Construction of Vero cell-adapted rabies vaccine strain by five amino acid substitutions in HEP-Flury strain
Rabies virus (RABV) causes fatal neurological disease. Pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) using inactivated-virus vaccines are the most effective measures to prevent rabies. In Japan, HEP-Flury, the viral strain, used as a human rabies vaccine, has historically been...
Saved in:
Published in | Scientific Reports Vol. 14; no. 1; pp. 12559 - 16 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer Science and Business Media LLC
31.05.2024
Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rabies virus (RABV) causes fatal neurological disease. Pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) using inactivated-virus vaccines are the most effective measures to prevent rabies. In Japan, HEP-Flury, the viral strain, used as a human rabies vaccine, has historically been propagated in primary fibroblast cells derived from chicken embryos. In the present study, to reduce the cost and labor of vaccine production, we sought to adapt the original HEP-Flury (HEP) to Vero cells. HEP was repeatedly passaged in Vero cells to generate ten- (HEP-10V) and thirty-passaged (HEP-30V) strains. Both HEP-10V and HEP-30V grew significantly better than HEP in Vero cells, with virulence and antigenicity similar to HEP. Comparison of the complete genomes with HEP revealed three non-synonymous mutations in HEP-10V and four additional non-synonymous mutations in HEP-30V. Comparison among 18 recombinant HEP strains constructed by reverse genetics and vesicular stomatitis viruses pseudotyped with RABV glycoproteins indicated that the substitution P(L115H) in the phosphoprotein and G(S15R) in the glycoprotein improved viral propagation in HEP-10V, while in HEP-30V, G(V164E), G(L183P), and G(A286V) in the glycoprotein enhanced entry into Vero cells. The obtained recombinant RABV strain, rHEP-PG4 strain, with these five substitutions, is a strong candidate for production of human rabies vaccine. |
---|---|
AbstractList | Rabies virus (RABV) causes fatal neurological disease. Pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) using inactivated-virus vaccines are the most effective measures to prevent rabies. In Japan, HEP-Flury, the viral strain, used as a human rabies vaccine, has historically been propagated in primary fibroblast cells derived from chicken embryos. In the present study, to reduce the cost and labor of vaccine production, we sought to adapt the original HEP-Flury (HEP) to Vero cells. HEP was repeatedly passaged in Vero cells to generate ten- (HEP-10V) and thirty-passaged (HEP-30V) strains. Both HEP-10V and HEP-30V grew significantly better than HEP in Vero cells, with virulence and antigenicity similar to HEP. Comparison of the complete genomes with HEP revealed three non-synonymous mutations in HEP-10V and four additional non-synonymous mutations in HEP-30V. Comparison among 18 recombinant HEP strains constructed by reverse genetics and vesicular stomatitis viruses pseudotyped with RABV glycoproteins indicated that the substitution P(L115H) in the phosphoprotein and G(S15R) in the glycoprotein improved viral propagation in HEP-10V, while in HEP-30V, G(V164E), G(L183P), and G(A286V) in the glycoprotein enhanced entry into Vero cells. The obtained recombinant RABV strain, rHEP-PG4 strain, with these five substitutions, is a strong candidate for production of human rabies vaccine. Abstract Rabies virus (RABV) causes fatal neurological disease. Pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) using inactivated-virus vaccines are the most effective measures to prevent rabies. In Japan, HEP-Flury, the viral strain, used as a human rabies vaccine, has historically been propagated in primary fibroblast cells derived from chicken embryos. In the present study, to reduce the cost and labor of vaccine production, we sought to adapt the original HEP-Flury (HEP) to Vero cells. HEP was repeatedly passaged in Vero cells to generate ten- (HEP-10V) and thirty-passaged (HEP-30V) strains. Both HEP-10V and HEP-30V grew significantly better than HEP in Vero cells, with virulence and antigenicity similar to HEP. Comparison of the complete genomes with HEP revealed three non-synonymous mutations in HEP-10V and four additional non-synonymous mutations in HEP-30V. Comparison among 18 recombinant HEP strains constructed by reverse genetics and vesicular stomatitis viruses pseudotyped with RABV glycoproteins indicated that the substitution P(L115H) in the phosphoprotein and G(S15R) in the glycoprotein improved viral propagation in HEP-10V, while in HEP-30V, G(V164E), G(L183P), and G(A286V) in the glycoprotein enhanced entry into Vero cells. The obtained recombinant RABV strain, rHEP-PG4 strain, with these five substitutions, is a strong candidate for production of human rabies vaccine. Rabies virus (RABV) causes fatal neurological disease. Pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) using inactivated-virus vaccines are the most effective measures to prevent rabies. In Japan, HEP-Flury, the viral strain, used as a human rabies vaccine, has historically been propagated in primary fibroblast cells derived from chicken embryos. In the present study, to reduce the cost and labor of vaccine production, we sought to adapt the original HEP-Flury (HEP) to Vero cells. HEP was repeatedly passaged in Vero cells to generate ten- (HEP-10V) and thirty-passaged (HEP-30V) strains. Both HEP-10V and HEP-30V grew significantly better than HEP in Vero cells, with virulence and antigenicity similar to HEP. Comparison of the complete genomes with HEP revealed three non-synonymous mutations in HEP-10V and four additional non-synonymous mutations in HEP-30V. Comparison among 18 recombinant HEP strains constructed by reverse genetics and vesicular stomatitis viruses pseudotyped with RABV glycoproteins indicated that the substitution P(L115H) in the phosphoprotein and G(S15R) in the glycoprotein improved viral propagation in HEP-10V, while in HEP-30V, G(V164E), G(L183P), and G(A286V) in the glycoprotein enhanced entry into Vero cells. The obtained recombinant RABV strain, rHEP-PG4 strain, with these five substitutions, is a strong candidate for production of human rabies vaccine.Rabies virus (RABV) causes fatal neurological disease. Pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) using inactivated-virus vaccines are the most effective measures to prevent rabies. In Japan, HEP-Flury, the viral strain, used as a human rabies vaccine, has historically been propagated in primary fibroblast cells derived from chicken embryos. In the present study, to reduce the cost and labor of vaccine production, we sought to adapt the original HEP-Flury (HEP) to Vero cells. HEP was repeatedly passaged in Vero cells to generate ten- (HEP-10V) and thirty-passaged (HEP-30V) strains. Both HEP-10V and HEP-30V grew significantly better than HEP in Vero cells, with virulence and antigenicity similar to HEP. Comparison of the complete genomes with HEP revealed three non-synonymous mutations in HEP-10V and four additional non-synonymous mutations in HEP-30V. Comparison among 18 recombinant HEP strains constructed by reverse genetics and vesicular stomatitis viruses pseudotyped with RABV glycoproteins indicated that the substitution P(L115H) in the phosphoprotein and G(S15R) in the glycoprotein improved viral propagation in HEP-10V, while in HEP-30V, G(V164E), G(L183P), and G(A286V) in the glycoprotein enhanced entry into Vero cells. The obtained recombinant RABV strain, rHEP-PG4 strain, with these five substitutions, is a strong candidate for production of human rabies vaccine. |
ArticleNumber | 12559 |
Author | Aya Matsuu Yusuke Inoue Michiko Harada Eun-Sil Park Ken Maeda Guillermo Posadas-Herrera Akihiko Uda Satoshi Inoue Yoshihiro Kaku Akiko Okutani Keita Ishijima |
Author_xml | – sequence: 1 givenname: Michiko surname: Harada fullname: Harada, Michiko organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 2 givenname: Aya surname: Matsuu fullname: Matsuu, Aya organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 3 givenname: Eun-Sil surname: Park fullname: Park, Eun-Sil organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 4 givenname: Yusuke surname: Inoue fullname: Inoue, Yusuke organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 5 givenname: Akihiko surname: Uda fullname: Uda, Akihiko organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 6 givenname: Yoshihiro surname: Kaku fullname: Kaku, Yoshihiro organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 7 givenname: Akiko surname: Okutani fullname: Okutani, Akiko organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 8 givenname: Guillermo surname: Posadas-Herrera fullname: Posadas-Herrera, Guillermo organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 9 givenname: Keita surname: Ishijima fullname: Ishijima, Keita organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 10 givenname: Satoshi surname: Inoue fullname: Inoue, Satoshi organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan – sequence: 11 givenname: Ken orcidid: 0000-0002-3488-5439 surname: Maeda fullname: Maeda, Ken email: kmaeda@niid.go.jp, kmaeda@niid.go.jp organization: Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan. kmaeda@niid.go.jp |
BackLink | https://cir.nii.ac.jp/crid/1871429166504090752$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/38822013$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1DAYhSNUREvpC7BAlmDBJuBbbGeJRi2tVKldFLaWL38qVxl7sJNK8_Y4zVAQi25803eOj33eNkcxRWia9wR_IZipr4WTrlctprwVjDHZ9q-aE4p511JG6dE_6-PmrJRg65aRHiv8pjlmSlGKCTtpxk2KZcqzm0KKKA3oJ-SEHIxja7zZTeBRNjZAQY_GuRABVdqEiOweDeERkNmGmJBxwaMy2zKFaV6sCqrM5fltezHOeX8QvWteD2YscHaYT5sfF-d3m8v2-ub71ebbdetqxKkljEAnLAUGHKBXTghGqOfOq8Fwwb1XVnlmbC-xkBLbQRBJnDQgGbXCs9PmavX1yTzoXQ5bk_c6maCfDlK-1yZPwY2gaeewFAIcY5gT4i0MojcOiJGYGe6q1-fVa5fTrxnKpLehLP9jIqS5aIYF46JTVFb043_oQ5pzrC9dKCp7LLuF-nCgZrsF_xzvTycVoCvgciolw_CMEKyX7vXava7d66fudV9FbBWVCsd7yH_vflH1aVXFEHRtt45EScJpT4ToMMdLZMp-A8uUugg |
Cites_doi | 10.1080/21645515.2022.2027714 10.1080/14760584.2018.1473765 10.1016/j.vaccine.2009.09.090 10.3390/v16050699 10.3390/v14102152 10.1128/JVI.79.22.14141-14148.2005 10.1093/emboj/17.24.7250 10.1111/j.1348-0421.1976.tb00996.x 10.1007/s00705-021-05143-6 10.1128/JVI.72.9.7181-7190.1998 10.1128/JVI.76.21.10756-10765.2002 10.1017/S0022172400066286 10.1016/j.virusres.2012.01.002 10.1099/jgv.0.000998 10.1126/science.7053569 10.1016/S0140-6736(13)62707-5 10.1016/S0166-0934(02)00249-5 10.1128/JVI.75.19.9121-9128.2001 10.1016/j.virusres.2005.04.004 10.1093/infdis/jiy081 10.1128/JVI.00787-10 10.1111/j.1348-0421.2002.tb02719.x 10.1002/9780471729259.mca04es11 10.1016/j.vaccine.2015.07.057 10.3390/v13112288 10.1016/B978-0-12-387040-7.00006-8 10.1016/j.jviromet.2011.11.003 10.2147/ANTI.S33533 10.1016/j.virusres.2013.10.015 10.7883/yoken.JJID.2014.533 10.1242/jcs.00373 10.1038/nrdp.2017.91 10.1242/jcs.110.4.401 10.1080/13550280590900427 10.1128/JVI.02602-14 10.3390/tropicalmed5010040 10.1016/j.virusres.2005.08.004 10.20506/rst.37.2.2804 10.1016/j.virusres.2006.01.014 10.1016/B978-0-12-387040-7.00001-9 10.1038/nrmicro2260 10.1016/j.isci.2022.104122 10.1016/0264-410X(88)90184-3 10.1371/journal.pntd.0003709 10.1586/erv.11.140 10.1002/jmv.20171 10.1371/journal.ppat.1007189 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | RYH C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.1038/s41598-024-63337-9 |
DatabaseName | CiNii Complete Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 2045-2322 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_25c0766ec330411dbef69ace1a703a4c 38822013 10_1038_s41598_024_63337_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Health, Labour and Welfare grantid: 22HA1005; 23HA2010; 22HA1005 funderid: http://dx.doi.org/10.13039/501100003478 – fundername: Japan Agency for Medical Research and Development grantid: JP21fk0108141; JP21fk0108615; JP21fk0108615; JP21fk0108615 funderid: http://dx.doi.org/10.13039/100009619 – fundername: Ministry of Health, Labour and Welfare grantid: 23HA2010 – fundername: Ministry of Health, Labour and Welfare grantid: 22HA1005 – fundername: Japan Agency for Medical Research and Development grantid: JP21fk0108141 – fundername: Japan Agency for Medical Research and Development grantid: JP21fk0108615 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M48 M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM RYH SNYQT UKHRP 3V. 88A ACSMW AJTQC M0L AAYXX CITATION CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c531t-131e56b2e3e4ee98c66312d4cd8fa464dd8b8d3ab9706770bf6171c7ae732b6d3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:26:01 EDT 2025 Thu Jul 10 19:35:05 EDT 2025 Wed Aug 13 05:12:41 EDT 2025 Wed Feb 19 02:10:18 EST 2025 Tue Jul 01 01:01:46 EDT 2025 Fri Feb 21 02:38:58 EST 2025 Thu Jun 26 23:34:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-131e56b2e3e4ee98c66312d4cd8fa464dd8b8d3ab9706770bf6171c7ae732b6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0003-7481-1682 0000-0002-3488-5439 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-63337-9 |
PMID | 38822013 |
PQID | 3062790757 |
PQPubID | 2041939 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_25c0766ec330411dbef69ace1a703a4c proquest_miscellaneous_3063465827 proquest_journals_3062790757 pubmed_primary_38822013 crossref_primary_10_1038_s41598_024_63337_9 springer_journals_10_1038_s41598_024_63337_9 nii_cinii_1871429166504090752 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-31 |
PublicationDateYYYYMMDD | 2024-05-31 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific Reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Springer Science and Business Media LLC Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Springer Science and Business Media LLC – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | HamamotoNAssociation between RABV G proteins transported from the perinuclear space to the cell surface membrane and N-glycosylation of the sequon Asn(204)Jpn. J. Infect. Dis.2015683873931:CAS:528:DC%2BC28XnvVyjtrs%3D2576661210.7883/yoken.JJID.2014.533 World Health Organization. Measuring the effectiveness and impact of Japanese encephalitis vaccination. World Health Organization (2016). World Health OrganizationJapanese encephalitis vaccines: WHO position paper, February 2015—recommendationsVaccine20163430230310.1016/j.vaccine.2015.07.057 ItoNTakayamaMYamadaKSugiyamaMMinamotoNRescue of rabies virus from cloned cDNA and identification of the pathogenicity-related gene: Glycoprotein gene is associated with virulence for adult miceJ. Virol.200175912191281:CAS:528:DC%2BD3MXntVGru7w%3D1153317611448110.1128/JVI.75.19.9121-9128.2001 FouquetBFocal adhesion kinase is involved in rabies virus infection through its interaction with viral phosphoprotein PJ. Virol.201589164016512541085210.1128/JVI.02602-14 World Health Organization, Food and Agriculture Organization of the United Nations, & World Organisation for Animal Health. In Zero by 30: The Global Strategic Plan to End Human Deaths from Dog-Mediated Rabies by 2030 (World Health Organization, 2018). IrieTMatsudaYHondaYMorimotoKKawaiAStudies on the escape mutants of rabies virus which are resistant to neutralization by a highly conserved conformational epitope-specific monoclonal antibody #1-46-12Microbiol. Immunol.2002464494611:CAS:528:DC%2BD38Xmtl2mtrY%3D1222293110.1111/j.1348-0421.2002.tb02719.x HashimotoMYoshinoKAlteration of the in vitro host range of rabies virus after serial chick embryo cell passage using alkaline maintenance mediumJpn. J. Microbiol.1976203393461:STN:280:DyaE2s%2Fjt1antA%3D%3D82448510.1111/j.1348-0421.1976.tb00996.x HaradaMSingle amino acid substitution in the matrix protein of rabies virus is associated with neurovirulence in miceViruses202416699387935811112559910.3390/v16050699 WangS-YImmunogenicity and safety of human diploid cell vaccine (HDCV) vs purified Vero cell vaccine (PVRV) vs purified chick embryo cell vaccine (PCECV) used in post-exposure prophylaxis: a systematic review and meta-analysisHum. Vacc. Immunother.202218202771410.1080/21645515.2022.2027714 ThoulouzeM-IThe neural cell adhesion molecule is a receptor for rabies virusJ. Virol.199872718171901:STN:280:DyaK1czmt1Whsw%3D%3D969681210994010.1128/JVI.72.9.7181-7190.1998 AndersenJHJenssenHSandvikKGuttebergTJAnti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surfaceJ. Med. Virol.2004742622711:CAS:528:DC%2BD2cXotVGlsb4%3D1533227510.1002/jmv.20171 KulkarniVBiphasic demyelination of the nervous system following anti-rabies vaccinationNeurol. India2004521061:STN:280:DC%2BD2c7nsFWrsw%3D%3D15069254 MontagnonBJInactivated polio vaccine: Industrial production from micro-carrier Vero cells cultureTrop. Geogr. Med.198537S40411:STN:280:DyaL28%2FntFGisQ%3D%3D4071633 SchnellMJMcGettiganJPWirblichCPapaneriAThe cell biology of rabies virus: using stealth to reach the brainNat. Rev. Microbiol.2010851611:CAS:528:DC%2BD1MXhsVylsLnM1994628710.1038/nrmicro2260 YamadaKSerial passage of a street rabies virus in mouse neuroblastoma cells resulted in attenuation: Potential role of the additional N-glycosylation of a viral glycoprotein in the reduced pathogenicity of street rabies virusVirus Res.201216534451:CAS:528:DC%2BC38XksFensbg%3D2224864310.1016/j.virusres.2012.01.002 YinJResearch advances on the interactions between rabies virus structural proteins and host target cells: Accrued knowledge from the application of reverse genetics systemsViruses20211322881:CAS:528:DC%2BB3MXis1GhtLnM34835093861767110.3390/v13112288 WangJMetabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virusPLOS Pathog.201814e100718930028877607028810.1371/journal.ppat.1007189 World Health OrganizationPolio vaccines: WHO position paper—June 2022Wkly. Epidemiol. Rec.202225277300 Molecular Operating Environment (MOE), 2022.02 Chemical Computing Group ULC, 910-1010 Sherbrooke St. W., Montreal, QC H3A 2R7, Canada (2023). LentzTLBurrageTGSmithALCrickJTignorGHIs the acetylcholine receptor a rabies virus receptor?Science19822151821841982Sci...215..182L1:CAS:528:DyaL38XpvVamug%3D%3D705356910.1126/science.7053569 PreissSPost-exposure prophylaxis (PEP) for rabies with purified chick embryo cell vaccine: A systematic literature review and meta-analysisExpert Rev. Vacc.2018175255451:CAS:528:DC%2BC1cXhtF2ksr%2FN10.1080/14760584.2018.1473765 YamadaKNoguchiKNishizonoAEfficient N-glycosylation at position 37, but not at position 146, in the street rabies virus glycoprotein reduces pathogenicityVirus Res.20141791691761:CAS:528:DC%2BC3sXhsl2jsL%2FL2417727210.1016/j.virusres.2013.10.015 FaberMA single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicityJ. Virol.20057914141141481:CAS:528:DC%2BD2MXht1ShsLvL16254349128022510.1128/JVI.79.22.14141-14148.2005 NagarajanTMarissenWRupprechtCMonoclonal antibodies for the prevention of rabies: theory and clinical practiceAntib. Technol. J.20142014110.2147/ANTI.S33533 ParsonsJTFocal adhesion kinase: The first ten yearsJ. Cell Sci.2003116140914161:CAS:528:DC%2BD3sXjtlyrtLw%3D1264002610.1242/jcs.00373 Rieder, M. & Conzelmann, K.-K. Chapter 6—interferon in rabies virus infection. In Advances in Virus Research, vol. 79 (ed. Jackson, A. C.) 91–114 (Academic Press, 2011). InoueKAn improved method for recovering rabies virus from cloned cDNAJ. Virol. Methods20031072292361:CAS:528:DC%2BD38Xpslantrw%3D1250563810.1016/S0166-0934(02)00249-5 FooksARRabiesNat. Rev. Dis. Primer201731709110.1038/nrdp.2017.91 AmmermanNCBeier-SextonMAzadAFGrowth and maintenance of vero cell linesCurr. Protoc. Microbiol.200811110.1002/9780471729259.mca04es11 IlicDDamskyCHYamamotoTFocal adhesion kinase: At the crossroads of signal transductionJ. Cell Sci.19971104014071:CAS:528:DyaK2sXhvVShsrc%3D906759210.1242/jcs.110.4.401 WuXSmithTGRupprechtCEFrom brain passage to cell adaptation: The road of human rabies vaccine developmentExpert Rev. Vacc.201110159716081:CAS:528:DC%2BC3MXhtlyqtLfI10.1586/erv.11.140 LafonMRabies virus receptorsJ. Neurovirol.20051182871:CAS:528:DC%2BD2MXis12ntrw%3D1580496510.1080/13550280590900427 SuntharasamaiPPurified Vero cell rabies vaccine and human diploid cell strain vaccine: comparison of neutralizing antibody responses to post-exposure regimensJ. Hyg. (Lond.)1986964834891:STN:280:DyaL283nvFGrsA%3D%3D373443310.1017/S0022172400066286 World Health Organization. Rabies: Rationale for Investing in the Global Elimination of Dog-Mediated Human Rabies (World Health Organization, 2015). KakuYSecond generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: Sensitive and high-throughput analysis utilizing secreted alkaline phosphataseJ. Virol. Methods20121792262321:CAS:528:DC%2BC38Xit1ekuw%3D%3D2211578610.1016/j.jviromet.2011.11.003 BanyardACMcElhinneyLMJohnsonNFooksARIntroduction History of rabies control by vaccinationRev. Sci. Tech.2018373053221:STN:280:DC%2BB3cfhslOhsg%3D%3D3074714610.20506/rst.37.2.2804 Albertini, A. A. V., Ruigrok, R. W. H. & Blondel, D. Chapter 1—rabies virus transcription and replication. In Advances in Virus Research, vol. 79 79 1–22 (Academic Press, 2011). LafonMBourhyHSureauPImmunity against the European bat rabies (Duvenhage) virus induced by rabies vaccines: An experimental study in miceVaccine198863623681:STN:280:DyaL1M%2Fks1SitA%3D%3D246100710.1016/0264-410X(88)90184-3 TuffereauCBénéjeanJBlondelDKiefferBFlamandALow-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virusEMBO J.199817725072591:CAS:528:DyaK1MXktl2ltA%3D%3D9857182117107110.1093/emboj/17.24.7250 SmithJSYagerPABaerGMA rapid reproducible test for determining rabies neutralizing antibodyBull. World Health Organ.1973485355411:CAS:528:DyaE2cXjsFOhsQ%3D%3D45441442482941 HoriyaMGenetic characterization of human rabies vaccine strain in Japan and rabies viruses related to vaccine development from 1940s to 1980sViruses202214215236298707960723410.3390/v14102152 PasteurMInfectious diseases and vaccination for rabiesAtlanta Med. Surg. J.188418841437448 SasakiMThe role of heparan sulfate proteoglycans as an attachment factor for rabies virus entry and infectionJ. Infect. Dis.2018217174017491:CAS:528:DC%2BC1MXhtVCmsrvI2952921510.1093/infdis/jiy081 HampsonKEstimating the global burden of endemic canine rabiesPLoS Negl. Trop. Dis.20159e000370925881058440007010.1371/journal.pntd.0003709 FooksARCurrent status of rabies and prospects for eliminationThe Lancet20143841389139910.1016/S0140-6736(13)62707-5 Takayama-ItoMItoNYamadaKSugiyamaMMinamotoNMultiple amino acids in the glycoprotein of rabies virus are responsible for pathogenicity in adult miceVirus Res.20061151691751:CAS:528:DC%2BD28XlvVGhtg%3D%3D1618834110.1016/j.virusres.2005.08.004 World Health Organization, Rupprecht, C. E., Fooks, A. R. & Abela-Ridder, B. Laboratory Techniques in Rabies, Volume 1 (World Health Organization, 2018). MoulenatTPetitCBosch CastellsVHouillonGPurified Vero cell rabies vaccine (PVRV, Verorab®): A systematic review of intradermal use between 1985 and 2019Trop. Med. Infect. Dis.202054032156005715720910.3390/tropicalmed5010040 LangevinCTuffereauCMutations conferring resistance to neutralization by a soluble form of the neurotrophin receptor (p75NTR) map outside of the known antigenic sites of the rabies virus glycoproteinJ. Virol.20027610756107651:CAS:528:DC%2BD38XnvFKjsrw%3D1236831813661810.1128/JVI.76.21.10756-10765.2002 ItakuraYGlu333 in rabies virus glycoprotein is involved in virus attenuation through astrocyte infection and interferon responsesiScience2022251041222022iSci...25j4122I1:CAS:528:DC%2BB38XhsFSmtrbE35402872898334310.1016/j.isci.2022.104122 FinkeSConzelmannK-KReplication strategies of rabies virusVirus Res.20051111201311:CAS:528:DC%2BD2MXlvVWgtrw%3D1588583710.1016/j.virusres.2005.04.004 EvansJSAntigenic site changes in th M Pasteur (63337_CR28) 1884; 1884 63337_CR6 M Lafon (63337_CR10) 2005; 11 63337_CR4 P Suntharasamai (63337_CR27) 1986; 96 K Yamada (63337_CR40) 2014; 179 N Ito (63337_CR54) 2001; 75 63337_CR8 C Tuffereau (63337_CR50) 1998; 17 B Fouquet (63337_CR36) 2015; 89 M Horiya (63337_CR18) 2022; 14 DH Ashwathnarayana (63337_CR23) 2009; 28 J Wang (63337_CR51) 2018; 14 L Tao (63337_CR21) 2010; 84 S Finke (63337_CR12) 2005; 111 M Faber (63337_CR41) 2005; 79 AC Banyard (63337_CR5) 2018; 37 JH Kuhn (63337_CR7) 2021; 166 JH Andersen (63337_CR52) 2004; 74 T Irie (63337_CR42) 2002; 46 C Langevin (63337_CR46) 2002; 76 K Inoue (63337_CR35) 2003; 107 AR Fooks (63337_CR15) 2014; 384 S Preiss (63337_CR20) 2018; 17 N Hamamoto (63337_CR44) 2015; 68 X Wu (63337_CR17) 2011; 10 63337_CR33 Y Itakura (63337_CR22) 2022; 25 AR Fooks (63337_CR3) 2017; 3 JS Smith (63337_CR57) 1973; 48 World Health Organization (63337_CR1) 2018 World Health Organization (63337_CR26) 2022; 25 Y Kaku (63337_CR59) 2012; 179 M Sasaki (63337_CR47) 2018; 217 S-Y Wang (63337_CR14) 2022; 18 M Lafon (63337_CR29) 1988; 6 NC Ammerman (63337_CR24) 2008; 11 M Hashimoto (63337_CR31) 1976; 20 M-I Thoulouze (63337_CR49) 1998; 72 J Yin (63337_CR9) 2021; 13 JS Evans (63337_CR16) 2018; 99 BJ Montagnon (63337_CR25) 1985; 37 MJ Schnell (63337_CR13) 2010; 8 World Health Organization (63337_CR34) 2016; 34 M Harada (63337_CR55) 2024; 16 T Nagarajan (63337_CR43) 2014; 2014 M Takayama-Ito (63337_CR19) 2006; 119 TL Lentz (63337_CR48) 1982; 215 K Yamada (63337_CR45) 2012; 165 D Ilic (63337_CR37) 1997; 110 V Kulkarni (63337_CR32) 2004; 52 K Hampson (63337_CR2) 2015; 9 JT Parsons (63337_CR38) 2003; 116 T Moulenat (63337_CR30) 2020; 5 63337_CR58 63337_CR11 M Takayama-Ito (63337_CR39) 2006; 115 63337_CR56 63337_CR53 |
References_xml | – reference: World Health Organization. Measuring the effectiveness and impact of Japanese encephalitis vaccination. World Health Organization (2016). – reference: WangJMetabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virusPLOS Pathog.201814e100718930028877607028810.1371/journal.ppat.1007189 – reference: LentzTLBurrageTGSmithALCrickJTignorGHIs the acetylcholine receptor a rabies virus receptor?Science19822151821841982Sci...215..182L1:CAS:528:DyaL38XpvVamug%3D%3D705356910.1126/science.7053569 – reference: FinkeSConzelmannK-KReplication strategies of rabies virusVirus Res.20051111201311:CAS:528:DC%2BD2MXlvVWgtrw%3D1588583710.1016/j.virusres.2005.04.004 – reference: ItoNTakayamaMYamadaKSugiyamaMMinamotoNRescue of rabies virus from cloned cDNA and identification of the pathogenicity-related gene: Glycoprotein gene is associated with virulence for adult miceJ. Virol.200175912191281:CAS:528:DC%2BD3MXntVGru7w%3D1153317611448110.1128/JVI.75.19.9121-9128.2001 – reference: World Health OrganizationWHO Expert Consultation on Rabies: Third Report2018World Health Organization – reference: FooksARRabiesNat. Rev. Dis. Primer201731709110.1038/nrdp.2017.91 – reference: MoulenatTPetitCBosch CastellsVHouillonGPurified Vero cell rabies vaccine (PVRV, Verorab®): A systematic review of intradermal use between 1985 and 2019Trop. Med. Infect. Dis.202054032156005715720910.3390/tropicalmed5010040 – reference: AndersenJHJenssenHSandvikKGuttebergTJAnti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surfaceJ. Med. Virol.2004742622711:CAS:528:DC%2BD2cXotVGlsb4%3D1533227510.1002/jmv.20171 – reference: World Health Organization, Rupprecht, C. E., Fooks, A. R. & Abela-Ridder, B. Laboratory Techniques in Rabies, Volume 1 (World Health Organization, 2018). – reference: KuhnJH2021 taxonomic update of phylum negarnaviricota (riboviria: orthornavirae), including the large orders bunyavirales and mononegaviralesArch. Virol.2021166351335661:CAS:528:DC%2BB3MXhvFegs7rK34463877862746210.1007/s00705-021-05143-6 – reference: SasakiMThe role of heparan sulfate proteoglycans as an attachment factor for rabies virus entry and infectionJ. Infect. Dis.2018217174017491:CAS:528:DC%2BC1MXhtVCmsrvI2952921510.1093/infdis/jiy081 – reference: KakuYSecond generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: Sensitive and high-throughput analysis utilizing secreted alkaline phosphataseJ. Virol. Methods20121792262321:CAS:528:DC%2BC38Xit1ekuw%3D%3D2211578610.1016/j.jviromet.2011.11.003 – reference: LafonMRabies virus receptorsJ. Neurovirol.20051182871:CAS:528:DC%2BD2MXis12ntrw%3D1580496510.1080/13550280590900427 – reference: HashimotoMYoshinoKAlteration of the in vitro host range of rabies virus after serial chick embryo cell passage using alkaline maintenance mediumJpn. J. Microbiol.1976203393461:STN:280:DyaE2s%2Fjt1antA%3D%3D82448510.1111/j.1348-0421.1976.tb00996.x – reference: HaradaMSingle amino acid substitution in the matrix protein of rabies virus is associated with neurovirulence in miceViruses202416699387935811112559910.3390/v16050699 – reference: InoueKAn improved method for recovering rabies virus from cloned cDNAJ. Virol. Methods20031072292361:CAS:528:DC%2BD38Xpslantrw%3D1250563810.1016/S0166-0934(02)00249-5 – reference: MontagnonBJInactivated polio vaccine: Industrial production from micro-carrier Vero cells cultureTrop. Geogr. Med.198537S40411:STN:280:DyaL28%2FntFGisQ%3D%3D4071633 – reference: YamadaKSerial passage of a street rabies virus in mouse neuroblastoma cells resulted in attenuation: Potential role of the additional N-glycosylation of a viral glycoprotein in the reduced pathogenicity of street rabies virusVirus Res.201216534451:CAS:528:DC%2BC38XksFensbg%3D2224864310.1016/j.virusres.2012.01.002 – reference: World Health OrganizationPolio vaccines: WHO position paper—June 2022Wkly. Epidemiol. Rec.202225277300 – reference: IlicDDamskyCHYamamotoTFocal adhesion kinase: At the crossroads of signal transductionJ. Cell Sci.19971104014071:CAS:528:DyaK2sXhvVShsrc%3D906759210.1242/jcs.110.4.401 – reference: World Health Organization, Rupprecht, C. E., Fooks, A. R. & Abela-Ridder, B. Laboratory Techniques in Rabies, Volume 2 (World Health Organization, 2019). – reference: PreissSPost-exposure prophylaxis (PEP) for rabies with purified chick embryo cell vaccine: A systematic literature review and meta-analysisExpert Rev. Vacc.2018175255451:CAS:528:DC%2BC1cXhtF2ksr%2FN10.1080/14760584.2018.1473765 – reference: Takayama-ItoMItoNYamadaKSugiyamaMMinamotoNMultiple amino acids in the glycoprotein of rabies virus are responsible for pathogenicity in adult miceVirus Res.20061151691751:CAS:528:DC%2BD28XlvVGhtg%3D%3D1618834110.1016/j.virusres.2005.08.004 – reference: YamadaKNoguchiKNishizonoAEfficient N-glycosylation at position 37, but not at position 146, in the street rabies virus glycoprotein reduces pathogenicityVirus Res.20141791691761:CAS:528:DC%2BC3sXhsl2jsL%2FL2417727210.1016/j.virusres.2013.10.015 – reference: Molecular Operating Environment (MOE), 2022.02 Chemical Computing Group ULC, 910-1010 Sherbrooke St. W., Montreal, QC H3A 2R7, Canada (2023). – reference: AshwathnarayanaDHA comparative study on the safety and immunogenicity of purified duck embryo cell vaccine (PDEV, Vaxirab) with purified chick embryo cell vaccine (PCEC, Rabipur) and purifed vero cell rabies vaccine (PVRV, Verorab)Vaccine2009281481511981872010.1016/j.vaccine.2009.09.090 – reference: LangevinCTuffereauCMutations conferring resistance to neutralization by a soluble form of the neurotrophin receptor (p75NTR) map outside of the known antigenic sites of the rabies virus glycoproteinJ. Virol.20027610756107651:CAS:528:DC%2BD38XnvFKjsrw%3D1236831813661810.1128/JVI.76.21.10756-10765.2002 – reference: Rieder, M. & Conzelmann, K.-K. Chapter 6—interferon in rabies virus infection. In Advances in Virus Research, vol. 79 (ed. Jackson, A. C.) 91–114 (Academic Press, 2011). – reference: HamamotoNAssociation between RABV G proteins transported from the perinuclear space to the cell surface membrane and N-glycosylation of the sequon Asn(204)Jpn. J. Infect. Dis.2015683873931:CAS:528:DC%2BC28XnvVyjtrs%3D2576661210.7883/yoken.JJID.2014.533 – reference: Albertini, A. A. V., Ruigrok, R. W. H. & Blondel, D. Chapter 1—rabies virus transcription and replication. In Advances in Virus Research, vol. 79 79 1–22 (Academic Press, 2011). – reference: World Health Organization, Food and Agriculture Organization of the United Nations, & World Organisation for Animal Health. In Zero by 30: The Global Strategic Plan to End Human Deaths from Dog-Mediated Rabies by 2030 (World Health Organization, 2018). – reference: AmmermanNCBeier-SextonMAzadAFGrowth and maintenance of vero cell linesCurr. Protoc. Microbiol.200811110.1002/9780471729259.mca04es11 – reference: SmithJSYagerPABaerGMA rapid reproducible test for determining rabies neutralizing antibodyBull. World Health Organ.1973485355411:CAS:528:DyaE2cXjsFOhsQ%3D%3D45441442482941 – reference: WangS-YImmunogenicity and safety of human diploid cell vaccine (HDCV) vs purified Vero cell vaccine (PVRV) vs purified chick embryo cell vaccine (PCECV) used in post-exposure prophylaxis: a systematic review and meta-analysisHum. Vacc. Immunother.202218202771410.1080/21645515.2022.2027714 – reference: LafonMBourhyHSureauPImmunity against the European bat rabies (Duvenhage) virus induced by rabies vaccines: An experimental study in miceVaccine198863623681:STN:280:DyaL1M%2Fks1SitA%3D%3D246100710.1016/0264-410X(88)90184-3 – reference: World Health OrganizationJapanese encephalitis vaccines: WHO position paper, February 2015—recommendationsVaccine20163430230310.1016/j.vaccine.2015.07.057 – reference: ThoulouzeM-IThe neural cell adhesion molecule is a receptor for rabies virusJ. Virol.199872718171901:STN:280:DyaK1czmt1Whsw%3D%3D969681210994010.1128/JVI.72.9.7181-7190.1998 – reference: YinJResearch advances on the interactions between rabies virus structural proteins and host target cells: Accrued knowledge from the application of reverse genetics systemsViruses20211322881:CAS:528:DC%2BB3MXis1GhtLnM34835093861767110.3390/v13112288 – reference: SchnellMJMcGettiganJPWirblichCPapaneriAThe cell biology of rabies virus: using stealth to reach the brainNat. Rev. Microbiol.2010851611:CAS:528:DC%2BD1MXhsVylsLnM1994628710.1038/nrmicro2260 – reference: ParsonsJTFocal adhesion kinase: The first ten yearsJ. Cell Sci.2003116140914161:CAS:528:DC%2BD3sXjtlyrtLw%3D1264002610.1242/jcs.00373 – reference: ItakuraYGlu333 in rabies virus glycoprotein is involved in virus attenuation through astrocyte infection and interferon responsesiScience2022251041222022iSci...25j4122I1:CAS:528:DC%2BB38XhsFSmtrbE35402872898334310.1016/j.isci.2022.104122 – reference: TuffereauCBénéjeanJBlondelDKiefferBFlamandALow-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virusEMBO J.199817725072591:CAS:528:DyaK1MXktl2ltA%3D%3D9857182117107110.1093/emboj/17.24.7250 – reference: FooksARCurrent status of rabies and prospects for eliminationThe Lancet20143841389139910.1016/S0140-6736(13)62707-5 – reference: HoriyaMGenetic characterization of human rabies vaccine strain in Japan and rabies viruses related to vaccine development from 1940s to 1980sViruses202214215236298707960723410.3390/v14102152 – reference: BanyardACMcElhinneyLMJohnsonNFooksARIntroduction History of rabies control by vaccinationRev. Sci. Tech.2018373053221:STN:280:DC%2BB3cfhslOhsg%3D%3D3074714610.20506/rst.37.2.2804 – reference: HampsonKEstimating the global burden of endemic canine rabiesPLoS Negl. Trop. Dis.20159e000370925881058440007010.1371/journal.pntd.0003709 – reference: WuXSmithTGRupprechtCEFrom brain passage to cell adaptation: The road of human rabies vaccine developmentExpert Rev. Vacc.201110159716081:CAS:528:DC%2BC3MXhtlyqtLfI10.1586/erv.11.140 – reference: KulkarniVBiphasic demyelination of the nervous system following anti-rabies vaccinationNeurol. India2004521061:STN:280:DC%2BD2c7nsFWrsw%3D%3D15069254 – reference: PasteurMInfectious diseases and vaccination for rabiesAtlanta Med. Surg. J.188418841437448 – reference: Takayama-ItoMA highly attenuated rabies virus HEP-Flury strain reverts to virulent by single amino acid substitution to arginine at position 333 in glycoproteinVirus Res.20061192082151:CAS:528:DC%2BD28XltVelsbc%3D1647342910.1016/j.virusres.2006.01.014 – reference: EvansJSAntigenic site changes in the rabies virus glycoprotein dictates functionality and neutralizing capability against divergent lyssavirusesJ. Gen. Virol.2018991691801:CAS:528:DC%2BC1MXhtVaht7fE2930015510.1099/jgv.0.000998 – reference: FouquetBFocal adhesion kinase is involved in rabies virus infection through its interaction with viral phosphoprotein PJ. Virol.201589164016512541085210.1128/JVI.02602-14 – reference: FaberMA single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicityJ. Virol.20057914141141481:CAS:528:DC%2BD2MXht1ShsLvL16254349128022510.1128/JVI.79.22.14141-14148.2005 – reference: NagarajanTMarissenWRupprechtCMonoclonal antibodies for the prevention of rabies: theory and clinical practiceAntib. Technol. J.20142014110.2147/ANTI.S33533 – reference: TaoLMolecular basis of neurovirulence of flury rabies virus vaccine strains: Importance of the polymerase and the glycoprotein R333Q mutationJ. Virol.201084892689361:CAS:528:DC%2BC3cXht1Cmsb7N20538851291904110.1128/JVI.00787-10 – reference: SuntharasamaiPPurified Vero cell rabies vaccine and human diploid cell strain vaccine: comparison of neutralizing antibody responses to post-exposure regimensJ. Hyg. (Lond.)1986964834891:STN:280:DyaL283nvFGrsA%3D%3D373443310.1017/S0022172400066286 – reference: World Health Organization. Rabies: Rationale for Investing in the Global Elimination of Dog-Mediated Human Rabies (World Health Organization, 2015). – reference: IrieTMatsudaYHondaYMorimotoKKawaiAStudies on the escape mutants of rabies virus which are resistant to neutralization by a highly conserved conformational epitope-specific monoclonal antibody #1-46-12Microbiol. Immunol.2002464494611:CAS:528:DC%2BD38Xmtl2mtrY%3D1222293110.1111/j.1348-0421.2002.tb02719.x – volume: 18 start-page: 2027714 year: 2022 ident: 63337_CR14 publication-title: Hum. Vacc. Immunother. doi: 10.1080/21645515.2022.2027714 – volume: 17 start-page: 525 year: 2018 ident: 63337_CR20 publication-title: Expert Rev. Vacc. doi: 10.1080/14760584.2018.1473765 – volume: 28 start-page: 148 year: 2009 ident: 63337_CR23 publication-title: Vaccine doi: 10.1016/j.vaccine.2009.09.090 – volume: 16 start-page: 699 year: 2024 ident: 63337_CR55 publication-title: Viruses doi: 10.3390/v16050699 – volume-title: WHO Expert Consultation on Rabies: Third Report year: 2018 ident: 63337_CR1 – volume: 14 start-page: 2152 year: 2022 ident: 63337_CR18 publication-title: Viruses doi: 10.3390/v14102152 – volume: 79 start-page: 14141 year: 2005 ident: 63337_CR41 publication-title: J. Virol. doi: 10.1128/JVI.79.22.14141-14148.2005 – volume: 17 start-page: 7250 year: 1998 ident: 63337_CR50 publication-title: EMBO J. doi: 10.1093/emboj/17.24.7250 – ident: 63337_CR4 – volume: 20 start-page: 339 year: 1976 ident: 63337_CR31 publication-title: Jpn. J. Microbiol. doi: 10.1111/j.1348-0421.1976.tb00996.x – volume: 166 start-page: 3513 year: 2021 ident: 63337_CR7 publication-title: Arch. Virol. doi: 10.1007/s00705-021-05143-6 – volume: 72 start-page: 7181 year: 1998 ident: 63337_CR49 publication-title: J. Virol. doi: 10.1128/JVI.72.9.7181-7190.1998 – volume: 76 start-page: 10756 year: 2002 ident: 63337_CR46 publication-title: J. Virol. doi: 10.1128/JVI.76.21.10756-10765.2002 – volume: 96 start-page: 483 year: 1986 ident: 63337_CR27 publication-title: J. Hyg. (Lond.) doi: 10.1017/S0022172400066286 – volume: 165 start-page: 34 year: 2012 ident: 63337_CR45 publication-title: Virus Res. doi: 10.1016/j.virusres.2012.01.002 – volume: 99 start-page: 169 year: 2018 ident: 63337_CR16 publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.000998 – volume: 215 start-page: 182 year: 1982 ident: 63337_CR48 publication-title: Science doi: 10.1126/science.7053569 – ident: 63337_CR58 – volume: 384 start-page: 1389 year: 2014 ident: 63337_CR15 publication-title: The Lancet doi: 10.1016/S0140-6736(13)62707-5 – volume: 107 start-page: 229 year: 2003 ident: 63337_CR35 publication-title: J. Virol. Methods doi: 10.1016/S0166-0934(02)00249-5 – volume: 37 start-page: S40 year: 1985 ident: 63337_CR25 publication-title: Trop. Geogr. Med. – volume: 25 start-page: 277 year: 2022 ident: 63337_CR26 publication-title: Wkly. Epidemiol. Rec. – volume: 75 start-page: 9121 year: 2001 ident: 63337_CR54 publication-title: J. Virol. doi: 10.1128/JVI.75.19.9121-9128.2001 – volume: 111 start-page: 120 year: 2005 ident: 63337_CR12 publication-title: Virus Res. doi: 10.1016/j.virusres.2005.04.004 – volume: 217 start-page: 1740 year: 2018 ident: 63337_CR47 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiy081 – volume: 84 start-page: 8926 year: 2010 ident: 63337_CR21 publication-title: J. Virol. doi: 10.1128/JVI.00787-10 – volume: 48 start-page: 535 year: 1973 ident: 63337_CR57 publication-title: Bull. World Health Organ. – ident: 63337_CR53 – volume: 46 start-page: 449 year: 2002 ident: 63337_CR42 publication-title: Microbiol. Immunol. doi: 10.1111/j.1348-0421.2002.tb02719.x – volume: 11 start-page: 1 year: 2008 ident: 63337_CR24 publication-title: Curr. Protoc. Microbiol. doi: 10.1002/9780471729259.mca04es11 – volume: 34 start-page: 302 year: 2016 ident: 63337_CR34 publication-title: Vaccine doi: 10.1016/j.vaccine.2015.07.057 – volume: 13 start-page: 2288 year: 2021 ident: 63337_CR9 publication-title: Viruses doi: 10.3390/v13112288 – ident: 63337_CR11 doi: 10.1016/B978-0-12-387040-7.00006-8 – ident: 63337_CR6 – volume: 179 start-page: 226 year: 2012 ident: 63337_CR59 publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2011.11.003 – volume: 2014 start-page: 1 year: 2014 ident: 63337_CR43 publication-title: Antib. Technol. J. doi: 10.2147/ANTI.S33533 – volume: 179 start-page: 169 year: 2014 ident: 63337_CR40 publication-title: Virus Res. doi: 10.1016/j.virusres.2013.10.015 – volume: 68 start-page: 387 year: 2015 ident: 63337_CR44 publication-title: Jpn. J. Infect. Dis. doi: 10.7883/yoken.JJID.2014.533 – volume: 1884 start-page: 437 issue: 1 year: 1884 ident: 63337_CR28 publication-title: Atlanta Med. Surg. J. – volume: 116 start-page: 1409 year: 2003 ident: 63337_CR38 publication-title: J. Cell Sci. doi: 10.1242/jcs.00373 – ident: 63337_CR56 – volume: 3 start-page: 17091 year: 2017 ident: 63337_CR3 publication-title: Nat. Rev. Dis. Primer doi: 10.1038/nrdp.2017.91 – volume: 110 start-page: 401 year: 1997 ident: 63337_CR37 publication-title: J. Cell Sci. doi: 10.1242/jcs.110.4.401 – ident: 63337_CR33 – volume: 11 start-page: 82 year: 2005 ident: 63337_CR10 publication-title: J. Neurovirol. doi: 10.1080/13550280590900427 – volume: 89 start-page: 1640 year: 2015 ident: 63337_CR36 publication-title: J. Virol. doi: 10.1128/JVI.02602-14 – volume: 5 start-page: 40 year: 2020 ident: 63337_CR30 publication-title: Trop. Med. Infect. Dis. doi: 10.3390/tropicalmed5010040 – volume: 115 start-page: 169 year: 2006 ident: 63337_CR39 publication-title: Virus Res. doi: 10.1016/j.virusres.2005.08.004 – volume: 37 start-page: 305 year: 2018 ident: 63337_CR5 publication-title: Rev. Sci. Tech. doi: 10.20506/rst.37.2.2804 – volume: 119 start-page: 208 year: 2006 ident: 63337_CR19 publication-title: Virus Res. doi: 10.1016/j.virusres.2006.01.014 – ident: 63337_CR8 doi: 10.1016/B978-0-12-387040-7.00001-9 – volume: 8 start-page: 51 year: 2010 ident: 63337_CR13 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2260 – volume: 25 start-page: 104122 year: 2022 ident: 63337_CR22 publication-title: iScience doi: 10.1016/j.isci.2022.104122 – volume: 6 start-page: 362 year: 1988 ident: 63337_CR29 publication-title: Vaccine doi: 10.1016/0264-410X(88)90184-3 – volume: 9 start-page: e0003709 year: 2015 ident: 63337_CR2 publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0003709 – volume: 10 start-page: 1597 year: 2011 ident: 63337_CR17 publication-title: Expert Rev. Vacc. doi: 10.1586/erv.11.140 – volume: 74 start-page: 262 year: 2004 ident: 63337_CR52 publication-title: J. Med. Virol. doi: 10.1002/jmv.20171 – volume: 14 start-page: e1007189 year: 2018 ident: 63337_CR51 publication-title: PLOS Pathog. doi: 10.1371/journal.ppat.1007189 – volume: 52 start-page: 106 year: 2004 ident: 63337_CR32 publication-title: Neurol. India |
SSID | ssib045319080 ssib045319113 ssib045318930 ssib045319110 ssib045318929 ssib045318928 ssj0000529419 ssib045319075 |
Score | 2.4197187 |
Snippet | Rabies virus (RABV) causes fatal neurological disease. Pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) using inactivated-virus vaccines are... Abstract Rabies virus (RABV) causes fatal neurological disease. Pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) using inactivated-virus... |
SourceID | doaj proquest pubmed crossref springer nii |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 12559 |
SubjectTerms | 631/326/590 631/326/596 Amino Acid Substitution Amino acids Animals Antigenicity Antiretroviral drugs Bats Chlorocebus aethiops Disease prevention Embryos Genetics Genome, Viral Glycoproteins Humanities and Social Sciences Humans Lyssavirus Medicine multidisciplinary Mutation Neurological diseases Prophylaxis Q R Rabies Rabies - prevention & control Rabies - virology Rabies Vaccines - genetics Rabies Vaccines - immunology Rabies virus - genetics Rabies virus - immunology Science Science (multidisciplinary) Stomatitis Strains (organisms) Vaccines Vero Cells Vesicular stomatitis Virulence Viruses |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRv63uSgRvWrb5aJMcVfbxEBQPruwt5GMCD9Z22afC_vfOpH3PFRUvXnpopqWZ-SXzmyaZYexF6VOJtD5obYZWm-Ta0Clouz65Dt1v54BOI7__MKxP9buz_uxaqS_aEzanB54Vdyz7hKH2AIkCbyFyhDK4kEAExGrQiWZf9HnXgqk5q7d0WrjllEyn7PEWPRWdJpO6HZRSpnW_eKKasB_9y7jZ_Ilr_rZOWt3P6g67vfBG_nr-3rvsBoz32M25kuTVfXZOhTd3qWD5VPhnuJw4_ZVvQw4XSCv5ZYgYFfPvIdFaOt_W4hA8XvGCEx4PXzbjxEPaZL7FuaRuICBEcpRZn3xsV-eo_OWhB-x0dfLp7bpdCim0CYcYlZsX0A9RggIN4GxCmiFk1inbEvSgc7bRZhWiM5RQrosFeY1IJoBRMg5ZPWQH4zTCY8aRAAVRRG9ksNpZHQOG11nFYrQ2UHTDXu6U6i_mfBm-rnMr62cTeDSBrybwrmFvSO97Scp1XW8gAvyCAP8vBDTsCK3mUXd4FRgAoosVAzJPDF2REMmGHe7s6ZcBuvWK0jNTs2nY830zDi2yTBhh-lZllEaGJlHm0YyD_ZcqjEyQO6mGvdoB4-fL_97hJ_-jw0_ZLUk4rnsYDtkBoguOkBp9jc_qKPgBsFYFRQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgiflu9kwi-abimSZvkSVRuWQTFB0_2LeRTFu7adesd3H_vTLbdQ_x46UObLd3MLzO_mUlmCHmV25A95ge1jolJFQxztUisboOpwfzWJuFp5E-fu-Wp_LhqV1PAbZy2Vc46sSjqOASMkR8LrKcLnlyr3m5-MOwahdnVqYXGTXILS5chqtVK7WMsmMWS3ExnZWqhj0ewV3imrJGsE0IoZn6zR6VsP1iZfr3-G-P8I1tajNDiHrk7sUf6bifu--RG6h-Q27t-klcPyRm235wLwtIh029pO1CMzTMX3QbIJd06D74xvXQBM-p0LC0iqL-iGdQedefrfqAurCMdQaOUbQSISwpjlidf2OIMRDD96BE5XZx8_bBkUzsFFmChYdN5ntrON0kkmZLRAcgGb6IMUWcnOxmj9joK543CsnK1z8BueFAuKdH4LorH5KAf-vSUUKBBjmfeqsZpabT0DpzsKHxWUqqUZUVez5NqN7uqGbZku4W2OxFYEIEtIrCmIu9x3vcjseJ1uTFsv9tpAdmmDbXquhQwAMN59Cl3xoXEHegsJ0NFjkBqFuYOrhzcQDC0vAP-CQ4soKapyOEsTzst09Feg6oiL_ePYYGhZFyfhosyRkjgaQ2MebLDwf5LBfgnwKBERd7MwLh--b__8LP_f8tzcqdBhJY9CofkAHCTjoD6_PQvCr5_Aez-_HI priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OOwRfxG-rdxLBNy02H22Sx1VuWRYUQU_uLeRTFu7aY1eF---dpO2KeD740odmUtKZSeY3mWQG4FVqfXI5PqhUiLWQXte24bFuWq8bNL-Njvk28oeP3epMrM_b8wNg812Ycmi_pLQsy_R8OuztDg1NvgzGRN1xzmWtb8FRTtWOun20WKw_r_c7Kzl2Jaiebsg0XN3Q-Q8rVJL1o23pN5ubcOZfMdJiepb34O6EGcliHOV9OIj9A7g9VpG8fggXuejmnAaWDIl8jduB5B352gZ7hZCSbK1Dj5j8tD7H0cmuFIYg7pokXOyIvdz0A7F-E8gO15FyeCBrI0Ga1emnenmBjJ86PYKz5emX96t6KqJQe5xeudQ8jW3nWORRxKiVR4hBWRA-qGRFJ0JQTgVunZY5mVzjEmIa6qWNkjPXBf4YDvuhj0-BIPixNNFWMquEVsJZdK0Dd0kKIWMSFbyemWquxlwZpsS4uTKjCAyKwBQRGF3Bu8z3PWXOc11eDNtvZpK7Ya1vZNdFn7ddKA0upk5bH6nFlcoKX8EJSs0g7_BJ0flD80o7RJ3otiIYYhUcz_I00-TcGZ5TM-dmWcHLfTNOqywZ28fhR6HhAtEZQ5onox7sR8rRK0HcxCt4MyvG74__-4ef_R_5c7jDssaWkwrHcIh6FE8QAH13LyaN_wWCwful priority: 102 providerName: Springer Nature |
Title | Construction of Vero cell-adapted rabies vaccine strain by five amino acid substitutions in HEP-Flury strain |
URI | https://cir.nii.ac.jp/crid/1871429166504090752 https://link.springer.com/article/10.1038/s41598-024-63337-9 https://www.ncbi.nlm.nih.gov/pubmed/38822013 https://www.proquest.com/docview/3062790757 https://www.proquest.com/docview/3063465827 https://doaj.org/article/25c0766ec330411dbef69ace1a703a4c |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELf2IdBeEIyPBbbKSLxBII6d2H5AqKtaVZU6TUBR3yJ_BRWVZrQD0f-es5O0FIp4SXSxU7m-O9_vfPEdQi_KzJTaxweFsC5m3MhYJdTFSWZkAuY3kc6fRh5f5cMJG02z6QFqyx01E7ja69r5elKT5fz1z2_rd6Dwb-sj4-LNCoyQPyiWsjinlPJYHqJjsEzcVzQYb-E-A3kTMv2Tlrv0Fk57GnzHbJcWu-2_mc-Gpps9Hh9FY0Q2Z3X2D3XHHoayAWDlFrPZPsT7V7Q2GMHBfXSvQa-4W4vbA3TwRZ2iO3U9y_UpujtuIvUP0dxXAm1z0-KqxJ_cssI-TBArq24A5-Kl0uCm4x_K-FfwKlSrwHqNS1iBsfo6W1RYmZnFK1jcwhcNXkUw9Bn2r-PBHKSheekRmgz6H3vDuKnsEBuYo9uYUOKyXKeOOuacFAZwD0ktM1aUiuXMWqGFpUpL7jPcJboEoEUMV47TVOeWPkZHi2rhzhAGRKZISTKeKsGkYFqBv2-pLjlj3JUsQi_b-S1u6gQeRQi8U1HU3CiAG0XgRiEjdOlZsOnpk2-HB9Xyc9HocpFmJuF57ozfCyLEalfmUhlHFCyfipkIXQADC5g7uBLwSMHmkxygMPjSIE5phM5b1hatwBfU54v2zTxCzzfNoOueM2rhqu-hD2UAGVPo86QWic1IKbhKAOZohF61MrL98X__4af_GeszdJJ6aQ3fS5yjIxAcdwEw7FZ30CGf8g467nZHH0Zwv-xfXb-Hp7281wlbG52gfb8AVB8f-A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAC0aCE0SNH4mTA0I8utrShzi0aG-uX0ErlWTZ8ND-KX4jYyfZCvG49ZJD4liJ5_N8Mx57BuBpndvahPhgWTqfCmmrVGfcp1luqwzpN6t8OI18eFRMT8T7WT7bgJ_jWZiwrXLUiVFRu9aGNfIdHvLpoieXy1eLL2moGhWiq2MJjR4W-371A1227uXeO5TvM8Ymu8dvp-lQVSC1iLdQe536vDDMcy-8r0qLnEuZE9aVtRaFcK40pePaVDJkV8tMjSRPrdRecmYKx7HfS3AZiTcLzp6cyfWaToiaCVoNZ3MyXu50yI_hDBsTacE5l2n1G__FMgHIas18_jcL94_obCS9yQ24Plir5HUPr5uw4ZtbcKWvX7m6DWeh3OeYgJa0Nfnoly0JsYBUO71AY5YstUFfnHzXNkTwSRdLUhCzIjWqWaI_z5uWaDt3pEMNFrcthHlAsM1090M6OUORDy_dgZMLGei7sNm0jb8PBM0uTWuaS6ZLUZXCaHTqHTe1FEL6WiTwfBxUteizdKgYXeel6kWgUAQqikBVCbwJ475uGTJsxxvt8pMaJqxiuc1kUXgbFnwodcbXRaWtpxp1pBY2gW2UmsKxwytFtxOJnRZo76LDjChlCWyN8lSDWujUOYgTeLJ-jBM6SEY3vv0W23CBdiHDNvd6HKy_lKM_hBYbT-DFCIzzzv_9ww_-_y2P4er0-PBAHewd7T-EayygNe6P2IJNxJDfRrPrq3kUsU7g9KIn1y-NvjmK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqUBcEDuGFgYJTmDVs3g7IERpopRCFCGKepvOiiIVO8Qsyl_j1_HGSyrEcuvFh3hi2fO-t3zzZt4DeOJT43XIDxaFdbHITRmrhLs4SU2ZoPtNShdOI7-bZdNj8eYkPdmCn8NZmLCtcrCJraG2tQlr5Hs81NNFJocE3vfbIuYHk5fLL3HoIBUyrUM7jQ4iR279A-lb8-LwAGX9lLHJ-MPradx3GIgNYi_0YacuzTRz3AnnysKg_6XMCmMLr0QmrC10YbnSZR4qrSXao8OnJlcu50xnluNzL8F2HljRCLb3x7P5-80KT8ihCVr2J3USXuw16C3DiTYm4oxznsflb96wbRqAPq5aLP4W7_6Rq21d4OQ6XOtjV_KqA9sN2HLVTbjcdbNc34Kz0PxzKEdLak8-ulVNQmYgVlYtMbQlK6WRmZPvyoR8PmnaBhVEr4lHo0vU50VVE2UWljRoz9pNDEErCI6Zjufx5AwB0P_pNhxfyFTfgVFVV-4eEAzCFPU0zZkqRFkIrZDiW659LkTuvIjg2TCpctnV7JBtrp0XshOBRBHIVgSyjGA_zPtmZKi33f5Qrz7JXn0lS02SZ5kzYfmHUqudz0plHFVoMZUwEeyi1CTOHV4pklB08zTD6BfpM2KWRbAzyFP2RqKR55CO4PHmNqp3kIyqXP2tHcMFRokMx9ztcLB5U47sCOM3HsHzARjnD__3B9___7s8giuoWPLt4ezoAVxlAaztZokdGCGE3C7GYF_1wx7sBE4vWr9-AdLwPyU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Vero+cell-adapted+rabies+vaccine+strain+by+five+amino+acid+substitutions+in+HEP-Flury+strain&rft.jtitle=Scientific+Reports&rft.au=Michiko+Harada&rft.au=Aya+Matsuu&rft.au=Eun-Sil+Park&rft.au=Yusuke+Inoue&rft.date=2024-05-31&rft.pub=Springer+Science+and+Business+Media+LLC&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-63337-9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |