Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy
•Jarosite precipitate hindered the recovery of valuable minerals.•Under 600–700°C, jarosite decomposed and released the encapsulated valuable minerals.•The bared valuable minerals were easily collected by flotation process.•The new process was promising for dealing with jarosite residues. Hazardous...
Saved in:
Published in | Journal of hazardous materials Vol. 278; pp. 49 - 54 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
15.08.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0304-3894 1873-3336 1873-3336 |
DOI | 10.1016/j.jhazmat.2014.05.091 |
Cover
Abstract | •Jarosite precipitate hindered the recovery of valuable minerals.•Under 600–700°C, jarosite decomposed and released the encapsulated valuable minerals.•The bared valuable minerals were easily collected by flotation process.•The new process was promising for dealing with jarosite residues.
Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3kg/t and 81.60%, respectively. At 600–700°C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO·Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. |
---|---|
AbstractList | •Jarosite precipitate hindered the recovery of valuable minerals.•Under 600–700°C, jarosite decomposed and released the encapsulated valuable minerals.•The bared valuable minerals were easily collected by flotation process.•The new process was promising for dealing with jarosite residues.
Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3kg/t and 81.60%, respectively. At 600–700°C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO·Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3kg/t and 81.60%, respectively. At 600-700 degree C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO.Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy.Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3kg/t and 81.60%, respectively. At 600–700°C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO·Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. |
Author | Sun, Wei Jia, Baoliang Han, Haisheng Hu, Yuehua Tang, Honghu |
Author_xml | – sequence: 1 givenname: Haisheng surname: Han fullname: Han, Haisheng – sequence: 2 givenname: Wei surname: Sun fullname: Sun, Wei email: hanhaishengjingji@126.com – sequence: 3 givenname: Yuehua surname: Hu fullname: Hu, Yuehua – sequence: 4 givenname: Baoliang surname: Jia fullname: Jia, Baoliang – sequence: 5 givenname: Honghu surname: Tang fullname: Tang, Honghu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28672810$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24953935$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktr3DAUhUVJaSZpf0KLN4Vu7OphyRZdlBD6gkA37VoosjQjI0upJAc8v76aeEKhG6-uFt-5OtxzrsCFD14D8BbBBkHEPo7NeJDHSeYGQ9Q2kDaQoxdgh_qO1IQQdgF2kMC2Jj1vL8FVSiOEEHW0fQUuccsp4YTuwHLj904nm3Ul_VAl6x51rKJWocylMjFM1ShjeCJiAYdZpyofYpj3hyoGmbL1-1U7O2MHe5TZBl8bF_LTq7K-OlqvqsMylG06S-fmuF9eg5dGuqTfnOc1-P31y6_b7_Xdz28_bm_uakUJyjWmhBKIODacG3yvB8MgG4jmBCPT9wZp1krTcUqHnkiDGUO447pjsFO87yS5Bh_WvQ8x_Cnms5hsUto56XWYk8Cns7QIIbKJItZiAnFfPG2jxUWHIGPbKG054m3PTwbendH5ftKDeIh2knERz3kV4P0ZkElJZ6L0yqZ_XM863CNYuE8rp0p0KWojlF3jyFFaJxAUpxaJUZxbJE4tEpCK0qKipv-pnz_Y0n1edbrk-Wh1FElZ7ZUebGlUFkOwGxv-Akpp5L8 |
CODEN | JHMAD9 |
CitedBy_id | crossref_primary_10_1016_j_hydromet_2020_105493 crossref_primary_10_1007_s10973_023_12508_3 crossref_primary_10_1016_S1003_6326_23_66351_4 crossref_primary_10_1016_j_jece_2023_109362 crossref_primary_10_1016_j_mineng_2019_106115 crossref_primary_10_3390_min13010048 crossref_primary_10_1016_j_jclepro_2021_127224 crossref_primary_10_1016_j_jclepro_2018_08_096 crossref_primary_10_3390_met12050802 crossref_primary_10_1016_j_chemosphere_2022_135421 crossref_primary_10_1007_s11663_019_01517_z crossref_primary_10_3390_min11030267 crossref_primary_10_1007_s10973_018_7441_2 crossref_primary_10_1007_s42461_023_00832_z crossref_primary_10_1016_j_hydromet_2024_106396 crossref_primary_10_3390_ijerph17030814 crossref_primary_10_1016_S1003_6326_22_65851_5 crossref_primary_10_2298_JMMB231219015J crossref_primary_10_1016_j_hydromet_2023_106150 crossref_primary_10_1007_s11663_022_02640_0 crossref_primary_10_1016_j_hydromet_2015_10_004 crossref_primary_10_1016_j_hydromet_2016_10_025 crossref_primary_10_1016_j_psep_2024_11_071 crossref_primary_10_1021_acsestengg_2c00035 crossref_primary_10_1007_s12613_018_1555_1 crossref_primary_10_1016_S1003_6326_21_65643_1 crossref_primary_10_1016_j_hydromet_2020_105523 crossref_primary_10_1021_acssuschemeng_8b05938 crossref_primary_10_1016_j_msec_2016_04_061 crossref_primary_10_1016_j_scitotenv_2020_141930 crossref_primary_10_1007_s11998_018_0098_8 crossref_primary_10_1016_j_mineng_2021_107250 crossref_primary_10_1007_s11771_020_4569_6 crossref_primary_10_1016_j_wasman_2023_10_026 crossref_primary_10_3390_met14010073 crossref_primary_10_1016_j_clet_2021_100214 crossref_primary_10_1016_j_jes_2023_12_011 crossref_primary_10_1016_j_jhazmat_2022_130498 crossref_primary_10_1021_acssuschemeng_8b06142 crossref_primary_10_3390_met8100744 crossref_primary_10_1080_00084433_2023_2257569 crossref_primary_10_1016_j_psep_2024_10_117 crossref_primary_10_3390_met14080954 crossref_primary_10_1016_j_cjche_2024_04_004 crossref_primary_10_1016_S1003_6326_23_66350_2 crossref_primary_10_1016_j_saa_2024_123982 crossref_primary_10_1016_j_jenvman_2023_118221 crossref_primary_10_1016_j_hydromet_2019_01_017 crossref_primary_10_1016_j_jclepro_2018_09_152 crossref_primary_10_3390_min13091148 crossref_primary_10_1016_j_jclepro_2020_121468 crossref_primary_10_1016_j_apsusc_2024_159685 crossref_primary_10_1016_j_matpr_2022_12_178 crossref_primary_10_1007_s11663_015_0526_4 crossref_primary_10_1007_s11837_019_03526_4 crossref_primary_10_1016_j_fuel_2024_132717 crossref_primary_10_1080_00084433_2016_1242972 crossref_primary_10_1016_j_jenvman_2021_113052 crossref_primary_10_1371_journal_pone_0120966 crossref_primary_10_3390_min6030092 crossref_primary_10_1016_j_mineng_2020_106420 crossref_primary_10_1016_S1003_6326_24_66705_1 crossref_primary_10_1007_s11837_022_05601_9 crossref_primary_10_1016_j_mineng_2021_107164 crossref_primary_10_1016_j_seppur_2023_124283 crossref_primary_10_3390_app12073590 crossref_primary_10_1016_j_jhazmat_2019_121664 crossref_primary_10_1016_j_jtice_2018_11_021 crossref_primary_10_1007_s11837_024_06825_7 crossref_primary_10_1039_D0RA00277A crossref_primary_10_1016_j_colsurfa_2019_124032 crossref_primary_10_1016_j_oregeorev_2024_106307 crossref_primary_10_1016_j_hydromet_2021_105565 crossref_primary_10_1016_j_scitotenv_2019_136334 crossref_primary_10_1016_j_psep_2020_07_042 crossref_primary_10_1007_s11837_018_3149_9 crossref_primary_10_1016_j_jiec_2017_11_042 crossref_primary_10_1515_gps_2017_0079 crossref_primary_10_1016_j_biombioe_2024_107539 crossref_primary_10_1016_j_jallcom_2017_03_195 crossref_primary_10_1007_s10973_019_08480_6 crossref_primary_10_1016_j_ceja_2020_100023 crossref_primary_10_1016_j_hydromet_2022_105907 crossref_primary_10_1080_00084433_2022_2095140 crossref_primary_10_1016_j_cej_2024_157509 crossref_primary_10_2298_JMMB230519030S crossref_primary_10_1016_j_jes_2021_10_006 |
Cites_doi | 10.1016/j.hydromet.2010.10.014 10.1016/j.jhazmat.2006.04.054 10.1016/0304-386X(92)90110-L 10.1016/j.mineng.2004.10.014 10.1016/j.hydromet.2009.10.011 10.1179/cmq.1984.23.2.147 10.1016/0304-386X(83)90016-6 10.1016/j.matchar.2010.09.005 10.1016/j.jhazmat.2011.05.049 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. 2015 INIST-CNRS Copyright © 2014 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7ST 7U7 C1K SOI 7QQ 7SR 7SU 8BQ 8FD FR3 JG9 KR7 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2014.05.091 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Environment Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts Ceramic Abstracts Engineered Materials Abstracts Environmental Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Toxicology Abstracts Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Environmental Engineering Abstracts Ceramic Abstracts Engineering Research Database METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Toxicology Abstracts MEDLINE - Academic AGRICOLA Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law Applied Sciences |
EISSN | 1873-3336 |
EndPage | 54 |
ExternalDocumentID | 24953935 28672810 10_1016_j_jhazmat_2014_05_091 S0304389414004464 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- SCE SEN SEW SSH T9H TAE VH1 WUQ IQODW UAO CGR CUY CVF ECM EFKBS EIF NPM 7X8 7ST 7U7 C1K SOI 7QQ 7SR 7SU 8BQ 8FD FR3 JG9 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c531t-253530192f99f2bedf606d3e9321f88f1e64af7955d83af2661279e7607c987a3 |
IEDL.DBID | AIKHN |
ISSN | 0304-3894 1873-3336 |
IngestDate | Thu Sep 04 21:48:02 EDT 2025 Thu Sep 04 21:35:56 EDT 2025 Fri Sep 05 04:00:37 EDT 2025 Fri Sep 05 04:10:00 EDT 2025 Mon Jul 21 05:28:24 EDT 2025 Wed Apr 02 07:37:53 EDT 2025 Tue Jul 01 00:50:32 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Fri Feb 23 02:39:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Roasting Jarosite residues Metal recovery Zinc hydrometallurgy Sulfidization-flotation Scanning electron microscopy Flotation Recovery metals X ray spectrometry Differential thermal analysis Sulfurization Sulfates Collector Hydrometallurgy |
Language | English |
License | CC BY 4.0 Copyright © 2014 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-253530192f99f2bedf606d3e9321f88f1e64af7955d83af2661279e7607c987a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24953935 |
PQID | 1549194893 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000141113 proquest_miscellaneous_1642302825 proquest_miscellaneous_1627971066 proquest_miscellaneous_1549194893 pubmed_primary_24953935 pascalfrancis_primary_28672810 crossref_citationtrail_10_1016_j_jhazmat_2014_05_091 crossref_primary_10_1016_j_jhazmat_2014_05_091 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2014_05_091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-15 |
PublicationDateYYYYMMDD | 2014-08-15 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Pappu, Mohini, Shyam (bib0055) 2006; 137 Rashchi, Dashti, Arabpour-Yazdi, Abdizadeh (bib0065) 2005; 18 Asokan, Saxena, Asolekar (bib0060) 2010; 61 Acharya, Anand, Das (bib0010) 1992; 31 Dutrizac, Chen (bib0005) 1984; 23 Erdem, Özverdi (bib0035) 2011; 105 Özverdİ, Erdem (bib0030) 2010; 100 Dutrizac, Dinardo (bib0025) 1983; 11 Ning, Chen (bib0020) 1997; 7 Asokan, Saxena, Asolekar (bib0050) 2006; 137 Ju, Zhang, Zhang, Xue, Wang (bib0015) 2011; 192 Dutrizac (bib0040) 1982; 10 Dutrizac (bib0045) 1982; 35 Ning (10.1016/j.jhazmat.2014.05.091_bib0020) 1997; 7 Dutrizac (10.1016/j.jhazmat.2014.05.091_bib0045) 1982; 35 Erdem (10.1016/j.jhazmat.2014.05.091_bib0035) 2011; 105 Özverdİ (10.1016/j.jhazmat.2014.05.091_bib0030) 2010; 100 Asokan (10.1016/j.jhazmat.2014.05.091_bib0060) 2010; 61 Dutrizac (10.1016/j.jhazmat.2014.05.091_bib0005) 1984; 23 Acharya (10.1016/j.jhazmat.2014.05.091_bib0010) 1992; 31 Pappu (10.1016/j.jhazmat.2014.05.091_bib0055) 2006; 137 Asokan (10.1016/j.jhazmat.2014.05.091_bib0050) 2006; 137 Dutrizac (10.1016/j.jhazmat.2014.05.091_bib0025) 1983; 11 Dutrizac (10.1016/j.jhazmat.2014.05.091_bib0040) 1982; 10 Ju (10.1016/j.jhazmat.2014.05.091_bib0015) 2011; 192 Rashchi (10.1016/j.jhazmat.2014.05.091_bib0065) 2005; 18 |
References_xml | – volume: 11 start-page: 61 year: 1983 end-page: 78 ident: bib0025 article-title: The co-precipitation of copper and zinc with lead jarosite publication-title: Hydrometallurgy – volume: 105 start-page: 270 year: 2011 end-page: 276 ident: bib0035 article-title: Environmental risk assessment and stabilization/solidification of zinc extraction residue: II. Stabilization/solidification publication-title: Hydrometallurgy – volume: 35 start-page: A70 year: 1982 ident: bib0045 article-title: Jarosite-type compounds and their application in the metallurgical industry publication-title: J. Metals – volume: 137 start-page: 1589 year: 2006 end-page: 1599 ident: bib0055 article-title: Hazardous jarosite use in advance non-hazardous product for engineering application publication-title: J. Hazard. Mater. – volume: 192 start-page: 554 year: 2011 end-page: 558 ident: bib0015 article-title: Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy publication-title: J. Hazard. Mater. – volume: 61 start-page: 1342 year: 2010 end-page: 1355 ident: bib0060 article-title: Recycling hazardous jarosite waste using coal combustion residues publication-title: Mater. Charact. – volume: 137 start-page: 1589 year: 2006 end-page: 1599 ident: bib0050 article-title: Hazardous jarosite use in developing non-hazardous product for engineering application publication-title: J. Hazard. Mater. – volume: 7 start-page: 56 year: 1997 end-page: 58 ident: bib0020 article-title: Recovery of zinc and indium from jarosite residues publication-title: Chin. J. Nonferrous Metals (China) – volume: 10 start-page: 125 year: 1982 end-page: 169 ident: bib0040 article-title: The behavior of impurities during jarosite precipitation publication-title: Hydrometall. Process Fundam. – volume: 100 start-page: 103 year: 2010 end-page: 109 ident: bib0030 article-title: Environmental risk assessment and stabilization/solidification of zinc extraction residue: I. Environmental risk assessment publication-title: Hydrometallurgy – volume: 18 start-page: 205 year: 2005 end-page: 212 ident: bib0065 article-title: Anglesite flotation: a study for lead recovery from zinc leach residue publication-title: Miner. Eng. – volume: 23 start-page: 147 year: 1984 end-page: 157 ident: bib0005 article-title: A mineralogical study of the jarosite phase formed during the autoclave leaching of zinc concentrate publication-title: Can. Metall. Quart. – volume: 31 start-page: 101 year: 1992 end-page: 110 ident: bib0010 article-title: Iron rejection through jarosite precipitation during acid pressure leaching of zinc leach residue publication-title: Hydrometallurgy – volume: 105 start-page: 270 year: 2011 ident: 10.1016/j.jhazmat.2014.05.091_bib0035 article-title: Environmental risk assessment and stabilization/solidification of zinc extraction residue: II. Stabilization/solidification publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2010.10.014 – volume: 137 start-page: 1589 year: 2006 ident: 10.1016/j.jhazmat.2014.05.091_bib0055 article-title: Hazardous jarosite use in advance non-hazardous product for engineering application publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.04.054 – volume: 31 start-page: 101 year: 1992 ident: 10.1016/j.jhazmat.2014.05.091_bib0010 article-title: Iron rejection through jarosite precipitation during acid pressure leaching of zinc leach residue publication-title: Hydrometallurgy doi: 10.1016/0304-386X(92)90110-L – volume: 18 start-page: 205 year: 2005 ident: 10.1016/j.jhazmat.2014.05.091_bib0065 article-title: Anglesite flotation: a study for lead recovery from zinc leach residue publication-title: Miner. Eng. doi: 10.1016/j.mineng.2004.10.014 – volume: 100 start-page: 103 year: 2010 ident: 10.1016/j.jhazmat.2014.05.091_bib0030 article-title: Environmental risk assessment and stabilization/solidification of zinc extraction residue: I. Environmental risk assessment publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2009.10.011 – volume: 23 start-page: 147 year: 1984 ident: 10.1016/j.jhazmat.2014.05.091_bib0005 article-title: A mineralogical study of the jarosite phase formed during the autoclave leaching of zinc concentrate publication-title: Can. Metall. Quart. doi: 10.1179/cmq.1984.23.2.147 – volume: 11 start-page: 61 year: 1983 ident: 10.1016/j.jhazmat.2014.05.091_bib0025 article-title: The co-precipitation of copper and zinc with lead jarosite publication-title: Hydrometallurgy doi: 10.1016/0304-386X(83)90016-6 – volume: 137 start-page: 1589 year: 2006 ident: 10.1016/j.jhazmat.2014.05.091_bib0050 article-title: Hazardous jarosite use in developing non-hazardous product for engineering application publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.04.054 – volume: 7 start-page: 56 year: 1997 ident: 10.1016/j.jhazmat.2014.05.091_bib0020 article-title: Recovery of zinc and indium from jarosite residues publication-title: Chin. J. Nonferrous Metals (China) – volume: 35 start-page: A70 year: 1982 ident: 10.1016/j.jhazmat.2014.05.091_bib0045 article-title: Jarosite-type compounds and their application in the metallurgical industry publication-title: J. Metals – volume: 61 start-page: 1342 year: 2010 ident: 10.1016/j.jhazmat.2014.05.091_bib0060 article-title: Recycling hazardous jarosite waste using coal combustion residues publication-title: Mater. Charact. doi: 10.1016/j.matchar.2010.09.005 – volume: 192 start-page: 554 year: 2011 ident: 10.1016/j.jhazmat.2014.05.091_bib0015 article-title: Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.05.049 – volume: 10 start-page: 125 year: 1982 ident: 10.1016/j.jhazmat.2014.05.091_bib0040 article-title: The behavior of impurities during jarosite precipitation publication-title: Hydrometall. Process Fundam. |
SSID | ssj0001754 |
Score | 2.4438446 |
Snippet | •Jarosite precipitate hindered the recovery of valuable minerals.•Under 600–700°C, jarosite decomposed and released the encapsulated valuable minerals.•The... Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 49 |
SubjectTerms | anglesite Applied sciences Chemical engineering collectors Decomposition encapsulation energy-dispersive X-ray analysis Exact sciences and technology Ferric Compounds - chemistry ferrimagnetic materials Flotation hematite Hot Temperature Jarosite Jarosite residues lead Lead - chemistry Metal recovery Metallurgy Minerals Pollution Recovery Recycling - methods Residues Roasting scanning electron microscopy Silver Silver - chemistry sodium sulfide Solid-solid systems Sulfates - chemistry Sulfides - chemistry Sulfidization-flotation thermal analysis Zinc Zinc - chemistry Zinc hydrometallurgy zinc oxide zinc sulfate |
Title | Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy |
URI | https://dx.doi.org/10.1016/j.jhazmat.2014.05.091 https://www.ncbi.nlm.nih.gov/pubmed/24953935 https://www.proquest.com/docview/1549194893 https://www.proquest.com/docview/1627971066 https://www.proquest.com/docview/1642302825 https://www.proquest.com/docview/2000141113 |
Volume | 278 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbZzaWllDZ9bR-LCr1617Ys2TouoWH7yqUN5CZkWUq8GHvZB2Vz6G_vjC1vmsMm0JOx0SAxI2m-8bwI-QSHKJZGp2DkCBMkzMogK1IZwFcXA0I3ucVs5B_nYn6RfL3kl0fktM-FwbBKf_d3d3p7W_svU8_N6bIspz_RqQfqNomS1iuZDMhxzKTgQ3I8-_Jtfr6_kEFDdlWk0AkABLeJPNPFZHGtbwAbYpBX0tbwlNEhFfVkqdfAONd1vDgMSVvVdPaMPPWYks66ZT8nR7Y-IY__qTR4Qgbf9e8XZDerrypsBGCprgu6LjEsmqJNDM8dxVQTutCrph0BdnhZwLzUt_Khq0avMUi6o91Wrix8EmfgqqZz6dOypjdlbej1ri2EANC-2q6udi_JxdnnX6fzwPdeCAycyk0Qc8YZwj8nQWi5LRxYOgWIksWRyzIXWZFol0rOi4xph2o-TqVNRZgamaWavSLDuqntG0KFtnnIuDU8NGCtWilMKEyhM5bnYP0VI5L07FbGFybH_hiV6iPQFspLSaGUVMgVSGlEJnuyZVeZ4yGCrJelurPFFGiPh0jHd2S_nzDORBpnUTgiH_vNoOB8otNF17bZrhWWwIsklvi5Z4wA3gHUE-K-MQB820zjw2Pi1uIF7QVzve525O1KMZBYMv72_7nwjjzCN_yjHvH3ZLhZbe0HgGSbfEwGkz_R2B-8v7o3N5w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJemhLKW362j5SFXr1rm09bB1DaNi2m1yaQG5ClqXEi7GXfRA2h_z2zviRbQ6bQE8GeYTMjKT5xvMi5DscolhZk4CRI23AmVNBmicqgFEfA0K3mcNs5JNTOT7nvy7ExQ456nNhMKyyu_vbO725rbuRUcfN0awoRn_QqQfqlke88UryXfKEC5ZgXN_wdhPnAfqxrSGFLgAg36TxjKbD6ZW5AWSIIV68qeCpom0K6sXMLIBtvu13sR2QNorp-BV52SFKeth-9Guy46p98vyfOoP7ZHdirt-Q9WF1WWIbAEdNldNFgUHRFC1ieK4pJprQqZnXDQVY4UUO69KukQ-d12aBIdLt3FXpi7xL4Qx8WbcOfVpU9KaoLL1aN2UQANiXq_nl-i05P_5xdjQOus4LgYUzuQxiwQRD8OcViCxzuQc7JwdBsjjyaeojJ7nxiRIiT5nxqOTjRLlEholVaWLYO7JX1ZX7QKg0LguZcFaEFmxVp6QNpc1NyrIMbL98QHjPbm27suTYHaPUffzZVHdS0iglHQoNUhqQ4d20WVuX47EJaS9LfW-DadAdj009uCf7uwXjVCZxGoUD8q3fDBpOJ7pcTOXq1UJjAbxIYYGfB2gk8A6AnpQP0QDsbfKMt9PEjb0LugvWet_uyM2XYhixYuLj_3PhK3k6PjuZ6MnP09-fyDN8g__WI_GZ7C3nK_cFwNkyO2gO319pkjhn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anglesite+and+silver+recovery+from+jarosite+residues+through+roasting+and+sulfidization-flotation+in+zinc+hydrometallurgy&rft.jtitle=Journal+of+hazardous+materials&rft.au=Han%2C+Haisheng&rft.au=Sun%2C+Wei&rft.au=Hu%2C+Yuehua&rft.au=Jia%2C+Baoliang&rft.date=2014-08-15&rft.issn=0304-3894&rft.volume=278&rft.spage=49&rft.epage=54&rft_id=info:doi/10.1016%2Fj.jhazmat.2014.05.091&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |