Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy

•Jarosite precipitate hindered the recovery of valuable minerals.•Under 600–700°C, jarosite decomposed and released the encapsulated valuable minerals.•The bared valuable minerals were easily collected by flotation process.•The new process was promising for dealing with jarosite residues. Hazardous...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 278; pp. 49 - 54
Main Authors Han, Haisheng, Sun, Wei, Hu, Yuehua, Jia, Baoliang, Tang, Honghu
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 15.08.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0304-3894
1873-3336
1873-3336
DOI10.1016/j.jhazmat.2014.05.091

Cover

Abstract •Jarosite precipitate hindered the recovery of valuable minerals.•Under 600–700°C, jarosite decomposed and released the encapsulated valuable minerals.•The bared valuable minerals were easily collected by flotation process.•The new process was promising for dealing with jarosite residues. Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3kg/t and 81.60%, respectively. At 600–700°C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO·Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy.
AbstractList •Jarosite precipitate hindered the recovery of valuable minerals.•Under 600–700°C, jarosite decomposed and released the encapsulated valuable minerals.•The bared valuable minerals were easily collected by flotation process.•The new process was promising for dealing with jarosite residues. Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3kg/t and 81.60%, respectively. At 600–700°C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO·Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy.
Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy.
Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3kg/t and 81.60%, respectively. At 600-700 degree C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO.Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy.
Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy.Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy.
Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3kg/t and 81.60%, respectively. At 600–700°C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO·Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy.
Author Sun, Wei
Jia, Baoliang
Han, Haisheng
Hu, Yuehua
Tang, Honghu
Author_xml – sequence: 1
  givenname: Haisheng
  surname: Han
  fullname: Han, Haisheng
– sequence: 2
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
  email: hanhaishengjingji@126.com
– sequence: 3
  givenname: Yuehua
  surname: Hu
  fullname: Hu, Yuehua
– sequence: 4
  givenname: Baoliang
  surname: Jia
  fullname: Jia, Baoliang
– sequence: 5
  givenname: Honghu
  surname: Tang
  fullname: Tang, Honghu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28672810$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24953935$$D View this record in MEDLINE/PubMed
BookMark eNqFkktr3DAUhUVJaSZpf0KLN4Vu7OphyRZdlBD6gkA37VoosjQjI0upJAc8v76aeEKhG6-uFt-5OtxzrsCFD14D8BbBBkHEPo7NeJDHSeYGQ9Q2kDaQoxdgh_qO1IQQdgF2kMC2Jj1vL8FVSiOEEHW0fQUuccsp4YTuwHLj904nm3Ul_VAl6x51rKJWocylMjFM1ShjeCJiAYdZpyofYpj3hyoGmbL1-1U7O2MHe5TZBl8bF_LTq7K-OlqvqsMylG06S-fmuF9eg5dGuqTfnOc1-P31y6_b7_Xdz28_bm_uakUJyjWmhBKIODacG3yvB8MgG4jmBCPT9wZp1krTcUqHnkiDGUO447pjsFO87yS5Bh_WvQ8x_Cnms5hsUto56XWYk8Cns7QIIbKJItZiAnFfPG2jxUWHIGPbKG054m3PTwbendH5ftKDeIh2knERz3kV4P0ZkElJZ6L0yqZ_XM863CNYuE8rp0p0KWojlF3jyFFaJxAUpxaJUZxbJE4tEpCK0qKipv-pnz_Y0n1edbrk-Wh1FElZ7ZUebGlUFkOwGxv-Akpp5L8
CODEN JHMAD9
CitedBy_id crossref_primary_10_1016_j_hydromet_2020_105493
crossref_primary_10_1007_s10973_023_12508_3
crossref_primary_10_1016_S1003_6326_23_66351_4
crossref_primary_10_1016_j_jece_2023_109362
crossref_primary_10_1016_j_mineng_2019_106115
crossref_primary_10_3390_min13010048
crossref_primary_10_1016_j_jclepro_2021_127224
crossref_primary_10_1016_j_jclepro_2018_08_096
crossref_primary_10_3390_met12050802
crossref_primary_10_1016_j_chemosphere_2022_135421
crossref_primary_10_1007_s11663_019_01517_z
crossref_primary_10_3390_min11030267
crossref_primary_10_1007_s10973_018_7441_2
crossref_primary_10_1007_s42461_023_00832_z
crossref_primary_10_1016_j_hydromet_2024_106396
crossref_primary_10_3390_ijerph17030814
crossref_primary_10_1016_S1003_6326_22_65851_5
crossref_primary_10_2298_JMMB231219015J
crossref_primary_10_1016_j_hydromet_2023_106150
crossref_primary_10_1007_s11663_022_02640_0
crossref_primary_10_1016_j_hydromet_2015_10_004
crossref_primary_10_1016_j_hydromet_2016_10_025
crossref_primary_10_1016_j_psep_2024_11_071
crossref_primary_10_1021_acsestengg_2c00035
crossref_primary_10_1007_s12613_018_1555_1
crossref_primary_10_1016_S1003_6326_21_65643_1
crossref_primary_10_1016_j_hydromet_2020_105523
crossref_primary_10_1021_acssuschemeng_8b05938
crossref_primary_10_1016_j_msec_2016_04_061
crossref_primary_10_1016_j_scitotenv_2020_141930
crossref_primary_10_1007_s11998_018_0098_8
crossref_primary_10_1016_j_mineng_2021_107250
crossref_primary_10_1007_s11771_020_4569_6
crossref_primary_10_1016_j_wasman_2023_10_026
crossref_primary_10_3390_met14010073
crossref_primary_10_1016_j_clet_2021_100214
crossref_primary_10_1016_j_jes_2023_12_011
crossref_primary_10_1016_j_jhazmat_2022_130498
crossref_primary_10_1021_acssuschemeng_8b06142
crossref_primary_10_3390_met8100744
crossref_primary_10_1080_00084433_2023_2257569
crossref_primary_10_1016_j_psep_2024_10_117
crossref_primary_10_3390_met14080954
crossref_primary_10_1016_j_cjche_2024_04_004
crossref_primary_10_1016_S1003_6326_23_66350_2
crossref_primary_10_1016_j_saa_2024_123982
crossref_primary_10_1016_j_jenvman_2023_118221
crossref_primary_10_1016_j_hydromet_2019_01_017
crossref_primary_10_1016_j_jclepro_2018_09_152
crossref_primary_10_3390_min13091148
crossref_primary_10_1016_j_jclepro_2020_121468
crossref_primary_10_1016_j_apsusc_2024_159685
crossref_primary_10_1016_j_matpr_2022_12_178
crossref_primary_10_1007_s11663_015_0526_4
crossref_primary_10_1007_s11837_019_03526_4
crossref_primary_10_1016_j_fuel_2024_132717
crossref_primary_10_1080_00084433_2016_1242972
crossref_primary_10_1016_j_jenvman_2021_113052
crossref_primary_10_1371_journal_pone_0120966
crossref_primary_10_3390_min6030092
crossref_primary_10_1016_j_mineng_2020_106420
crossref_primary_10_1016_S1003_6326_24_66705_1
crossref_primary_10_1007_s11837_022_05601_9
crossref_primary_10_1016_j_mineng_2021_107164
crossref_primary_10_1016_j_seppur_2023_124283
crossref_primary_10_3390_app12073590
crossref_primary_10_1016_j_jhazmat_2019_121664
crossref_primary_10_1016_j_jtice_2018_11_021
crossref_primary_10_1007_s11837_024_06825_7
crossref_primary_10_1039_D0RA00277A
crossref_primary_10_1016_j_colsurfa_2019_124032
crossref_primary_10_1016_j_oregeorev_2024_106307
crossref_primary_10_1016_j_hydromet_2021_105565
crossref_primary_10_1016_j_scitotenv_2019_136334
crossref_primary_10_1016_j_psep_2020_07_042
crossref_primary_10_1007_s11837_018_3149_9
crossref_primary_10_1016_j_jiec_2017_11_042
crossref_primary_10_1515_gps_2017_0079
crossref_primary_10_1016_j_biombioe_2024_107539
crossref_primary_10_1016_j_jallcom_2017_03_195
crossref_primary_10_1007_s10973_019_08480_6
crossref_primary_10_1016_j_ceja_2020_100023
crossref_primary_10_1016_j_hydromet_2022_105907
crossref_primary_10_1080_00084433_2022_2095140
crossref_primary_10_1016_j_cej_2024_157509
crossref_primary_10_2298_JMMB230519030S
crossref_primary_10_1016_j_jes_2021_10_006
Cites_doi 10.1016/j.hydromet.2010.10.014
10.1016/j.jhazmat.2006.04.054
10.1016/0304-386X(92)90110-L
10.1016/j.mineng.2004.10.014
10.1016/j.hydromet.2009.10.011
10.1179/cmq.1984.23.2.147
10.1016/0304-386X(83)90016-6
10.1016/j.matchar.2010.09.005
10.1016/j.jhazmat.2011.05.049
ContentType Journal Article
Copyright 2014 Elsevier B.V.
2015 INIST-CNRS
Copyright © 2014 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7ST
7U7
C1K
SOI
7QQ
7SR
7SU
8BQ
8FD
FR3
JG9
KR7
7S9
L.6
DOI 10.1016/j.jhazmat.2014.05.091
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Environment Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Ceramic Abstracts
Engineered Materials Abstracts
Environmental Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Environmental Engineering Abstracts
Ceramic Abstracts
Engineering Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
Toxicology Abstracts
MEDLINE - Academic
AGRICOLA
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
Applied Sciences
EISSN 1873-3336
EndPage 54
ExternalDocumentID 24953935
28672810
10_1016_j_jhazmat_2014_05_091
S0304389414004464
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
IQODW
UAO
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7ST
7U7
C1K
SOI
7QQ
7SR
7SU
8BQ
8FD
FR3
JG9
KR7
7S9
L.6
ID FETCH-LOGICAL-c531t-253530192f99f2bedf606d3e9321f88f1e64af7955d83af2661279e7607c987a3
IEDL.DBID AIKHN
ISSN 0304-3894
1873-3336
IngestDate Thu Sep 04 21:48:02 EDT 2025
Thu Sep 04 21:35:56 EDT 2025
Fri Sep 05 04:00:37 EDT 2025
Fri Sep 05 04:10:00 EDT 2025
Mon Jul 21 05:28:24 EDT 2025
Wed Apr 02 07:37:53 EDT 2025
Tue Jul 01 00:50:32 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Fri Feb 23 02:39:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Roasting
Jarosite residues
Metal recovery
Zinc hydrometallurgy
Sulfidization-flotation
Scanning electron microscopy
Flotation
Recovery metals
X ray spectrometry
Differential thermal analysis
Sulfurization
Sulfates
Collector
Hydrometallurgy
Language English
License CC BY 4.0
Copyright © 2014 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-253530192f99f2bedf606d3e9321f88f1e64af7955d83af2661279e7607c987a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24953935
PQID 1549194893
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2000141113
proquest_miscellaneous_1642302825
proquest_miscellaneous_1627971066
proquest_miscellaneous_1549194893
pubmed_primary_24953935
pascalfrancis_primary_28672810
crossref_citationtrail_10_1016_j_jhazmat_2014_05_091
crossref_primary_10_1016_j_jhazmat_2014_05_091
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2014_05_091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-15
PublicationDateYYYYMMDD 2014-08-15
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Pappu, Mohini, Shyam (bib0055) 2006; 137
Rashchi, Dashti, Arabpour-Yazdi, Abdizadeh (bib0065) 2005; 18
Asokan, Saxena, Asolekar (bib0060) 2010; 61
Acharya, Anand, Das (bib0010) 1992; 31
Dutrizac, Chen (bib0005) 1984; 23
Erdem, Özverdi (bib0035) 2011; 105
Özverdİ, Erdem (bib0030) 2010; 100
Dutrizac, Dinardo (bib0025) 1983; 11
Ning, Chen (bib0020) 1997; 7
Asokan, Saxena, Asolekar (bib0050) 2006; 137
Ju, Zhang, Zhang, Xue, Wang (bib0015) 2011; 192
Dutrizac (bib0040) 1982; 10
Dutrizac (bib0045) 1982; 35
Ning (10.1016/j.jhazmat.2014.05.091_bib0020) 1997; 7
Dutrizac (10.1016/j.jhazmat.2014.05.091_bib0045) 1982; 35
Erdem (10.1016/j.jhazmat.2014.05.091_bib0035) 2011; 105
Özverdİ (10.1016/j.jhazmat.2014.05.091_bib0030) 2010; 100
Asokan (10.1016/j.jhazmat.2014.05.091_bib0060) 2010; 61
Dutrizac (10.1016/j.jhazmat.2014.05.091_bib0005) 1984; 23
Acharya (10.1016/j.jhazmat.2014.05.091_bib0010) 1992; 31
Pappu (10.1016/j.jhazmat.2014.05.091_bib0055) 2006; 137
Asokan (10.1016/j.jhazmat.2014.05.091_bib0050) 2006; 137
Dutrizac (10.1016/j.jhazmat.2014.05.091_bib0025) 1983; 11
Dutrizac (10.1016/j.jhazmat.2014.05.091_bib0040) 1982; 10
Ju (10.1016/j.jhazmat.2014.05.091_bib0015) 2011; 192
Rashchi (10.1016/j.jhazmat.2014.05.091_bib0065) 2005; 18
References_xml – volume: 11
  start-page: 61
  year: 1983
  end-page: 78
  ident: bib0025
  article-title: The co-precipitation of copper and zinc with lead jarosite
  publication-title: Hydrometallurgy
– volume: 105
  start-page: 270
  year: 2011
  end-page: 276
  ident: bib0035
  article-title: Environmental risk assessment and stabilization/solidification of zinc extraction residue: II. Stabilization/solidification
  publication-title: Hydrometallurgy
– volume: 35
  start-page: A70
  year: 1982
  ident: bib0045
  article-title: Jarosite-type compounds and their application in the metallurgical industry
  publication-title: J. Metals
– volume: 137
  start-page: 1589
  year: 2006
  end-page: 1599
  ident: bib0055
  article-title: Hazardous jarosite use in advance non-hazardous product for engineering application
  publication-title: J. Hazard. Mater.
– volume: 192
  start-page: 554
  year: 2011
  end-page: 558
  ident: bib0015
  article-title: Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy
  publication-title: J. Hazard. Mater.
– volume: 61
  start-page: 1342
  year: 2010
  end-page: 1355
  ident: bib0060
  article-title: Recycling hazardous jarosite waste using coal combustion residues
  publication-title: Mater. Charact.
– volume: 137
  start-page: 1589
  year: 2006
  end-page: 1599
  ident: bib0050
  article-title: Hazardous jarosite use in developing non-hazardous product for engineering application
  publication-title: J. Hazard. Mater.
– volume: 7
  start-page: 56
  year: 1997
  end-page: 58
  ident: bib0020
  article-title: Recovery of zinc and indium from jarosite residues
  publication-title: Chin. J. Nonferrous Metals (China)
– volume: 10
  start-page: 125
  year: 1982
  end-page: 169
  ident: bib0040
  article-title: The behavior of impurities during jarosite precipitation
  publication-title: Hydrometall. Process Fundam.
– volume: 100
  start-page: 103
  year: 2010
  end-page: 109
  ident: bib0030
  article-title: Environmental risk assessment and stabilization/solidification of zinc extraction residue: I. Environmental risk assessment
  publication-title: Hydrometallurgy
– volume: 18
  start-page: 205
  year: 2005
  end-page: 212
  ident: bib0065
  article-title: Anglesite flotation: a study for lead recovery from zinc leach residue
  publication-title: Miner. Eng.
– volume: 23
  start-page: 147
  year: 1984
  end-page: 157
  ident: bib0005
  article-title: A mineralogical study of the jarosite phase formed during the autoclave leaching of zinc concentrate
  publication-title: Can. Metall. Quart.
– volume: 31
  start-page: 101
  year: 1992
  end-page: 110
  ident: bib0010
  article-title: Iron rejection through jarosite precipitation during acid pressure leaching of zinc leach residue
  publication-title: Hydrometallurgy
– volume: 105
  start-page: 270
  year: 2011
  ident: 10.1016/j.jhazmat.2014.05.091_bib0035
  article-title: Environmental risk assessment and stabilization/solidification of zinc extraction residue: II. Stabilization/solidification
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2010.10.014
– volume: 137
  start-page: 1589
  year: 2006
  ident: 10.1016/j.jhazmat.2014.05.091_bib0055
  article-title: Hazardous jarosite use in advance non-hazardous product for engineering application
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.04.054
– volume: 31
  start-page: 101
  year: 1992
  ident: 10.1016/j.jhazmat.2014.05.091_bib0010
  article-title: Iron rejection through jarosite precipitation during acid pressure leaching of zinc leach residue
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(92)90110-L
– volume: 18
  start-page: 205
  year: 2005
  ident: 10.1016/j.jhazmat.2014.05.091_bib0065
  article-title: Anglesite flotation: a study for lead recovery from zinc leach residue
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2004.10.014
– volume: 100
  start-page: 103
  year: 2010
  ident: 10.1016/j.jhazmat.2014.05.091_bib0030
  article-title: Environmental risk assessment and stabilization/solidification of zinc extraction residue: I. Environmental risk assessment
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2009.10.011
– volume: 23
  start-page: 147
  year: 1984
  ident: 10.1016/j.jhazmat.2014.05.091_bib0005
  article-title: A mineralogical study of the jarosite phase formed during the autoclave leaching of zinc concentrate
  publication-title: Can. Metall. Quart.
  doi: 10.1179/cmq.1984.23.2.147
– volume: 11
  start-page: 61
  year: 1983
  ident: 10.1016/j.jhazmat.2014.05.091_bib0025
  article-title: The co-precipitation of copper and zinc with lead jarosite
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(83)90016-6
– volume: 137
  start-page: 1589
  year: 2006
  ident: 10.1016/j.jhazmat.2014.05.091_bib0050
  article-title: Hazardous jarosite use in developing non-hazardous product for engineering application
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.04.054
– volume: 7
  start-page: 56
  year: 1997
  ident: 10.1016/j.jhazmat.2014.05.091_bib0020
  article-title: Recovery of zinc and indium from jarosite residues
  publication-title: Chin. J. Nonferrous Metals (China)
– volume: 35
  start-page: A70
  year: 1982
  ident: 10.1016/j.jhazmat.2014.05.091_bib0045
  article-title: Jarosite-type compounds and their application in the metallurgical industry
  publication-title: J. Metals
– volume: 61
  start-page: 1342
  year: 2010
  ident: 10.1016/j.jhazmat.2014.05.091_bib0060
  article-title: Recycling hazardous jarosite waste using coal combustion residues
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2010.09.005
– volume: 192
  start-page: 554
  year: 2011
  ident: 10.1016/j.jhazmat.2014.05.091_bib0015
  article-title: Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.05.049
– volume: 10
  start-page: 125
  year: 1982
  ident: 10.1016/j.jhazmat.2014.05.091_bib0040
  article-title: The behavior of impurities during jarosite precipitation
  publication-title: Hydrometall. Process Fundam.
SSID ssj0001754
Score 2.4438446
Snippet •Jarosite precipitate hindered the recovery of valuable minerals.•Under 600–700°C, jarosite decomposed and released the encapsulated valuable minerals.•The...
Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 49
SubjectTerms anglesite
Applied sciences
Chemical engineering
collectors
Decomposition
encapsulation
energy-dispersive X-ray analysis
Exact sciences and technology
Ferric Compounds - chemistry
ferrimagnetic materials
Flotation
hematite
Hot Temperature
Jarosite
Jarosite residues
lead
Lead - chemistry
Metal recovery
Metallurgy
Minerals
Pollution
Recovery
Recycling - methods
Residues
Roasting
scanning electron microscopy
Silver
Silver - chemistry
sodium sulfide
Solid-solid systems
Sulfates - chemistry
Sulfides - chemistry
Sulfidization-flotation
thermal analysis
Zinc
Zinc - chemistry
Zinc hydrometallurgy
zinc oxide
zinc sulfate
Title Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy
URI https://dx.doi.org/10.1016/j.jhazmat.2014.05.091
https://www.ncbi.nlm.nih.gov/pubmed/24953935
https://www.proquest.com/docview/1549194893
https://www.proquest.com/docview/1627971066
https://www.proquest.com/docview/1642302825
https://www.proquest.com/docview/2000141113
Volume 278
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbZzaWllDZ9bR-LCr1617Ys2TouoWH7yqUN5CZkWUq8GHvZB2Vz6G_vjC1vmsMm0JOx0SAxI2m-8bwI-QSHKJZGp2DkCBMkzMogK1IZwFcXA0I3ucVs5B_nYn6RfL3kl0fktM-FwbBKf_d3d3p7W_svU8_N6bIspz_RqQfqNomS1iuZDMhxzKTgQ3I8-_Jtfr6_kEFDdlWk0AkABLeJPNPFZHGtbwAbYpBX0tbwlNEhFfVkqdfAONd1vDgMSVvVdPaMPPWYks66ZT8nR7Y-IY__qTR4Qgbf9e8XZDerrypsBGCprgu6LjEsmqJNDM8dxVQTutCrph0BdnhZwLzUt_Khq0avMUi6o91Wrix8EmfgqqZz6dOypjdlbej1ri2EANC-2q6udi_JxdnnX6fzwPdeCAycyk0Qc8YZwj8nQWi5LRxYOgWIksWRyzIXWZFol0rOi4xph2o-TqVNRZgamaWavSLDuqntG0KFtnnIuDU8NGCtWilMKEyhM5bnYP0VI5L07FbGFybH_hiV6iPQFspLSaGUVMgVSGlEJnuyZVeZ4yGCrJelurPFFGiPh0jHd2S_nzDORBpnUTgiH_vNoOB8otNF17bZrhWWwIsklvi5Z4wA3gHUE-K-MQB820zjw2Pi1uIF7QVzve525O1KMZBYMv72_7nwjjzCN_yjHvH3ZLhZbe0HgGSbfEwGkz_R2B-8v7o3N5w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJemhLKW362j5SFXr1rm09bB1DaNi2m1yaQG5ClqXEi7GXfRA2h_z2zviRbQ6bQE8GeYTMjKT5xvMi5DscolhZk4CRI23AmVNBmicqgFEfA0K3mcNs5JNTOT7nvy7ExQ456nNhMKyyu_vbO725rbuRUcfN0awoRn_QqQfqlke88UryXfKEC5ZgXN_wdhPnAfqxrSGFLgAg36TxjKbD6ZW5AWSIIV68qeCpom0K6sXMLIBtvu13sR2QNorp-BV52SFKeth-9Guy46p98vyfOoP7ZHdirt-Q9WF1WWIbAEdNldNFgUHRFC1ieK4pJprQqZnXDQVY4UUO69KukQ-d12aBIdLt3FXpi7xL4Qx8WbcOfVpU9KaoLL1aN2UQANiXq_nl-i05P_5xdjQOus4LgYUzuQxiwQRD8OcViCxzuQc7JwdBsjjyaeojJ7nxiRIiT5nxqOTjRLlEholVaWLYO7JX1ZX7QKg0LguZcFaEFmxVp6QNpc1NyrIMbL98QHjPbm27suTYHaPUffzZVHdS0iglHQoNUhqQ4d20WVuX47EJaS9LfW-DadAdj009uCf7uwXjVCZxGoUD8q3fDBpOJ7pcTOXq1UJjAbxIYYGfB2gk8A6AnpQP0QDsbfKMt9PEjb0LugvWet_uyM2XYhixYuLj_3PhK3k6PjuZ6MnP09-fyDN8g__WI_GZ7C3nK_cFwNkyO2gO319pkjhn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anglesite+and+silver+recovery+from+jarosite+residues+through+roasting+and+sulfidization-flotation+in+zinc+hydrometallurgy&rft.jtitle=Journal+of+hazardous+materials&rft.au=Han%2C+Haisheng&rft.au=Sun%2C+Wei&rft.au=Hu%2C+Yuehua&rft.au=Jia%2C+Baoliang&rft.date=2014-08-15&rft.issn=0304-3894&rft.volume=278&rft.spage=49&rft.epage=54&rft_id=info:doi/10.1016%2Fj.jhazmat.2014.05.091&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon