossref_primary_10_1016_j_memsci_2024_123166 crossref_primary_10_1016_j_memsci_2024_123042 crossref_primary_10_1016_j_foodres_2022_111543 crossref_primary_10_1002_marc_201900447 crossref_primary_10_1016_j_snb_2022_133166 crossref_primary_10_1016_j_memsci_2021_119227 crossref_primary_10_1039_D1EW00188D crossref_primary_10_1016_j_dental_2019_06_004 crossref_primary_10_1016_j_seppur_2023_125709 crossref_primary_10_1016_j_seppur_2019_116015 crossref_primary_10_1021_acs_chemrev_9b00739 crossref_primary_10_1016_j_memsci_2017_12_076 crossref_primary_10_3390_antibiotics12020310 crossref_primary_10_1016_j_jiec_2018_05_032 crossref_primary_10_1021_acsbiomaterials_1c00852 crossref_primary_10_1021_acs_jafc_4c05156 crossref_primary_10_1016_j_jece_2023_110588 crossref_primary_10_1016_j_jwpe_2023_103751 crossref_primary_10_1016_j_memsci_2024_123148 crossref_primary_10_1021_acs_langmuir_4c04226 crossref_primary_10_1016_j_desal_2018_02_008 crossref_primary_10_1116_1_5090396 crossref_primary_10_1016_j_seppur_2024_130593 crossref_primary_10_1007_s10965_024_04112_2 |
Cites_doi | 10.2166/ws.2015.055 10.1016/j.memsci.2012.02.020 10.1016/j.apsusc.2012.03.049 10.1163/156856202320813800 10.1021/acs.jpcc.5b01649 10.1016/j.memsci.2015.07.025 10.1016/S0001-8686(02)00083-0 10.1016/j.memsci.2009.05.041 10.1039/C5TA08024J 10.1016/j.memsci.2014.04.032 10.1016/j.memsci.2007.06.002 10.1016/j.polymer.2010.08.022 10.1016/j.biomaterials.2008.08.021 10.1016/j.memsci.2010.10.046 10.1016/j.desal.2014.01.007 10.1126/science.175.4023.720 10.1016/j.memsci.2007.09.059 10.1002/adma.200305830 10.1163/156856202320253910 10.1002/adma.200290020 10.1002/anie.201400546 10.1038/nature06599 10.1021/cr800208y 10.1002/adma.201104849 10.1126/science.1147241 10.1002/pola.1993.080310426 10.1016/j.memsci.2006.08.035 10.1016/j.biomaterials.2009.05.058 10.1016/j.seppur.2015.08.006 10.1002/adma.200901407 10.1016/j.memsci.2007.01.024 10.1021/nn4011494 10.1016/j.memsci.2015.07.046 10.1039/C5RA18640D 10.1016/S0927-7765(02)00160-1 10.1039/C5NJ02030A 10.1038/nrm1102 10.1021/la300394c 10.1016/S1369-7021(05)71079-8 10.1021/la504907m 10.1021/am200055k 10.1016/j.memsci.2009.04.044 10.1016/j.memsci.2009.01.002 10.1002/adma.201304386 10.1016/S1369-7021(10)70058-4 10.1021/bm1009365 10.1039/c3py00565h 10.1016/S0927-7765(03)00069-9 10.1016/j.memsci.2014.11.004 10.1016/j.colsurfb.2010.01.025 10.1016/j.memsci.2013.04.012 10.1002/adfm.201201386 10.1002/(SICI)1521-4095(199911)11:16<1365::AID-ADMA1365>3.0.CO;2-F 10.1021/cm1031392 10.1016/j.memsci.2005.02.025 10.1021/ma0479060 10.1021/acsnano.5b03791 10.1163/016942410X520835 10.1002/adma.201404059 10.1016/j.biomaterials.2008.09.057 10.1016/S0927-796X(02)00004-9 10.1016/j.desal.2012.11.038 10.1016/S0376-7388(97)00263-9 10.1016/S0142-9612(00)00400-2 10.1016/0021-9797(91)90043-8 10.1016/j.desal.2014.01.006 10.1016/j.memsci.2013.11.043 10.1002/jbm.820251211 10.1016/j.memsci.2014.07.023 10.1021/la010384m 10.1016/S0927-7765(99)00152-6 10.1021/la062175d 10.1002/pi.2679 10.1021/ja054169u 10.1016/j.watres.2011.11.041 10.1021/jp057266i 10.1016/j.memsci.2015.03.040 10.1016/j.memsci.2010.06.048 10.1016/j.memsci.2010.01.015 10.1351/pac199466030491 10.1016/j.progpolymsci.2014.06.001 10.1016/j.polymer.2008.07.063 10.1016/j.memsci.2015.04.072 10.1039/C4TB01151A 10.1021/ma102065u 10.1016/j.memsci.2012.01.041 10.1016/j.desal.2011.06.063 10.1021/es980217h 10.1016/j.polymer.2006.01.084 10.1021/es1043694 10.1016/j.cis.2010.10.007 10.1021/cr020371t 10.1002/anie.201304060 10.1016/j.biomaterials.2005.07.006 10.1016/j.desal.2013.06.005 10.1021/cr500252u 10.1002/adma.201001215 10.1021/la500057j 10.1016/S0376-7388(99)00218-5 10.1021/cr200350v 10.1016/j.desal.2015.02.009 |
ContentType | Journal Article |
Copyright | 2016 Acta Materialia Inc. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Acta Materialia Inc. – notice: Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M |
DOI | 10.1016/j.actbio.2016.03.038 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Engineering Research Database Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 152 |
ExternalDocumentID | 27025359 10_1016_j_actbio_2016_03_038 S1742706116301349 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M |
ID | FETCH-LOGICAL-c531t-360c2dd5368c887153ce82398b84b37728316e58afddb516628952c2548728d63 |
IEDL.DBID | .~1 |
ISSN | 1742-7061 |
IngestDate | Fri Jul 11 16:43:38 EDT 2025 Fri Jul 11 08:23:14 EDT 2025 Thu Jul 10 18:37:27 EDT 2025 Mon Jul 21 06:02:51 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 Tue Jul 01 01:17:09 EDT 2025 Fri Feb 23 02:39:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biomimetic adhesion Zwitterionic materials Antifouling membrane surfaces Surface segregation Surface grafting |
Language | English |
License | Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-360c2dd5368c887153ce82398b84b37728316e58afddb516628952c2548728d63 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 27025359 |
PQID | 1807081824 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1835651283 proquest_miscellaneous_1811899769 proquest_miscellaneous_1807081824 pubmed_primary_27025359 crossref_primary_10_1016_j_actbio_2016_03_038 crossref_citationtrail_10_1016_j_actbio_2016_03_038 elsevier_sciencedirect_doi_10_1016_j_actbio_2016_03_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Acta biomaterialia |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Zhang, Mao, Rohani, Ching, Lu (b0295) 2015; 152 Bengani, Kou, Asatekin (b0490) 2015; 493 Mi, Zhao, Ji, An, Gao (b0500) 2015; 490 Al-Amoudi, Lovitt (b0025) 2007; 303 Ko, Kim, Park, Lee, Lee, Dal Park, Kim, Lee, Ahn (b0325) 2001; 22 Chen, Li, Zhao, Zheng (b0105) 2010; 51 Lejars, Margaillan, Bressy (b0175) 2012; 112 Ye, Arazawa, Zhu, Shankarraman, Malkin, Kimmel, Gamble, Ishihara, Federspiel, Wagner (b0475) 2015; 31 Yu, Cao, Kang, Liu, Li, Yuan (b0305) 2009; 342 Shannon, Bohn, Elimelech, Georgiadis, Marinas, Mayes (b0010) 2008; 452 Zhao, Zhu, Yi, Zhu, Xu (b0375) 2014; 470 Li, Cheng, Xue, Chen, Zhang, Jiang (b0435) 2008; 29 Jeon, Lee, Andrade, Gennes (b0265) 1991; 142 Bernstein, Belfer, Freger (b0260) 2011; 45 Ma, Su, Sun, Wang, Jiang (b0405) 2007; 292 Razi, Sawada, Ohmukai, Maruyama, Matsuyama (b0310) 2012; 401 Rana, Matsuura (b0160) 2010; 110 Weng, Ji, Zhao, An, Gao (b0495) 2015; 5 Zhao, Chen, Xuan, He (b0515) 2016; 40 Ulbricht (b0290) 2006; 47 Azari, Zou (b0460) 2012; 401–402 Singer, Nicolson (b0245) 1972; 175 Huang, Brault, Li, Yu, Jiang (b0280) 2012; 24 Fujimoto, Takebayashi, Inoue, Ikada (b0320) 1993; 31 Wu, Lin, Wang, Chen, Chang (b0255) 2012; 28 Chang, Chang, Shih, Wei, Hsiue (b0135) 2011; 3 Choi, Jung, Han, Tak, Kwon (b0285) 2015; 486 Vermette, Meagher (b0380) 2003; 28 Grande, Tria, Jiang, Ponnapati, Advincula (b0370) 2011; 44 Su, Cheng, Li, Jiang (b0055) 2009; 329 Feng, Brash, Zhu (b0090) 2006; 27 Anh, Azari, Zou (b0455) 2013; 312 Jones, O’Melia (b0030) 2000; 165 Zhu, Tian, Hou, Wang, Lin, Zhang, Liu, Van der Bruggen (b0510) 2016; 4 Lee, Dellatore, Miller, Messersmith (b0425) 2007; 318 Yang, Xu, Ozaydin-Ince, Wong, Gleason (b0480) 2011; 23 Tria, Grande, Ponnapati, Advincula (b0365) 2010; 11 Zhang, Chao, Chen, Jiang (b0115) 2006; 22 Jiang, Cao (b0040) 2010; 22 Li, Imbrogno, Belfort, Wang (b0385) 2015; 132 Xuan, Liu (b0075) 2009; 58 Magin, Cooper, Brennan (b0225) 2010; 13 Gombotz, Wang, Horbett, Hoffman (b0060) 1991; 25 Zhang, Yuan, Yuan, Shen, Lin (b0360) 2003; 30 Chen, Zheng, Li, Jiang (b0080) 2005; 127 Liu, Chen, Li, Lin, Shen (b0015) 2014; 2 Ma, Hyun, Stiller, Chilkoti (b0050) 2004; 16 Birkner, Ulbricht (b0315) 2015; 494 Ostuni, Chapman, Holmlin, Takayama, Whitesides (b0070) 2001; 17 Mi, Jiang (b0140) 2014; 53 Chu, Chen, Wang, Huang (b0335) 2002; 36 Feng, Li, Li, Li, Zhang, Zhai, Song, Liu, Jiang, Zhu (b0415) 2002; 14 Cheng, Li, Xue, Chen, Bryers, Jiang (b0100) 2009; 30 Liu, Chen, Wu, Shen, Lin (b0130) 2010; 350 Tourney, Ngwenya, Mosselmans, Tetley, Cowie (b0235) 2008; 247 Tang, Chong, Fane (b0210) 2011; 164 Rossi, Mustafa, Jackson, Burt, Horte, Scott, Kizhakkedathu (b0045) 2009; 30 Dalsin, Messersmith (b0430) 2005; 8 Nakajima, Fujishima, Hashimoto, Watanabe (b0400) 1999; 11 Edidin (b0240) 2003; 4 Stamatialis, Papenburg, Girones, Saiful, Bettahalli, Schmitmeier, Wessling (b0020) 2008; 308 Shen, Martinson, Wagner, Castner, Ratner, Horbett (b0065) 2002; 13 Shao, Jiang (b0145) 2015; 27 Zhou, Ren, Yang, Xu (b0445) 2014; 466 Buffle, Wilkinson, Stoll, Filella, Zhang (b0220) 1998; 32 Lewis (b0250) 2000; 18 Krishnamoorthy, Hakobyan, Ramstedt, Gautrot (b0185) 2014; 114 Leng, Hung, Sieggreen, Li, Jiang, Chen (b0110) 2015; 119 Matin, Khan, Zaidi, Boyce (b0005) 2011; 281 Lowe, McCormick (b0085) 2002; 102 Hu, Brittain (b0345) 2005; 38 McGinty, Brittain (b0340) 2008; 49 Kosmulski, Maczka, Jartych, Rosenholm (b0215) 2003; 103 Chang, Shih, Lai, Kung, Jiang (b0275) 2013; 23 Kang, Cao (b0170) 2012; 46 Zhang, Chen, Chang, Jiang (b0095) 2006; 110 He, Duan, Chen, Liu, Yang, Wang (b0470) 2015; 9 Chiang, Chang, Higuchi, Chen, Ruaan (b0355) 2009; 339 Sun, Su, Ma, Wang, Jiang (b0120) 2006; 285 Schlenoff (b0155) 2014; 30 Habimana, Semião, Casey (b0230) 2014; 454 Yuan, Huang, Li, Li, Shen (b0300) 2013; 4 Norde (b0195) 1994; 66 Zhao, Zhao, Jiang, Li, Fan, Zhu, Wu, Su, Yang, Pan, Shi (b0395) 2014; 39 Li, Li, Miao, Wang, Shao, Zhang (b0410) 2012; 258 Yang, Jang, Stocker, Gleason (b0150) 2014; 26 Banerjee, Pangule, Kane (b0180) 2011; 23 Zhu, Liu, Yu, Gao, Xue (b0450) 2015; 475 Chan, Chen, Surapathi, Taylor, Shao, Marand, Johnson (b0505) 2013; 7 Zhou, Lei, Li, Yan, Zhang (b0350) 2014; 337 Yang, Li, Li, Wan, Xu (b0125) 2010; 362 Zhao, Chen, Su, Zhu, Peng, Jiang, Kong, Li, Liu (b0420) 2013; 441 Azari, Zou (b0390) 2013; 324 Karkhanechi, Takagi, Matsuyama (b0440) 2014; 337 Shafi, Khan, Yang, Gleason (b0485) 2015; 362 Zhao, Shi, Luan, Song, Yang, Shi, Jin, Li, Yin, Stagnaro (b0035) 2011; 369 Song (b0190) 1998; 139 Park, Kwon, Kim, Cho (b0270) 2005; 258 Gao, Hu, Guo, Li (b0205) 2010; 77 Yang, Wan, Xu (b0165) 2011; 25 Yuan, Al, Zhang, Zang, Shen, Lin (b0330) 2002; 13 Abdelhamid, Elawady, Abd El-Ghaffar, Rabie, Larsen, Christensen (b0465) 2015; 15 Wei, Becherer, Angioletti-Uberti, Dzubiella, Wischke, Neffe, Lendlein, Ballauff, Haag (b0200) 2014; 53 Wei (10.1016/j.actbio.2016.03.038_b0200) 2014; 53 Ma (10.1016/j.actbio.2016.03.038_b0405) 2007; 292 Ko (10.1016/j.actbio.2016.03.038_b0325) 2001; 22 McGinty (10.1016/j.actbio.2016.03.038_b0340) 2008; 49 Shen (10.1016/j.actbio.2016.03.038_b0065) 2002; 13 Sun (10.1016/j.actbio.2016.03.038_b0120) 2006; 285 Kang (10.1016/j.actbio.2016.03.038_b0170) 2012; 46 Nakajima (10.1016/j.actbio.2016.03.038_b0400) 1999; 11 Dalsin (10.1016/j.actbio.2016.03.038_b0430) 2005; 8 Zhang (10.1016/j.actbio.2016.03.038_b0115) 2006; 22 Liu (10.1016/j.actbio.2016.03.038_b0130) 2010; 350 Jiang (10.1016/j.actbio.2016.03.038_b0040) 2010; 22 Chen (10.1016/j.actbio.2016.03.038_b0105) 2010; 51 Lejars (10.1016/j.actbio.2016.03.038_b0175) 2012; 112 Habimana (10.1016/j.actbio.2016.03.038_b0230) 2014; 454 Fujimoto (10.1016/j.actbio.2016.03.038_b0320) 1993; 31 Shafi (10.1016/j.actbio.2016.03.038_b0485) 2015; 362 Chen (10.1016/j.actbio.2016.03.038_b0080) 2005; 127 Tang (10.1016/j.actbio.2016.03.038_b0210) 2011; 164 Gombotz (10.1016/j.actbio.2016.03.038_b0060) 1991; 25 Park (10.1016/j.actbio.2016.03.038_b0270) 2005; 258 Karkhanechi (10.1016/j.actbio.2016.03.038_b0440) 2014; 337 Shannon (10.1016/j.actbio.2016.03.038_b0010) 2008; 452 Zhu (10.1016/j.actbio.2016.03.038_b0510) 2016; 4 Al-Amoudi (10.1016/j.actbio.2016.03.038_b0025) 2007; 303 Bengani (10.1016/j.actbio.2016.03.038_b0490) 2015; 493 Buffle (10.1016/j.actbio.2016.03.038_b0220) 1998; 32 Yang (10.1016/j.actbio.2016.03.038_b0125) 2010; 362 Anh (10.1016/j.actbio.2016.03.038_b0455) 2013; 312 Chan (10.1016/j.actbio.2016.03.038_b0505) 2013; 7 Yuan (10.1016/j.actbio.2016.03.038_b0330) 2002; 13 Su (10.1016/j.actbio.2016.03.038_b0055) 2009; 329 Schlenoff (10.1016/j.actbio.2016.03.038_b0155) 2014; 30 Mi (10.1016/j.actbio.2016.03.038_b0140) 2014; 53 Zhang (10.1016/j.actbio.2016.03.038_b0095) 2006; 110 Zhao (10.1016/j.actbio.2016.03.038_b0515) 2016; 40 Hu (10.1016/j.actbio.2016.03.038_b0345) 2005; 38 Huang (10.1016/j.actbio.2016.03.038_b0280) 2012; 24 Tria (10.1016/j.actbio.2016.03.038_b0365) 2010; 11 Liu (10.1016/j.actbio.2016.03.038_b0295) 2015; 152 Vermette (10.1016/j.actbio.2016.03.038_b0380) 2003; 28 Zhou (10.1016/j.actbio.2016.03.038_b0445) 2014; 466 Zhao (10.1016/j.actbio.2016.03.038_b0395) 2014; 39 Matin (10.1016/j.actbio.2016.03.038_b0005) 2011; 281 Bernstein (10.1016/j.actbio.2016.03.038_b0260) 2011; 45 Song (10.1016/j.actbio.2016.03.038_b0190) 1998; 139 Jones (10.1016/j.actbio.2016.03.038_b0030) 2000; 165 Chang (10.1016/j.actbio.2016.03.038_b0275) 2013; 23 Zhao (10.1016/j.actbio.2016.03.038_b0375) 2014; 470 Singer (10.1016/j.actbio.2016.03.038_b0245) 1972; 175 Li (10.1016/j.actbio.2016.03.038_b0385) 2015; 132 Li (10.1016/j.actbio.2016.03.038_b0410) 2012; 258 Ye (10.1016/j.actbio.2016.03.038_b0475) 2015; 31 Zhou (10.1016/j.actbio.2016.03.038_b0350) 2014; 337 Mi (10.1016/j.actbio.2016.03.038_b0500) 2015; 490 Chang (10.1016/j.actbio.2016.03.038_b0135) 2011; 3 Lewis (10.1016/j.actbio.2016.03.038_b0250) 2000; 18 Chu (10.1016/j.actbio.2016.03.038_b0335) 2002; 36 Kosmulski (10.1016/j.actbio.2016.03.038_b0215) 2003; 103 He (10.1016/j.actbio.2016.03.038_b0470) 2015; 9 Feng (10.1016/j.actbio.2016.03.038_b0090) 2006; 27 Azari (10.1016/j.actbio.2016.03.038_b0390) 2013; 324 Feng (10.1016/j.actbio.2016.03.038_b0415) 2002; 14 Yu (10.1016/j.actbio.2016.03.038_b0305) 2009; 342 Grande (10.1016/j.actbio.2016.03.038_b0370) 2011; 44 Chiang (10.1016/j.actbio.2016.03.038_b0355) 2009; 339 Tourney (10.1016/j.actbio.2016.03.038_b0235) 2008; 247 Choi (10.1016/j.actbio.2016.03.038_b0285) 2015; 486 Gao (10.1016/j.actbio.2016.03.038_b0205) 2010; 77 Leng (10.1016/j.actbio.2016.03.038_b0110) 2015; 119 Birkner (10.1016/j.actbio.2016.03.038_b0315) 2015; 494 Shao (10.1016/j.actbio.2016.03.038_b0145) 2015; 27 Yang (10.1016/j.actbio.2016.03.038_b0480) 2011; 23 Cheng (10.1016/j.actbio.2016.03.038_b0100) 2009; 30 Lowe (10.1016/j.actbio.2016.03.038_b0085) 2002; 102 Yang (10.1016/j.actbio.2016.03.038_b0165) 2011; 25 Razi (10.1016/j.actbio.2016.03.038_b0310) 2012; 401 Rana (10.1016/j.actbio.2016.03.038_b0160) 2010; 110 Azari (10.1016/j.actbio.2016.03.038_b0460) 2012; 401–402 Zhao (10.1016/j.actbio.2016.03.038_b0420) 2013; 441 Norde (10.1016/j.actbio.2016.03.038_b0195) 1994; 66 Jeon (10.1016/j.actbio.2016.03.038_b0265) 1991; 142 Ulbricht (10.1016/j.actbio.2016.03.038_b0290) 2006; 47 Magin (10.1016/j.actbio.2016.03.038_b0225) 2010; 13 Edidin (10.1016/j.actbio.2016.03.038_b0240) 2003; 4 Banerjee (10.1016/j.actbio.2016.03.038_b0180) 2011; 23 Ma (10.1016/j.actbio.2016.03.038_b0050) 2004; 16 Yuan (10.1016/j.actbio.2016.03.038_b0300) 2013; 4 Yang (10.1016/j.actbio.2016.03.038_b0150) 2014; 26 Zhao (10.1016/j.actbio.2016.03.038_b0035) 2011; 369 Li (10.1016/j.actbio.2016.03.038_b0435) 2008; 29 Xuan (10.1016/j.actbio.2016.03.038_b0075) 2009; 58 Krishnamoorthy (10.1016/j.actbio.2016.03.038_b0185) 2014; 114 Zhang (10.1016/j.actbio.2016.03.038_b0360) 2003; 30 Lee (10.1016/j.actbio.2016.03.038_b0425) 2007; 318 Weng (10.1016/j.actbio.2016.03.038_b0495) 2015; 5 Abdelhamid (10.1016/j.actbio.2016.03.038_b0465) 2015; 15 Liu (10.1016/j.actbio.2016.03.038_b0015) 2014; 2 Ostuni (10.1016/j.actbio.2016.03.038_b0070) 2001; 17 Zhu (10.1016/j.actbio.2016.03.038_b0450) 2015; 475 Stamatialis (10.1016/j.actbio.2016.03.038_b0020) 2008; 308 Rossi (10.1016/j.actbio.2016.03.038_b0045) 2009; 30 Wu (10.1016/j.actbio.2016.03.038_b0255) 2012; 28 |
References_xml | – volume: 25 start-page: 245 year: 2011 end-page: 260 ident: b0165 article-title: Surface engineering of microporous polypropylene membrane for antifouling: a mini-review publication-title: J. Adhes. Sci. Technol. – volume: 28 start-page: 153 year: 2003 end-page: 198 ident: b0380 article-title: Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms publication-title: Colloids Surf., B – volume: 15 start-page: 999 year: 2015 end-page: 1010 ident: b0465 article-title: Surface modification of reverse osmosis membranes with zwitterionic polymer to reduce biofouling publication-title: Water Sci. Technol. Water Supply – volume: 31 start-page: 1035 year: 1993 end-page: 1043 ident: b0320 article-title: Ozone-induced graft polymerization onto polymer surface publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 26 start-page: 1711 year: 2014 end-page: 1718 ident: b0150 article-title: Synergistic prevention of biofouling in seawater desalination by zwitterionic surfaces and low-level chlorination publication-title: Adv. Mater. – volume: 24 start-page: 1834 year: 2012 end-page: 1837 ident: b0280 article-title: Controlled hierarchical architecture in surface-initiated zwitterionic polymer brushes with structurally regulated functionalities publication-title: Adv. Mater. – volume: 51 start-page: 5283 year: 2010 end-page: 5293 ident: b0105 article-title: Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials publication-title: Polymer – volume: 22 start-page: 10072 year: 2006 end-page: 10077 ident: b0115 article-title: Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides publication-title: Langmuir – volume: 493 start-page: 755 year: 2015 end-page: 765 ident: b0490 article-title: Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity publication-title: J. Membr. Sci. – volume: 32 start-page: 2887 year: 1998 end-page: 2899 ident: b0220 article-title: A generalized description of aquatic colloidal interactions: the three-colloidal component approach publication-title: Environ. Sci. Technol. – volume: 350 start-page: 387 year: 2010 end-page: 394 ident: b0130 article-title: Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion publication-title: J. Membr. Sci. – volume: 164 start-page: 126 year: 2011 end-page: 143 ident: b0210 article-title: Colloidal interactions and fouling of NF and RO membranes: a review publication-title: Adv. Colloid Interface Sci. – volume: 494 start-page: 57 year: 2015 end-page: 67 ident: b0315 article-title: Ultrafiltration membranes with markedly different pH- and ion-responsivity by photografted zwitterionic polysulfobetain or polycarbobetain publication-title: J. Membr. Sci. – volume: 46 start-page: 584 year: 2012 end-page: 600 ident: b0170 article-title: Development of antifouling reverse osmosis membranes for water treatment: a review publication-title: Water Res. – volume: 312 start-page: 82 year: 2013 end-page: 87 ident: b0455 article-title: Coating zwitterionic amino acid L-DOPA to increase fouling resistance of forward osmosis membrane publication-title: Desalination – volume: 18 start-page: 261 year: 2000 end-page: 275 ident: b0250 article-title: Phosphorylcholine-based polymers and their use in the prevention of biofouling publication-title: Colloids Surf., B – volume: 53 start-page: 8004 year: 2014 end-page: 8031 ident: b0200 article-title: Protein interactions with polymer coatings and biomaterials publication-title: Angew. Chem., Int. Ed. – volume: 142 start-page: 149 year: 1991 end-page: 158 ident: b0265 article-title: Protein-surface interactions in the presence of polyethylene oxide publication-title: J. Colloid Interf. Sci. – volume: 281 start-page: 1 year: 2011 end-page: 16 ident: b0005 article-title: Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention publication-title: Desalination – volume: 30 start-page: 249 year: 2003 end-page: 257 ident: b0360 article-title: Chemical modification of cellulose membranes with sulfo ammonium zwitterionic vinyl monomer to improve hemocompatibility publication-title: Colloids Surf., B – volume: 9 start-page: 9188 year: 2015 end-page: 9198 ident: b0470 article-title: Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings: overcoming the imperative challenge of oil-water separation membranes publication-title: ACS Nano – volume: 49 start-page: 4350 year: 2008 end-page: 4357 ident: b0340 article-title: Hydrophilic surface modification of poly(vinyl chloride) film and tubing using physisorbed free radical grafting technique publication-title: Polymer – volume: 4 start-page: 5074 year: 2013 end-page: 5085 ident: b0300 article-title: Surface-initiated RAFT polymerization of sulfobetaine from cellulose membranes to improve hemocompatibility and antibiofouling property publication-title: Polym. Chem. – volume: 339 start-page: 151 year: 2009 end-page: 159 ident: b0355 article-title: Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property publication-title: J. Membr. Sci. – volume: 452 start-page: 301 year: 2008 end-page: 310 ident: b0010 article-title: Science and technology for water purification in the coming decades publication-title: Nature – volume: 102 start-page: 4177 year: 2002 end-page: 4189 ident: b0085 article-title: Synthesis and solution properties of zwitterionic polymers publication-title: Chem. Rev. – volume: 25 start-page: 1547 year: 1991 end-page: 1562 ident: b0060 article-title: Protein adsorption to poly(ethylene oxide) surfaces publication-title: J. Biomed. Mater. Res. – volume: 114 start-page: 10976 year: 2014 end-page: 11026 ident: b0185 article-title: Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings publication-title: Chem. Rev. – volume: 369 start-page: 5 year: 2011 end-page: 12 ident: b0035 article-title: Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer publication-title: J. Membr. Sci. – volume: 11 start-page: 1365 year: 1999 end-page: 1368 ident: b0400 article-title: Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate publication-title: Adv. Mater. – volume: 5 start-page: 98730 year: 2015 end-page: 98739 ident: b0495 article-title: Tailoring the structure of polyamide thin film composite membrane with zwitterions to achieve high water permeability and antifouling property publication-title: RSC Adv. – volume: 11 start-page: 3422 year: 2010 end-page: 3431 ident: b0365 article-title: Electrochemical deposition and surface-initiated RAFT polymerization: protein and cell-resistant PPEGMEMA polymer brushes publication-title: Biomacromolecules – volume: 22 start-page: 920 year: 2010 end-page: 932 ident: b0040 article-title: Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications publication-title: Adv. Mater. – volume: 258 start-page: 43 year: 2005 end-page: 54 ident: b0270 article-title: Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): characterizations, flux decline, and transport parameters publication-title: J. Membr. Sci. – volume: 23 start-page: 1100 year: 2013 end-page: 1110 ident: b0275 article-title: Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood publication-title: Adv. Funct. Mater. – volume: 36 start-page: 143 year: 2002 end-page: 206 ident: b0335 article-title: Plasma-surface modification of biomaterials publication-title: Mater. Sci. Eng., R – volume: 40 start-page: 441 year: 2016 end-page: 446 ident: b0515 article-title: Investigation of one-dimensional multi-functional zwitterionic Ag nanowires as a novel modifier for PVDF ultrafiltration membranes publication-title: New J. Chem. – volume: 39 start-page: 1668 year: 2014 end-page: 1720 ident: b0395 article-title: Biomimetic and bioinspired membranes: preparation and application publication-title: Prog. Polym. Sci. – volume: 13 start-page: 36 year: 2010 end-page: 44 ident: b0225 article-title: Non-toxic antifouling strategies publication-title: Mater. Today – volume: 303 start-page: 6 year: 2007 end-page: 28 ident: b0025 article-title: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency publication-title: J. Membr. Sci. – volume: 362 start-page: 93 year: 2015 end-page: 103 ident: b0485 article-title: Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling publication-title: Desalination – volume: 152 start-page: 55 year: 2015 end-page: 63 ident: b0295 article-title: Zwitterionic chitosan-silica-PVA hybrid ultrafiltration membranes for protein separation publication-title: Sep. Purif. Technol. – volume: 31 start-page: 2463 year: 2015 end-page: 2471 ident: b0475 article-title: Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs publication-title: Langmuir – volume: 22 start-page: 2115 year: 2001 end-page: 2123 ident: b0325 article-title: Immobilization of poly (ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation publication-title: Biomaterials – volume: 2 start-page: 7222 year: 2014 end-page: 7231 ident: b0015 article-title: Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane publication-title: J. Mater. Chem. B – volume: 30 start-page: 5234 year: 2009 end-page: 5240 ident: b0100 article-title: Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation publication-title: Biomaterials – volume: 23 start-page: 690 year: 2011 end-page: 718 ident: b0180 article-title: Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms publication-title: Adv. Mater. – volume: 486 start-page: 97 year: 2015 end-page: 105 ident: b0285 article-title: Surface modification of SWRO membranes using hydroxyl poly(oxyethylene) methacrylate and zwitterionic carboxylated polyethyleneimine publication-title: J. Membr. Sci. – volume: 342 start-page: 6 year: 2009 end-page: 13 ident: b0305 article-title: Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitterionic copolymer via UV-initiated polymerization publication-title: J. Membr. Sci. – volume: 401 start-page: 292 year: 2012 end-page: 299 ident: b0310 article-title: The improvement of antibiofouling efficiency of polyethersulfone membrane by functionalization with zwitterionic monomers publication-title: J. Membr. Sci. – volume: 3 start-page: 1228 year: 2011 end-page: 1237 ident: b0135 article-title: Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 966 year: 2011 end-page: 975 ident: b0370 article-title: Surface-grafted polymers from electropolymerized polythiophene RAFT agent publication-title: Macromolecules – volume: 45 start-page: 5973 year: 2011 end-page: 5980 ident: b0260 article-title: Bacterial attachment to RO membranes surface-modified by concentration-polarization-enhanced graft polymerization publication-title: Environ. Sci. Technol. – volume: 362 start-page: 255 year: 2010 end-page: 264 ident: b0125 article-title: Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling publication-title: J. Membr. Sci. – volume: 17 start-page: 5605 year: 2001 end-page: 5620 ident: b0070 article-title: A survey of structure-property relationships of surfaces that resist the adsorption of protein publication-title: Langmuir – volume: 132 year: 2015 ident: b0385 article-title: Making polymeric membranes antifouling via “grafting from” polymerization of zwitterions publication-title: J. Appl. Polym. Sci. – volume: 247 start-page: 1 year: 2008 end-page: 15 ident: b0235 article-title: The effect of extracellular polymers (EPS) on the proton adsorption characteristics of the thermophile Bacillus licheniformis S-86 publication-title: ChGeo – volume: 13 start-page: 367 year: 2002 end-page: 390 ident: b0065 article-title: PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies publication-title: J. Biomater. Sci., Polym. Ed. – volume: 119 start-page: 8775 year: 2015 end-page: 8780 ident: b0110 article-title: Probing the surface hydration of nonfouling zwitterionic and poly(ethylene glycol) materials with isotopic dilution spectroscopy publication-title: J. Phys. Chem. C – volume: 58 start-page: 1350 year: 2009 end-page: 1361 ident: b0075 article-title: Preparation, characterization and application of zwitterionic polymers and membranes: current developments and perspective publication-title: Polym. Int. – volume: 318 start-page: 426 year: 2007 end-page: 430 ident: b0425 article-title: Mussel-inspired surface chemistry for multifunctional coatings publication-title: Science – volume: 13 start-page: 1081 year: 2002 end-page: 1092 ident: b0330 article-title: Grafting sulfobetaine monomer onto the segmented poly(ether-urethane) surface to improve hemocompatibility publication-title: J. Biomater. Sci., Polym. Ed. – volume: 7 start-page: 5308 year: 2013 end-page: 5319 ident: b0505 article-title: Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination publication-title: ACS Nano – volume: 110 start-page: 10799 year: 2006 end-page: 10804 ident: b0095 article-title: Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings publication-title: J. Phys. Chem. B – volume: 308 start-page: 1 year: 2008 end-page: 34 ident: b0020 article-title: Medical applications of membranes: drug delivery, artificial organs and tissue engineering publication-title: J. Membr. Sci. – volume: 454 start-page: 82 year: 2014 end-page: 96 ident: b0230 article-title: The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes publication-title: J. Membr. Sci. – volume: 475 start-page: 469 year: 2015 end-page: 479 ident: b0450 article-title: Surface zwitterionization of hemocompatible poly(lactic acid) membranes for hemodiafiltration publication-title: J. Membr. Sci. – volume: 139 start-page: 183 year: 1998 end-page: 200 ident: b0190 article-title: Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling publication-title: J. Membr. Sci. – volume: 23 start-page: 1263 year: 2011 end-page: 1272 ident: b0480 article-title: Surface-tethered zwitterionic ultrathin antifouling coatings on reverse osmosis membranes by initiated chemical vapor deposition publication-title: Chem. Mater. – volume: 127 start-page: 14473 year: 2005 end-page: 14478 ident: b0080 article-title: Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials publication-title: J. Am. Chem. Soc. – volume: 285 start-page: 299 year: 2006 end-page: 305 ident: b0120 article-title: Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer publication-title: J. Membr. Sci. – volume: 466 start-page: 18 year: 2014 end-page: 25 ident: b0445 article-title: Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition publication-title: J. Membr. Sci. – volume: 30 start-page: 9625 year: 2014 end-page: 9636 ident: b0155 article-title: Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption publication-title: Langmuir – volume: 401–402 start-page: 68 year: 2012 end-page: 75 ident: b0460 article-title: Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance publication-title: J. Membr. Sci. – volume: 110 start-page: 2448 year: 2010 end-page: 2471 ident: b0160 article-title: Surface modifications for antifouling membranes publication-title: Chem. Rev. – volume: 38 start-page: 6592 year: 2005 end-page: 6597 ident: b0345 article-title: Surface grafting on polymer surface using physisorbed free radical initiators publication-title: Macromolecules – volume: 14 start-page: 1857 year: 2002 end-page: 1860 ident: b0415 article-title: Super-hydrophobic surfaces: from natural to artificial publication-title: Adv. Mater. – volume: 103 start-page: 57 year: 2003 end-page: 76 ident: b0215 article-title: Synthesis and characterization of goethite and goethite-hematite composite: experimental study and literature survey publication-title: Adv. Colloid Interface Sci. – volume: 329 start-page: 246 year: 2009 end-page: 252 ident: b0055 article-title: Preparation of antifouling ultrafiltration membranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers publication-title: J. Membr. Sci. – volume: 77 start-page: 206 year: 2010 end-page: 213 ident: b0205 article-title: Preparation of polymethacrylic acid-grafted HEMA/PVP microspheres and preliminary study on basic protein adsorption publication-title: Colloids Surf., B – volume: 165 start-page: 31 year: 2000 end-page: 46 ident: b0030 article-title: Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength publication-title: J. Membr. Sci. – volume: 27 start-page: 15 year: 2015 end-page: 26 ident: b0145 article-title: Molecular understanding and design of zwitterionic materials publication-title: Adv. Mater. – volume: 337 start-page: 23 year: 2014 end-page: 30 ident: b0440 article-title: Enhanced antibiofouling of RO membranes via polydopamine coating and polyzwitterion immobilization publication-title: Desalination – volume: 30 start-page: 638 year: 2009 end-page: 648 ident: b0045 article-title: In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators publication-title: Biomaterials – volume: 16 start-page: 338 year: 2004 end-page: 341 ident: b0050 article-title: “Non-fouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization publication-title: Adv. Mater. – volume: 53 start-page: 1746 year: 2014 end-page: 1754 ident: b0140 article-title: Integrated Antimicrobial and Nonfouling Zwitterionic Polymers publication-title: Angew. Chem., Int. Ed. – volume: 112 start-page: 4347 year: 2012 end-page: 4390 ident: b0175 article-title: Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings publication-title: Chem. Rev. – volume: 29 start-page: 4592 year: 2008 end-page: 4597 ident: b0435 article-title: Ultra low fouling zwitterionic polymers with a biomimetic adhesive group publication-title: Biomaterials – volume: 470 start-page: 148 year: 2014 end-page: 158 ident: b0375 article-title: Zwitterionic hydrogel thin films as antifouling surface layers of polyethersulfone ultrafiltration membranes anchored via reactive copolymer additive publication-title: J. Membr. Sci. – volume: 47 start-page: 2217 year: 2006 end-page: 2262 ident: b0290 article-title: Advanced functional polymer membranes publication-title: Polymer – volume: 66 start-page: 491 year: 1994 end-page: 496 ident: b0195 article-title: Protein adsorption at solid surfaces: a thermodynamic approach publication-title: Pure Appl. Chem. – volume: 490 start-page: 311 year: 2015 end-page: 320 ident: b0500 article-title: A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance publication-title: J. Membr. Sci. – volume: 175 start-page: 720 year: 1972 end-page: 731 ident: b0245 article-title: The fluid mosaic model of the structure of cell membranes publication-title: Science – volume: 27 start-page: 847 year: 2006 end-page: 855 ident: b0090 article-title: Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion publication-title: Biomaterials – volume: 337 start-page: 6 year: 2014 end-page: 15 ident: b0350 article-title: Antifouling, adsorption and reversible flux properties of zwitterionic grafted PVDF membrane prepared via physisorbed free radical polymerization publication-title: Desalination – volume: 292 start-page: 116 year: 2007 end-page: 124 ident: b0405 article-title: Preparation of protein-adsorption-resistant polyethersulfone ultrafiltration membranes through surface segregation of amphiphilic comb copolymer publication-title: J. Membr. Sci. – volume: 441 start-page: 93 year: 2013 end-page: 101 ident: b0420 article-title: Hierarchically engineered membrane surfaces with superior antifouling and self-cleaning properties publication-title: J. Membr. Sci. – volume: 4 start-page: 1980 year: 2016 end-page: 1990 ident: b0510 article-title: Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane publication-title: J. Mater. Chem. A – volume: 258 start-page: 6398 year: 2012 end-page: 6405 ident: b0410 article-title: Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive publication-title: Appl. Surf. Sci. – volume: 28 start-page: 7436 year: 2012 end-page: 7441 ident: b0255 article-title: Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance publication-title: Langmuir – volume: 324 start-page: 79 year: 2013 end-page: 86 ident: b0390 article-title: Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid L-cysteine publication-title: Desalination – volume: 4 start-page: 414 year: 2003 end-page: 418 ident: b0240 article-title: Timeline-lipids on the frontier: a century of cell-membrane bilayers publication-title: Nat. Rev. Mol. Cell Biol. – volume: 8 start-page: 38 year: 2005 end-page: 46 ident: b0430 article-title: Bioinspired antifouling polymers publication-title: Mater. Today – volume: 15 start-page: 999 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0465 article-title: Surface modification of reverse osmosis membranes with zwitterionic polymer to reduce biofouling publication-title: Water Sci. Technol. Water Supply doi: 10.2166/ws.2015.055 – volume: 401 start-page: 292 year: 2012 ident: 10.1016/j.actbio.2016.03.038_b0310 article-title: The improvement of antibiofouling efficiency of polyethersulfone membrane by functionalization with zwitterionic monomers publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.02.020 – volume: 258 start-page: 6398 year: 2012 ident: 10.1016/j.actbio.2016.03.038_b0410 article-title: Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.03.049 – volume: 13 start-page: 1081 year: 2002 ident: 10.1016/j.actbio.2016.03.038_b0330 article-title: Grafting sulfobetaine monomer onto the segmented poly(ether-urethane) surface to improve hemocompatibility publication-title: J. Biomater. Sci., Polym. Ed. doi: 10.1163/156856202320813800 – volume: 119 start-page: 8775 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0110 article-title: Probing the surface hydration of nonfouling zwitterionic and poly(ethylene glycol) materials with isotopic dilution spectroscopy publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b01649 – volume: 493 start-page: 755 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0490 article-title: Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.07.025 – volume: 103 start-page: 57 year: 2003 ident: 10.1016/j.actbio.2016.03.038_b0215 article-title: Synthesis and characterization of goethite and goethite-hematite composite: experimental study and literature survey publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(02)00083-0 – volume: 342 start-page: 6 year: 2009 ident: 10.1016/j.actbio.2016.03.038_b0305 article-title: Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitterionic copolymer via UV-initiated polymerization publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.05.041 – volume: 4 start-page: 1980 year: 2016 ident: 10.1016/j.actbio.2016.03.038_b0510 article-title: Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08024J – volume: 466 start-page: 18 year: 2014 ident: 10.1016/j.actbio.2016.03.038_b0445 article-title: Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.04.032 – volume: 303 start-page: 6 year: 2007 ident: 10.1016/j.actbio.2016.03.038_b0025 article-title: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.06.002 – volume: 51 start-page: 5283 year: 2010 ident: 10.1016/j.actbio.2016.03.038_b0105 article-title: Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials publication-title: Polymer doi: 10.1016/j.polymer.2010.08.022 – volume: 29 start-page: 4592 year: 2008 ident: 10.1016/j.actbio.2016.03.038_b0435 article-title: Ultra low fouling zwitterionic polymers with a biomimetic adhesive group publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.08.021 – volume: 369 start-page: 5 year: 2011 ident: 10.1016/j.actbio.2016.03.038_b0035 article-title: Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.10.046 – volume: 337 start-page: 23 year: 2014 ident: 10.1016/j.actbio.2016.03.038_b0440 article-title: Enhanced antibiofouling of RO membranes via polydopamine coating and polyzwitterion immobilization publication-title: Desalination doi: 10.1016/j.desal.2014.01.007 – volume: 175 start-page: 720 year: 1972 ident: 10.1016/j.actbio.2016.03.038_b0245 article-title: The fluid mosaic model of the structure of cell membranes publication-title: Science doi: 10.1126/science.175.4023.720 – volume: 308 start-page: 1 year: 2008 ident: 10.1016/j.actbio.2016.03.038_b0020 article-title: Medical applications of membranes: drug delivery, artificial organs and tissue engineering publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.09.059 – volume: 16 start-page: 338 year: 2004 ident: 10.1016/j.actbio.2016.03.038_b0050 article-title: “Non-fouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization publication-title: Adv. Mater. doi: 10.1002/adma.200305830 – volume: 13 start-page: 367 year: 2002 ident: 10.1016/j.actbio.2016.03.038_b0065 article-title: PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies publication-title: J. Biomater. Sci., Polym. Ed. doi: 10.1163/156856202320253910 – volume: 14 start-page: 1857 year: 2002 ident: 10.1016/j.actbio.2016.03.038_b0415 article-title: Super-hydrophobic surfaces: from natural to artificial publication-title: Adv. Mater. doi: 10.1002/adma.200290020 – volume: 53 start-page: 8004 year: 2014 ident: 10.1016/j.actbio.2016.03.038_b0200 article-title: Protein interactions with polymer coatings and biomaterials publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201400546 – volume: 452 start-page: 301 year: 2008 ident: 10.1016/j.actbio.2016.03.038_b0010 article-title: Science and technology for water purification in the coming decades publication-title: Nature doi: 10.1038/nature06599 – volume: 110 start-page: 2448 year: 2010 ident: 10.1016/j.actbio.2016.03.038_b0160 article-title: Surface modifications for antifouling membranes publication-title: Chem. Rev. doi: 10.1021/cr800208y – volume: 24 start-page: 1834 year: 2012 ident: 10.1016/j.actbio.2016.03.038_b0280 article-title: Controlled hierarchical architecture in surface-initiated zwitterionic polymer brushes with structurally regulated functionalities publication-title: Adv. Mater. doi: 10.1002/adma.201104849 – volume: 318 start-page: 426 year: 2007 ident: 10.1016/j.actbio.2016.03.038_b0425 article-title: Mussel-inspired surface chemistry for multifunctional coatings publication-title: Science doi: 10.1126/science.1147241 – volume: 31 start-page: 1035 year: 1993 ident: 10.1016/j.actbio.2016.03.038_b0320 article-title: Ozone-induced graft polymerization onto polymer surface publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.1993.080310426 – volume: 285 start-page: 299 year: 2006 ident: 10.1016/j.actbio.2016.03.038_b0120 article-title: Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.08.035 – volume: 30 start-page: 5234 year: 2009 ident: 10.1016/j.actbio.2016.03.038_b0100 article-title: Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.05.058 – volume: 152 start-page: 55 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0295 article-title: Zwitterionic chitosan-silica-PVA hybrid ultrafiltration membranes for protein separation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.08.006 – volume: 22 start-page: 920 year: 2010 ident: 10.1016/j.actbio.2016.03.038_b0040 article-title: Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications publication-title: Adv. Mater. doi: 10.1002/adma.200901407 – volume: 292 start-page: 116 year: 2007 ident: 10.1016/j.actbio.2016.03.038_b0405 article-title: Preparation of protein-adsorption-resistant polyethersulfone ultrafiltration membranes through surface segregation of amphiphilic comb copolymer publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.01.024 – volume: 7 start-page: 5308 year: 2013 ident: 10.1016/j.actbio.2016.03.038_b0505 article-title: Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination publication-title: ACS Nano doi: 10.1021/nn4011494 – volume: 494 start-page: 57 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0315 article-title: Ultrafiltration membranes with markedly different pH- and ion-responsivity by photografted zwitterionic polysulfobetain or polycarbobetain publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.07.046 – volume: 5 start-page: 98730 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0495 article-title: Tailoring the structure of polyamide thin film composite membrane with zwitterions to achieve high water permeability and antifouling property publication-title: RSC Adv. doi: 10.1039/C5RA18640D – volume: 28 start-page: 153 year: 2003 ident: 10.1016/j.actbio.2016.03.038_b0380 article-title: Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms publication-title: Colloids Surf., B doi: 10.1016/S0927-7765(02)00160-1 – volume: 40 start-page: 441 year: 2016 ident: 10.1016/j.actbio.2016.03.038_b0515 article-title: Investigation of one-dimensional multi-functional zwitterionic Ag nanowires as a novel modifier for PVDF ultrafiltration membranes publication-title: New J. Chem. doi: 10.1039/C5NJ02030A – volume: 4 start-page: 414 year: 2003 ident: 10.1016/j.actbio.2016.03.038_b0240 article-title: Timeline-lipids on the frontier: a century of cell-membrane bilayers publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1102 – volume: 28 start-page: 7436 year: 2012 ident: 10.1016/j.actbio.2016.03.038_b0255 article-title: Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance publication-title: Langmuir doi: 10.1021/la300394c – volume: 132 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0385 article-title: Making polymeric membranes antifouling via “grafting from” polymerization of zwitterions publication-title: J. Appl. Polym. Sci. – volume: 8 start-page: 38 year: 2005 ident: 10.1016/j.actbio.2016.03.038_b0430 article-title: Bioinspired antifouling polymers publication-title: Mater. Today doi: 10.1016/S1369-7021(05)71079-8 – volume: 31 start-page: 2463 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0475 article-title: Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs publication-title: Langmuir doi: 10.1021/la504907m – volume: 3 start-page: 1228 year: 2011 ident: 10.1016/j.actbio.2016.03.038_b0135 article-title: Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am200055k – volume: 339 start-page: 151 year: 2009 ident: 10.1016/j.actbio.2016.03.038_b0355 article-title: Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.04.044 – volume: 329 start-page: 246 year: 2009 ident: 10.1016/j.actbio.2016.03.038_b0055 article-title: Preparation of antifouling ultrafiltration membranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.01.002 – volume: 26 start-page: 1711 year: 2014 ident: 10.1016/j.actbio.2016.03.038_b0150 article-title: Synergistic prevention of biofouling in seawater desalination by zwitterionic surfaces and low-level chlorination publication-title: Adv. Mater. doi: 10.1002/adma.201304386 – volume: 13 start-page: 36 year: 2010 ident: 10.1016/j.actbio.2016.03.038_b0225 article-title: Non-toxic antifouling strategies publication-title: Mater. Today doi: 10.1016/S1369-7021(10)70058-4 – volume: 11 start-page: 3422 year: 2010 ident: 10.1016/j.actbio.2016.03.038_b0365 article-title: Electrochemical deposition and surface-initiated RAFT polymerization: protein and cell-resistant PPEGMEMA polymer brushes publication-title: Biomacromolecules doi: 10.1021/bm1009365 – volume: 4 start-page: 5074 year: 2013 ident: 10.1016/j.actbio.2016.03.038_b0300 article-title: Surface-initiated RAFT polymerization of sulfobetaine from cellulose membranes to improve hemocompatibility and antibiofouling property publication-title: Polym. Chem. doi: 10.1039/c3py00565h – volume: 30 start-page: 249 year: 2003 ident: 10.1016/j.actbio.2016.03.038_b0360 article-title: Chemical modification of cellulose membranes with sulfo ammonium zwitterionic vinyl monomer to improve hemocompatibility publication-title: Colloids Surf., B doi: 10.1016/S0927-7765(03)00069-9 – volume: 475 start-page: 469 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0450 article-title: Surface zwitterionization of hemocompatible poly(lactic acid) membranes for hemodiafiltration publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.11.004 – volume: 77 start-page: 206 year: 2010 ident: 10.1016/j.actbio.2016.03.038_b0205 article-title: Preparation of polymethacrylic acid-grafted HEMA/PVP microspheres and preliminary study on basic protein adsorption publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2010.01.025 – volume: 441 start-page: 93 year: 2013 ident: 10.1016/j.actbio.2016.03.038_b0420 article-title: Hierarchically engineered membrane surfaces with superior antifouling and self-cleaning properties publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.04.012 – volume: 23 start-page: 1100 year: 2013 ident: 10.1016/j.actbio.2016.03.038_b0275 article-title: Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201386 – volume: 11 start-page: 1365 year: 1999 ident: 10.1016/j.actbio.2016.03.038_b0400 article-title: Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(199911)11:16<1365::AID-ADMA1365>3.0.CO;2-F – volume: 23 start-page: 1263 year: 2011 ident: 10.1016/j.actbio.2016.03.038_b0480 article-title: Surface-tethered zwitterionic ultrathin antifouling coatings on reverse osmosis membranes by initiated chemical vapor deposition publication-title: Chem. Mater. doi: 10.1021/cm1031392 – volume: 258 start-page: 43 year: 2005 ident: 10.1016/j.actbio.2016.03.038_b0270 article-title: Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): characterizations, flux decline, and transport parameters publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.02.025 – volume: 38 start-page: 6592 year: 2005 ident: 10.1016/j.actbio.2016.03.038_b0345 article-title: Surface grafting on polymer surface using physisorbed free radical initiators publication-title: Macromolecules doi: 10.1021/ma0479060 – volume: 9 start-page: 9188 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0470 article-title: Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings: overcoming the imperative challenge of oil-water separation membranes publication-title: ACS Nano doi: 10.1021/acsnano.5b03791 – volume: 25 start-page: 245 year: 2011 ident: 10.1016/j.actbio.2016.03.038_b0165 article-title: Surface engineering of microporous polypropylene membrane for antifouling: a mini-review publication-title: J. Adhes. Sci. Technol. doi: 10.1163/016942410X520835 – volume: 27 start-page: 15 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0145 article-title: Molecular understanding and design of zwitterionic materials publication-title: Adv. Mater. doi: 10.1002/adma.201404059 – volume: 30 start-page: 638 year: 2009 ident: 10.1016/j.actbio.2016.03.038_b0045 article-title: In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.09.057 – volume: 36 start-page: 143 year: 2002 ident: 10.1016/j.actbio.2016.03.038_b0335 article-title: Plasma-surface modification of biomaterials publication-title: Mater. Sci. Eng., R doi: 10.1016/S0927-796X(02)00004-9 – volume: 312 start-page: 82 year: 2013 ident: 10.1016/j.actbio.2016.03.038_b0455 article-title: Coating zwitterionic amino acid L-DOPA to increase fouling resistance of forward osmosis membrane publication-title: Desalination doi: 10.1016/j.desal.2012.11.038 – volume: 139 start-page: 183 year: 1998 ident: 10.1016/j.actbio.2016.03.038_b0190 article-title: Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(97)00263-9 – volume: 22 start-page: 2115 year: 2001 ident: 10.1016/j.actbio.2016.03.038_b0325 article-title: Immobilization of poly (ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00400-2 – volume: 142 start-page: 149 year: 1991 ident: 10.1016/j.actbio.2016.03.038_b0265 article-title: Protein-surface interactions in the presence of polyethylene oxide publication-title: J. Colloid Interf. Sci. doi: 10.1016/0021-9797(91)90043-8 – volume: 337 start-page: 6 year: 2014 ident: 10.1016/j.actbio.2016.03.038_b0350 article-title: Antifouling, adsorption and reversible flux properties of zwitterionic grafted PVDF membrane prepared via physisorbed free radical polymerization publication-title: Desalination doi: 10.1016/j.desal.2014.01.006 – volume: 454 start-page: 82 year: 2014 ident: 10.1016/j.actbio.2016.03.038_b0230 article-title: The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.11.043 – volume: 25 start-page: 1547 year: 1991 ident: 10.1016/j.actbio.2016.03.038_b0060 article-title: Protein adsorption to poly(ethylene oxide) surfaces publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820251211 – volume: 470 start-page: 148 year: 2014 ident: 10.1016/j.actbio.2016.03.038_b0375 article-title: Zwitterionic hydrogel thin films as antifouling surface layers of polyethersulfone ultrafiltration membranes anchored via reactive copolymer additive publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.07.023 – volume: 17 start-page: 5605 year: 2001 ident: 10.1016/j.actbio.2016.03.038_b0070 article-title: A survey of structure-property relationships of surfaces that resist the adsorption of protein publication-title: Langmuir doi: 10.1021/la010384m – volume: 18 start-page: 261 year: 2000 ident: 10.1016/j.actbio.2016.03.038_b0250 article-title: Phosphorylcholine-based polymers and their use in the prevention of biofouling publication-title: Colloids Surf., B doi: 10.1016/S0927-7765(99)00152-6 – volume: 22 start-page: 10072 year: 2006 ident: 10.1016/j.actbio.2016.03.038_b0115 article-title: Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides publication-title: Langmuir doi: 10.1021/la062175d – volume: 58 start-page: 1350 year: 2009 ident: 10.1016/j.actbio.2016.03.038_b0075 article-title: Preparation, characterization and application of zwitterionic polymers and membranes: current developments and perspective publication-title: Polym. Int. doi: 10.1002/pi.2679 – volume: 127 start-page: 14473 year: 2005 ident: 10.1016/j.actbio.2016.03.038_b0080 article-title: Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054169u – volume: 46 start-page: 584 year: 2012 ident: 10.1016/j.actbio.2016.03.038_b0170 article-title: Development of antifouling reverse osmosis membranes for water treatment: a review publication-title: Water Res. doi: 10.1016/j.watres.2011.11.041 – volume: 110 start-page: 10799 year: 2006 ident: 10.1016/j.actbio.2016.03.038_b0095 article-title: Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings publication-title: J. Phys. Chem. B doi: 10.1021/jp057266i – volume: 486 start-page: 97 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0285 article-title: Surface modification of SWRO membranes using hydroxyl poly(oxyethylene) methacrylate and zwitterionic carboxylated polyethyleneimine publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.03.040 – volume: 362 start-page: 255 year: 2010 ident: 10.1016/j.actbio.2016.03.038_b0125 article-title: Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.06.048 – volume: 350 start-page: 387 year: 2010 ident: 10.1016/j.actbio.2016.03.038_b0130 article-title: Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.01.015 – volume: 66 start-page: 491 year: 1994 ident: 10.1016/j.actbio.2016.03.038_b0195 article-title: Protein adsorption at solid surfaces: a thermodynamic approach publication-title: Pure Appl. Chem. doi: 10.1351/pac199466030491 – volume: 39 start-page: 1668 year: 2014 ident: 10.1016/j.actbio.2016.03.038_b0395 article-title: Biomimetic and bioinspired membranes: preparation and application publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2014.06.001 – volume: 49 start-page: 4350 year: 2008 ident: 10.1016/j.actbio.2016.03.038_b0340 article-title: Hydrophilic surface modification of poly(vinyl chloride) film and tubing using physisorbed free radical grafting technique publication-title: Polymer doi: 10.1016/j.polymer.2008.07.063 – volume: 490 start-page: 311 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0500 article-title: A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.04.072 – volume: 2 start-page: 7222 year: 2014 ident: 10.1016/j.actbio.2016.03.038_b0015 article-title: Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01151A – volume: 44 start-page: 966 year: 2011 ident: 10.1016/j.actbio.2016.03.038_b0370 article-title: Surface-grafted polymers from electropolymerized polythiophene RAFT agent publication-title: Macromolecules doi: 10.1021/ma102065u – volume: 401–402 start-page: 68 year: 2012 ident: 10.1016/j.actbio.2016.03.038_b0460 article-title: Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.01.041 – volume: 281 start-page: 1 year: 2011 ident: 10.1016/j.actbio.2016.03.038_b0005 article-title: Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention publication-title: Desalination doi: 10.1016/j.desal.2011.06.063 – volume: 32 start-page: 2887 year: 1998 ident: 10.1016/j.actbio.2016.03.038_b0220 article-title: A generalized description of aquatic colloidal interactions: the three-colloidal component approach publication-title: Environ. Sci. Technol. doi: 10.1021/es980217h – volume: 247 start-page: 1 year: 2008 ident: 10.1016/j.actbio.2016.03.038_b0235 article-title: The effect of extracellular polymers (EPS) on the proton adsorption characteristics of the thermophile Bacillus licheniformis S-86 publication-title: ChGeo – volume: 47 start-page: 2217 year: 2006 ident: 10.1016/j.actbio.2016.03.038_b0290 article-title: Advanced functional polymer membranes publication-title: Polymer doi: 10.1016/j.polymer.2006.01.084 – volume: 45 start-page: 5973 year: 2011 ident: 10.1016/j.actbio.2016.03.038_b0260 article-title: Bacterial attachment to RO membranes surface-modified by concentration-polarization-enhanced graft polymerization publication-title: Environ. Sci. Technol. doi: 10.1021/es1043694 – volume: 164 start-page: 126 year: 2011 ident: 10.1016/j.actbio.2016.03.038_b0210 article-title: Colloidal interactions and fouling of NF and RO membranes: a review publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2010.10.007 – volume: 102 start-page: 4177 year: 2002 ident: 10.1016/j.actbio.2016.03.038_b0085 article-title: Synthesis and solution properties of zwitterionic polymers publication-title: Chem. Rev. doi: 10.1021/cr020371t – volume: 53 start-page: 1746 year: 2014 ident: 10.1016/j.actbio.2016.03.038_b0140 article-title: Integrated Antimicrobial and Nonfouling Zwitterionic Polymers publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201304060 – volume: 27 start-page: 847 year: 2006 ident: 10.1016/j.actbio.2016.03.038_b0090 article-title: Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.07.006 – volume: 324 start-page: 79 year: 2013 ident: 10.1016/j.actbio.2016.03.038_b0390 article-title: Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid L-cysteine publication-title: Desalination doi: 10.1016/j.desal.2013.06.005 – volume: 114 start-page: 10976 year: 2014 ident: 10.1016/j.actbio.2016.03.038_b0185 article-title: Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings publication-title: Chem. Rev. doi: 10.1021/cr500252u – volume: 23 start-page: 690 year: 2011 ident: 10.1016/j.actbio.2016.03.038_b0180 article-title: Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms publication-title: Adv. Mater. doi: 10.1002/adma.201001215 – volume: 30 start-page: 9625 year: 2014 ident: 10.1016/j.actbio.2016.03.038_b0155 article-title: Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption publication-title: Langmuir doi: 10.1021/la500057j – volume: 165 start-page: 31 year: 2000 ident: 10.1016/j.actbio.2016.03.038_b0030 article-title: Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(99)00218-5 – volume: 112 start-page: 4347 year: 2012 ident: 10.1016/j.actbio.2016.03.038_b0175 article-title: Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings publication-title: Chem. Rev. doi: 10.1021/cr200350v – volume: 362 start-page: 93 year: 2015 ident: 10.1016/j.actbio.2016.03.038_b0485 article-title: Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling publication-title: Desalination doi: 10.1016/j.desal.2015.02.009 |
SSID | ssj0038128 |
Score | 2.6361837 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric... Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with... UNLABELLEDMembrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 142 |
SubjectTerms | Animals Antifouling Antifouling coatings Antifouling membrane surfaces Biomimetic adhesion Biomimetic materials Coatings Construction materials Fouling Humans Membranes Membranes, Artificial Separation Surface grafting Surface Properties Surface segregation Zwitterionic materials |
Title | Zwitterionic materials for antifouling membrane surface construction |
URI | https://dx.doi.org/10.1016/j.actbio.2016.03.038 https://www.ncbi.nlm.nih.gov/pubmed/27025359 https://www.proquest.com/docview/1807081824 https://www.proquest.com/docview/1811899769 https://www.proquest.com/docview/1835651283 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfFsfJYLX2GZ3s9kcS7VUxV60ULwsyWZXIjYttsWbv92ZPKqCVhBySZgNyexk9pvsfDOEnAPo5lxDdBLR2EKAwkI35Ia72lqs1RKYQCB3-G4g-kN-M_JHNdKtuDCYVln6_sKn5966vNIqtdmapmnrHrA0hft5gCjaWGQPGew8QCu_eF-mecCClPdXRWEXpSv6XJ7jFel5nCIF0BN5qVNkqfy8PP0GP_NlqLdFNkv86HSKR9wmNZPtkI0vVQV3yeXjW4ocHfzTqh1ApIWROQBPnQhzg7AJevbkjM0YQuXMOLPFq420cfTks5zsHhn2rh66fbdsluBq-IzmLhNtTZPEZ0JqcBzgyLSRWNwvljxmgKEl84TxZWSTJPY9ISDS8qmmGLFQmQi2T-rZJDOHxAmlNSyy2qchoi0ZGZvv7mHzPozPGoRVOlK6rCSODS1eVJUy9qwKzSrUrGozOGSDuMtR06KSxh_yQaV-9c0iFDj7P0aeVbOl4GPBHRBQ5mQxU54EDwcQhfJVMhBzhYDSwlUyDIAwKIM1yEFhDst3QoKfz_zw6N_Pf0zW8axIMzwhdZh5cwrQZx43c9tukrXO9W1_8AG4DQDy |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHxJvxLBLXamvTZOlxAqaOPS6AhLhEbZqiItZNbBN_H7sPHhIPCamn1qla13E-N_ZngHME3Z6nMToJ3SjBAIX5tu8Zz9ZJQlwtbdMWVDs8HIngzru-5_dLcFHVwlBaZen7C5-ee-vyTLPUZnOaps0bxNIu3s9BRNEikr1lqBM7Fa9BvdPrB6PKIeOalLdYJXmbBlQVdHmaV6jnUUpVgI7I2U6pUOX7FeonBJqvRN0NWC8hpNUpnnITlky2BWufiAW34fLhNaUyHfrZqi0EpYWdWYhQrZDSg6gPevZojc0Yo-XMWLPFSxJqY-nJB6PsDtx1r24vArvsl2BrnElzm4mWduOYMyE1-g70ZdpI4veLpBcxhNGSOcJwGSZxHHFHCAy2uKtdClpcGQu2C7Vskpl9sHyZGBYmmrs-AS4ZmiTf4KP-fRSiNYBVOlK6JBOnnhbPqsoae1KFZhVpVrUYHrIB9vuoaUGm8Yd8u1K_-mIUCv39HyPPqq-lcL7QJggqc7KYKUeik0OU4nq_yWDY5SNQ83-TYYiFURmsAXuFOby_E9X4ccb9g38__ymsBLfDgRr0Rv1DWKUrRdbhEdTQCswxIqF5dFJa-huEHwOj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zwitterionic+materials+for+antifouling+membrane+surface+construction&rft.jtitle=Acta+biomaterialia&rft.au=He%2C+Mingrui&rft.au=Gao%2C+Kang&rft.au=Zhou%2C+Linjie&rft.au=Jiao%2C+Zhiwei&rft.date=2016-08-01&rft.issn=1742-7061&rft.volume=40&rft.spage=142&rft.epage=152&rft_id=info:doi/10.1016%2Fj.actbio.2016.03.038&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |