Lactate dehydrogenase activity drives hair follicle stem cell activation
Although normally dormant, hair follicle stem cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glyc...
Saved in:
Published in | Nature cell biology Vol. 19; no. 9; pp. 1017 - 1026 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although normally dormant, hair follicle stem cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier 1 (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allows them to remain dormant and yet quickly respond to appropriate proliferative stimuli.
Flores
et al.
show that hair follicle stem cells rely on the production of lactate via the LDHA enzyme to become activated. Inducing Ldha through Mpc1 inhibition or Myc activation successfully reactivates the hair cycle in quiescent follicles. |
---|---|
AbstractList | Although normally dormant, hair follicle stem cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier 1 (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allows them to remain dormant and yet quickly respond to appropriate proliferative stimuli.Although normally dormant, hair follicle stem cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier 1 (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allows them to remain dormant and yet quickly respond to appropriate proliferative stimuli. Although normally dormant, hair follicle stem cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier 1 (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allows them to remain dormant and yet quickly respond to appropriate proliferative stimuli. Flores et al. show that hair follicle stem cells rely on the production of lactate via the LDHA enzyme to become activated. Inducing Ldha through Mpc1 inhibition or Myc activation successfully reactivates the hair cycle in quiescent follicles. Although normally dormant, hair follicle stem cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier 1 (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allows them to remain dormant and yet quickly respond to appropriate proliferative stimuli. While normally dormant, Hair Follicle Stem Cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allow them to remain dormant and yet quickly respond to appropriate proliferative stimuli. |
Audience | Academic |
Author | Graham, Nicholas A. Graeber, Thomas Seth, Pankaj Evseenko, Denis Krall, Abigail S. Grigorian, Melina Flores, Aimee Christofk, Heather R. Zhou, Jessica L. Lowry, William E. Rutter, Jared Schell, John Jelinek, David Miranda, Matilde Coller, Hilary A. Braas, Daniel White, Andrew C. |
AuthorAffiliation | 6 Department of Molecular and Medical Pharmacology, UCLA 10 Department of Biochemistry, University of Utah 8 Broad Center for Regenerative Medicine, University of Southern California 14 Stanford School of Medicine, UCLA 9 Mork Family Department of Chemical Engineering, University of Southern California 13 UCLA Metabolomics Center, UCLA 5 Department of Biological Chemistry, UCLA 2 Jonsson Comprehensive Cancer Center, UCLA 15 Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Cancer Center, Harvard Medical School 4 Molecular Biology Institute, UCLA 1 Department of Molecular Cell and Developmental Biology, UCLA 12 Crump Institute for Molecular Imaging, UCLA 7 School of Veterinary Medicine, Cornell University 11 Howard Hughes Medical Institute 3 Eli and Edythe Broad Center for Regenerative Medicine, UCLA |
AuthorAffiliation_xml | – name: 7 School of Veterinary Medicine, Cornell University – name: 15 Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Cancer Center, Harvard Medical School – name: 10 Department of Biochemistry, University of Utah – name: 2 Jonsson Comprehensive Cancer Center, UCLA – name: 13 UCLA Metabolomics Center, UCLA – name: 4 Molecular Biology Institute, UCLA – name: 9 Mork Family Department of Chemical Engineering, University of Southern California – name: 1 Department of Molecular Cell and Developmental Biology, UCLA – name: 14 Stanford School of Medicine, UCLA – name: 11 Howard Hughes Medical Institute – name: 12 Crump Institute for Molecular Imaging, UCLA – name: 5 Department of Biological Chemistry, UCLA – name: 6 Department of Molecular and Medical Pharmacology, UCLA – name: 8 Broad Center for Regenerative Medicine, University of Southern California – name: 3 Eli and Edythe Broad Center for Regenerative Medicine, UCLA |
Author_xml | – sequence: 1 givenname: Aimee surname: Flores fullname: Flores, Aimee organization: Department of Molecular Cell and Developmental Biology, UCLA, Eli and Edythe Broad Center for Regenerative Medicine, UCLA, Molecular Biology Institute, UCLA – sequence: 2 givenname: John surname: Schell fullname: Schell, John organization: Department of Biochemistry, University of Utah – sequence: 3 givenname: Abigail S. surname: Krall fullname: Krall, Abigail S. organization: Department of Molecular and Medical Pharmacology, UCLA – sequence: 4 givenname: David surname: Jelinek fullname: Jelinek, David organization: Department of Molecular Cell and Developmental Biology, UCLA – sequence: 5 givenname: Matilde surname: Miranda fullname: Miranda, Matilde organization: Department of Molecular Cell and Developmental Biology, UCLA – sequence: 6 givenname: Melina surname: Grigorian fullname: Grigorian, Melina organization: Stanford School of Medicine – sequence: 7 givenname: Daniel surname: Braas fullname: Braas, Daniel organization: Department of Molecular and Medical Pharmacology, UCLA, UCLA Metabolomics Center, UCLA – sequence: 8 givenname: Andrew C. surname: White fullname: White, Andrew C. organization: School of Veterinary Medicine, Cornell University – sequence: 9 givenname: Jessica L. surname: Zhou fullname: Zhou, Jessica L. organization: Mork Family Department of Chemical Engineering, University of Southern California – sequence: 10 givenname: Nicholas A. surname: Graham fullname: Graham, Nicholas A. organization: Department of Molecular and Medical Pharmacology, UCLA, Mork Family Department of Chemical Engineering, University of Southern California – sequence: 11 givenname: Thomas surname: Graeber fullname: Graeber, Thomas organization: Department of Molecular and Medical Pharmacology, UCLA, Crump Institute for Molecular Imaging, UCLA – sequence: 12 givenname: Pankaj surname: Seth fullname: Seth, Pankaj organization: Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Cancer Center, Harvard Medical School – sequence: 13 givenname: Denis surname: Evseenko fullname: Evseenko, Denis organization: Broad Center for Regenerative Medicine, University of Southern California – sequence: 14 givenname: Hilary A. surname: Coller fullname: Coller, Hilary A. organization: Department of Molecular Cell and Developmental Biology, UCLA, Eli and Edythe Broad Center for Regenerative Medicine, UCLA, Molecular Biology Institute, UCLA, Jonsson Comprehensive Cancer Center, UCLA, Department of Biological Chemistry, UCLA – sequence: 15 givenname: Jared orcidid: 0000-0002-2710-9765 surname: Rutter fullname: Rutter, Jared organization: Department of Biochemistry, University of Utah, Howard Hughes Medical Institute – sequence: 16 givenname: Heather R. orcidid: 0000-0002-8662-4425 surname: Christofk fullname: Christofk, Heather R. email: HChristofk@mednet.ucla.edu organization: Eli and Edythe Broad Center for Regenerative Medicine, UCLA, Department of Molecular and Medical Pharmacology, UCLA, UCLA Metabolomics Center, UCLA, Jonsson Comprehensive Cancer Center, UCLA, Department of Biological Chemistry, UCLA – sequence: 17 givenname: William E. orcidid: 0000-0003-2932-2276 surname: Lowry fullname: Lowry, William E. email: blowry@ucla.edu organization: Department of Molecular Cell and Developmental Biology, UCLA, Eli and Edythe Broad Center for Regenerative Medicine, UCLA, Molecular Biology Institute, UCLA, Jonsson Comprehensive Cancer Center, UCLA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28812580$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v3CAQhq0qVfPRqv-gstRD04NTwIDNJVIUtU2klSr144wwHrxEXkgBr7r_vji7TbOriANoeOZl5h1OiyPnHRTFW4wuMKrbT053NWvYi-IE04ZXlDfiaD5zVjW1IMfFaYx3CGFKUfOqOCZtiwlr0Ulxs1A6qQRlD8tNH_wATkUoc9CubdqUfbBriOVS2VAaP45Wj1DGBKtSwzhuOZWsd6-Ll0aNEd7s9rPi15fPP69vqsW3r7fXV4tKsxqniiAGXWtIbRDBuOuV4VgQ3ZuatYx2tFdNSzhXCGOhBScIcSIwp7invMOtqc-Ky63u_dStoNfgUlCjvA92pcJGemXl_o2zSzn4tWQ8G0TrLHC-Ewj-9wQxyZWNczPKgZ-izOWIVnDBREbfH6B3fgout5ep7C3iApH_1KBGkNYZn9_Vs6i8YojQeRhNpi6eofLqYWV1nqaxOb6X8HEvITMJ_qRBTTHK2x_f99l3T015dOPfnDPwYQvo4GMMYB4RjOT8g-TuB2WyOiC1TQ8TzvXa8Rl-Z2fMim6A8MSjA_QvZ7nSAQ |
CitedBy_id | crossref_primary_10_1080_14728222_2019_1659779 crossref_primary_10_1002_ctm2_1614 crossref_primary_10_1016_j_jid_2021_05_031 crossref_primary_10_1007_s12015_022_10348_6 crossref_primary_10_1016_j_stem_2021_07_011 crossref_primary_10_1016_j_stem_2019_09_009 crossref_primary_10_3390_ijms22041998 crossref_primary_10_1016_j_celrep_2020_107632 crossref_primary_10_1016_j_stem_2024_09_015 crossref_primary_10_4103_wjtcm_wjtcm_78_24 crossref_primary_10_3390_ijms21062251 crossref_primary_10_1146_annurev_cellbio_112122_022528 crossref_primary_10_1038_s44319_024_00327_y crossref_primary_10_1111_exd_14070 crossref_primary_10_3389_fcell_2021_554831 crossref_primary_10_1021_acs_jmedchem_0c01013 crossref_primary_10_1242_dev_175315 crossref_primary_10_1021_acsnano_8b09573 crossref_primary_10_1021_acs_molpharmaceut_3c00620 crossref_primary_10_1016_j_ceb_2017_11_003 crossref_primary_10_3390_vetsci11120654 crossref_primary_10_1039_D3TB02237D crossref_primary_10_1038_s41423_025_01264_z crossref_primary_10_1002_sstr_202000097 crossref_primary_10_1016_j_omton_2024_200897 crossref_primary_10_1038_s41586_022_04557_9 crossref_primary_10_1016_j_stemcr_2020_01_008 crossref_primary_10_1155_2022_8938276 crossref_primary_10_1038_ncb3593 crossref_primary_10_1074_jbc_TM117_000832 crossref_primary_10_1124_pharmrev_124_001245 crossref_primary_10_7554_eLife_67437 crossref_primary_10_1038_s41598_021_99652_8 crossref_primary_10_1002_EXP_20210170 crossref_primary_10_1016_j_stem_2018_04_001 crossref_primary_10_12677_acm_2024_14112929 crossref_primary_10_1038_s41598_020_61824_3 crossref_primary_10_1055_s_0044_1788072 crossref_primary_10_1016_j_mmm_2020_11_004 crossref_primary_10_1016_j_ajps_2022_04_003 crossref_primary_10_3390_ijms241411711 crossref_primary_10_1038_s42003_018_0178_4 crossref_primary_10_1016_j_colsurfb_2023_113475 crossref_primary_10_1016_j_chom_2018_11_002 crossref_primary_10_1007_s00018_019_03430_9 crossref_primary_10_1016_j_cmet_2021_07_016 crossref_primary_10_1371_journal_pcbi_1006052 crossref_primary_10_1016_j_devcel_2022_06_005 crossref_primary_10_3389_fphar_2017_00958 crossref_primary_10_1186_s12917_022_03245_0 crossref_primary_10_1021_acs_molpharmaceut_0c00041 crossref_primary_10_1016_j_jconrel_2022_08_007 crossref_primary_10_1016_j_yexcr_2019_111647 crossref_primary_10_1016_j_stem_2019_01_011 crossref_primary_10_1101_gad_346973_120 crossref_primary_10_3390_organoids1010008 crossref_primary_10_1089_rej_2023_0037 crossref_primary_10_1111_exd_14318 crossref_primary_10_1016_j_molmet_2022_101575 crossref_primary_10_1126_sciadv_add5220 crossref_primary_10_1007_s00105_017_4118_x crossref_primary_10_1016_j_eng_2023_05_009 crossref_primary_10_1038_s42255_020_00276_5 crossref_primary_10_1016_j_celrep_2018_07_025 crossref_primary_10_1136_annrheumdis_2017_212037 crossref_primary_10_1016_j_tem_2020_11_003 crossref_primary_10_1021_acsnano_1c05272 crossref_primary_10_3724_abbs_2023112 crossref_primary_10_1111_exd_14307 crossref_primary_10_30970_sbi_1701_703 crossref_primary_10_1016_j_ejmech_2024_117150 crossref_primary_10_1002_advs_202201949 crossref_primary_10_1126_sciadv_abm7902 crossref_primary_10_1016_j_mad_2020_111288 crossref_primary_10_3390_ijms26062567 crossref_primary_10_1016_j_celrep_2019_07_098 crossref_primary_10_1038_s41368_023_00262_z crossref_primary_10_1038_s42255_021_00419_2 crossref_primary_10_3389_fimmu_2025_1510559 crossref_primary_10_3390_cosmetics10040106 crossref_primary_10_3390_ijms23031748 crossref_primary_10_3892_mmr_2018_9110 crossref_primary_10_1096_fj_202202001RR crossref_primary_10_2147_JIR_S469239 crossref_primary_10_1111_exd_14300 crossref_primary_10_1016_j_eurpolymj_2021_110942 crossref_primary_10_33589_30_5_184 crossref_primary_10_1111_apha_14016 crossref_primary_10_1038_s41583_018_0091_3 crossref_primary_10_1016_j_jbc_2022_102838 crossref_primary_10_3389_fcell_2023_1246998 crossref_primary_10_1007_s40778_021_00186_6 crossref_primary_10_1073_pnas_2021093118 crossref_primary_10_1186_s13578_023_01177_2 crossref_primary_10_1016_j_metabol_2025_156234 crossref_primary_10_1016_j_isci_2024_110342 crossref_primary_10_3389_fcell_2022_903904 crossref_primary_10_1002_adhm_202200908 crossref_primary_10_1101_cshperspect_a041554 crossref_primary_10_2147_CCID_S462294 crossref_primary_10_3390_v12030267 crossref_primary_10_1038_s41467_022_34443_x crossref_primary_10_1016_j_jid_2024_10_605 crossref_primary_10_1016_j_cell_2024_11_004 crossref_primary_10_7554_eLife_51601 crossref_primary_10_1371_journal_pone_0303742 crossref_primary_10_1242_jcs_252767 crossref_primary_10_1038_s41467_018_07857_9 crossref_primary_10_1002_mco2_70055 crossref_primary_10_4252_wjsc_v12_i11_1307 crossref_primary_10_15252_embr_201744816 crossref_primary_10_1016_j_cmet_2020_12_003 crossref_primary_10_1016_j_tcb_2018_02_007 crossref_primary_10_1016_j_jare_2023_11_014 crossref_primary_10_1016_j_celrep_2024_114339 crossref_primary_10_1097_GOX_0000000000005051 crossref_primary_10_1038_ncb3629 crossref_primary_10_3390_biology9120481 crossref_primary_10_1016_j_cmet_2020_08_015 crossref_primary_10_1038_s41392_023_01343_5 crossref_primary_10_1126_science_adi7342 crossref_primary_10_3389_fonc_2020_01561 crossref_primary_10_1016_j_cmet_2020_08_011 crossref_primary_10_1016_j_mito_2023_02_007 crossref_primary_10_1016_j_ejmech_2024_116666 crossref_primary_10_1038_s12276_023_01151_5 crossref_primary_10_1016_j_jid_2017_10_021 crossref_primary_10_1016_j_stem_2025_02_017 crossref_primary_10_1186_s13020_023_00791_z crossref_primary_10_1002_advs_202202116 crossref_primary_10_1038_s41556_020_0525_9 crossref_primary_10_3389_fonc_2022_967342 crossref_primary_10_1134_S0026893321030146 crossref_primary_10_1016_j_stem_2021_02_016 crossref_primary_10_3390_biom13071068 crossref_primary_10_3390_nu15010214 crossref_primary_10_1038_s41598_022_13056_w crossref_primary_10_3389_fphys_2022_858274 crossref_primary_10_1016_j_stem_2021_02_011 crossref_primary_10_3390_biom10081162 crossref_primary_10_1111_acel_13773 crossref_primary_10_1016_j_devcel_2020_06_035 crossref_primary_10_1038_s41590_022_01244_9 crossref_primary_10_1038_s41374_018_0138_0 crossref_primary_10_1038_s42255_020_0267_9 crossref_primary_10_1016_j_bmcl_2024_129923 crossref_primary_10_1111_imm_13628 crossref_primary_10_1016_j_tem_2023_05_008 crossref_primary_10_1016_j_tcb_2020_04_004 crossref_primary_10_1101_gad_352277_124 crossref_primary_10_1016_j_scib_2021_03_005 crossref_primary_10_1002_adhm_202100799 crossref_primary_10_1002_1873_3468_13608 crossref_primary_10_1016_j_celrep_2021_109212 crossref_primary_10_1111_exd_14600 crossref_primary_10_3390_pharmaceutics14122774 crossref_primary_10_3390_gastroent14020016 crossref_primary_10_1007_s13402_023_00775_z crossref_primary_10_1111_1346_8138_16509 crossref_primary_10_1083_jcb_201803061 crossref_primary_10_1016_j_actbio_2022_02_025 crossref_primary_10_1186_s13062_024_00510_0 crossref_primary_10_1038_s42003_021_02944_y crossref_primary_10_33589_31_3_93 crossref_primary_10_3390_ijms25052692 crossref_primary_10_1021_acschemneuro_7b00350 crossref_primary_10_34133_research_0433 crossref_primary_10_3389_fcell_2020_00087 crossref_primary_10_1111_exd_14271 crossref_primary_10_1021_acs_jmedchem_0c01570 crossref_primary_10_1186_s13287_021_02527_y crossref_primary_10_1016_j_drudis_2018_10_014 crossref_primary_10_1016_j_mad_2020_111315 crossref_primary_10_1038_s41580_023_00662_3 crossref_primary_10_1080_17425247_2023_2244413 crossref_primary_10_1016_j_tcb_2018_05_002 crossref_primary_10_3390_ph16020206 crossref_primary_10_3389_fmolb_2022_781619 crossref_primary_10_1002_advs_202309840 crossref_primary_10_3390_polym12061392 crossref_primary_10_1038_s41580_022_00462_1 crossref_primary_10_1016_j_bioactmat_2023_10_002 crossref_primary_10_1016_j_jphotochem_2022_113989 crossref_primary_10_1016_j_tifs_2021_06_056 crossref_primary_10_1111_jocd_13578 crossref_primary_10_1080_08830185_2021_1955876 crossref_primary_10_1016_j_acthis_2024_152204 crossref_primary_10_3390_app8101993 crossref_primary_10_1038_s41419_020_2714_7 crossref_primary_10_3390_app10082646 crossref_primary_10_1096_fj_202002799R crossref_primary_10_1038_s41467_023_39672_2 crossref_primary_10_1111_exd_14251 crossref_primary_10_3390_nu10101406 crossref_primary_10_3390_ijms20092158 crossref_primary_10_1016_j_chom_2024_07_020 crossref_primary_10_1093_lifemeta_load038 crossref_primary_10_1016_j_cmet_2019_11_002 crossref_primary_10_3390_cimb46080481 crossref_primary_10_1016_j_devcel_2018_08_011 crossref_primary_10_1016_j_stem_2024_01_003 crossref_primary_10_1016_j_ceb_2020_01_013 crossref_primary_10_1007_s40200_020_00566_5 crossref_primary_10_1021_acsnano_9b02466 crossref_primary_10_1038_s41580_022_00568_6 crossref_primary_10_1126_sciadv_abo7555 |
Cites_doi | 10.1038/sj.jidsp.5640241 10.1126/scisignal.2003638 10.1016/j.cell.2009.05.002 10.1111/exd.12062 10.1016/S0926-6593(65)80207-7 10.1111/j.1365-2133.2005.06458.x 10.1016/j.cell.2006.07.036 10.1126/science.1218099 10.1016/j.stem.2010.07.011 10.1073/pnas.1012670108 10.1097/MOH.0b013e328360ab4d 10.1046/j.1523-1747.1999.00537.x 10.1016/j.cell.2004.08.012 10.1126/science.1184733 10.1016/j.stem.2012.10.011 10.1126/science.aad5440 10.1038/nm1328 10.1016/S1534-5807(01)00022-3 10.1016/j.molcel.2014.09.026 10.1016/j.cell.2010.11.049 10.1242/jcs.02298 10.1182/blood-2012-12-471201 10.1038/jid.2014.475 10.1007/978-1-62703-290-2_7 10.1038/ncb2889 10.1074/jbc.M113.521666 10.1016/j.acthis.2011.04.009 10.1016/j.stem.2015.07.013 10.4161/cl.25456 10.1038/nbt950 10.1038/ng.239 10.1126/science.1092436 10.1038/ncb3593 10.1002/stem.695 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2017 COPYRIGHT 2017 Nature Publishing Group Copyright Nature Publishing Group Sep 2017 |
Copyright_xml | – notice: Springer Nature Limited 2017 – notice: COPYRIGHT 2017 Nature Publishing Group – notice: Copyright Nature Publishing Group Sep 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM |
DOI | 10.1038/ncb3575 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-4679 |
EndPage | 1026 |
ExternalDocumentID | PMC5657543 A502446797 28812580 10_1038_ncb3575 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM081686 – fundername: NIAMS NIH HHS grantid: R01 AR057409 – fundername: NIAMS NIH HHS grantid: R01 AR070245 – fundername: NCI NIH HHS grantid: P50 CA092131 – fundername: NCATS NIH HHS grantid: UL1 TR001881 – fundername: NCI NIH HHS grantid: R25 CA098010 – fundername: NCATS NIH HHS grantid: UL1 TR000124 – fundername: NIGMS NIH HHS grantid: R01 GM094232 |
GroupedDBID | --- 0R~ 123 29M 36B 39C 4.4 53G 5RE 70F 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AARCD AAYZH ABCQX ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACSTC ADBBV AENEX AEUYN AFANA AFFNX AFKRA AFRAH AFSHS AFWHJ AGAYW AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DU5 EAP EBS EE. EJD EMB ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC L7B LK8 M1P M7P N9A NNMJJ O9- P2P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG UKHRP ~02 AAYXX ALIPV CITATION .55 .GJ 3V. 5BI 88A AAEEF AAZLF ABAWZ ABDBF ABEFU ABNNU ACRPL ACUHS ADNMO ADQMX AFBBN AGGDT AGHTU AIYXT B0M CGR CUY CVF DB5 EAD EBC EBD ECM EIF EMK EMOBN EPL J5H L-9 M0L NPM ODYON QF4 QM4 QN7 QO4 SKT SV3 TUS X7M Y6R ZGI ~8M PMFND 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM |
ID | FETCH-LOGICAL-c531t-205eb8f23f0211bdaf6192cdf35854b4da78266a0119c962006291641d46b18f3 |
IEDL.DBID | 7X7 |
ISSN | 1465-7392 1476-4679 |
IngestDate | Thu Aug 21 18:41:25 EDT 2025 Tue Aug 05 11:16:41 EDT 2025 Fri Jul 25 09:04:02 EDT 2025 Tue Jun 17 21:04:21 EDT 2025 Tue Jun 10 20:22:54 EDT 2025 Fri Jun 27 03:42:10 EDT 2025 Wed Feb 19 02:17:40 EST 2025 Thu Apr 24 23:03:13 EDT 2025 Tue Jul 01 00:31:13 EDT 2025 Sun Aug 31 08:58:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-205eb8f23f0211bdaf6192cdf35854b4da78266a0119c962006291641d46b18f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8662-4425 0000-0003-2932-2276 0000-0002-2710-9765 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5657543 |
PMID | 28812580 |
PQID | 1946506902 |
PQPubID | 45779 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5657543 proquest_miscellaneous_1929896959 proquest_journals_1946506902 gale_infotracmisc_A502446797 gale_infotracacademiconefile_A502446797 gale_incontextgauss_ISR_A502446797 pubmed_primary_28812580 crossref_primary_10_1038_ncb3575 crossref_citationtrail_10_1038_ncb3575 springer_journals_10_1038_ncb3575 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature cell biology |
PublicationTitleAbbrev | Nat Cell Biol |
PublicationTitleAlternate | Nat Cell Biol |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Tumbar (CR10) 2004; 303 Zanet (CR27) 2005; 118 Baris (CR8) 2011; 29 Morris, Potten (CR2) 1999; 112 Bricker (CR21) 2012; 337 Ito (CR34) 2005; 11 Trempus (CR12) 2003; 120 Shin (CR33) 2015; 17 Chan, Moriwaki, De Rosa (CR16) 2013; 979 Kellenberger, Tauchi (CR20) 2013; 22 Bull (CR26) 2005; 152 Xie (CR17) 2014; 19 Wang (CR25) 2012; 114 Hsu, Pasolli, Fuchs (CR1) 2011; 144 Harris (CR30) 2013; 121 Fuchs (CR3) 2009; 137 Patterson (CR24) 2014; 289 Wang, Siegenthaler, Dowell, Yi (CR35) 2016; 351 Fuchs, Merrill, Jamora, DasGupta (CR4) 2001; 1 Jaks (CR19) 2008; 40 Hsu, Qu (CR29) 2013; 20 Paus, Muller-Rover, Botchkarev (CR15) 1999; 4 Schell (CR22) 2014; 56 Hamanaka, Chandel (CR6) 2013; 3 Morris (CR11) 2004; 22 CR28 Fromm (CR14) 1965; 99 White (CR18) 2011; 108 White (CR36) 2014; 16 Nguyen, Rendl, Fuchs (CR13) 2006; 127 Kloepper (CR5) 2015; 135 Takubo (CR31) 2013; 12 Snippert (CR23) 2010; 327 Simsek (CR32) 2010; 7 Hamanaka (CR7) 2013; 6 Blanpain, Lowry, Geoghegan, Polak, Fuchs (CR9) 2004; 118 RJ Morris (BFncb3575_CR2) 1999; 112 J Shin (BFncb3575_CR33) 2015; 17 AC White (BFncb3575_CR36) 2014; 16 AC White (BFncb3575_CR18) 2011; 108 RB Hamanaka (BFncb3575_CR6) 2013; 3 JN Patterson (BFncb3575_CR24) 2014; 289 BFncb3575_CR28 C Blanpain (BFncb3575_CR9) 2004; 118 R Paus (BFncb3575_CR15) 1999; 4 T Tumbar (BFncb3575_CR10) 2004; 303 JM Harris (BFncb3575_CR30) 2013; 121 HJ Snippert (BFncb3575_CR23) 2010; 327 E Fuchs (BFncb3575_CR4) 2001; 1 FK Chan (BFncb3575_CR16) 2013; 979 DK Bricker (BFncb3575_CR21) 2012; 337 HJ Fromm (BFncb3575_CR14) 1965; 99 H Xie (BFncb3575_CR17) 2014; 19 N Wang (BFncb3575_CR25) 2012; 114 P Hsu (BFncb3575_CR29) 2013; 20 L Wang (BFncb3575_CR35) 2016; 351 RB Hamanaka (BFncb3575_CR7) 2013; 6 JC Schell (BFncb3575_CR22) 2014; 56 T Simsek (BFncb3575_CR32) 2010; 7 AJ Kellenberger (BFncb3575_CR20) 2013; 22 V Jaks (BFncb3575_CR19) 2008; 40 E Fuchs (BFncb3575_CR3) 2009; 137 K Takubo (BFncb3575_CR31) 2013; 12 RJ Morris (BFncb3575_CR11) 2004; 22 CS Trempus (BFncb3575_CR12) 2003; 120 JE Kloepper (BFncb3575_CR5) 2015; 135 H Nguyen (BFncb3575_CR13) 2006; 127 JJ Bull (BFncb3575_CR26) 2005; 152 J Zanet (BFncb3575_CR27) 2005; 118 YC Hsu (BFncb3575_CR1) 2011; 144 M Ito (BFncb3575_CR34) 2005; 11 OR Baris (BFncb3575_CR8) 2011; 29 |
References_xml | – volume: 4 start-page: 338 year: 1999 end-page: 345 ident: CR15 article-title: Chronobiology of the hair follicle: hunting the ‘hair cycle clock’ publication-title: J. Invest. Dermatol. Symp. Proc. doi: 10.1038/sj.jidsp.5640241 – volume: 6 start-page: ra8 year: 2013 ident: CR7 article-title: Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development publication-title: Sci. Signal. doi: 10.1126/scisignal.2003638 – volume: 137 start-page: 811 year: 2009 end-page: 819 ident: CR3 article-title: The tortoise and the hair: slow-cycling cells in the stem cell race publication-title: Cell doi: 10.1016/j.cell.2009.05.002 – volume: 22 start-page: 77 year: 2013 end-page: 80 ident: CR20 article-title: Mammalian target of rapamycin complex 1 (mTORC1) may modulate the timing of anagen entry in mouse hair follicles publication-title: Exp. Dermatol. doi: 10.1111/exd.12062 – volume: 99 start-page: 540 year: 1965 end-page: 542 ident: CR14 article-title: The nature of pyruvate involved in the enzymic formation of L-lactate in the rabbit-muscle lactate dehydrogenase reaction publication-title: Biochim. Biophys. Acta doi: 10.1016/S0926-6593(65)80207-7 – volume: 152 start-page: 1125 year: 2005 end-page: 1133 ident: CR26 article-title: Ectopic expression of c-Myc in the skin affects the hair growth cycle and causes an enlargement of the sebaceous gland publication-title: Br. J. Dermatol. doi: 10.1111/j.1365-2133.2005.06458.x – volume: 127 start-page: 171 year: 2006 end-page: 183 ident: CR13 article-title: Tcf3 governs stem cell features and represses cell fate determination in skin publication-title: Cell doi: 10.1016/j.cell.2006.07.036 – volume: 337 start-page: 96 year: 2012 end-page: 100 ident: CR21 article-title: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, , and humans publication-title: Science doi: 10.1126/science.1218099 – volume: 7 start-page: 380 year: 2010 end-page: 390 ident: CR32 article-title: The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.07.011 – volume: 120 start-page: 501 year: 2003 end-page: 511 ident: CR12 article-title: Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34 publication-title: J. Invest. Dermatol. – volume: 108 start-page: 7425 year: 2011 end-page: 7430 ident: CR18 article-title: Defining the origins of Ras/p53-mediated squamous cell carcinoma publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1012670108 – volume: 20 start-page: 289 year: 2013 end-page: 294 ident: CR29 article-title: Metabolic plasticity and hematopoietic stem cell biology publication-title: Curr. Opin. Hematol. doi: 10.1097/MOH.0b013e328360ab4d – volume: 112 start-page: 470 year: 1999 end-page: 475 ident: CR2 article-title: Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen publication-title: J. Invest. Dermatol. doi: 10.1046/j.1523-1747.1999.00537.x – volume: 118 start-page: 635 year: 2004 end-page: 648 ident: CR9 article-title: Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche publication-title: Cell doi: 10.1016/j.cell.2004.08.012 – volume: 327 start-page: 1385 year: 2010 end-page: 1389 ident: CR23 article-title: Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin publication-title: Science doi: 10.1126/science.1184733 – volume: 12 start-page: 49 year: 2013 end-page: 61 ident: CR31 article-title: Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.10.011 – volume: 351 start-page: 613 year: 2016 end-page: 617 ident: CR35 article-title: Foxc1 reinforces quiescence in self-renewing hair follicle stem cells publication-title: Science doi: 10.1126/science.aad5440 – volume: 11 start-page: 1351 year: 2005 end-page: 1354 ident: CR34 article-title: Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis publication-title: Nat. Med. doi: 10.1038/nm1328 – volume: 1 start-page: 13 year: 2001 end-page: 25 ident: CR4 article-title: At the roots of a never-ending cycle publication-title: Dev. Cell doi: 10.1016/S1534-5807(01)00022-3 – volume: 56 start-page: 400 year: 2014 end-page: 413 ident: CR22 article-title: A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.09.026 – volume: 144 start-page: 92 year: 2011 end-page: 105 ident: CR1 article-title: Dynamics between stem cells, niche, and progeny in the hair follicle publication-title: Cell doi: 10.1016/j.cell.2010.11.049 – volume: 118 start-page: 1693 year: 2005 end-page: 1704 ident: CR27 article-title: Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification publication-title: J. Cell Sci. doi: 10.1242/jcs.02298 – volume: 121 start-page: 2483 year: 2013 end-page: 2493 ident: CR30 article-title: Glucose metabolism impacts the spatiotemporal onset and magnitude of HSC induction publication-title: Blood doi: 10.1182/blood-2012-12-471201 – volume: 29 start-page: 1459 year: 2011 end-page: 1468 ident: CR8 article-title: The mitochondrial electron transport chain is dispensable for proliferation and differentiation of epidermal progenitor cells publication-title: Stem Cells – volume: 135 start-page: 679 year: 2015 end-page: 689 ident: CR5 article-title: Mitochondrial function in murine skin epithelium is crucial for hair follicle morphogenesis and epithelial-mesenchymal interactions publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2014.475 – volume: 979 start-page: 65 year: 2013 end-page: 70 ident: CR16 article-title: Detection of necrosis by release of lactate dehydrogenase activity publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-290-2_7 – volume: 16 start-page: 99 year: 2014 end-page: 107 ident: CR36 article-title: Stem cell quiescence acts as a tumour suppressor in squamous tumours publication-title: Nat. Cell Biol. doi: 10.1038/ncb2889 – volume: 289 start-page: 13335 year: 2014 end-page: 13346 ident: CR24 article-title: Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.521666 – volume: 114 start-page: 199 year: 2012 end-page: 206 ident: CR25 article-title: The expression and role of c-Myc in mouse hair follicle morphogenesis and cycling publication-title: Acta Histochem. doi: 10.1016/j.acthis.2011.04.009 – volume: 17 start-page: 360 year: 2015 end-page: 372 ident: CR33 article-title: Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.07.013 – volume: 3 start-page: e25456 year: 2013 ident: CR6 article-title: Mitochondrial metabolism as a regulator of keratinocyte differentiation publication-title: Cell. Logist. doi: 10.4161/cl.25456 – volume: 19 start-page: 795 year: 2014 end-page: 809 ident: CR17 article-title: Targeting lactate dehydrogenase-a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells publication-title: Cell Metab. – volume: 22 start-page: 411 year: 2004 end-page: 417 ident: CR11 article-title: Capturing and profiling adult hair follicle stem cells publication-title: Nat. Biotech. doi: 10.1038/nbt950 – volume: 40 start-page: 1291 year: 2008 end-page: 1299 ident: CR19 article-title: Lgr5 marks cycling, yet long-lived, hair follicle stem cells publication-title: Nat. Genet. doi: 10.1038/ng.239 – ident: CR28 – volume: 303 start-page: 359 year: 2004 end-page: 363 ident: CR10 article-title: Defining the epithelial stem cell niche in skin publication-title: Science doi: 10.1126/science.1092436 – volume: 118 start-page: 635 year: 2004 ident: BFncb3575_CR9 publication-title: Cell doi: 10.1016/j.cell.2004.08.012 – volume: 303 start-page: 359 year: 2004 ident: BFncb3575_CR10 publication-title: Science doi: 10.1126/science.1092436 – volume: 152 start-page: 1125 year: 2005 ident: BFncb3575_CR26 publication-title: Br. J. Dermatol. doi: 10.1111/j.1365-2133.2005.06458.x – volume: 7 start-page: 380 year: 2010 ident: BFncb3575_CR32 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.07.011 – volume: 120 start-page: 501 year: 2003 ident: BFncb3575_CR12 publication-title: J. Invest. Dermatol. – volume: 11 start-page: 1351 year: 2005 ident: BFncb3575_CR34 publication-title: Nat. Med. doi: 10.1038/nm1328 – ident: BFncb3575_CR28 doi: 10.1038/ncb3593 – volume: 12 start-page: 49 year: 2013 ident: BFncb3575_CR31 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.10.011 – volume: 1 start-page: 13 year: 2001 ident: BFncb3575_CR4 publication-title: Dev. Cell doi: 10.1016/S1534-5807(01)00022-3 – volume: 3 start-page: e25456 year: 2013 ident: BFncb3575_CR6 publication-title: Cell. Logist. doi: 10.4161/cl.25456 – volume: 112 start-page: 470 year: 1999 ident: BFncb3575_CR2 publication-title: J. Invest. Dermatol. doi: 10.1046/j.1523-1747.1999.00537.x – volume: 137 start-page: 811 year: 2009 ident: BFncb3575_CR3 publication-title: Cell doi: 10.1016/j.cell.2009.05.002 – volume: 289 start-page: 13335 year: 2014 ident: BFncb3575_CR24 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.521666 – volume: 144 start-page: 92 year: 2011 ident: BFncb3575_CR1 publication-title: Cell doi: 10.1016/j.cell.2010.11.049 – volume: 114 start-page: 199 year: 2012 ident: BFncb3575_CR25 publication-title: Acta Histochem. doi: 10.1016/j.acthis.2011.04.009 – volume: 4 start-page: 338 year: 1999 ident: BFncb3575_CR15 publication-title: J. Invest. Dermatol. Symp. Proc. doi: 10.1038/sj.jidsp.5640241 – volume: 40 start-page: 1291 year: 2008 ident: BFncb3575_CR19 publication-title: Nat. Genet. doi: 10.1038/ng.239 – volume: 337 start-page: 96 year: 2012 ident: BFncb3575_CR21 publication-title: Science doi: 10.1126/science.1218099 – volume: 6 start-page: ra8 year: 2013 ident: BFncb3575_CR7 publication-title: Sci. Signal. doi: 10.1126/scisignal.2003638 – volume: 121 start-page: 2483 year: 2013 ident: BFncb3575_CR30 publication-title: Blood doi: 10.1182/blood-2012-12-471201 – volume: 17 start-page: 360 year: 2015 ident: BFncb3575_CR33 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.07.013 – volume: 351 start-page: 613 year: 2016 ident: BFncb3575_CR35 publication-title: Science doi: 10.1126/science.aad5440 – volume: 22 start-page: 411 year: 2004 ident: BFncb3575_CR11 publication-title: Nat. Biotech. doi: 10.1038/nbt950 – volume: 135 start-page: 679 year: 2015 ident: BFncb3575_CR5 publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2014.475 – volume: 19 start-page: 795 year: 2014 ident: BFncb3575_CR17 publication-title: Cell Metab. – volume: 22 start-page: 77 year: 2013 ident: BFncb3575_CR20 publication-title: Exp. Dermatol. doi: 10.1111/exd.12062 – volume: 56 start-page: 400 year: 2014 ident: BFncb3575_CR22 publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.09.026 – volume: 979 start-page: 65 year: 2013 ident: BFncb3575_CR16 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-290-2_7 – volume: 29 start-page: 1459 year: 2011 ident: BFncb3575_CR8 publication-title: Stem Cells doi: 10.1002/stem.695 – volume: 108 start-page: 7425 year: 2011 ident: BFncb3575_CR18 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1012670108 – volume: 99 start-page: 540 year: 1965 ident: BFncb3575_CR14 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0926-6593(65)80207-7 – volume: 127 start-page: 171 year: 2006 ident: BFncb3575_CR13 publication-title: Cell doi: 10.1016/j.cell.2006.07.036 – volume: 118 start-page: 1693 year: 2005 ident: BFncb3575_CR27 publication-title: J. Cell Sci. doi: 10.1242/jcs.02298 – volume: 20 start-page: 289 year: 2013 ident: BFncb3575_CR29 publication-title: Curr. Opin. Hematol. doi: 10.1097/MOH.0b013e328360ab4d – volume: 16 start-page: 99 year: 2014 ident: BFncb3575_CR36 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2889 – volume: 327 start-page: 1385 year: 2010 ident: BFncb3575_CR23 publication-title: Science doi: 10.1126/science.1184733 |
SSID | ssj0014407 |
Score | 2.6135497 |
Snippet | Although normally dormant, hair follicle stem cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be... While normally dormant, Hair Follicle Stem Cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1017 |
SubjectTerms | 13 42 42/100 631/443/319 631/532/2438 631/532/2443 631/80/642/333 64 64/60 82 82/51 82/58 Acrylates - pharmacology Animals Anion Transport Proteins - antagonists & inhibitors Anion Transport Proteins - genetics Anion Transport Proteins - metabolism Cancer Research Cell activation Cell Biology Cell metabolism Cell Proliferation - drug effects Cellular Senescence - drug effects Clonal deletion Dehydrogenase Dehydrogenases Developmental Biology Epidermis Female Genetic aspects Genotype Glycolysis Glycolysis - drug effects Hair Hair Follicle - cytology Hair Follicle - drug effects Hair Follicle - enzymology Hair follicles Health aspects Isoenzymes - deficiency Isoenzymes - genetics Isoenzymes - metabolism L-Lactate dehydrogenase L-Lactate Dehydrogenase - deficiency L-Lactate Dehydrogenase - genetics L-Lactate Dehydrogenase - metabolism Lactate dehydrogenase Lactate Dehydrogenase 5 Lactic acid Lactic Acid - metabolism Life Sciences Male Metabolism Mice, Inbred C57BL Mice, Knockout Mitochondria Mitochondrial Membrane Transport Proteins - antagonists & inhibitors Mitochondrial Membrane Transport Proteins - genetics Mitochondrial Membrane Transport Proteins - metabolism Monocarboxylic Acid Transporters Myc protein Phenotype Proto-Oncogene Proteins c-myc - metabolism Pyruvic acid Signal Transduction Stem Cells Stem Cells - drug effects Stem Cells - enzymology Time Factors |
Title | Lactate dehydrogenase activity drives hair follicle stem cell activation |
URI | https://link.springer.com/article/10.1038/ncb3575 https://www.ncbi.nlm.nih.gov/pubmed/28812580 https://www.proquest.com/docview/1946506902 https://www.proquest.com/docview/1929896959 https://pubmed.ncbi.nlm.nih.gov/PMC5657543 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WlkFfxr7aumuDNsb2ZJJYkqU8jXYkZGMro1shb0aSraYw7DYfD_3vd2fLWZzB3gK62LJ0kn6nu_sdwHtKh5Ta-Rh_2FioVMZWWRNLwQc2sd54RfnO36_S6Y34OpOzcOG2DGGV7Z5Yb9R55eiOvI_GNoIJtOWST_cPMVWNIu9qKKGxBwdEXUZarWYbg4v8lqrJLpKxQiDQJM0SJXi_dJZLCi7cOo129-StQ2k3YHLHa1ofRpPn8CygSHbRTPsLeFKUL-FpU1fy8RVMvxlHIJLlxfwxX1SoJHhYMcphoFIRLF8Q2Sybm7sF88TKjQ9hxOjM6B6_katn7DXcTMa_Pk_jUDIhdriYVqjzsrDaJ9zj2T20ufFkILncczQLhBW5QUSQpoaY3twopfuEBAGiGOYitUPt-RHsl1VZnABzXDvrU7JwlJDajhxiLeWGA-2450JG8KEduswFPnEqa_E7q_3aXGdhjCN8Vit431Bo_CvyjsY-I0KKkiJebs16ucy-_LzOLiSiCNzNRyqCj0HIV_giZ0ICAXaXOKw6kmcdSVwxrtvcTnEWVuwy-6tfEbzdNNM_KQqtLKo1yRBffYqKFsFxoxGbL0o0QiWpBxGojq5sBIjHu9tS3s1rPm_yPOPawPe2WrXVre5Anf6_62_gMCHYUcfAncH-arEuzhE0rWyvXhk9OLgcX_24_gPnzBao |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXVN4LLRjE47RqsrbX3kNVVUCV0LQHaKXctrZ3TSqh3ZKHUP4Uv5GZfYRskLj1FskTr-Mde77JzHwD8JbKIaV2PsQPNhQqlqFV1oRS8J6NrDdeUb3z6Vk8uBBfxnK8Bb_bWhhKq2zvxOqizkpH_5Hvo7ONYAJ9uejw-mdIXaMoutq20KjV4iRf_kKXbXYw_ITv910UHX8-_zgIm64CoUN9m6NayNxqH3GP5q1vM-PJh3CZ54ichRWZQaMZx4bI0FwSk8sdIYYS_UzEtq89x3lvwW00vD1y9tR45eBRnFTV1UwyVAg86iJdoiDfL5zlkpIZ16zfpg1YM4KbCZobUdrK-B3vwP0GtbKjWs0ewFZePIQ7dR_L5SMYjIwj0MqyfLLMpiUqJRpHRjUT1JqCZVMit2UTczVlnljAcRJGDNKM4ga1XKUhj-HiRjbzCWwXZZE_A-a4dtbH5FEpIbVNHGI75fo97bjnQgbwvt261DX85dRG40daxdG5Tps9DnCuVvC6puz4V-QN7X1KBBgFZdh8N4vZLB1--5oeSUQtaD0SFcCHRsiX-CBnmoIFXC5xZnUkdzuSeEJdd7h9xWlzQ8zSv_ocwOvVMH2Tst6KvFyQDPHjx4lMAnhaa8TqF0UaoZnUvQBUR1dWAsQb3h0priYVfzhFuvEs4nNbrVpbVnejnv9_6a_g7uD8dJSOhmcnL-BeRJCnyr_bhe35dJHvIWCb25fVKWFwedPH8g8pEU-l |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBe0PgODDCIj6eobWLHzsM0DbaqZaOaBpP2ZmInppNQMvoh1H-Nv253-ShNkXjbWyVfHdf52XfXu_sdwFsqhxTKOh8_GJ_LSPhGmsQXPOyZwLjESap3_jKOhuf884W42II_TS0MpVU2d2J5UaeFpf_Iu-hsozGBvlzQdXVaxOnhYP_ql08dpCjS2rTTqCBynC1_o_s22xsd4rt-FwSDo2-fhn7dYcC3iL05QkRkRrkgdKjq-iZNHPkTNnUhWtHc8DRBBRpFCRGj2Tgi9ztAe4r3Ux6ZvnIhznsLtiV5RR3Y_ng0Pj1bxTA4L4u18SoSvkQzpCrZJULybm5NKCi1cU0XbmqENZW4ma65EbMtVeFgB-7VNiw7qEB3H7ay_AHcrrpaLh_C8CSxZMKyNJss02mBEEVVyaiCghpVsHRKVLdsklxOmSNOcJyEEZ80oyhCJVfi5RGc38h2PoZOXuTZU2A2VNa4iPwryYUysUVLT9p-T9nQhVx48L7ZOm1rNnNqqvFTl1H1UOl6jz2cqxG8qgg8_hV5Q3uviQ4jJ2D9SBazmR59PdMHAm0Y1CWx9OBDLeQKfJBN6vIFXC4xaLUkd1uSeF5te7h5xbq-L2b6L7o9eL0apm9SDlyeFQuSIbb8KBaxB08qRKx-UaDQUBOq54FsYWUlQCzi7ZH8clKyiVPcG08mPrdB1dqy2hv17P9LfwV38Ejqk9H4-DncDcj-KZPxdqEzny6yF2i9zc3L-pgw-H7TJ_MatC9VQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lactate+dehydrogenase+activity+drives+hair+follicle+stem+cell+activation&rft.jtitle=Nature+cell+biology&rft.au=Flores%2C+Aimee&rft.au=Schell%2C+John&rft.au=Krall%2C+Abigail+S&rft.au=Jelinek%2C+David&rft.date=2017-09-01&rft.pub=Nature+Publishing+Group&rft.issn=1465-7392&rft.volume=19&rft.issue=9&rft.spage=1017&rft_id=info:doi/10.1038%2Fncb3575&rft.externalDocID=A502446797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon |