Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae)
The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of...
Saved in:
Published in | Molecular ecology Vol. 9; no. 11; pp. 1853 - 1862 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.11.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0.0 to 0.8, with an average of 0.407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model (F‐statistics), and the stepwise mutation model (R statistics). In addition, an analysis of molecular variance (amova), using both theoretical models, found that most of the variation was between populations (41–71%), and within individuals in the total population (31–49%). There was little variation among individuals within populations (0–10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes. |
---|---|
AbstractList | The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0.0 to 0.8, with an average of 0.407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model (F-statistics), and the stepwise mutation model (R statistics). In addition, an analysis of molecular variance (AMOVA), using both theoretical models, found that most of the variation was between populations (41-71%), and within individuals in the total population (31-49%). There was little variation among individuals within populations (0-10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes.The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0.0 to 0.8, with an average of 0.407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model (F-statistics), and the stepwise mutation model (R statistics). In addition, an analysis of molecular variance (AMOVA), using both theoretical models, found that most of the variation was between populations (41-71%), and within individuals in the total population (31-49%). There was little variation among individuals within populations (0-10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes. The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0.0 to 0.8, with an average of 0.407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model ( F ‐statistics), and the stepwise mutation model ( R statistics). In addition, an analysis of molecular variance ( amova ), using both theoretical models, found that most of the variation was between populations (41–71%), and within individuals in the total population (31–49%). There was little variation among individuals within populations (0–10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes. The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk. ) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0. 0 to 0. 8, with an average of 0. 407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model (F-statistics), and the stepwise mutation model (R statistics). In addition, an analysis of molecular variance (), using both theoretical models, found that most of the variation was between populations (41-71%), and within individuals in the total population (31-49%). There was little variation among individuals within populations (0-10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes. The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0.0 to 0.8, with an average of 0.407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model (F‐statistics), and the stepwise mutation model (R statistics). In addition, an analysis of molecular variance (amova), using both theoretical models, found that most of the variation was between populations (41–71%), and within individuals in the total population (31–49%). There was little variation among individuals within populations (0–10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes. The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0.0 to 0.8, with an average of 0.407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model (F-statistics), and the stepwise mutation model (R statistics). In addition, an analysis of molecular variance (AMOVA), using both theoretical models, found that most of the variation was between populations (41-71%), and within individuals in the total population (31-49%). There was little variation among individuals within populations (0-10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes. |
Author | Henry, R. Baverstock, P. Maguire, T. L. Saenger, P. |
Author_xml | – sequence: 1 givenname: T. L. surname: Maguire fullname: Maguire, T. L. email: t.maguire@botany.uq.edu.au organization: Centre for Coastal Management – sequence: 2 givenname: P. surname: Saenger fullname: Saenger, P. organization: Centre for Coastal Management – sequence: 3 givenname: P. surname: Baverstock fullname: Baverstock, P. organization: Graduate Research College, Southern Cross University, Lismore, Australia – sequence: 4 givenname: R. surname: Henry fullname: Henry, R. organization: Centre for Plant Conservation Genetics and |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11091321$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9v0zAUxS00xLrBV0B-QttDgh3Hif0A0la2AepASPx7s1znZnOXOsV2RvvtcejWB17Kk698fudaPucIHbjeAUKYkpySsnq9yCmreFbIcp0XhJCcUCJkvn6CJo_CzwM0IbIqsqSwQ3QUwoIQygrOn6FDSolMM52g4doa3wcdoetsBKyd7jbBBty3-AYcRGtwiH4wcfCArcPxFvBSuxvf3wMOKzAWAj67twacszpJ3jqNTy57H-7yU_zdgr_N8cmOMKDh9Dl62uouwIuH8xh9u7z4On2fzT5ffZiezTLDGZWZmXNOeVnyoi4ARAtgaFsA0UI2TQNz2WqAUkjScCNKKOZsLtI1aRgTXNQ1O0avtntXvv81QIhqaYNJX9UO-iGomtRCVKzaC5ay4LKq5V6QCkJrxnkCXz6Aw3wJjVp5m7LZqMfoE_B2C4z5Bw-tMjbqaHsXvbadokSNXauFGitVY9dq7Fr97Vqt0wLxz4LdG_utb7bW37aDzX_71PXFdJySP9v6bYiw3vm1v1NVzWqufny6Upy8q86_sJn6yP4AnefRgg |
CitedBy_id | crossref_primary_10_1007_s00606_013_0950_3 crossref_primary_10_1016_j_ecss_2020_106754 crossref_primary_10_1007_s12237_010_9265_6 crossref_primary_10_1360_SSV_2024_0144 crossref_primary_10_7211_jjsrt_31_92 crossref_primary_10_1046_j_0962_1083_2001_01399_x crossref_primary_10_1111_jbi_12770 crossref_primary_10_1016_j_aquabot_2004_11_004 crossref_primary_10_3354_ab00761 crossref_primary_10_1046_j_1365_294X_2002_01500_x crossref_primary_10_1371_journal_pone_0118710 crossref_primary_10_1038_s41598_018_19236_x crossref_primary_10_5762_KAIS_2014_15_9_5885 crossref_primary_10_1016_j_aquabot_2008_03_002 crossref_primary_10_1016_j_aquabot_2021_103374 crossref_primary_10_1111_ddi_12851 crossref_primary_10_1016_j_aquabot_2008_11_002 crossref_primary_10_3390_f11121287 crossref_primary_10_1111_jse_12746 crossref_primary_10_1016_S0025_326X_01_00259_4 crossref_primary_10_1093_molbev_msm209 crossref_primary_10_1007_s10530_009_9660_8 crossref_primary_10_1186_1471_2148_14_83 crossref_primary_10_1266_ggs_78_399 crossref_primary_10_1002_ece3_6829 crossref_primary_10_1016_j_aquabot_2012_01_002 crossref_primary_10_1186_s12862_016_0849_z crossref_primary_10_3389_fgene_2021_615911 crossref_primary_10_4282_sosj_33_7 crossref_primary_10_1007_s10750_007_0622_9 crossref_primary_10_1111_j_1744_7429_2005_00035_x crossref_primary_10_3389_fpls_2021_637009 crossref_primary_10_3390_d14020115 crossref_primary_10_1111_j_1558_5646_2007_00070_x crossref_primary_10_1007_s00425_021_03798_8 crossref_primary_10_1051_e3sconf_20185200027 crossref_primary_10_1590_0001_3765202020190083 crossref_primary_10_1073_pnas_1812470116 crossref_primary_10_1111_j_1365_2664_2006_01236_x crossref_primary_10_3390_biology12030484 crossref_primary_10_1111_j_1365_294X_2007_03659_x crossref_primary_10_1186_s12862_015_0331_3 crossref_primary_10_1007_s10750_020_04372_1 crossref_primary_10_1080_03946975_2012_682800 crossref_primary_10_1007_s13157_018_1067_9 crossref_primary_10_1016_j_aquabot_2022_103575 crossref_primary_10_1007_s10592_014_0626_8 crossref_primary_10_1111_j_1442_1984_2004_00107_x crossref_primary_10_1007_s10592_008_9596_z crossref_primary_10_1093_aob_mcs013 crossref_primary_10_1016_j_ocecoaman_2020_105288 crossref_primary_10_1016_j_aquabot_2004_01_005 crossref_primary_10_1111_j_1365_294X_2006_02997_x crossref_primary_10_1590_S1415_47572014000100012 crossref_primary_10_1016_j_aquabot_2007_12_013 crossref_primary_10_1016_j_aquabot_2011_09_011 crossref_primary_10_1371_journal_pone_0108785 crossref_primary_10_1016_j_ecss_2020_106712 crossref_primary_10_1111_j_1744_7429_2005_00036_x crossref_primary_10_1007_s13237_011_0027_z crossref_primary_10_1111_jbi_13813 crossref_primary_10_1134_S1995425523020063 crossref_primary_10_1007_s10592_009_9806_3 crossref_primary_10_1007_s10709_007_9182_1 crossref_primary_10_1046_j_1365_294X_2002_01525_x crossref_primary_10_1038_sj_hdy_6800047 crossref_primary_10_1007_s10750_008_9611_x crossref_primary_10_1007_s10750_017_3369_y crossref_primary_10_1086_499611 crossref_primary_10_1016_j_foreco_2017_10_026 crossref_primary_10_1016_j_egg_2020_100078 crossref_primary_10_1007_s43538_021_00021_w crossref_primary_10_1002_ece3_624 crossref_primary_10_1016_j_aquabot_2015_05_002 crossref_primary_10_1111_jse_12709 crossref_primary_10_3375_043_033_0312 crossref_primary_10_3389_fpls_2016_01434 crossref_primary_10_1007_s10592_006_9151_8 crossref_primary_10_1016_j_aquabot_2009_09_003 crossref_primary_10_1111_j_1365_294X_2008_03948_x crossref_primary_10_1007_s12237_015_9955_1 crossref_primary_10_1007_s10265_013_0613_z crossref_primary_10_1007_s11295_012_0512_9 crossref_primary_10_1111_1365_2745_12116 crossref_primary_10_1890_05_1935 crossref_primary_10_1071_BT07124 crossref_primary_10_1266_ggs_84_277 crossref_primary_10_1007_s12237_017_0309_z crossref_primary_10_1016_j_foreco_2005_10_025 crossref_primary_10_1007_s10750_017_3409_7 crossref_primary_10_1111_j_1471_8286_2005_01127_x crossref_primary_10_3923_jfas_2010_223_229 crossref_primary_10_1111_mec_12012 crossref_primary_10_1046_j_1471_8286_2003_00505_x crossref_primary_10_1016_j_ecss_2018_09_007 crossref_primary_10_1111_mec_15365 crossref_primary_10_3389_fcosc_2021_727819 crossref_primary_10_1186_s12870_023_04475_6 crossref_primary_10_1007_s10592_014_0647_3 crossref_primary_10_1111_j_1471_8286_2004_00851_x crossref_primary_10_1111_jbi_12263 crossref_primary_10_1111_mec_17260 crossref_primary_10_3354_meps11581 crossref_primary_10_1104_pp_012492 crossref_primary_10_1016_j_aquabot_2018_05_004 crossref_primary_10_1046_j_1471_8286_2003_00585_x crossref_primary_10_1016_j_ecss_2019_04_005 crossref_primary_10_1093_botlinnean_boz035 |
Cites_doi | 10.1007/s001220051480 10.1139/g97-065 10.1111/j.1558-5646.1985.tb04079.x 10.1073/pnas.88.10.4494 10.1071/MF97139 10.1127/zfg/25/1981/33 10.1007/BF02668371 10.1016/0304-3770(94)90062-0 10.1111/j.1558-5646.1998.tb02242.x 10.1046/j.1471-8286.2003.00455.x 10.1071/SB9910299 10.1111/j.1558-5646.1989.tb04220.x 10.1007/BF00029124 10.1046/j.1365-294x.1999.00622.x 10.1073/pnas.75.6.2868 10.1093/oxfordjournals.molbev.a025708 10.1111/j.1558-5646.1984.tb05657.x 10.1139/x26-051 10.2307/2387981 10.1093/genetics/139.1.457 10.1093/genetics/142.3.1061 10.1038/hdy.1989.112 10.1093/genetics/121.2.379 10.1111/j.1558-5646.1993.tb01215.x 10.1093/genetics/49.4.725 10.1038/hdy.1986.63 10.1038/hdy.1995.4 10.1111/j.1442-9993.1992.tb00794.x 10.1071/SB9880391 10.1038/hdy.1996.154 10.1139/x26-007 10.1016/0888-7543(90)90195-Z 10.1111/j.1558-5646.1992.tb02062.x 10.1002/j.1537-2197.1996.tb13873.x 10.1111/j.1558-5646.1989.tb04223.x 10.1017/S0016672300012994 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 8FD C1K F1W FR3 H95 L.G P64 RC3 7S9 L.6 7X8 |
DOI | 10.1046/j.1365-294x.2000.01089.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 1862 |
ExternalDocumentID | 11091321 10_1046_j_1365_294x_2000_01089_x MEC1089 ark_67375_WNG_50D6BQ3L_J |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | New Zealand South Africa Australia Asia |
GeographicLocations_xml | – name: South Africa – name: Asia – name: New Zealand – name: Australia |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G P64 RC3 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5319-cb5515445272ee8feec1f2e0a89dddeb9faee4890d5c84e2b3b8deb0d33858773 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 |
IngestDate | Tue Aug 05 11:35:48 EDT 2025 Fri Jul 11 02:29:15 EDT 2025 Fri Jul 11 13:04:53 EDT 2025 Tue Jan 28 02:50:44 EST 2025 Thu Apr 24 23:10:36 EDT 2025 Tue Jul 01 01:21:21 EDT 2025 Wed Jan 22 16:33:26 EST 2025 Wed Oct 30 09:51:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5319-cb5515445272ee8feec1f2e0a89dddeb9faee4890d5c84e2b3b8deb0d33858773 |
Notes | istex:17C61504D7ABEAD327C6F330BB861FE7F8B88CBC ArticleID:MEC1089 ark:/67375/WNG-50D6BQ3L-J ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 11091321 |
PQID | 18017355 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_70788636 proquest_miscellaneous_49259679 proquest_miscellaneous_18017355 pubmed_primary_11091321 crossref_citationtrail_10_1046_j_1365_294x_2000_01089_x crossref_primary_10_1046_j_1365_294x_2000_01089_x wiley_primary_10_1046_j_1365_294x_2000_01089_x_MEC1089 istex_primary_ark_67375_WNG_50D6BQ3L_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2000 |
PublicationDateYYYYMMDD | 2000-11-01 |
PublicationDate_xml | – month: 11 year: 2000 text: November 2000 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2000 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
References | Saenger P (1998) Mangrove vegetation: an evolutionary perspective. Marine and Freshwater Research, 49, 277-286. Richardson BJ, Baverstock PR, Adams M (1986) Allozyme Electrophoresis. Academic Press, Sydney, Australia. Everett J (1993) New combinations in the genus Avicennia (Avicenniaceae). Telopea, 5, 627-629. Weber JL (1990) Informativeness of human (cC-dA)n (dG-dT)n polymorphisms. Genomics, 7, 524-530. Knowles P, Perry DJ, Forster HA (1992) Spatial genetic structure in two tamarack [Larix laricina (do roi) K. Koch] populations with differing establishment histories. Evolution, 46, 572-576. Ohta T, Kimura M (1973) The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population. Genetic Research, 22, 201-204. Ballment ER, Smith TJ III, Stoddart JA (1988) Sibling species in the mangrove genus Ceriops (Rhizophoraceae), detected using biochemical genetics. Australian Systematic Botany, 1, 391-397. Raymond M, Roussett F (1995) genepop (Version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249. Parani M, Lakshmi M, Elango S, Ram N, Anuratha CS, Parida A (1997) Molecular phylogeny of mangroves II. Intra- and inter-specific variation in Avicennia revealed by RAPD and RFLP markers. Genome, 40, 487-495. Barton NH, Slatkin M (1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity, 56, 409-415. Schoen DJ, Brown AHD (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proceedings of the National Academy of Sciences of the USA, 88, 4494-4497. Rice WR (1989) Analysing tables of statistical tests. Evolution, 43, 223-225. Saifullah SM, Shaukat SS, Shams S (1994) Population structure and dispersion pattern in mangroves of Karachi, Pakistan. Aquatic Botany, 47, 329-340. Kimura M, Crow J (1964) The number of alleles that can be maintained in a finite population. Genetics, 49, 725-738. Williams CG, Hamrick JL (1996) Elite populations for conifer breeding and gene conservation. Canadian Journal of Forest Research, 26, 453-461. Primack RB, Tomlinson PB (1980) Variation in tropical forest breeding systems. Biotropica, 12, 229-231. Moran GF, Muona O, Bell JC (1989) Acacia mangium: a tropical forest tree of the coastal lowlands with low genetic diversity. Evolution, 43, 231-235. Shapcott A (1995) The spatial genetic structure in natural populations of the Australian temperate rainforest tree Atherosperma moschatum (Labill.) (Monimiaceae). Heredity, 74, 28-38. McMillan C (1986) Isozyme patterns among populations of black mangrove, Avicennia germinans, from the gulf of Mexico-Caribbean and Pacific Panama. Contributions in Marine Science, 29, 17-25. Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proceedings of the National Academy of Sciences of the USA, 75, 2868-2872. Wright S (1978) Evolution and the Genetics Populations, Vol. 4: Variability Within and Among Natural Populations. University of Chicago Press, Chicago. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457-462. Clarke PJ (1992) Pre-dispersal mortality and fecundity in the grey mangrove (Avicennia marina) in south eastern Australia. Australian Journal of Ecology, 17, 161-168. Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttans species complex with contrasting mating systems. Molecular Biology and Evolution, 14, 1023-1034. Rossi G (1981) Le Quaternaire littoral du Kenya. Zeitschrift Fur Geomorphologie, 25, 33-53. Duke NC (1995) Genetic diversity, distributional barriers and rafting continents-more thoughts on the evolution of mangroves. Hydrobiologia, 295, 167-181. Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics, 142, 1061-1064. Leonardi S, Menozzi P (1996) Spatial structure of genetic variability in natural stands of Fagus sylvatica L. (beech) in Italy. Heredity, 77, 359-368. Tomlinson PB (1986) The Botany of Mangroves. Cambridge University Press, Cambridge, United Kingdom. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47, 264-279. Duke NC, Benzie JAH, Goodall JA, Ballment ER (1998) Genetic structure and evolution of species in the mangrove genus Avicennia (Avicenniaceae) in the Indo-West Pacific. Evolution, 52, 1612-1626. Rossetto M, Slade RW, Baverstock PR, Henry RJ, Lee LS (1999) Microsatellite variation and assessment of genetic structure in tea tree (Melaleuca alternifolia- Myrtaceae). Molecular Ecology, 8, 633-643. Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution, 39, 53-65. Duke NC (1991) A systematic revision of the mangrove genus Avicennia (Avicenniaceae) in Australasia. Australian Systematic Botany, 4, 299-324. Maguire TL, Edwards KJ, Saenger P, Henry R (2000) Characterisation and analysis of microsatellite loci in a mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Theoretical and Applied Genetics, 101, 279-285. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370. Saenger P, Bellan MF (1995) The Mangrove Vegetation of the Atlantic Coast of Africa, p. 96. Universite de Toulouse Press, Toulouse. Waples RS (1989) A generalised approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121, 379-391. Balakrishma P (1995) Evaluation of intra-specific variability in Avicennia marina Forsk., using RAPD markers. Current Science, 69, 926-929. Chase M, Kessell R, Bawa K (1996) Microsatellite markers for population and conservation genetics of tropical trees. American Journal of Botany, 83, 51-57. Leonardi S, Raddi S, Borghetti M (1996) Spatial auto-correlation of allozyme traits in a Norway spruce (Picea abies) population. Canadian Journal of Forest Research, 26, 63-71. Maguire TL, Collins GG, Sedgley M (1994) A modified CTAB DNA extraction procedure for plants belonging to the family Proteaceae. Plant Molecular Biology Reporter, 12, 106-109. Sampson JF, Hopper SD, James SH (1989) The mating system and population genetic structure in a bird pollinated mallee, Eucalyptus rhodantha. Heredity, 63, 383-393. Weir BS (1996) Genetic Data Analysis II. Sinauer, Sunderland, MA. 1991; 4 1998; 49 1989; 63 1995; 74 1993; 47 1997; 40 1989; 43 1964; 49 1978; 75 1986; 56 1992; 17 1981; 25 1995; 139 1997 1994; 47 1996 1995 1996; 142 1999; 8 1995; 295 1993; 5 1978 1996; 77 1999 1995; 86 1988; 1 1985; 39 1990 1973; 22 1984; 38 1995; 69 1991; 88 1997; 14 1980; 12 1989; 121 1996; 83 1994; 12 1986 1986; 29 1992; 46 2000; 101 1998; 52 1996; 26 1990; 7 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 Muona O (e_1_2_7_24_1) 1990 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 Tomlinson PB (e_1_2_7_43_1) 1986 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_44_1 e_1_2_7_45_1 e_1_2_7_10_1 Balakrishma P (e_1_2_7_3_1) 1995; 69 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Everett J (e_1_2_7_11_1) 1993; 5 McMillan C (e_1_2_7_21_1) 1986; 29 Wright S (e_1_2_7_49_1) 1978 Rossi G (e_1_2_7_32_1) 1981; 25 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 Weir BS (e_1_2_7_46_1) 1996 Hamrick JL (e_1_2_7_12_1) 1990 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Saenger P (e_1_2_7_34_1) 1995 Richardson BJ (e_1_2_7_30_1) 1986 |
References_xml | – reference: Clarke PJ (1992) Pre-dispersal mortality and fecundity in the grey mangrove (Avicennia marina) in south eastern Australia. Australian Journal of Ecology, 17, 161-168. – reference: Richardson BJ, Baverstock PR, Adams M (1986) Allozyme Electrophoresis. Academic Press, Sydney, Australia. – reference: Weber JL (1990) Informativeness of human (cC-dA)n (dG-dT)n polymorphisms. Genomics, 7, 524-530. – reference: Rossi G (1981) Le Quaternaire littoral du Kenya. Zeitschrift Fur Geomorphologie, 25, 33-53. – reference: Saifullah SM, Shaukat SS, Shams S (1994) Population structure and dispersion pattern in mangroves of Karachi, Pakistan. Aquatic Botany, 47, 329-340. – reference: Everett J (1993) New combinations in the genus Avicennia (Avicenniaceae). Telopea, 5, 627-629. – reference: Ohta T, Kimura M (1973) The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population. Genetic Research, 22, 201-204. – reference: Duke NC (1991) A systematic revision of the mangrove genus Avicennia (Avicenniaceae) in Australasia. Australian Systematic Botany, 4, 299-324. – reference: Rossetto M, Slade RW, Baverstock PR, Henry RJ, Lee LS (1999) Microsatellite variation and assessment of genetic structure in tea tree (Melaleuca alternifolia- Myrtaceae). Molecular Ecology, 8, 633-643. – reference: Parani M, Lakshmi M, Elango S, Ram N, Anuratha CS, Parida A (1997) Molecular phylogeny of mangroves II. Intra- and inter-specific variation in Avicennia revealed by RAPD and RFLP markers. Genome, 40, 487-495. – reference: Maguire TL, Collins GG, Sedgley M (1994) A modified CTAB DNA extraction procedure for plants belonging to the family Proteaceae. Plant Molecular Biology Reporter, 12, 106-109. – reference: Tomlinson PB (1986) The Botany of Mangroves. Cambridge University Press, Cambridge, United Kingdom. – reference: Moran GF, Muona O, Bell JC (1989) Acacia mangium: a tropical forest tree of the coastal lowlands with low genetic diversity. Evolution, 43, 231-235. – reference: Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370. – reference: Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttans species complex with contrasting mating systems. Molecular Biology and Evolution, 14, 1023-1034. – reference: Ballment ER, Smith TJ III, Stoddart JA (1988) Sibling species in the mangrove genus Ceriops (Rhizophoraceae), detected using biochemical genetics. Australian Systematic Botany, 1, 391-397. – reference: Rice WR (1989) Analysing tables of statistical tests. Evolution, 43, 223-225. – reference: Duke NC (1995) Genetic diversity, distributional barriers and rafting continents-more thoughts on the evolution of mangroves. Hydrobiologia, 295, 167-181. – reference: Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proceedings of the National Academy of Sciences of the USA, 75, 2868-2872. – reference: Knowles P, Perry DJ, Forster HA (1992) Spatial genetic structure in two tamarack [Larix laricina (do roi) K. Koch] populations with differing establishment histories. Evolution, 46, 572-576. – reference: Schoen DJ, Brown AHD (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proceedings of the National Academy of Sciences of the USA, 88, 4494-4497. – reference: Saenger P (1998) Mangrove vegetation: an evolutionary perspective. Marine and Freshwater Research, 49, 277-286. – reference: Saenger P, Bellan MF (1995) The Mangrove Vegetation of the Atlantic Coast of Africa, p. 96. Universite de Toulouse Press, Toulouse. – reference: Balakrishma P (1995) Evaluation of intra-specific variability in Avicennia marina Forsk., using RAPD markers. Current Science, 69, 926-929. – reference: Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457-462. – reference: Chase M, Kessell R, Bawa K (1996) Microsatellite markers for population and conservation genetics of tropical trees. American Journal of Botany, 83, 51-57. – reference: Kimura M, Crow J (1964) The number of alleles that can be maintained in a finite population. Genetics, 49, 725-738. – reference: Williams CG, Hamrick JL (1996) Elite populations for conifer breeding and gene conservation. Canadian Journal of Forest Research, 26, 453-461. – reference: Raymond M, Roussett F (1995) genepop (Version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249. – reference: Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47, 264-279. – reference: Maguire TL, Edwards KJ, Saenger P, Henry R (2000) Characterisation and analysis of microsatellite loci in a mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Theoretical and Applied Genetics, 101, 279-285. – reference: Wright S (1978) Evolution and the Genetics Populations, Vol. 4: Variability Within and Among Natural Populations. University of Chicago Press, Chicago. – reference: McMillan C (1986) Isozyme patterns among populations of black mangrove, Avicennia germinans, from the gulf of Mexico-Caribbean and Pacific Panama. Contributions in Marine Science, 29, 17-25. – reference: Weir BS (1996) Genetic Data Analysis II. Sinauer, Sunderland, MA. – reference: Waples RS (1989) A generalised approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121, 379-391. – reference: Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics, 142, 1061-1064. – reference: Duke NC, Benzie JAH, Goodall JA, Ballment ER (1998) Genetic structure and evolution of species in the mangrove genus Avicennia (Avicenniaceae) in the Indo-West Pacific. Evolution, 52, 1612-1626. – reference: Leonardi S, Menozzi P (1996) Spatial structure of genetic variability in natural stands of Fagus sylvatica L. (beech) in Italy. Heredity, 77, 359-368. – reference: Primack RB, Tomlinson PB (1980) Variation in tropical forest breeding systems. Biotropica, 12, 229-231. – reference: Shapcott A (1995) The spatial genetic structure in natural populations of the Australian temperate rainforest tree Atherosperma moschatum (Labill.) (Monimiaceae). Heredity, 74, 28-38. – reference: Leonardi S, Raddi S, Borghetti M (1996) Spatial auto-correlation of allozyme traits in a Norway spruce (Picea abies) population. Canadian Journal of Forest Research, 26, 63-71. – reference: Sampson JF, Hopper SD, James SH (1989) The mating system and population genetic structure in a bird pollinated mallee, Eucalyptus rhodantha. Heredity, 63, 383-393. – reference: Barton NH, Slatkin M (1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity, 56, 409-415. – reference: Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution, 39, 53-65. – volume: 22 start-page: 201 year: 1973 end-page: 204 article-title: The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population publication-title: Genetic Research – volume: 17 start-page: 161 year: 1992 end-page: 168 article-title: Pre‐dispersal mortality and fecundity in the grey mangrove ( ) in south eastern Australia publication-title: Australian Journal of Ecology – volume: 14 start-page: 1023 year: 1997 end-page: 1034 article-title: Microsatellite variation and evolution in the species complex with contrasting mating systems publication-title: Molecular Biology and Evolution – volume: 12 start-page: 229 year: 1980 end-page: 231 article-title: Variation in tropical forest breeding systems publication-title: Biotropica – volume: 139 start-page: 457 year: 1995 end-page: 462 article-title: A measure of population subdivision based on microsatellite allele frequencies publication-title: Genetics – volume: 142 start-page: 1061 year: 1996 end-page: 1064 article-title: A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci publication-title: Genetics – start-page: 43 year: 1990 end-page: 63 – volume: 295 start-page: 167 year: 1995 end-page: 181 article-title: Genetic diversity, distributional barriers and rafting continents—more thoughts on the evolution of mangroves publication-title: Hydrobiologia – volume: 29 start-page: 17 year: 1986 end-page: 25 article-title: Isozyme patterns among populations of black mangrove, , from the gulf of Mexico–Caribbean and Pacific Panama publication-title: Contributions in Marine Science – start-page: 282 year: 1990 end-page: 298 – volume: 25 start-page: 33 year: 1981 end-page: 53 article-title: Le Quaternaire littoral du Kenya publication-title: Zeitschrift Fur Geomorphologie – year: 1996 – volume: 8 start-page: 633 year: 1999 end-page: 643 article-title: Microsatellite variation and assessment of genetic structure in tea tree ( — Myrtaceae) publication-title: Molecular Ecology – volume: 63 start-page: 383 year: 1989 end-page: 393 article-title: The mating system and population genetic structure in a bird pollinated mallee, publication-title: Heredity – volume: 121 start-page: 379 year: 1989 end-page: 391 article-title: A generalised approach for estimating effective population size from temporal changes in allele frequency publication-title: Genetics – volume: 12 start-page: 106 year: 1994 end-page: 109 article-title: A modified CTAB DNA extraction procedure for plants belonging to the family Proteaceae publication-title: Plant Molecular Biology Reporter – volume: 43 start-page: 223 year: 1989 end-page: 225 article-title: Analysing tables of statistical tests publication-title: Evolution – start-page: 96 year: 1995 – volume: 86 start-page: 248 year: 1995 end-page: 249 article-title: genepop (Version 1.2): population genetics software for exact tests and ecumenicism publication-title: Journal of Heredity – volume: 5 start-page: 627 year: 1993 end-page: 629 article-title: New combinations in the genus (Avicenniaceae) publication-title: Telopea – volume: 52 start-page: 1612 year: 1998 end-page: 1626 article-title: Genetic structure and evolution of species in the mangrove genus (Avicenniaceae) in the Indo‐West Pacific publication-title: Evolution – volume: 46 start-page: 572 year: 1992 end-page: 576 article-title: Spatial genetic structure in two tamarack [ (do roi) K. Koch] populations with differing establishment histories publication-title: Evolution – volume: 39 start-page: 53 year: 1985 end-page: 65 article-title: Rare alleles as indicators of gene flow publication-title: Evolution – volume: 4 start-page: 299 year: 1991 end-page: 324 article-title: A systematic revision of the mangrove genus (Avicenniaceae) in Australasia publication-title: Australian Systematic Botany – volume: 77 start-page: 359 year: 1996 end-page: 368 article-title: Spatial structure of genetic variability in natural stands of L. (beech) in Italy publication-title: Heredity – volume: 69 start-page: 926 year: 1995 end-page: 929 article-title: Evaluation of intra‐specific variability in Forsk., using RAPD markers publication-title: Current Science – year: 1986 – volume: 49 start-page: 277 year: 1998 end-page: 286 article-title: Mangrove vegetation: an evolutionary perspective publication-title: Marine and Freshwater Research – volume: 101 start-page: 279 year: 2000 end-page: 285 article-title: Characterisation and analysis of microsatellite loci in a mangrove species (Forsk.) Vierh. (Avicenniaceae) publication-title: Theoretical and Applied Genetics – volume: 26 start-page: 453 year: 1996 end-page: 461 article-title: Elite populations for conifer breeding and gene conservation publication-title: Canadian Journal of Forest Research – volume: 1 start-page: 391 year: 1988 end-page: 397 article-title: Sibling species in the mangrove genus (Rhizophoraceae), detected using biochemical genetics publication-title: Australian Systematic Botany – volume: 74 start-page: 28 year: 1995 end-page: 38 article-title: The spatial genetic structure in natural populations of the Australian temperate rainforest tree (Labill.) (Monimiaceae) publication-title: Heredity – volume: 83 start-page: 51 year: 1996 end-page: 57 article-title: Microsatellite markers for population and conservation genetics of tropical trees publication-title: American Journal of Botany – volume: 47 start-page: 264 year: 1993 end-page: 279 article-title: Isolation by distance in equilibrium and non‐equilibrium populations publication-title: Evolution – volume: 7 start-page: 524 year: 1990 end-page: 530 article-title: Informativeness of human (cC‐dA) (dG‐dT) polymorphisms publication-title: Genomics – volume: 75 start-page: 2868 year: 1978 end-page: 2872 article-title: Stepwise mutation model and distribution of allelic frequencies in a finite population publication-title: Proceedings of the National Academy of Sciences of the USA – year: 1997 – volume: 49 start-page: 725 year: 1964 end-page: 738 article-title: The number of alleles that can be maintained in a finite population publication-title: Genetics – volume: 56 start-page: 409 year: 1986 end-page: 415 article-title: A quasi‐equilibrium theory of the distribution of rare alleles in a subdivided population publication-title: Heredity – volume: 38 start-page: 1358 year: 1984 end-page: 1370 article-title: Estimating ‐statistics for the analysis of population structure publication-title: Evolution – volume: 26 start-page: 63 year: 1996 end-page: 71 article-title: Spatial auto‐correlation of allozyme traits in a Norway spruce ( ) population publication-title: Canadian Journal of Forest Research – volume: 40 start-page: 487 year: 1997 end-page: 495 article-title: Molecular phylogeny of mangroves II. Intra‐ and inter‐specific variation in revealed by RAPD and RFLP markers publication-title: Genome – volume: 43 start-page: 231 year: 1989 end-page: 235 article-title: : a tropical forest tree of the coastal lowlands with low genetic diversity publication-title: Evolution – volume: 47 start-page: 329 year: 1994 end-page: 340 article-title: Population structure and dispersion pattern in mangroves of Karachi, Pakistan publication-title: Aquatic Botany – year: 1978 – volume: 88 start-page: 4494 year: 1991 end-page: 4497 article-title: Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants publication-title: Proceedings of the National Academy of Sciences of the USA – year: 1999 – ident: e_1_2_7_20_1 doi: 10.1007/s001220051480 – volume: 29 start-page: 17 year: 1986 ident: e_1_2_7_21_1 article-title: Isozyme patterns among populations of black mangrove, Avicennia germinans, from the gulf of Mexico–Caribbean and Pacific Panama publication-title: Contributions in Marine Science – volume-title: The Botany of Mangroves year: 1986 ident: e_1_2_7_43_1 – ident: e_1_2_7_37_1 – ident: e_1_2_7_26_1 doi: 10.1139/g97-065 – ident: e_1_2_7_40_1 doi: 10.1111/j.1558-5646.1985.tb04079.x – ident: e_1_2_7_38_1 doi: 10.1073/pnas.88.10.4494 – volume-title: Evolution and the Genetics Populations, Vol. 4: Variability Within and Among Natural Populations year: 1978 ident: e_1_2_7_49_1 – ident: e_1_2_7_33_1 doi: 10.1071/MF97139 – volume: 25 start-page: 33 year: 1981 ident: e_1_2_7_32_1 article-title: Le Quaternaire littoral du Kenya publication-title: Zeitschrift Fur Geomorphologie doi: 10.1127/zfg/25/1981/33 – ident: e_1_2_7_19_1 doi: 10.1007/BF02668371 – ident: e_1_2_7_35_1 doi: 10.1016/0304-3770(94)90062-0 – ident: e_1_2_7_10_1 doi: 10.1111/j.1558-5646.1998.tb02242.x – ident: e_1_2_7_28_1 doi: 10.1046/j.1471-8286.2003.00455.x – ident: e_1_2_7_8_1 doi: 10.1071/SB9910299 – ident: e_1_2_7_29_1 doi: 10.1111/j.1558-5646.1989.tb04220.x – ident: e_1_2_7_9_1 doi: 10.1007/BF00029124 – ident: e_1_2_7_31_1 doi: 10.1046/j.1365-294x.1999.00622.x – ident: e_1_2_7_14_1 doi: 10.1073/pnas.75.6.2868 – start-page: 282 volume-title: Plant Population Genetics, Breeding and Genetic Resources year: 1990 ident: e_1_2_7_24_1 – ident: e_1_2_7_2_1 doi: 10.1093/oxfordjournals.molbev.a025708 – ident: e_1_2_7_47_1 doi: 10.1111/j.1558-5646.1984.tb05657.x – ident: e_1_2_7_48_1 doi: 10.1139/x26-051 – volume: 5 start-page: 627 year: 1993 ident: e_1_2_7_11_1 article-title: New combinations in the genus Avicennia (Avicenniaceae) publication-title: Telopea – start-page: 43 volume-title: Plant Population Genetics, Breeding and Genetic Resources year: 1990 ident: e_1_2_7_12_1 – ident: e_1_2_7_27_1 doi: 10.2307/2387981 – ident: e_1_2_7_42_1 doi: 10.1093/genetics/139.1.457 – volume-title: Allozyme Electrophoresis year: 1986 ident: e_1_2_7_30_1 – ident: e_1_2_7_22_1 doi: 10.1093/genetics/142.3.1061 – ident: e_1_2_7_36_1 doi: 10.1038/hdy.1989.112 – ident: e_1_2_7_44_1 doi: 10.1093/genetics/121.2.379 – ident: e_1_2_7_41_1 doi: 10.1111/j.1558-5646.1993.tb01215.x – ident: e_1_2_7_13_1 doi: 10.1093/genetics/49.4.725 – volume-title: Genetic Data Analysis II year: 1996 ident: e_1_2_7_46_1 – ident: e_1_2_7_5_1 doi: 10.1038/hdy.1986.63 – start-page: 96 volume-title: The Mangrove Vegetation of the Atlantic Coast of Africa year: 1995 ident: e_1_2_7_34_1 – ident: e_1_2_7_39_1 doi: 10.1038/hdy.1995.4 – ident: e_1_2_7_7_1 doi: 10.1111/j.1442-9993.1992.tb00794.x – ident: e_1_2_7_4_1 doi: 10.1071/SB9880391 – ident: e_1_2_7_16_1 doi: 10.1038/hdy.1996.154 – ident: e_1_2_7_17_1 doi: 10.1139/x26-007 – ident: e_1_2_7_18_1 – ident: e_1_2_7_45_1 doi: 10.1016/0888-7543(90)90195-Z – ident: e_1_2_7_15_1 doi: 10.1111/j.1558-5646.1992.tb02062.x – ident: e_1_2_7_6_1 doi: 10.1002/j.1537-2197.1996.tb13873.x – volume: 69 start-page: 926 year: 1995 ident: e_1_2_7_3_1 article-title: Evaluation of intra‐specific variability in Avicennia marina Forsk., using RAPD markers publication-title: Current Science – ident: e_1_2_7_23_1 doi: 10.1111/j.1558-5646.1989.tb04223.x – ident: e_1_2_7_25_1 doi: 10.1017/S0016672300012994 |
SSID | ssj0013255 |
Score | 2.0201993 |
Snippet | The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite... The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite... The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk. ) Vierh. was examined using... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1853 |
SubjectTerms | Alleles Asia Australia Avicennia marina Base Sequence DNA Primers DNA Primers - genetics DNA, Plant DNA, Plant - genetics Ecosystem genetic markers Genetic Variation genetics Genetics, Population geographical variation heterozygosity Heterozygote loci mangrove microsatellite Microsatellite Repeats Models, Genetic New Zealand population population structure South Africa Trees Trees - genetics |
Title | Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) |
URI | https://api.istex.fr/ark:/67375/WNG-50D6BQ3L-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1365-294x.2000.01089.x https://www.ncbi.nlm.nih.gov/pubmed/11091321 https://www.proquest.com/docview/18017355 https://www.proquest.com/docview/49259679 https://www.proquest.com/docview/70788636 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQERIXypvw9AGh9pAoDye2j6XsUlVsJRCF3izbcWC11EHZXbTl1zPjZBeKWqlC3Cy_JDsz9ufMzDeEvKxSqQGnZnEtyjpmgDhiYWse11xmzLDcFg3GDk-OqoNjdnhSngz-TxgL0_NDbH64oWaE8xoVXJs-C0ka2G3XHlqSrUK8SQIvCyETxJPYgPjoQ_6HQSEkQAXAnsPJI4rBqWcwcF440bmb6jpu-uoiGHoe1YZrabxNZusF9d4os2S5MIn9-RfX4_9Z8W1ya0CvdK8XtzvkmvN3yY0-n-UZlEaBA_vsHllO0NFvrgPf58JRPXCf0LahILIYOUl76tpl5-jUU8Ch9FT7L137w1EM_4QXPN3DY8z7qYambuo13Rm33XyW7NJPcJt_TejOpod12u3eJ8fj0cf9g3jI8BBb1P3YGgBsSAeU89w50ThnsyZ3qRayhnPXyEY7x4RM69IK5nJTGAHVaV2gPZPz4gHZ8q13jwhtoKYqUuOQnQhuZpHCVEIyzRHU1joifP01lR3ozzELxzcVzPAMQ9ZwexVuLybnTFXYXrWKSLYZ-b2nALnCmFdBYDYDdDdDFzpeqs9Hb1WZvqlevy_eqcOIvFhLlALFRmuN9q5dzlUG2IEDGry8B_JKyorLy3sglZOoiioiD3th_b2AQAibZxGpgshdeWVqMtrH0uN_HfiE3Ax0BiGe8ynZAllzzwDYLczzoLK_AOL6Pgk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJgQvfH-Er_kBoe0hWT6c2H4co6WMthJog71ZjuOwqluC0hZ1_PXcOWlhaJMmxJvl2Jbs3Nk_--5-R8jrLJQacGrkFyItfAaIwxem4H7BZcRyFpukxNjh0TgbHLGD4_S4SweEsTAtP8T6wQ01w-3XqOD4IL3bmSVbLXcuWpItXcBJAFcLIQMAlJuY4Nvdrz7Hf5gUXApUgOwx7D0i6dx6OhPnpSNdOKs2cdmXlwHRi7jWHUz9u-R0NaXWH2UaLOZ5YH7-xfb4n-Z8j9zpACzdayXuPrlhqwfkZpvS8hxKPUeDff6QLEbo6zfTjvJzbqnu6E9oXVKQWgyepC177aKxdFJRgKL0TFffmvqHpRgBCpd4uoc7WVVNNHxqJpWm2_26mU2DHfoFDvSTgG6vWxir7c4jctTvHe4P_C7Jg29Q_X2TA2ZDRqCYx9aK0loTlbENtZAFbL25LLW1TMiwSI1gNs6TXEB1WCRo0uQ8eUw2qrqyTwktoSZLwtwiQREcziKEoYRkmiOuLbRH-Op3KtMxoGMijlPlLPEMo9ZweRUuL-bnDJVbXrX0SLTu-b1lAblGnzdOYtYddDNFLzqeqq_j9yoN32VvPyVDdeCRrZVIKdBtNNjoytaLmYoAPnAAhFe3QGpJmXF5dQtkcxJZknnkSSutvyfgOGHjyCOZk7lrz0yNevtYevavHbfIrcHhaKiGH8Yfn5Pbjt3AhXe-IBsgd_Yl4Lx5_srp7y-7F0Ik |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKxCX8qahQH1AqD0k5OH4cSztLqV0V4Ao9GY5idOuFpIqu1tt-fXMONmFolaqEDfLsS15MmN_ycx8Q8grHioDODXyC5kWPgPE4cu8EH4hVMQyFudJibnDgyHfP2IHx-lxF_-EuTAtP8Tyhxtahjuv0cDPivJN55VsjdxFaCk2d_kmAXxZSBUAnlxlHFoIkD7Hf3gUXAVUQOwxHD0y6aJ6Og_nlStduqpWUerzq3DoZVjr7qX-PTJe7KgNRxkHs2kW5D__Inv8P1u-T9Y6-Ep3Wn17QG7Z6iG53Ra0vIBWz5FgXzwiswFG-k2MI_ycWmo68hNalxR0FlMnactdO2ssHVUUgCj9YaqTpj63FPM_4ROe7uA5VlUjA4-aUWXoVr9uJuNgm36F6_w0oFvLEbk1dvsxOer3vuzu-12JBz9H4_fzDBAb8gHFIrZWltbmURnb0EhVwMGbqdJYy6QKizSXzMZZkknoDosEHZpCJE_ISlVXdp3QEnp4EmYW6YngapYhLCUVMwJRbWE8IhZvU-cd_zmW4fiunR-eYc4ailejeLE6Z6idePXcI9Fy5lnLAXKDOa-dwiwnmGaMMXQi1d-G73Qa7vG3n5JDfeCRzYVGabBsdNeYytaziY4APAiAg9ePQGJJxYW6fgRyOUmecI88bZX19wYcI2wceYQ7lbvxzvSgt4utZ_86cZPc-bjX14fvhx82yF1HbeByO5-TFVA7-wJA3jR76az3F80IQNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microsatellite+analysis+of+genetic+structure+in+the+mangrove+species+Avicennia+marina+%28Forsk.%29+Vierh.+%28Avicenniaceae%29&rft.jtitle=Molecular+ecology&rft.au=Maguire%2C+T+L&rft.au=Saenger%2C+P&rft.au=Baverstock%2C+P&rft.au=Henry%2C+R&rft.date=2000-11-01&rft.issn=0962-1083&rft.volume=9&rft.issue=11&rft.spage=1853&rft_id=info:doi/10.1046%2Fj.1365-294x.2000.01089.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |