Inner and outer retinal mechanisms engaged by epiretinal stimulation in normal and rd mice

Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were...

Full description

Saved in:
Bibliographic Details
Published inVisual neuroscience Vol. 28; no. 2; pp. 145 - 154
Main Authors MARGALIT, EYAL, BABAI, NORBERT, LUO, JIANMIN, THORESON, WALLACE B.
Format Journal Article
LanguageEnglish
Published New York, USA Cambridge University Press 01.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around ECl and were inhibited by blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), γ aminobutyric acid a/c (GABAa/c) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry.
AbstractList Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around ECl and were inhibited by blockade of alpha -amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), gamma aminobutyric acid a/c (GABAa/c) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry.
Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around ECl and were inhibited by blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), γ aminobutyric acid a/c (GABAa/c) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry.
Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around E(Cl) and were inhibited by blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), γ aminobutyric acid a/c (GABA(a/c)) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry.
Abstract Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around ECl and were inhibited by blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), γ aminobutyric acid a/c (GABAa/c) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry. [PUBLICATION ABSTRACT]
Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around E Cl and were inhibited by blockade of α -amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), γ aminobutyric acid a/c (GABA a/c ) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry.
Abstract Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation. However, the retinal circuitry that is activated by epiretinal stimulation is not well characterized. Whole-cell patch clamp recordings were obtained from ganglion cells in normal and rd mice using flat-mount and retinal slice preparations. A stimulating electrode was positioned along the ganglion cell side of the preparation at different distances from the stimulated tissue. Pulses of cathodic current evoked action potentials in ganglion cells and less frequently evoked sustained inward currents that appeared synaptic in origin. Sustained currents reversed around E Cl and were inhibited by blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-proprionate (AMPA)-type glutamate receptors with 2,3-dihydroxy-6-nitro-sulfamoyl-benzo(f)-quinoxaline-2,3-dione (NBQX), γ aminobutyric acid a/c (GABA a/c ) receptors with picrotoxinin, or glycine receptors with strychnine. This suggests that epiretinal stimulation activates glutamate release from bipolar cell terminals, which in turn evokes release of GABA and glycine from amacrine cells. Synaptic current thresholds were lower in ON ganglion cells than OFF cells, but the modest difference did not attain statistical significance. Synaptic currents were rarely observed in rd mice lacking photoreceptors compared to normal retina. In addition, confocal calcium imaging experiments in normal mice retina slices revealed that epiretinal stimulation evoked calcium increases in the outer plexiform layer. These results imply a contribution from photoreceptor inputs to the synaptic currents observed in ganglion cells. The paucity of synaptic responses in rd mice retina slices suggests that it is better to target retinal ganglion cells directly rather than to attempt to engage the inner retinal circuitry.
Author LUO, JIANMIN
THORESON, WALLACE B.
BABAI, NORBERT
MARGALIT, EYAL
AuthorAffiliation 1 VA Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, Nebraska
2 Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
3 Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
AuthorAffiliation_xml – name: 1 VA Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, Nebraska
– name: 2 Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
– name: 3 Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
Author_xml – sequence: 1
  givenname: EYAL
  surname: MARGALIT
  fullname: MARGALIT, EYAL
  email: emargalit@unmc.edu
  organization: 1VA Nebraska-Western Iowa Health Care System
– sequence: 2
  givenname: NORBERT
  surname: BABAI
  fullname: BABAI, NORBERT
  organization: 2Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
– sequence: 3
  givenname: JIANMIN
  surname: LUO
  fullname: LUO, JIANMIN
  organization: 2Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
– sequence: 4
  givenname: WALLACE B.
  surname: THORESON
  fullname: THORESON, WALLACE B.
  organization: 2Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24105039$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21463541$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1rFTEUhoNU7G31B7iRQRBX0-ZMJl8boRQ_CgUX1Y2bkEkytymT5JrMCP33ZuhtqxazScj7nPc9yTlCBzFFh9BrwCeAgZ9eYUk72hEBuK5eyGdoAz2TreDQH6DNKrerfoiOSrnBGAhQ8gIddpUitIcN-nERo8uNjrZJy1xP2c0-6qkJzlzr6EsojYtbvXW2GW4bt_P3QJl9WCY9-xQbH5uYcqi3q1G2TfDGvUTPRz0V92q_H6Pvnz5-O__SXn79fHF-dtkaSmBuASRnlHSCYdJhDlwIPg4W92wAYhgeqBRUatlJMTrSSQd2EHyQo7VCaAbkGH24890tQ3DWuDhnPald9kHnW5W0V38r0V-rbfqlCMeUY1YN3u8Ncvq5uDKr4Itx06SjS0tRQkpgrIc16u0_5E1acv2NCjEATATpKwR3kMmplOzGh1YAq3Vu6sncas2bP9_wUHE_qAq82wO6GD2NWUfjyyPXA6aYrEZkH67DkL3duscW_x__G0I8sE0
CitedBy_id crossref_primary_10_3389_fmolb_2022_842399
crossref_primary_10_1523_ENEURO_0506_20_2021
crossref_primary_10_1167_iovs_61_13_37
crossref_primary_10_1152_jn_00578_2017
crossref_primary_10_1371_journal_pone_0068882
crossref_primary_10_1088_1741_2552_aad416
crossref_primary_10_1016_j_jneumeth_2017_07_028
crossref_primary_10_1088_1741_2552_aaadc1
crossref_primary_10_1113_JP270606
crossref_primary_10_1016_j_clinph_2020_02_018
crossref_primary_10_1152_jn_00293_2012
crossref_primary_10_1016_j_preteyeres_2022_101089
crossref_primary_10_1523_JNEUROSCI_4967_12_2013
crossref_primary_10_1152_jn_00913_2012
crossref_primary_10_1109_TNSRE_2020_3003345
crossref_primary_10_1109_TNSRE_2015_2415811
crossref_primary_10_1088_1741_2560_11_4_046012
crossref_primary_10_1371_journal_pone_0190048
crossref_primary_10_1088_1741_2552_14_2_026004
crossref_primary_10_1109_TNSRE_2014_2361900
crossref_primary_10_1088_1741_2552_aac315
crossref_primary_10_3389_fnins_2020_00262
crossref_primary_10_1088_1741_2552_aab4ed
crossref_primary_10_1016_j_visres_2014_05_005
crossref_primary_10_1088_1741_2560_10_1_011002
crossref_primary_10_1088_1741_2560_12_1_016014
crossref_primary_10_1186_1475_925X_13_11
crossref_primary_10_3109_02713683_2011_652756
crossref_primary_10_1088_1741_2560_13_2_025002
crossref_primary_10_1146_annurev_vision_111815_114425
crossref_primary_10_1109_TNSRE_2020_3027560
Cites_doi 10.1016/0006-8993(75)90364-9
10.1007/s10384-004-0084-9
10.1016/j.visres.2006.03.031
10.1016/j.jneumeth.2004.02.019
10.1016/S0042-6989(00)00005-5
10.1016/S0039-6257(02)00311-9
10.1016/j.ajo.2007.01.027
10.1016/S0165-0270(00)00246-6
10.1016/j.exer.2005.03.006
10.1152/jn.1993.70.4.1326
10.1152/jn.1975.38.1.185
10.1088/0967-3334/28/9/009
10.1167/iovs.05-1093
10.1152/jn.01168.2005
10.1016/0165-0270(87)90046-X
10.1152/jn.1975.38.1.198
10.1523/JNEUROSCI.18-21-08936.1998
10.1152/jn.01228.2004
10.1016/S0042-6989(01)00258-9
10.1523/JNEUROSCI.1533-08.2008
10.1152/jn.00144.2007
10.1167/iovs.04-1018
10.1136/bjo.2007.131961
10.1016/j.exer.2006.01.012
10.1016/j.exer.2005.11.023
10.1152/jn.91081.2008
10.1088/1741-2560/6/3/035004
10.1152/jn.00849.2005
10.1016/j.visres.2008.04.016
10.1113/jphysiol.1978.sp012394
10.1001/archopht.1994.01090130120028
10.1088/1741-2560/2/1/003
10.1016/S0042-6989(96)00223-4
10.1111/j.1471-4159.1990.tb02335.x
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2011
2015 INIST-CNRS
Copyright © Cambridge University Press, 2011
Copyright © Cambridge University Press, 2011 2011
Copyright_xml – notice: Copyright © Cambridge University Press 2011
– notice: 2015 INIST-CNRS
– notice: Copyright © Cambridge University Press, 2011
– notice: Copyright © Cambridge University Press, 2011 2011
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7TK
7X7
7XB
88E
88G
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
K9.
M0S
M1P
M2M
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
5PM
DOI 10.1017/S0952523810000489
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Neurosciences Abstracts
Health Medical collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Neurosciences Abstracts

MEDLINE
ProQuest One Psychology

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Margalit et al.
Retinal electrical stimulation in mice
EISSN 1469-8714
EndPage 154
ExternalDocumentID 2315422771
10_1017_S0952523810000489
21463541
24105039
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY010542
– fundername: NEI NIH HHS
  grantid: EY10546
– fundername: National Eye Institute : NEI
  grantid: R01 EY010542 || EY
GroupedDBID ---
-1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
.GJ
09C
09E
0E1
0R~
123
29R
3V.
4.4
53G
5RE
5VS
6~7
74X
74Y
7X7
7~V
88E
8FI
8FJ
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATID
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABIVO
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABWCF
ABXAU
ABZCX
ABZUI
ACBEK
ACBMC
ACCHT
ACETC
ACGFS
ACIMK
ACMRT
ACNCT
ACPRK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADAZD
ADBBV
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYHU
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFMIJ
AFUTZ
AGABE
AGJUD
AGLWM
AGOOT
AHIPN
AHLTW
AHMBA
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
ANPSP
AQJOH
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
AZGZS
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
BRIRG
BVXVI
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
EMOBN
F5P
FA8
FYUFA
GNUQQ
HG-
HMCUK
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JVRFK
KAFGG
KC5
KCGVB
KFECR
L98
LHUNA
LW7
M-V
M1P
M2M
M7~
M8.
MVM
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
SY4
T9M
UKHRP
UT1
UU6
WFFJZ
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
IQODW
ABVZP
ALIPV
CGR
CTKSN
CUY
CVF
ECM
EIF
M48
NPM
AAYXX
CITATION
7TK
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
5PM
ID FETCH-LOGICAL-c531t-11976532860320717887fbd046b13c60b59859a9298fe329e1db87b9fdd88a613
IEDL.DBID BENPR
ISSN 0952-5238
IngestDate Tue Sep 17 21:33:27 EDT 2024
Fri Oct 25 01:53:01 EDT 2024
Thu Oct 10 20:31:39 EDT 2024
Thu Sep 26 16:27:25 EDT 2024
Tue Oct 15 23:41:03 EDT 2024
Sun Oct 22 16:09:12 EDT 2023
Wed Mar 13 06:01:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Electrical stimulation
Retina
rd mouse
Retinal prosthesis
Ganglion cell
Rodentia
Stimulation
Eye
Visual system
Vertebrata
Mammalia
Mouse
Animal
Language English
License CC BY 4.0
Copyright © Cambridge University Press, 2011
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-11976532860320717887fbd046b13c60b59859a9298fe329e1db87b9fdd88a613
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://europepmc.org/articles/pmc3705706?pdf=render
PMID 21463541
PQID 861103834
PQPubID 31753
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3705706
proquest_miscellaneous_899166411
proquest_journals_861103834
crossref_primary_10_1017_S0952523810000489
pubmed_primary_21463541
pascalfrancis_primary_24105039
cambridge_journals_10_1017_S0952523810000489
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Cambridge
– name: England
PublicationTitle Visual neuroscience
PublicationTitleAlternate Vis Neurosci
PublicationYear 2011
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 9425524 - Vision Res. 1997 Dec;37(24):3471-82
1078577 - J Neurophysiol. 1975 Jan;38(1):185-97
15728760 - J Neurophysiol. 2005 Jun;93(6):3120-6
10967359 - J Neurosci Methods. 2000 Aug 15;101(1):31-42
1102064 - Brain Res. 1975 Nov 21;98(3):417-40
7506752 - J Neurophysiol. 1993 Oct;70(4):1326-38
17362868 - Am J Ophthalmol. 2007 May;143(5):820-827
18562624 - J Neurosci. 2008 Jun 18;28(25):6526-36
211229 - J Physiol. 1978 Jul;280:449-70
15790920 - Invest Ophthalmol Vis Sci. 2005 Apr;46(4):1486-96
15295659 - Jpn J Ophthalmol. 2004 Jul-Aug;48(4):345-9
16723150 - Vision Res. 2006 Oct;46(19):3198-204
19963974 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:618-21
19193771 - J Neurophysiol. 2009 Apr;101(4):1972-87
1078578 - J Neurophysiol. 1975 Jan;38(1):198-209
17471346 - Trans Am Ophthalmol Soc. 2006;104:252-9
18662916 - Br J Ophthalmol. 2008 Oct;92(10):1361-8
16616739 - Exp Eye Res. 2006 Aug;83(2):367-73
11804628 - Vision Res. 2002 Jan;42(1):19-27
12161210 - Surv Ophthalmol. 2002 Jul-Aug;47(4):335-56
17827655 - Physiol Meas. 2007 Sep;28(9):1079-88
16436479 - J Neurophysiol. 2006 Jun;95(6):3311-27
16723477 - Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2606-12
16750527 - Exp Eye Res. 2006 Aug;83(2):247-54
8285877 - Arch Ophthalmol. 1994 Jan;112(1):110-6
18555890 - Vision Res. 2008 Jun;48(14):1562-8
18216234 - J Neurophysiol. 2008 Mar;99(3):1408-21
15876650 - J Neural Eng. 2005 Mar;2(1):S16-21
15262054 - J Neurosci Methods. 2004 Aug 30;137(2):141-50
10814763 - Vision Res. 2000;40(13):1785-95
9786999 - J Neurosci. 1998 Nov 1;18(21):8936-46
18003327 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:5783-6
19458401 - J Neural Eng. 2009 Jun;6(3):035004
3037200 - J Neurosci Methods. 1987 Jun;20(2):139-49
2303818 - J Neurochem. 1990 Mar;54(3):893-8
15916760 - Exp Eye Res. 2005 Aug;81(2):123-37
16236780 - J Neurophysiol. 2006 Feb;95(2):970-8
S0952523810000489_ref9
S0952523810000489_ref7
S0952523810000489_ref8
Tsai (S0952523810000489_ref31) 2009; 2009
S0952523810000489_ref5
S0952523810000489_ref6
S0952523810000489_ref3
S0952523810000489_ref4
S0952523810000489_ref25
Chen (S0952523810000489_ref2) 2006; 104
S0952523810000489_ref26
S0952523810000489_ref23
S0952523810000489_ref24
S0952523810000489_ref21
S0952523810000489_ref22
S0952523810000489_ref20
S0952523810000489_ref29
S0952523810000489_ref27
S0952523810000489_ref28
S0952523810000489_ref14
S0952523810000489_ref36
S0952523810000489_ref15
S0952523810000489_ref12
S0952523810000489_ref34
S0952523810000489_ref35
S0952523810000489_ref13
Ye (S0952523810000489_ref37) 2007; 2007
S0952523810000489_ref32
S0952523810000489_ref10
S0952523810000489_ref11
S0952523810000489_ref33
S0952523810000489_ref30
S0952523810000489_ref1
S0952523810000489_ref18
S0952523810000489_ref19
S0952523810000489_ref16
S0952523810000489_ref38
S0952523810000489_ref17
References_xml – ident: S0952523810000489_ref24
  doi: 10.1016/0006-8993(75)90364-9
– ident: S0952523810000489_ref29
  doi: 10.1007/s10384-004-0084-9
– ident: S0952523810000489_ref22
  doi: 10.1016/j.visres.2006.03.031
– ident: S0952523810000489_ref3
  doi: 10.1016/j.jneumeth.2004.02.019
– ident: S0952523810000489_ref28
  doi: 10.1016/S0042-6989(00)00005-5
– ident: S0952523810000489_ref18
  doi: 10.1016/S0039-6257(02)00311-9
– ident: S0952523810000489_ref35
  doi: 10.1016/j.ajo.2007.01.027
– ident: S0952523810000489_ref7
  doi: 10.1016/S0165-0270(00)00246-6
– volume: 2007
  start-page: 5783
  year: 2007
  ident: S0952523810000489_ref37
  article-title: Comparison of voltage parameters for the stimulation of normal and degenerate retina
  publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  contributor:
    fullname: Ye
– ident: S0952523810000489_ref15
  doi: 10.1016/j.exer.2005.03.006
– ident: S0952523810000489_ref30
  doi: 10.1152/jn.1993.70.4.1326
– ident: S0952523810000489_ref16
  doi: 10.1152/jn.1975.38.1.185
– ident: S0952523810000489_ref38
  doi: 10.1088/0967-3334/28/9/009
– ident: S0952523810000489_ref19
  doi: 10.1167/iovs.05-1093
– ident: S0952523810000489_ref25
  doi: 10.1152/jn.01168.2005
– ident: S0952523810000489_ref6
– ident: S0952523810000489_ref34
  doi: 10.1016/0165-0270(87)90046-X
– ident: S0952523810000489_ref17
  doi: 10.1152/jn.1975.38.1.198
– ident: S0952523810000489_ref14
  doi: 10.1523/JNEUROSCI.18-21-08936.1998
– volume: 2009
  start-page: 618
  year: 2009
  ident: S0952523810000489_ref31
  article-title: Direct activation of retinal ganglion cells with subretinal stimulation
  publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  contributor:
    fullname: Tsai
– ident: S0952523810000489_ref32
  doi: 10.1152/jn.01228.2004
– ident: S0952523810000489_ref23
  doi: 10.1016/S0042-6989(01)00258-9
– volume: 104
  start-page: 252
  year: 2006
  ident: S0952523810000489_ref2
  article-title: Neural responses elicited by electrical stimulation of the retina
  publication-title: Transactions of the American Ophthalmological Society
  contributor:
    fullname: Chen
– ident: S0952523810000489_ref20
  doi: 10.1523/JNEUROSCI.1533-08.2008
– ident: S0952523810000489_ref27
  doi: 10.1152/jn.00144.2007
– ident: S0952523810000489_ref13
  doi: 10.1167/iovs.04-1018
– ident: S0952523810000489_ref1
  doi: 10.1136/bjo.2007.131961
– ident: S0952523810000489_ref9
  doi: 10.1016/j.exer.2006.01.012
– ident: S0952523810000489_ref26
  doi: 10.1016/j.exer.2005.11.023
– ident: S0952523810000489_ref5
  doi: 10.1152/jn.91081.2008
– ident: S0952523810000489_ref11
  doi: 10.1088/1741-2560/6/3/035004
– ident: S0952523810000489_ref4
  doi: 10.1152/jn.00849.2005
– ident: S0952523810000489_ref10
  doi: 10.1016/j.visres.2008.04.016
– ident: S0952523810000489_ref33
  doi: 10.1113/jphysiol.1978.sp012394
– ident: S0952523810000489_ref8
  doi: 10.1001/archopht.1994.01090130120028
– ident: S0952523810000489_ref12
  doi: 10.1088/1741-2560/2/1/003
– ident: S0952523810000489_ref36
  doi: 10.1016/S0042-6989(96)00223-4
– ident: S0952523810000489_ref21
  doi: 10.1111/j.1471-4159.1990.tb02335.x
SSID ssj0013153
Score 2.146168
Snippet Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical stimulation....
Abstract Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical...
Abstract Retinal prosthetic devices are being developed to bypass degenerated retinal photoreceptors by directly activating retinal neurons with electrical...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
cambridge
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 145
SubjectTerms Animals
Biological and medical sciences
Biophysics
Calcium - metabolism
Disease Models, Animal
Electric Stimulation - methods
Electrodes
Evoked Potentials - drug effects
Evoked Potentials - genetics
Evoked Potentials - physiology
Excitatory Amino Acid Antagonists - pharmacology
Excitatory Postsynaptic Potentials - drug effects
Excitatory Postsynaptic Potentials - genetics
Experiments
Eye and associated structures. Visual pathways and centers. Vision
Eyes & eyesight
Fundamental and applied biological sciences. Psychology
GABA-A Receptor Antagonists - pharmacology
Glycine Agents - pharmacology
Human subjects
In Vitro Techniques
Mice
Mice, Inbred C57BL
Mice, Mutant Strains
Microscopy, Confocal
Patch-Clamp Techniques - methods
Picrotoxin - analogs & derivatives
Picrotoxin - pharmacology
Quinoxalines - pharmacology
Retina
Retina - pathology
Retinal Degeneration - classification
Retinal Degeneration - genetics
Retinal Degeneration - pathology
Retinal Ganglion Cells - drug effects
Retinal Ganglion Cells - physiology
Retinal Ganglion Cells - radiation effects
Strychnine - pharmacology
Surgical apparatus & instruments
Transplants & implants
Vertebrates: nervous system and sense organs
Veterans
Visual Pathways - drug effects
Visual Pathways - physiology
Title Inner and outer retinal mechanisms engaged by epiretinal stimulation in normal and rd mice
URI https://www.cambridge.org/core/product/identifier/S0952523810000489/type/journal_article
https://www.ncbi.nlm.nih.gov/pubmed/21463541
https://www.proquest.com/docview/861103834
https://search.proquest.com/docview/899166411
https://pubmed.ncbi.nlm.nih.gov/PMC3705706
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6NIqFJCG2wjVJW-WHaw7Ro-R3nCZUJxCaBEBpStZfKjm1WibqFlAf-e-4cJ13ZxGt8caJ85_Od73IfwKdQRLrQuQpkXlYBGjwVcKM56jKxPCDoxrUUOr_Iz67Tn-Ns7Gtzal9W2dpEZ6jVvKIz8m88j6iXd5IeLe4CIo2i5Kpn0NiAzRgDhbgHm8cnF5dXqzRClHkueRdx8Tat6XpG40W65g64U6J5XzVXWNuktheixu9lGqKL_3mizwsq_9qhTt_Ajnct2ajRhbfwSttd2BtZDKtnj-wzc8We7hR9F7bOfU59D37_IPYtJqxic-J3YPRfI0000_RX8LSe1UzbG7Q7islHphfTVgCtw8yzf7GpZZbc31s30b1iRHP_Dq5PT359Pws840JQISzLgHKKCFDMc-JVx0gPTZCRCmNoGSVVHsqs5Fkp0KVCQJO41JGSvJClUYpzgZ7Be-jZudX7wJRBTyIVoUhKkwqjeBpJpQrqX1qaSvA-fO0-98Svm3rS1JwVk3_Q6cOXFpHJounD8ZLwcA2z7o6YilrDBAUGLYirZ3ca1gfWjeJiowyKsHr-gCLkTedpFPXhQ4P4amrccpIsxZFiTRc6AerjvT5ip39cP29cF1kR5gcvvtQAXjfH2VT-dgi95f2D_oj-0FIOYaMYF0Ov-09RYQbt
link.rule.ids 230,315,783,787,888,12070,21402,27938,27939,31733,31734,33758,33759,43324,43819,74081,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED4xkLZJaGIwto7B_ID2MC0iaX45TxObQGWj1TSBhPYS2bHNKq1uR8oD_z13jpNSQLzGFyfydz6ffef7APZDEelcZyqQWVEFaPBUwI3mqMvE8oCgG1dSaDjKBufJj4v0wufm1D6tsrWJzlCraUVn5Ac8i6iWd5x8nf0PiDSKgqueQeMZrFGlKlTqtW9Ho1-_F2GEKPVc8m7HxduwpqsZjQ_pmTvgTojmfVFcYWmRWp-JGsfLNEQXj3mi9xMq76xQxxvwyruW7LDRhdewou0mbB1a3FZPbtgn5pI93Sn6Jjwf-pj6Fvw5IfYtJqxiU-J3YHSvkTqaaLoVPK4nNdP2Eu2OYvKG6dm4FUDrMPHsX2xsmSX395_r6Eoxorl_A-fHR2ffB4FnXAgqhGUeUEwRAerzjHjVcaeHJshIhXtoGcVVFsq04Gkh0KVCQON-oSMleS4LoxTnAj2DbVi1U6vfAVMGPYlEhCIuTCKM4kkklcqpfmlhKsF78KUb7tLPm7pscs7y8gE6PfjcIlLOmjocTwnvLWHWvdGnpNYwRoGdFsTFtzsN6wHrWnGyUQRFWD29RhHyprMkinrwtkF80TUuOXGaYEu-pAudANXxXm6x47-unjfOizQPs_dP_tRHeDE4G56WpyejnzvwsjnaplS4D7A6v7rWu-gbzeWenwG3xg4JAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BkSqkCkHLx1IoPiAOiKjJxomdE6qAVQu04kClFZfIju2yEuvdNttD_z0zjpNlAfVqT-wobzweeybzAF6nKrPClibRZdUkaPBMIp2VqMvE8oCgu1BS6PSsPD7nn6fFNJYUamNaZW8Tg6E2i4buyA9lmVEt75wfupgV8e3j5P3yMiECKQq0RjaNu3BPcJwHVVtMxTqgkBWRVT6cvWQf4AzVo7GR2sJVNyfC93WZhY3tamepWvxyrqO8-J9P-ndq5R971eQhPIhOJjvqtOIR3LF-F_aOPB6w5zfsDQtpn-E-fRe2T2N0fQ9-nBAPF1PesAUxPTD6w5EGmlv6P3jWzltm_QVaIMP0DbPLWS-AdmIeecDYzDNPjvCvMNCVYUR4_xjOJ5--fzhOIvdC0iBAq4SiiwjVWJbEsI5nPjRGThs8Tessb8pUF5UsKoXOFUKbjyubGS2FrpwxUir0EZ7All94-wyYcehTcJWqvHJcOSN5po0RVMm0co2SI3g3fO46rqC27rLPRP0POiN42yNSL7uKHLcJH2xgNjwxpvTWNEeB_R7E9dyDro2ADb247CiWorxdXKMI-dUlz7IRPO0QXw-Nm09ecOwRG7owCFBF780eP_sZKnvjCilEWj6_9aVewTaqfv315OzLPtzv7rgpJ-4FbK2uru1LdJJW-iCo_2_RMgvG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inner+and+outer+retinal+mechanisms+engaged+by+epiretinal+stimulation+in+normal+and+rd+mice&rft.jtitle=Visual+neuroscience&rft.au=MARGALIT%2C+EYAL&rft.au=BABAI%2C+NORBERT&rft.au=LUO%2C+JIANMIN&rft.au=THORESON%2C+WALLACE+B&rft.date=2011-03-01&rft.pub=Cambridge+University+Press&rft.issn=0952-5238&rft.eissn=1469-8714&rft.volume=28&rft.issue=2&rft.spage=145&rft_id=info:doi/10.1017%2FS0952523810000489&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2315422771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-5238&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-5238&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-5238&client=summon