Inner and outer retinal mechanisms engaged by epiretinal stimulation in normal and rd mice
Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were...
Saved in:
Published in | Visual neuroscience Vol. 28; no. 2; pp. 145 - 154 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, USA
Cambridge University Press
01.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around ECl and were inhibited by blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), γ aminobutyric acid a/c (GABAa/c) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry. |
---|---|
AbstractList | Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around ECl and were inhibited by blockade of alpha -amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), gamma aminobutyric acid a/c (GABAa/c) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry. Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around ECl and were inhibited by blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), γ aminobutyric acid a/c (GABAa/c) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry. Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around E(Cl) and were inhibited by blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), γ aminobutyric acid a/c (GABA(a/c)) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry. Abstract Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around ECl and were inhibited by blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), γ aminobutyric acid a/c (GABAa/c) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry. [PUBLICATION ABSTRACT] Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around E Cl and were inhibited by blockade of α -amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), γ aminobutyric acid a/c (GABA a/c ) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry. Abstract Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around E Cl and were inhibited by blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), γ aminobutyric acid a/c (GABA a/c ) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry. |
Author | LUO, JIANMIN THORESON, WALLACE B. BABAI, NORBERT MARGALIT, EYAL |
AuthorAffiliation | 1 VA Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, Nebraska 2 Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska 3 Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska |
AuthorAffiliation_xml | – name: 1 VA Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, Nebraska – name: 2 Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska – name: 3 Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska |
Author_xml | – sequence: 1 givenname: EYAL surname: MARGALIT fullname: MARGALIT, EYAL email: emargalit@unmc.edu organization: 1VA Nebraska-Western Iowa Health Care System – sequence: 2 givenname: NORBERT surname: BABAI fullname: BABAI, NORBERT organization: 2Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska – sequence: 3 givenname: JIANMIN surname: LUO fullname: LUO, JIANMIN organization: 2Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska – sequence: 4 givenname: WALLACE B. surname: THORESON fullname: THORESON, WALLACE B. organization: 2Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24105039$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21463541$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1rFTEUhoNU7G31B7iRQRBX0-ZMJl8boRQ_CgUX1Y2bkEkytymT5JrMCP33ZuhtqxazScj7nPc9yTlCBzFFh9BrwCeAgZ9eYUk72hEBuK5eyGdoAz2TreDQH6DNKrerfoiOSrnBGAhQ8gIddpUitIcN-nERo8uNjrZJy1xP2c0-6qkJzlzr6EsojYtbvXW2GW4bt_P3QJl9WCY9-xQbH5uYcqi3q1G2TfDGvUTPRz0V92q_H6Pvnz5-O__SXn79fHF-dtkaSmBuASRnlHSCYdJhDlwIPg4W92wAYhgeqBRUatlJMTrSSQd2EHyQo7VCaAbkGH24890tQ3DWuDhnPald9kHnW5W0V38r0V-rbfqlCMeUY1YN3u8Ncvq5uDKr4Itx06SjS0tRQkpgrIc16u0_5E1acv2NCjEATATpKwR3kMmplOzGh1YAq3Vu6sncas2bP9_wUHE_qAq82wO6GD2NWUfjyyPXA6aYrEZkH67DkL3duscW_x__G0I8sE0 |
CitedBy_id | crossref_primary_10_3389_fmolb_2022_842399 crossref_primary_10_1523_ENEURO_0506_20_2021 crossref_primary_10_1167_iovs_61_13_37 crossref_primary_10_1152_jn_00578_2017 crossref_primary_10_1371_journal_pone_0068882 crossref_primary_10_1088_1741_2552_aad416 crossref_primary_10_1016_j_jneumeth_2017_07_028 crossref_primary_10_1088_1741_2552_aaadc1 crossref_primary_10_1113_JP270606 crossref_primary_10_1016_j_clinph_2020_02_018 crossref_primary_10_1152_jn_00293_2012 crossref_primary_10_1016_j_preteyeres_2022_101089 crossref_primary_10_1523_JNEUROSCI_4967_12_2013 crossref_primary_10_1152_jn_00913_2012 crossref_primary_10_1109_TNSRE_2020_3003345 crossref_primary_10_1109_TNSRE_2015_2415811 crossref_primary_10_1088_1741_2560_11_4_046012 crossref_primary_10_1371_journal_pone_0190048 crossref_primary_10_1088_1741_2552_14_2_026004 crossref_primary_10_1109_TNSRE_2014_2361900 crossref_primary_10_1088_1741_2552_aac315 crossref_primary_10_3389_fnins_2020_00262 crossref_primary_10_1088_1741_2552_aab4ed crossref_primary_10_1016_j_visres_2014_05_005 crossref_primary_10_1088_1741_2560_10_1_011002 crossref_primary_10_1088_1741_2560_12_1_016014 crossref_primary_10_1186_1475_925X_13_11 crossref_primary_10_3109_02713683_2011_652756 crossref_primary_10_1088_1741_2560_13_2_025002 crossref_primary_10_1146_annurev_vision_111815_114425 crossref_primary_10_1109_TNSRE_2020_3027560 |
Cites_doi | 10.1016/0006-8993(75)90364-9 10.1007/s10384-004-0084-9 10.1016/j.visres.2006.03.031 10.1016/j.jneumeth.2004.02.019 10.1016/S0042-6989(00)00005-5 10.1016/S0039-6257(02)00311-9 10.1016/j.ajo.2007.01.027 10.1016/S0165-0270(00)00246-6 10.1016/j.exer.2005.03.006 10.1152/jn.1993.70.4.1326 10.1152/jn.1975.38.1.185 10.1088/0967-3334/28/9/009 10.1167/iovs.05-1093 10.1152/jn.01168.2005 10.1016/0165-0270(87)90046-X 10.1152/jn.1975.38.1.198 10.1523/JNEUROSCI.18-21-08936.1998 10.1152/jn.01228.2004 10.1016/S0042-6989(01)00258-9 10.1523/JNEUROSCI.1533-08.2008 10.1152/jn.00144.2007 10.1167/iovs.04-1018 10.1136/bjo.2007.131961 10.1016/j.exer.2006.01.012 10.1016/j.exer.2005.11.023 10.1152/jn.91081.2008 10.1088/1741-2560/6/3/035004 10.1152/jn.00849.2005 10.1016/j.visres.2008.04.016 10.1113/jphysiol.1978.sp012394 10.1001/archopht.1994.01090130120028 10.1088/1741-2560/2/1/003 10.1016/S0042-6989(96)00223-4 10.1111/j.1471-4159.1990.tb02335.x |
ContentType | Journal Article |
Copyright | Copyright © Cambridge University Press 2011 2015 INIST-CNRS Copyright © Cambridge University Press, 2011 Copyright © Cambridge University Press, 2011 2011 |
Copyright_xml | – notice: Copyright © Cambridge University Press 2011 – notice: 2015 INIST-CNRS – notice: Copyright © Cambridge University Press, 2011 – notice: Copyright © Cambridge University Press, 2011 2011 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7TK 7X7 7XB 88E 88G 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ K9. M0S M1P M2M PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 5PM |
DOI | 10.1017/S0952523810000489 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Neurosciences Abstracts Health Medical collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Psychology Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Neurosciences Abstracts MEDLINE ProQuest One Psychology CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Margalit et al. Retinal electrical stimulation in mice |
EISSN | 1469-8714 |
EndPage | 154 |
ExternalDocumentID | 2315422771 10_1017_S0952523810000489 21463541 24105039 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY010542 – fundername: NEI NIH HHS grantid: EY10546 – fundername: National Eye Institute : NEI grantid: R01 EY010542 || EY |
GroupedDBID | --- -1D -1F -2P -2V -E. -~6 -~N -~X .FH .GJ 09C 09E 0E1 0R~ 123 29R 3V. 4.4 53G 5RE 5VS 6~7 74X 74Y 7X7 7~V 88E 8FI 8FJ 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AATID AAUIS AAUKB ABBXD ABBZL ABITZ ABIVO ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABWCF ABXAU ABZCX ABZUI ACBEK ACBMC ACCHT ACETC ACGFS ACIMK ACMRT ACNCT ACPRK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADAZD ADBBV ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYHU AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFMIJ AFUTZ AGABE AGJUD AGLWM AGOOT AHIPN AHLTW AHMBA AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO ANPSP AQJOH ARABE ARZZG ATUCA AUXHV AYIQA AZGZS AZQEC BBLKV BCGOX BENPR BESQT BGHMG BJBOZ BLZWO BMAJL BPHCQ BQFHP BRIRG BVXVI C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD EMOBN F5P FA8 FYUFA GNUQQ HG- HMCUK HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IPYYG IS6 I~P J36 J38 J3A JHPGK JKPOH JQKCU JVRFK KAFGG KC5 KCGVB KFECR L98 LHUNA LW7 M-V M1P M2M M7~ M8. MVM NIKVX NMFBF NZEOI O9- OYBOY P2P PQQKQ PROAC PSQYO PSYQQ Q2X RAMDC RCA RIG ROL RR0 S6- S6U SAAAG SY4 T9M UKHRP UT1 UU6 WFFJZ WQ3 WXU WXY WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 IQODW ABVZP ALIPV CGR CTKSN CUY CVF ECM EIF M48 NPM AAYXX CITATION 7TK 7XB 8FK K9. PQEST PQUKI PRINS Q9U 5PM |
ID | FETCH-LOGICAL-c531t-11976532860320717887fbd046b13c60b59859a9298fe329e1db87b9fdd88a613 |
IEDL.DBID | BENPR |
ISSN | 0952-5238 |
IngestDate | Tue Sep 17 21:33:27 EDT 2024 Fri Oct 25 01:53:01 EDT 2024 Thu Oct 10 20:31:39 EDT 2024 Thu Sep 26 16:27:25 EDT 2024 Tue Oct 15 23:41:03 EDT 2024 Sun Oct 22 16:09:12 EDT 2023 Wed Mar 13 06:01:58 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Electrical stimulation Retina rd mouse Retinal prosthesis Ganglion cell Rodentia Stimulation Eye Visual system Vertebrata Mammalia Mouse Animal |
Language | English |
License | CC BY 4.0 Copyright © Cambridge University Press, 2011 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-11976532860320717887fbd046b13c60b59859a9298fe329e1db87b9fdd88a613 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://europepmc.org/articles/pmc3705706?pdf=render |
PMID | 21463541 |
PQID | 861103834 |
PQPubID | 31753 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3705706 proquest_miscellaneous_899166411 proquest_journals_861103834 crossref_primary_10_1017_S0952523810000489 pubmed_primary_21463541 pascalfrancis_primary_24105039 cambridge_journals_10_1017_S0952523810000489 |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, USA |
PublicationPlace_xml | – name: New York, USA – name: Cambridge – name: England |
PublicationTitle | Visual neuroscience |
PublicationTitleAlternate | Vis Neurosci |
PublicationYear | 2011 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 9425524 - Vision Res. 1997 Dec;37(24):3471-82 1078577 - J Neurophysiol. 1975 Jan;38(1):185-97 15728760 - J Neurophysiol. 2005 Jun;93(6):3120-6 10967359 - J Neurosci Methods. 2000 Aug 15;101(1):31-42 1102064 - Brain Res. 1975 Nov 21;98(3):417-40 7506752 - J Neurophysiol. 1993 Oct;70(4):1326-38 17362868 - Am J Ophthalmol. 2007 May;143(5):820-827 18562624 - J Neurosci. 2008 Jun 18;28(25):6526-36 211229 - J Physiol. 1978 Jul;280:449-70 15790920 - Invest Ophthalmol Vis Sci. 2005 Apr;46(4):1486-96 15295659 - Jpn J Ophthalmol. 2004 Jul-Aug;48(4):345-9 16723150 - Vision Res. 2006 Oct;46(19):3198-204 19963974 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:618-21 19193771 - J Neurophysiol. 2009 Apr;101(4):1972-87 1078578 - J Neurophysiol. 1975 Jan;38(1):198-209 17471346 - Trans Am Ophthalmol Soc. 2006;104:252-9 18662916 - Br J Ophthalmol. 2008 Oct;92(10):1361-8 16616739 - Exp Eye Res. 2006 Aug;83(2):367-73 11804628 - Vision Res. 2002 Jan;42(1):19-27 12161210 - Surv Ophthalmol. 2002 Jul-Aug;47(4):335-56 17827655 - Physiol Meas. 2007 Sep;28(9):1079-88 16436479 - J Neurophysiol. 2006 Jun;95(6):3311-27 16723477 - Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2606-12 16750527 - Exp Eye Res. 2006 Aug;83(2):247-54 8285877 - Arch Ophthalmol. 1994 Jan;112(1):110-6 18555890 - Vision Res. 2008 Jun;48(14):1562-8 18216234 - J Neurophysiol. 2008 Mar;99(3):1408-21 15876650 - J Neural Eng. 2005 Mar;2(1):S16-21 15262054 - J Neurosci Methods. 2004 Aug 30;137(2):141-50 10814763 - Vision Res. 2000;40(13):1785-95 9786999 - J Neurosci. 1998 Nov 1;18(21):8936-46 18003327 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:5783-6 19458401 - J Neural Eng. 2009 Jun;6(3):035004 3037200 - J Neurosci Methods. 1987 Jun;20(2):139-49 2303818 - J Neurochem. 1990 Mar;54(3):893-8 15916760 - Exp Eye Res. 2005 Aug;81(2):123-37 16236780 - J Neurophysiol. 2006 Feb;95(2):970-8 S0952523810000489_ref9 S0952523810000489_ref7 S0952523810000489_ref8 Tsai (S0952523810000489_ref31) 2009; 2009 S0952523810000489_ref5 S0952523810000489_ref6 S0952523810000489_ref3 S0952523810000489_ref4 S0952523810000489_ref25 Chen (S0952523810000489_ref2) 2006; 104 S0952523810000489_ref26 S0952523810000489_ref23 S0952523810000489_ref24 S0952523810000489_ref21 S0952523810000489_ref22 S0952523810000489_ref20 S0952523810000489_ref29 S0952523810000489_ref27 S0952523810000489_ref28 S0952523810000489_ref14 S0952523810000489_ref36 S0952523810000489_ref15 S0952523810000489_ref12 S0952523810000489_ref34 S0952523810000489_ref35 S0952523810000489_ref13 Ye (S0952523810000489_ref37) 2007; 2007 S0952523810000489_ref32 S0952523810000489_ref10 S0952523810000489_ref11 S0952523810000489_ref33 S0952523810000489_ref30 S0952523810000489_ref1 S0952523810000489_ref18 S0952523810000489_ref19 S0952523810000489_ref16 S0952523810000489_ref38 S0952523810000489_ref17 |
References_xml | – ident: S0952523810000489_ref24 doi: 10.1016/0006-8993(75)90364-9 – ident: S0952523810000489_ref29 doi: 10.1007/s10384-004-0084-9 – ident: S0952523810000489_ref22 doi: 10.1016/j.visres.2006.03.031 – ident: S0952523810000489_ref3 doi: 10.1016/j.jneumeth.2004.02.019 – ident: S0952523810000489_ref28 doi: 10.1016/S0042-6989(00)00005-5 – ident: S0952523810000489_ref18 doi: 10.1016/S0039-6257(02)00311-9 – ident: S0952523810000489_ref35 doi: 10.1016/j.ajo.2007.01.027 – ident: S0952523810000489_ref7 doi: 10.1016/S0165-0270(00)00246-6 – volume: 2007 start-page: 5783 year: 2007 ident: S0952523810000489_ref37 article-title: Comparison of voltage parameters for the stimulation of normal and degenerate retina publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society contributor: fullname: Ye – ident: S0952523810000489_ref15 doi: 10.1016/j.exer.2005.03.006 – ident: S0952523810000489_ref30 doi: 10.1152/jn.1993.70.4.1326 – ident: S0952523810000489_ref16 doi: 10.1152/jn.1975.38.1.185 – ident: S0952523810000489_ref38 doi: 10.1088/0967-3334/28/9/009 – ident: S0952523810000489_ref19 doi: 10.1167/iovs.05-1093 – ident: S0952523810000489_ref25 doi: 10.1152/jn.01168.2005 – ident: S0952523810000489_ref6 – ident: S0952523810000489_ref34 doi: 10.1016/0165-0270(87)90046-X – ident: S0952523810000489_ref17 doi: 10.1152/jn.1975.38.1.198 – ident: S0952523810000489_ref14 doi: 10.1523/JNEUROSCI.18-21-08936.1998 – volume: 2009 start-page: 618 year: 2009 ident: S0952523810000489_ref31 article-title: Direct activation of retinal ganglion cells with subretinal stimulation publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society contributor: fullname: Tsai – ident: S0952523810000489_ref32 doi: 10.1152/jn.01228.2004 – ident: S0952523810000489_ref23 doi: 10.1016/S0042-6989(01)00258-9 – volume: 104 start-page: 252 year: 2006 ident: S0952523810000489_ref2 article-title: Neural responses elicited by electrical stimulation of the retina publication-title: Transactions of the American Ophthalmological Society contributor: fullname: Chen – ident: S0952523810000489_ref20 doi: 10.1523/JNEUROSCI.1533-08.2008 – ident: S0952523810000489_ref27 doi: 10.1152/jn.00144.2007 – ident: S0952523810000489_ref13 doi: 10.1167/iovs.04-1018 – ident: S0952523810000489_ref1 doi: 10.1136/bjo.2007.131961 – ident: S0952523810000489_ref9 doi: 10.1016/j.exer.2006.01.012 – ident: S0952523810000489_ref26 doi: 10.1016/j.exer.2005.11.023 – ident: S0952523810000489_ref5 doi: 10.1152/jn.91081.2008 – ident: S0952523810000489_ref11 doi: 10.1088/1741-2560/6/3/035004 – ident: S0952523810000489_ref4 doi: 10.1152/jn.00849.2005 – ident: S0952523810000489_ref10 doi: 10.1016/j.visres.2008.04.016 – ident: S0952523810000489_ref33 doi: 10.1113/jphysiol.1978.sp012394 – ident: S0952523810000489_ref8 doi: 10.1001/archopht.1994.01090130120028 – ident: S0952523810000489_ref12 doi: 10.1088/1741-2560/2/1/003 – ident: S0952523810000489_ref36 doi: 10.1016/S0042-6989(96)00223-4 – ident: S0952523810000489_ref21 doi: 10.1111/j.1471-4159.1990.tb02335.x |
SSID | ssj0013153 |
Score | 2.146168 |
Snippet | Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation.... Abstract Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical... Abstract Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis cambridge |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 145 |
SubjectTerms | Animals Biological and medical sciences Biophysics Calcium - metabolism Disease Models, Animal Electric Stimulation - methods Electrodes Evoked Potentials - drug effects Evoked Potentials - genetics Evoked Potentials - physiology Excitatory Amino Acid Antagonists - pharmacology Excitatory Postsynaptic Potentials - drug effects Excitatory Postsynaptic Potentials - genetics Experiments Eye and associated structures. Visual pathways and centers. Vision Eyes & eyesight Fundamental and applied biological sciences. Psychology GABA-A Receptor Antagonists - pharmacology Glycine Agents - pharmacology Human subjects In Vitro Techniques Mice Mice, Inbred C57BL Mice, Mutant Strains Microscopy, Confocal Patch-Clamp Techniques - methods Picrotoxin - analogs & derivatives Picrotoxin - pharmacology Quinoxalines - pharmacology Retina Retina - pathology Retinal Degeneration - classification Retinal Degeneration - genetics Retinal Degeneration - pathology Retinal Ganglion Cells - drug effects Retinal Ganglion Cells - physiology Retinal Ganglion Cells - radiation effects Strychnine - pharmacology Surgical apparatus & instruments Transplants & implants Vertebrates: nervous system and sense organs Veterans Visual Pathways - drug effects Visual Pathways - physiology |
Title | Inner and outer retinal mechanisms engaged by epiretinal stimulation in normal and rd mice |
URI | https://www.cambridge.org/core/product/identifier/S0952523810000489/type/journal_article https://www.ncbi.nlm.nih.gov/pubmed/21463541 https://www.proquest.com/docview/861103834 https://search.proquest.com/docview/899166411 https://pubmed.ncbi.nlm.nih.gov/PMC3705706 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6NIqFJCG2wjVJW-WHaw7Ro-R3nCZUJxCaBEBpStZfKjm1WibqFlAf-e-4cJ13ZxGt8caJ85_Od73IfwKdQRLrQuQpkXlYBGjwVcKM56jKxPCDoxrUUOr_Iz67Tn-Ns7Gtzal9W2dpEZ6jVvKIz8m88j6iXd5IeLe4CIo2i5Kpn0NiAzRgDhbgHm8cnF5dXqzRClHkueRdx8Tat6XpG40W65g64U6J5XzVXWNuktheixu9lGqKL_3mizwsq_9qhTt_Ajnct2ajRhbfwSttd2BtZDKtnj-wzc8We7hR9F7bOfU59D37_IPYtJqxic-J3YPRfI0000_RX8LSe1UzbG7Q7islHphfTVgCtw8yzf7GpZZbc31s30b1iRHP_Dq5PT359Pws840JQISzLgHKKCFDMc-JVx0gPTZCRCmNoGSVVHsqs5Fkp0KVCQJO41JGSvJClUYpzgZ7Be-jZudX7wJRBTyIVoUhKkwqjeBpJpQrqX1qaSvA-fO0-98Svm3rS1JwVk3_Q6cOXFpHJounD8ZLwcA2z7o6YilrDBAUGLYirZ3ca1gfWjeJiowyKsHr-gCLkTedpFPXhQ4P4amrccpIsxZFiTRc6AerjvT5ip39cP29cF1kR5gcvvtQAXjfH2VT-dgi95f2D_oj-0FIOYaMYF0Ov-09RYQbt |
link.rule.ids | 230,315,783,787,888,12070,21402,27938,27939,31733,31734,33758,33759,43324,43819,74081,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED4xkLZJaGIwto7B_ID2MC0iaX45TxObQGWj1TSBhPYS2bHNKq1uR8oD_z13jpNSQLzGFyfydz6ffef7APZDEelcZyqQWVEFaPBUwI3mqMvE8oCgG1dSaDjKBufJj4v0wufm1D6tsrWJzlCraUVn5Ac8i6iWd5x8nf0PiDSKgqueQeMZrFGlKlTqtW9Ho1-_F2GEKPVc8m7HxduwpqsZjQ_pmTvgTojmfVFcYWmRWp-JGsfLNEQXj3mi9xMq76xQxxvwyruW7LDRhdewou0mbB1a3FZPbtgn5pI93Sn6Jjwf-pj6Fvw5IfYtJqxiU-J3YHSvkTqaaLoVPK4nNdP2Eu2OYvKG6dm4FUDrMPHsX2xsmSX395_r6Eoxorl_A-fHR2ffB4FnXAgqhGUeUEwRAerzjHjVcaeHJshIhXtoGcVVFsq04Gkh0KVCQON-oSMleS4LoxTnAj2DbVi1U6vfAVMGPYlEhCIuTCKM4kkklcqpfmlhKsF78KUb7tLPm7pscs7y8gE6PfjcIlLOmjocTwnvLWHWvdGnpNYwRoGdFsTFtzsN6wHrWnGyUQRFWD29RhHyprMkinrwtkF80TUuOXGaYEu-pAudANXxXm6x47-unjfOizQPs_dP_tRHeDE4G56WpyejnzvwsjnaplS4D7A6v7rWu-gbzeWenwG3xg4JAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BkSqkCkHLx1IoPiAOiKjJxomdE6qAVQu04kClFZfIju2yEuvdNttD_z0zjpNlAfVqT-wobzweeybzAF6nKrPClibRZdUkaPBMIp2VqMvE8oCgu1BS6PSsPD7nn6fFNJYUamNaZW8Tg6E2i4buyA9lmVEt75wfupgV8e3j5P3yMiECKQq0RjaNu3BPcJwHVVtMxTqgkBWRVT6cvWQf4AzVo7GR2sJVNyfC93WZhY3tamepWvxyrqO8-J9P-ndq5R971eQhPIhOJjvqtOIR3LF-F_aOPB6w5zfsDQtpn-E-fRe2T2N0fQ9-nBAPF1PesAUxPTD6w5EGmlv6P3jWzltm_QVaIMP0DbPLWS-AdmIeecDYzDNPjvCvMNCVYUR4_xjOJ5--fzhOIvdC0iBAq4SiiwjVWJbEsI5nPjRGThs8Tessb8pUF5UsKoXOFUKbjyubGS2FrpwxUir0EZ7All94-wyYcehTcJWqvHJcOSN5po0RVMm0co2SI3g3fO46rqC27rLPRP0POiN42yNSL7uKHLcJH2xgNjwxpvTWNEeB_R7E9dyDro2ADb247CiWorxdXKMI-dUlz7IRPO0QXw-Nm09ecOwRG7owCFBF780eP_sZKnvjCilEWj6_9aVewTaqfv315OzLPtzv7rgpJ-4FbK2uru1LdJJW-iCo_2_RMgvG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inner+and+outer+retinal+mechanisms+engaged+by+epiretinal+stimulation+in+normal+and+rd+mice&rft.jtitle=Visual+neuroscience&rft.au=MARGALIT%2C+EYAL&rft.au=BABAI%2C+NORBERT&rft.au=LUO%2C+JIANMIN&rft.au=THORESON%2C+WALLACE+B&rft.date=2011-03-01&rft.pub=Cambridge+University+Press&rft.issn=0952-5238&rft.eissn=1469-8714&rft.volume=28&rft.issue=2&rft.spage=145&rft_id=info:doi/10.1017%2FS0952523810000489&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2315422771 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-5238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-5238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-5238&client=summon |