Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae)

The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 9; no. 11; pp. 1853 - 1862
Main Authors Maguire, T. L., Saenger, P., Baverstock, P., Henry, R.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.11.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0.0 to 0.8, with an average of 0.407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model (F‐statistics), and the stepwise mutation model (R statistics). In addition, an analysis of molecular variance (amova), using both theoretical models, found that most of the variation was between populations (41–71%), and within individuals in the total population (31–49%). There was little variation among individuals within populations (0–10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes.
AbstractList The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0.0 to 0.8, with an average of 0.407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model (F-statistics), and the stepwise mutation model (R statistics). In addition, an analysis of molecular variance (AMOVA), using both theoretical models, found that most of the variation was between populations (41-71%), and within individuals in the total population (31-49%). There was little variation among individuals within populations (0-10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes.The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0.0 to 0.8, with an average of 0.407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model (F-statistics), and the stepwise mutation model (R statistics). In addition, an analysis of molecular variance (AMOVA), using both theoretical models, found that most of the variation was between populations (41-71%), and within individuals in the total population (31-49%). There was little variation among individuals within populations (0-10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes.
The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0.0 to 0.8, with an average of 0.407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model ( F ‐statistics), and the stepwise mutation model ( R  statistics). In addition, an analysis of molecular variance ( amova ), using both theoretical models, found that most of the variation was between populations (41–71%), and within individuals in the total population (31–49%). There was little variation among individuals within populations (0–10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes.
The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk. ) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0. 0 to 0. 8, with an average of 0. 407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model (F-statistics), and the stepwise mutation model (R statistics). In addition, an analysis of molecular variance (), using both theoretical models, found that most of the variation was between populations (41-71%), and within individuals in the total population (31-49%). There was little variation among individuals within populations (0-10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes.
The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0.0 to 0.8, with an average of 0.407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model (F‐statistics), and the stepwise mutation model (R statistics). In addition, an analysis of molecular variance (amova), using both theoretical models, found that most of the variation was between populations (41–71%), and within individuals in the total population (31–49%). There was little variation among individuals within populations (0–10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes.
The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite markers. Three microsatellite loci detected high levels of allelic diversity (70 alleles in total), essential for an accurate estimation of population genetic parameters. The informativeness of the microsatellite loci tended to increase with increasing average number of repeats. The levels of heterozygosity detected for each population, over all loci, ranged from 0.0 to 0.8, with an average of 0.407, indicating that some populations had little or no genetic variation, whereas others had a large amount. Populations at the extremes of the distribution range showed reduced levels of heterozygosity, and significant levels of inbreeding. This is not unexpected as these populations may be subject to founder effects and environmental constraints. The presence of genetic structure was tested in A. marina populations using three models: (i) a single panmictic model; (ii) the discrete subpopulation model; and (iii) the isolation by distance model. The discrete subpopulations model was supported by the overall measures of population differentiation based on the infinite alleles model (F-statistics), and the stepwise mutation model (R statistics). In addition, an analysis of molecular variance (AMOVA), using both theoretical models, found that most of the variation was between populations (41-71%), and within individuals in the total population (31-49%). There was little variation among individuals within populations (0-10%). There was no significant isolation by distance. The high levels of genetic differentiation observed among populations of A. marina may be due to environmental and ecological factors, particularly past sea level and climatic changes.
Author Henry, R.
Baverstock, P.
Maguire, T. L.
Saenger, P.
Author_xml – sequence: 1
  givenname: T. L.
  surname: Maguire
  fullname: Maguire, T. L.
  email: t.maguire@botany.uq.edu.au
  organization: Centre for Coastal Management
– sequence: 2
  givenname: P.
  surname: Saenger
  fullname: Saenger, P.
  organization: Centre for Coastal Management
– sequence: 3
  givenname: P.
  surname: Baverstock
  fullname: Baverstock, P.
  organization: Graduate Research College, Southern Cross University, Lismore, Australia
– sequence: 4
  givenname: R.
  surname: Henry
  fullname: Henry, R.
  organization: Centre for Plant Conservation Genetics and
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11091321$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9v0zAUxS00xLrBV0B-QttDgh3Hif0A0la2AepASPx7s1znZnOXOsV2RvvtcejWB17Kk698fudaPucIHbjeAUKYkpySsnq9yCmreFbIcp0XhJCcUCJkvn6CJo_CzwM0IbIqsqSwQ3QUwoIQygrOn6FDSolMM52g4doa3wcdoetsBKyd7jbBBty3-AYcRGtwiH4wcfCArcPxFvBSuxvf3wMOKzAWAj67twacszpJ3jqNTy57H-7yU_zdgr_N8cmOMKDh9Dl62uouwIuH8xh9u7z4On2fzT5ffZiezTLDGZWZmXNOeVnyoi4ARAtgaFsA0UI2TQNz2WqAUkjScCNKKOZsLtI1aRgTXNQ1O0avtntXvv81QIhqaYNJX9UO-iGomtRCVKzaC5ay4LKq5V6QCkJrxnkCXz6Aw3wJjVp5m7LZqMfoE_B2C4z5Bw-tMjbqaHsXvbadokSNXauFGitVY9dq7Fr97Vqt0wLxz4LdG_utb7bW37aDzX_71PXFdJySP9v6bYiw3vm1v1NVzWqufny6Upy8q86_sJn6yP4AnefRgg
CitedBy_id crossref_primary_10_1007_s00606_013_0950_3
crossref_primary_10_1016_j_ecss_2020_106754
crossref_primary_10_1007_s12237_010_9265_6
crossref_primary_10_1360_SSV_2024_0144
crossref_primary_10_7211_jjsrt_31_92
crossref_primary_10_1046_j_0962_1083_2001_01399_x
crossref_primary_10_1111_jbi_12770
crossref_primary_10_1016_j_aquabot_2004_11_004
crossref_primary_10_3354_ab00761
crossref_primary_10_1046_j_1365_294X_2002_01500_x
crossref_primary_10_1371_journal_pone_0118710
crossref_primary_10_1038_s41598_018_19236_x
crossref_primary_10_5762_KAIS_2014_15_9_5885
crossref_primary_10_1016_j_aquabot_2008_03_002
crossref_primary_10_1016_j_aquabot_2021_103374
crossref_primary_10_1111_ddi_12851
crossref_primary_10_1016_j_aquabot_2008_11_002
crossref_primary_10_3390_f11121287
crossref_primary_10_1111_jse_12746
crossref_primary_10_1016_S0025_326X_01_00259_4
crossref_primary_10_1093_molbev_msm209
crossref_primary_10_1007_s10530_009_9660_8
crossref_primary_10_1186_1471_2148_14_83
crossref_primary_10_1266_ggs_78_399
crossref_primary_10_1002_ece3_6829
crossref_primary_10_1016_j_aquabot_2012_01_002
crossref_primary_10_1186_s12862_016_0849_z
crossref_primary_10_3389_fgene_2021_615911
crossref_primary_10_4282_sosj_33_7
crossref_primary_10_1007_s10750_007_0622_9
crossref_primary_10_1111_j_1744_7429_2005_00035_x
crossref_primary_10_3389_fpls_2021_637009
crossref_primary_10_3390_d14020115
crossref_primary_10_1111_j_1558_5646_2007_00070_x
crossref_primary_10_1007_s00425_021_03798_8
crossref_primary_10_1051_e3sconf_20185200027
crossref_primary_10_1590_0001_3765202020190083
crossref_primary_10_1073_pnas_1812470116
crossref_primary_10_1111_j_1365_2664_2006_01236_x
crossref_primary_10_3390_biology12030484
crossref_primary_10_1111_j_1365_294X_2007_03659_x
crossref_primary_10_1186_s12862_015_0331_3
crossref_primary_10_1007_s10750_020_04372_1
crossref_primary_10_1080_03946975_2012_682800
crossref_primary_10_1007_s13157_018_1067_9
crossref_primary_10_1016_j_aquabot_2022_103575
crossref_primary_10_1007_s10592_014_0626_8
crossref_primary_10_1111_j_1442_1984_2004_00107_x
crossref_primary_10_1007_s10592_008_9596_z
crossref_primary_10_1093_aob_mcs013
crossref_primary_10_1016_j_ocecoaman_2020_105288
crossref_primary_10_1016_j_aquabot_2004_01_005
crossref_primary_10_1111_j_1365_294X_2006_02997_x
crossref_primary_10_1590_S1415_47572014000100012
crossref_primary_10_1016_j_aquabot_2007_12_013
crossref_primary_10_1016_j_aquabot_2011_09_011
crossref_primary_10_1371_journal_pone_0108785
crossref_primary_10_1016_j_ecss_2020_106712
crossref_primary_10_1111_j_1744_7429_2005_00036_x
crossref_primary_10_1007_s13237_011_0027_z
crossref_primary_10_1111_jbi_13813
crossref_primary_10_1134_S1995425523020063
crossref_primary_10_1007_s10592_009_9806_3
crossref_primary_10_1007_s10709_007_9182_1
crossref_primary_10_1046_j_1365_294X_2002_01525_x
crossref_primary_10_1038_sj_hdy_6800047
crossref_primary_10_1007_s10750_008_9611_x
crossref_primary_10_1007_s10750_017_3369_y
crossref_primary_10_1086_499611
crossref_primary_10_1016_j_foreco_2017_10_026
crossref_primary_10_1016_j_egg_2020_100078
crossref_primary_10_1007_s43538_021_00021_w
crossref_primary_10_1002_ece3_624
crossref_primary_10_1016_j_aquabot_2015_05_002
crossref_primary_10_1111_jse_12709
crossref_primary_10_3375_043_033_0312
crossref_primary_10_3389_fpls_2016_01434
crossref_primary_10_1007_s10592_006_9151_8
crossref_primary_10_1016_j_aquabot_2009_09_003
crossref_primary_10_1111_j_1365_294X_2008_03948_x
crossref_primary_10_1007_s12237_015_9955_1
crossref_primary_10_1007_s10265_013_0613_z
crossref_primary_10_1007_s11295_012_0512_9
crossref_primary_10_1111_1365_2745_12116
crossref_primary_10_1890_05_1935
crossref_primary_10_1071_BT07124
crossref_primary_10_1266_ggs_84_277
crossref_primary_10_1007_s12237_017_0309_z
crossref_primary_10_1016_j_foreco_2005_10_025
crossref_primary_10_1007_s10750_017_3409_7
crossref_primary_10_1111_j_1471_8286_2005_01127_x
crossref_primary_10_3923_jfas_2010_223_229
crossref_primary_10_1111_mec_12012
crossref_primary_10_1046_j_1471_8286_2003_00505_x
crossref_primary_10_1016_j_ecss_2018_09_007
crossref_primary_10_1111_mec_15365
crossref_primary_10_3389_fcosc_2021_727819
crossref_primary_10_1186_s12870_023_04475_6
crossref_primary_10_1007_s10592_014_0647_3
crossref_primary_10_1111_j_1471_8286_2004_00851_x
crossref_primary_10_1111_jbi_12263
crossref_primary_10_1111_mec_17260
crossref_primary_10_3354_meps11581
crossref_primary_10_1104_pp_012492
crossref_primary_10_1016_j_aquabot_2018_05_004
crossref_primary_10_1046_j_1471_8286_2003_00585_x
crossref_primary_10_1016_j_ecss_2019_04_005
crossref_primary_10_1093_botlinnean_boz035
Cites_doi 10.1007/s001220051480
10.1139/g97-065
10.1111/j.1558-5646.1985.tb04079.x
10.1073/pnas.88.10.4494
10.1071/MF97139
10.1127/zfg/25/1981/33
10.1007/BF02668371
10.1016/0304-3770(94)90062-0
10.1111/j.1558-5646.1998.tb02242.x
10.1046/j.1471-8286.2003.00455.x
10.1071/SB9910299
10.1111/j.1558-5646.1989.tb04220.x
10.1007/BF00029124
10.1046/j.1365-294x.1999.00622.x
10.1073/pnas.75.6.2868
10.1093/oxfordjournals.molbev.a025708
10.1111/j.1558-5646.1984.tb05657.x
10.1139/x26-051
10.2307/2387981
10.1093/genetics/139.1.457
10.1093/genetics/142.3.1061
10.1038/hdy.1989.112
10.1093/genetics/121.2.379
10.1111/j.1558-5646.1993.tb01215.x
10.1093/genetics/49.4.725
10.1038/hdy.1986.63
10.1038/hdy.1995.4
10.1111/j.1442-9993.1992.tb00794.x
10.1071/SB9880391
10.1038/hdy.1996.154
10.1139/x26-007
10.1016/0888-7543(90)90195-Z
10.1111/j.1558-5646.1992.tb02062.x
10.1002/j.1537-2197.1996.tb13873.x
10.1111/j.1558-5646.1989.tb04223.x
10.1017/S0016672300012994
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
7S9
L.6
7X8
DOI 10.1046/j.1365-294x.2000.01089.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 1862
ExternalDocumentID 11091321
10_1046_j_1365_294x_2000_01089_x
MEC1089
ark_67375_WNG_50D6BQ3L_J
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations New Zealand
South Africa
Australia
Asia
GeographicLocations_xml – name: South Africa
– name: Asia
– name: New Zealand
– name: Australia
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
P64
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c5319-cb5515445272ee8feec1f2e0a89dddeb9faee4890d5c84e2b3b8deb0d33858773
IEDL.DBID DR2
ISSN 0962-1083
IngestDate Tue Aug 05 11:35:48 EDT 2025
Fri Jul 11 02:29:15 EDT 2025
Fri Jul 11 13:04:53 EDT 2025
Tue Jan 28 02:50:44 EST 2025
Thu Apr 24 23:10:36 EDT 2025
Tue Jul 01 01:21:21 EDT 2025
Wed Jan 22 16:33:26 EST 2025
Wed Oct 30 09:51:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5319-cb5515445272ee8feec1f2e0a89dddeb9faee4890d5c84e2b3b8deb0d33858773
Notes istex:17C61504D7ABEAD327C6F330BB861FE7F8B88CBC
ArticleID:MEC1089
ark:/67375/WNG-50D6BQ3L-J
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 11091321
PQID 18017355
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_70788636
proquest_miscellaneous_49259679
proquest_miscellaneous_18017355
pubmed_primary_11091321
crossref_citationtrail_10_1046_j_1365_294x_2000_01089_x
crossref_primary_10_1046_j_1365_294x_2000_01089_x
wiley_primary_10_1046_j_1365_294x_2000_01089_x_MEC1089
istex_primary_ark_67375_WNG_50D6BQ3L_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2000
PublicationDateYYYYMMDD 2000-11-01
PublicationDate_xml – month: 11
  year: 2000
  text: November 2000
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2000
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References Saenger P (1998) Mangrove vegetation: an evolutionary perspective. Marine and Freshwater Research, 49, 277-286.
Richardson BJ, Baverstock PR, Adams M (1986) Allozyme Electrophoresis. Academic Press, Sydney, Australia.
Everett J (1993) New combinations in the genus Avicennia (Avicenniaceae). Telopea, 5, 627-629.
Weber JL (1990) Informativeness of human (cC-dA)n (dG-dT)n polymorphisms. Genomics, 7, 524-530.
Knowles P, Perry DJ, Forster HA (1992) Spatial genetic structure in two tamarack [Larix laricina (do roi) K. Koch] populations with differing establishment histories. Evolution, 46, 572-576.
Ohta T, Kimura M (1973) The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population. Genetic Research, 22, 201-204.
Ballment ER, Smith TJ III, Stoddart JA (1988) Sibling species in the mangrove genus Ceriops (Rhizophoraceae), detected using biochemical genetics. Australian Systematic Botany, 1, 391-397.
Raymond M, Roussett F (1995) genepop (Version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249.
Parani M, Lakshmi M, Elango S, Ram N, Anuratha CS, Parida A (1997) Molecular phylogeny of mangroves II. Intra- and inter-specific variation in Avicennia revealed by RAPD and RFLP markers. Genome, 40, 487-495.
Barton NH, Slatkin M (1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity, 56, 409-415.
Schoen DJ, Brown AHD (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proceedings of the National Academy of Sciences of the USA, 88, 4494-4497.
Rice WR (1989) Analysing tables of statistical tests. Evolution, 43, 223-225.
Saifullah SM, Shaukat SS, Shams S (1994) Population structure and dispersion pattern in mangroves of Karachi, Pakistan. Aquatic Botany, 47, 329-340.
Kimura M, Crow J (1964) The number of alleles that can be maintained in a finite population. Genetics, 49, 725-738.
Williams CG, Hamrick JL (1996) Elite populations for conifer breeding and gene conservation. Canadian Journal of Forest Research, 26, 453-461.
Primack RB, Tomlinson PB (1980) Variation in tropical forest breeding systems. Biotropica, 12, 229-231.
Moran GF, Muona O, Bell JC (1989) Acacia mangium: a tropical forest tree of the coastal lowlands with low genetic diversity. Evolution, 43, 231-235.
Shapcott A (1995) The spatial genetic structure in natural populations of the Australian temperate rainforest tree Atherosperma moschatum (Labill.) (Monimiaceae). Heredity, 74, 28-38.
McMillan C (1986) Isozyme patterns among populations of black mangrove, Avicennia germinans, from the gulf of Mexico-Caribbean and Pacific Panama. Contributions in Marine Science, 29, 17-25.
Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proceedings of the National Academy of Sciences of the USA, 75, 2868-2872.
Wright S (1978) Evolution and the Genetics Populations, Vol. 4: Variability Within and Among Natural Populations. University of Chicago Press, Chicago.
Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457-462.
Clarke PJ (1992) Pre-dispersal mortality and fecundity in the grey mangrove (Avicennia marina) in south eastern Australia. Australian Journal of Ecology, 17, 161-168.
Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttans species complex with contrasting mating systems. Molecular Biology and Evolution, 14, 1023-1034.
Rossi G (1981) Le Quaternaire littoral du Kenya. Zeitschrift Fur Geomorphologie, 25, 33-53.
Duke NC (1995) Genetic diversity, distributional barriers and rafting continents-more thoughts on the evolution of mangroves. Hydrobiologia, 295, 167-181.
Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics, 142, 1061-1064.
Leonardi S, Menozzi P (1996) Spatial structure of genetic variability in natural stands of Fagus sylvatica L. (beech) in Italy. Heredity, 77, 359-368.
Tomlinson PB (1986) The Botany of Mangroves. Cambridge University Press, Cambridge, United Kingdom.
Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47, 264-279.
Duke NC, Benzie JAH, Goodall JA, Ballment ER (1998) Genetic structure and evolution of species in the mangrove genus Avicennia (Avicenniaceae) in the Indo-West Pacific. Evolution, 52, 1612-1626.
Rossetto M, Slade RW, Baverstock PR, Henry RJ, Lee LS (1999) Microsatellite variation and assessment of genetic structure in tea tree (Melaleuca alternifolia- Myrtaceae). Molecular Ecology, 8, 633-643.
Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution, 39, 53-65.
Duke NC (1991) A systematic revision of the mangrove genus Avicennia (Avicenniaceae) in Australasia. Australian Systematic Botany, 4, 299-324.
Maguire TL, Edwards KJ, Saenger P, Henry R (2000) Characterisation and analysis of microsatellite loci in a mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Theoretical and Applied Genetics, 101, 279-285.
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
Saenger P, Bellan MF (1995) The Mangrove Vegetation of the Atlantic Coast of Africa, p. 96. Universite de Toulouse Press, Toulouse.
Waples RS (1989) A generalised approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121, 379-391.
Balakrishma P (1995) Evaluation of intra-specific variability in Avicennia marina Forsk., using RAPD markers. Current Science, 69, 926-929.
Chase M, Kessell R, Bawa K (1996) Microsatellite markers for population and conservation genetics of tropical trees. American Journal of Botany, 83, 51-57.
Leonardi S, Raddi S, Borghetti M (1996) Spatial auto-correlation of allozyme traits in a Norway spruce (Picea abies) population. Canadian Journal of Forest Research, 26, 63-71.
Maguire TL, Collins GG, Sedgley M (1994) A modified CTAB DNA extraction procedure for plants belonging to the family Proteaceae. Plant Molecular Biology Reporter, 12, 106-109.
Sampson JF, Hopper SD, James SH (1989) The mating system and population genetic structure in a bird pollinated mallee, Eucalyptus rhodantha. Heredity, 63, 383-393.
Weir BS (1996) Genetic Data Analysis II. Sinauer, Sunderland, MA.
1991; 4
1998; 49
1989; 63
1995; 74
1993; 47
1997; 40
1989; 43
1964; 49
1978; 75
1986; 56
1992; 17
1981; 25
1995; 139
1997
1994; 47
1996
1995
1996; 142
1999; 8
1995; 295
1993; 5
1978
1996; 77
1999
1995; 86
1988; 1
1985; 39
1990
1973; 22
1984; 38
1995; 69
1991; 88
1997; 14
1980; 12
1989; 121
1996; 83
1994; 12
1986
1986; 29
1992; 46
2000; 101
1998; 52
1996; 26
1990; 7
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Muona O (e_1_2_7_24_1) 1990
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
Tomlinson PB (e_1_2_7_43_1) 1986
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_44_1
e_1_2_7_45_1
e_1_2_7_10_1
Balakrishma P (e_1_2_7_3_1) 1995; 69
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Everett J (e_1_2_7_11_1) 1993; 5
McMillan C (e_1_2_7_21_1) 1986; 29
Wright S (e_1_2_7_49_1) 1978
Rossi G (e_1_2_7_32_1) 1981; 25
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
Weir BS (e_1_2_7_46_1) 1996
Hamrick JL (e_1_2_7_12_1) 1990
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Saenger P (e_1_2_7_34_1) 1995
Richardson BJ (e_1_2_7_30_1) 1986
References_xml – reference: Clarke PJ (1992) Pre-dispersal mortality and fecundity in the grey mangrove (Avicennia marina) in south eastern Australia. Australian Journal of Ecology, 17, 161-168.
– reference: Richardson BJ, Baverstock PR, Adams M (1986) Allozyme Electrophoresis. Academic Press, Sydney, Australia.
– reference: Weber JL (1990) Informativeness of human (cC-dA)n (dG-dT)n polymorphisms. Genomics, 7, 524-530.
– reference: Rossi G (1981) Le Quaternaire littoral du Kenya. Zeitschrift Fur Geomorphologie, 25, 33-53.
– reference: Saifullah SM, Shaukat SS, Shams S (1994) Population structure and dispersion pattern in mangroves of Karachi, Pakistan. Aquatic Botany, 47, 329-340.
– reference: Everett J (1993) New combinations in the genus Avicennia (Avicenniaceae). Telopea, 5, 627-629.
– reference: Ohta T, Kimura M (1973) The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population. Genetic Research, 22, 201-204.
– reference: Duke NC (1991) A systematic revision of the mangrove genus Avicennia (Avicenniaceae) in Australasia. Australian Systematic Botany, 4, 299-324.
– reference: Rossetto M, Slade RW, Baverstock PR, Henry RJ, Lee LS (1999) Microsatellite variation and assessment of genetic structure in tea tree (Melaleuca alternifolia- Myrtaceae). Molecular Ecology, 8, 633-643.
– reference: Parani M, Lakshmi M, Elango S, Ram N, Anuratha CS, Parida A (1997) Molecular phylogeny of mangroves II. Intra- and inter-specific variation in Avicennia revealed by RAPD and RFLP markers. Genome, 40, 487-495.
– reference: Maguire TL, Collins GG, Sedgley M (1994) A modified CTAB DNA extraction procedure for plants belonging to the family Proteaceae. Plant Molecular Biology Reporter, 12, 106-109.
– reference: Tomlinson PB (1986) The Botany of Mangroves. Cambridge University Press, Cambridge, United Kingdom.
– reference: Moran GF, Muona O, Bell JC (1989) Acacia mangium: a tropical forest tree of the coastal lowlands with low genetic diversity. Evolution, 43, 231-235.
– reference: Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
– reference: Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttans species complex with contrasting mating systems. Molecular Biology and Evolution, 14, 1023-1034.
– reference: Ballment ER, Smith TJ III, Stoddart JA (1988) Sibling species in the mangrove genus Ceriops (Rhizophoraceae), detected using biochemical genetics. Australian Systematic Botany, 1, 391-397.
– reference: Rice WR (1989) Analysing tables of statistical tests. Evolution, 43, 223-225.
– reference: Duke NC (1995) Genetic diversity, distributional barriers and rafting continents-more thoughts on the evolution of mangroves. Hydrobiologia, 295, 167-181.
– reference: Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proceedings of the National Academy of Sciences of the USA, 75, 2868-2872.
– reference: Knowles P, Perry DJ, Forster HA (1992) Spatial genetic structure in two tamarack [Larix laricina (do roi) K. Koch] populations with differing establishment histories. Evolution, 46, 572-576.
– reference: Schoen DJ, Brown AHD (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proceedings of the National Academy of Sciences of the USA, 88, 4494-4497.
– reference: Saenger P (1998) Mangrove vegetation: an evolutionary perspective. Marine and Freshwater Research, 49, 277-286.
– reference: Saenger P, Bellan MF (1995) The Mangrove Vegetation of the Atlantic Coast of Africa, p. 96. Universite de Toulouse Press, Toulouse.
– reference: Balakrishma P (1995) Evaluation of intra-specific variability in Avicennia marina Forsk., using RAPD markers. Current Science, 69, 926-929.
– reference: Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457-462.
– reference: Chase M, Kessell R, Bawa K (1996) Microsatellite markers for population and conservation genetics of tropical trees. American Journal of Botany, 83, 51-57.
– reference: Kimura M, Crow J (1964) The number of alleles that can be maintained in a finite population. Genetics, 49, 725-738.
– reference: Williams CG, Hamrick JL (1996) Elite populations for conifer breeding and gene conservation. Canadian Journal of Forest Research, 26, 453-461.
– reference: Raymond M, Roussett F (1995) genepop (Version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249.
– reference: Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47, 264-279.
– reference: Maguire TL, Edwards KJ, Saenger P, Henry R (2000) Characterisation and analysis of microsatellite loci in a mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Theoretical and Applied Genetics, 101, 279-285.
– reference: Wright S (1978) Evolution and the Genetics Populations, Vol. 4: Variability Within and Among Natural Populations. University of Chicago Press, Chicago.
– reference: McMillan C (1986) Isozyme patterns among populations of black mangrove, Avicennia germinans, from the gulf of Mexico-Caribbean and Pacific Panama. Contributions in Marine Science, 29, 17-25.
– reference: Weir BS (1996) Genetic Data Analysis II. Sinauer, Sunderland, MA.
– reference: Waples RS (1989) A generalised approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121, 379-391.
– reference: Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics, 142, 1061-1064.
– reference: Duke NC, Benzie JAH, Goodall JA, Ballment ER (1998) Genetic structure and evolution of species in the mangrove genus Avicennia (Avicenniaceae) in the Indo-West Pacific. Evolution, 52, 1612-1626.
– reference: Leonardi S, Menozzi P (1996) Spatial structure of genetic variability in natural stands of Fagus sylvatica L. (beech) in Italy. Heredity, 77, 359-368.
– reference: Primack RB, Tomlinson PB (1980) Variation in tropical forest breeding systems. Biotropica, 12, 229-231.
– reference: Shapcott A (1995) The spatial genetic structure in natural populations of the Australian temperate rainforest tree Atherosperma moschatum (Labill.) (Monimiaceae). Heredity, 74, 28-38.
– reference: Leonardi S, Raddi S, Borghetti M (1996) Spatial auto-correlation of allozyme traits in a Norway spruce (Picea abies) population. Canadian Journal of Forest Research, 26, 63-71.
– reference: Sampson JF, Hopper SD, James SH (1989) The mating system and population genetic structure in a bird pollinated mallee, Eucalyptus rhodantha. Heredity, 63, 383-393.
– reference: Barton NH, Slatkin M (1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity, 56, 409-415.
– reference: Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution, 39, 53-65.
– volume: 22
  start-page: 201
  year: 1973
  end-page: 204
  article-title: The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population
  publication-title: Genetic Research
– volume: 17
  start-page: 161
  year: 1992
  end-page: 168
  article-title: Pre‐dispersal mortality and fecundity in the grey mangrove ( ) in south eastern Australia
  publication-title: Australian Journal of Ecology
– volume: 14
  start-page: 1023
  year: 1997
  end-page: 1034
  article-title: Microsatellite variation and evolution in the species complex with contrasting mating systems
  publication-title: Molecular Biology and Evolution
– volume: 12
  start-page: 229
  year: 1980
  end-page: 231
  article-title: Variation in tropical forest breeding systems
  publication-title: Biotropica
– volume: 139
  start-page: 457
  year: 1995
  end-page: 462
  article-title: A measure of population subdivision based on microsatellite allele frequencies
  publication-title: Genetics
– volume: 142
  start-page: 1061
  year: 1996
  end-page: 1064
  article-title: A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci
  publication-title: Genetics
– start-page: 43
  year: 1990
  end-page: 63
– volume: 295
  start-page: 167
  year: 1995
  end-page: 181
  article-title: Genetic diversity, distributional barriers and rafting continents—more thoughts on the evolution of mangroves
  publication-title: Hydrobiologia
– volume: 29
  start-page: 17
  year: 1986
  end-page: 25
  article-title: Isozyme patterns among populations of black mangrove, , from the gulf of Mexico–Caribbean and Pacific Panama
  publication-title: Contributions in Marine Science
– start-page: 282
  year: 1990
  end-page: 298
– volume: 25
  start-page: 33
  year: 1981
  end-page: 53
  article-title: Le Quaternaire littoral du Kenya
  publication-title: Zeitschrift Fur Geomorphologie
– year: 1996
– volume: 8
  start-page: 633
  year: 1999
  end-page: 643
  article-title: Microsatellite variation and assessment of genetic structure in tea tree ( — Myrtaceae)
  publication-title: Molecular Ecology
– volume: 63
  start-page: 383
  year: 1989
  end-page: 393
  article-title: The mating system and population genetic structure in a bird pollinated mallee,
  publication-title: Heredity
– volume: 121
  start-page: 379
  year: 1989
  end-page: 391
  article-title: A generalised approach for estimating effective population size from temporal changes in allele frequency
  publication-title: Genetics
– volume: 12
  start-page: 106
  year: 1994
  end-page: 109
  article-title: A modified CTAB DNA extraction procedure for plants belonging to the family Proteaceae
  publication-title: Plant Molecular Biology Reporter
– volume: 43
  start-page: 223
  year: 1989
  end-page: 225
  article-title: Analysing tables of statistical tests
  publication-title: Evolution
– start-page: 96
  year: 1995
– volume: 86
  start-page: 248
  year: 1995
  end-page: 249
  article-title: genepop (Version 1.2): population genetics software for exact tests and ecumenicism
  publication-title: Journal of Heredity
– volume: 5
  start-page: 627
  year: 1993
  end-page: 629
  article-title: New combinations in the genus (Avicenniaceae)
  publication-title: Telopea
– volume: 52
  start-page: 1612
  year: 1998
  end-page: 1626
  article-title: Genetic structure and evolution of species in the mangrove genus (Avicenniaceae) in the Indo‐West Pacific
  publication-title: Evolution
– volume: 46
  start-page: 572
  year: 1992
  end-page: 576
  article-title: Spatial genetic structure in two tamarack [ (do roi) K. Koch] populations with differing establishment histories
  publication-title: Evolution
– volume: 39
  start-page: 53
  year: 1985
  end-page: 65
  article-title: Rare alleles as indicators of gene flow
  publication-title: Evolution
– volume: 4
  start-page: 299
  year: 1991
  end-page: 324
  article-title: A systematic revision of the mangrove genus (Avicenniaceae) in Australasia
  publication-title: Australian Systematic Botany
– volume: 77
  start-page: 359
  year: 1996
  end-page: 368
  article-title: Spatial structure of genetic variability in natural stands of L. (beech) in Italy
  publication-title: Heredity
– volume: 69
  start-page: 926
  year: 1995
  end-page: 929
  article-title: Evaluation of intra‐specific variability in Forsk., using RAPD markers
  publication-title: Current Science
– year: 1986
– volume: 49
  start-page: 277
  year: 1998
  end-page: 286
  article-title: Mangrove vegetation: an evolutionary perspective
  publication-title: Marine and Freshwater Research
– volume: 101
  start-page: 279
  year: 2000
  end-page: 285
  article-title: Characterisation and analysis of microsatellite loci in a mangrove species (Forsk.) Vierh. (Avicenniaceae)
  publication-title: Theoretical and Applied Genetics
– volume: 26
  start-page: 453
  year: 1996
  end-page: 461
  article-title: Elite populations for conifer breeding and gene conservation
  publication-title: Canadian Journal of Forest Research
– volume: 1
  start-page: 391
  year: 1988
  end-page: 397
  article-title: Sibling species in the mangrove genus (Rhizophoraceae), detected using biochemical genetics
  publication-title: Australian Systematic Botany
– volume: 74
  start-page: 28
  year: 1995
  end-page: 38
  article-title: The spatial genetic structure in natural populations of the Australian temperate rainforest tree (Labill.) (Monimiaceae)
  publication-title: Heredity
– volume: 83
  start-page: 51
  year: 1996
  end-page: 57
  article-title: Microsatellite markers for population and conservation genetics of tropical trees
  publication-title: American Journal of Botany
– volume: 47
  start-page: 264
  year: 1993
  end-page: 279
  article-title: Isolation by distance in equilibrium and non‐equilibrium populations
  publication-title: Evolution
– volume: 7
  start-page: 524
  year: 1990
  end-page: 530
  article-title: Informativeness of human (cC‐dA) (dG‐dT) polymorphisms
  publication-title: Genomics
– volume: 75
  start-page: 2868
  year: 1978
  end-page: 2872
  article-title: Stepwise mutation model and distribution of allelic frequencies in a finite population
  publication-title: Proceedings of the National Academy of Sciences of the USA
– year: 1997
– volume: 49
  start-page: 725
  year: 1964
  end-page: 738
  article-title: The number of alleles that can be maintained in a finite population
  publication-title: Genetics
– volume: 56
  start-page: 409
  year: 1986
  end-page: 415
  article-title: A quasi‐equilibrium theory of the distribution of rare alleles in a subdivided population
  publication-title: Heredity
– volume: 38
  start-page: 1358
  year: 1984
  end-page: 1370
  article-title: Estimating ‐statistics for the analysis of population structure
  publication-title: Evolution
– volume: 26
  start-page: 63
  year: 1996
  end-page: 71
  article-title: Spatial auto‐correlation of allozyme traits in a Norway spruce ( ) population
  publication-title: Canadian Journal of Forest Research
– volume: 40
  start-page: 487
  year: 1997
  end-page: 495
  article-title: Molecular phylogeny of mangroves II. Intra‐ and inter‐specific variation in revealed by RAPD and RFLP markers
  publication-title: Genome
– volume: 43
  start-page: 231
  year: 1989
  end-page: 235
  article-title: : a tropical forest tree of the coastal lowlands with low genetic diversity
  publication-title: Evolution
– volume: 47
  start-page: 329
  year: 1994
  end-page: 340
  article-title: Population structure and dispersion pattern in mangroves of Karachi, Pakistan
  publication-title: Aquatic Botany
– year: 1978
– volume: 88
  start-page: 4494
  year: 1991
  end-page: 4497
  article-title: Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants
  publication-title: Proceedings of the National Academy of Sciences of the USA
– year: 1999
– ident: e_1_2_7_20_1
  doi: 10.1007/s001220051480
– volume: 29
  start-page: 17
  year: 1986
  ident: e_1_2_7_21_1
  article-title: Isozyme patterns among populations of black mangrove, Avicennia germinans, from the gulf of Mexico–Caribbean and Pacific Panama
  publication-title: Contributions in Marine Science
– volume-title: The Botany of Mangroves
  year: 1986
  ident: e_1_2_7_43_1
– ident: e_1_2_7_37_1
– ident: e_1_2_7_26_1
  doi: 10.1139/g97-065
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1558-5646.1985.tb04079.x
– ident: e_1_2_7_38_1
  doi: 10.1073/pnas.88.10.4494
– volume-title: Evolution and the Genetics Populations, Vol. 4: Variability Within and Among Natural Populations
  year: 1978
  ident: e_1_2_7_49_1
– ident: e_1_2_7_33_1
  doi: 10.1071/MF97139
– volume: 25
  start-page: 33
  year: 1981
  ident: e_1_2_7_32_1
  article-title: Le Quaternaire littoral du Kenya
  publication-title: Zeitschrift Fur Geomorphologie
  doi: 10.1127/zfg/25/1981/33
– ident: e_1_2_7_19_1
  doi: 10.1007/BF02668371
– ident: e_1_2_7_35_1
  doi: 10.1016/0304-3770(94)90062-0
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1558-5646.1998.tb02242.x
– ident: e_1_2_7_28_1
  doi: 10.1046/j.1471-8286.2003.00455.x
– ident: e_1_2_7_8_1
  doi: 10.1071/SB9910299
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1558-5646.1989.tb04220.x
– ident: e_1_2_7_9_1
  doi: 10.1007/BF00029124
– ident: e_1_2_7_31_1
  doi: 10.1046/j.1365-294x.1999.00622.x
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.75.6.2868
– start-page: 282
  volume-title: Plant Population Genetics, Breeding and Genetic Resources
  year: 1990
  ident: e_1_2_7_24_1
– ident: e_1_2_7_2_1
  doi: 10.1093/oxfordjournals.molbev.a025708
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1558-5646.1984.tb05657.x
– ident: e_1_2_7_48_1
  doi: 10.1139/x26-051
– volume: 5
  start-page: 627
  year: 1993
  ident: e_1_2_7_11_1
  article-title: New combinations in the genus Avicennia (Avicenniaceae)
  publication-title: Telopea
– start-page: 43
  volume-title: Plant Population Genetics, Breeding and Genetic Resources
  year: 1990
  ident: e_1_2_7_12_1
– ident: e_1_2_7_27_1
  doi: 10.2307/2387981
– ident: e_1_2_7_42_1
  doi: 10.1093/genetics/139.1.457
– volume-title: Allozyme Electrophoresis
  year: 1986
  ident: e_1_2_7_30_1
– ident: e_1_2_7_22_1
  doi: 10.1093/genetics/142.3.1061
– ident: e_1_2_7_36_1
  doi: 10.1038/hdy.1989.112
– ident: e_1_2_7_44_1
  doi: 10.1093/genetics/121.2.379
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1558-5646.1993.tb01215.x
– ident: e_1_2_7_13_1
  doi: 10.1093/genetics/49.4.725
– volume-title: Genetic Data Analysis II
  year: 1996
  ident: e_1_2_7_46_1
– ident: e_1_2_7_5_1
  doi: 10.1038/hdy.1986.63
– start-page: 96
  volume-title: The Mangrove Vegetation of the Atlantic Coast of Africa
  year: 1995
  ident: e_1_2_7_34_1
– ident: e_1_2_7_39_1
  doi: 10.1038/hdy.1995.4
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1442-9993.1992.tb00794.x
– ident: e_1_2_7_4_1
  doi: 10.1071/SB9880391
– ident: e_1_2_7_16_1
  doi: 10.1038/hdy.1996.154
– ident: e_1_2_7_17_1
  doi: 10.1139/x26-007
– ident: e_1_2_7_18_1
– ident: e_1_2_7_45_1
  doi: 10.1016/0888-7543(90)90195-Z
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1558-5646.1992.tb02062.x
– ident: e_1_2_7_6_1
  doi: 10.1002/j.1537-2197.1996.tb13873.x
– volume: 69
  start-page: 926
  year: 1995
  ident: e_1_2_7_3_1
  article-title: Evaluation of intra‐specific variability in Avicennia marina Forsk., using RAPD markers
  publication-title: Current Science
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1558-5646.1989.tb04223.x
– ident: e_1_2_7_25_1
  doi: 10.1017/S0016672300012994
SSID ssj0013255
Score 2.0201993
Snippet The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite...
The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk.) Vierh. was examined using microsatellite...
The level of genetic variation throughout the entire worldwide range of the mangrove species Avicennia marina (Forsk. ) Vierh. was examined using...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1853
SubjectTerms Alleles
Asia
Australia
Avicennia marina
Base Sequence
DNA Primers
DNA Primers - genetics
DNA, Plant
DNA, Plant - genetics
Ecosystem
genetic markers
Genetic Variation
genetics
Genetics, Population
geographical variation
heterozygosity
Heterozygote
loci
mangrove
microsatellite
Microsatellite Repeats
Models, Genetic
New Zealand
population
population structure
South Africa
Trees
Trees - genetics
Title Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae)
URI https://api.istex.fr/ark:/67375/WNG-50D6BQ3L-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1365-294x.2000.01089.x
https://www.ncbi.nlm.nih.gov/pubmed/11091321
https://www.proquest.com/docview/18017355
https://www.proquest.com/docview/49259679
https://www.proquest.com/docview/70788636
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQERIXypvw9AGh9pAoDye2j6XsUlVsJRCF3izbcWC11EHZXbTl1zPjZBeKWqlC3Cy_JDsz9ufMzDeEvKxSqQGnZnEtyjpmgDhiYWse11xmzLDcFg3GDk-OqoNjdnhSngz-TxgL0_NDbH64oWaE8xoVXJs-C0ka2G3XHlqSrUK8SQIvCyETxJPYgPjoQ_6HQSEkQAXAnsPJI4rBqWcwcF440bmb6jpu-uoiGHoe1YZrabxNZusF9d4os2S5MIn9-RfX4_9Z8W1ya0CvdK8XtzvkmvN3yY0-n-UZlEaBA_vsHllO0NFvrgPf58JRPXCf0LahILIYOUl76tpl5-jUU8Ch9FT7L137w1EM_4QXPN3DY8z7qYambuo13Rm33XyW7NJPcJt_TejOpod12u3eJ8fj0cf9g3jI8BBb1P3YGgBsSAeU89w50ThnsyZ3qRayhnPXyEY7x4RM69IK5nJTGAHVaV2gPZPz4gHZ8q13jwhtoKYqUuOQnQhuZpHCVEIyzRHU1joifP01lR3ozzELxzcVzPAMQ9ZwexVuLybnTFXYXrWKSLYZ-b2nALnCmFdBYDYDdDdDFzpeqs9Hb1WZvqlevy_eqcOIvFhLlALFRmuN9q5dzlUG2IEDGry8B_JKyorLy3sglZOoiioiD3th_b2AQAibZxGpgshdeWVqMtrH0uN_HfiE3Ax0BiGe8ynZAllzzwDYLczzoLK_AOL6Pgk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJgQvfH-Er_kBoe0hWT6c2H4co6WMthJog71ZjuOwqluC0hZ1_PXcOWlhaJMmxJvl2Jbs3Nk_--5-R8jrLJQacGrkFyItfAaIwxem4H7BZcRyFpukxNjh0TgbHLGD4_S4SweEsTAtP8T6wQ01w-3XqOD4IL3bmSVbLXcuWpItXcBJAFcLIQMAlJuY4Nvdrz7Hf5gUXApUgOwx7D0i6dx6OhPnpSNdOKs2cdmXlwHRi7jWHUz9u-R0NaXWH2UaLOZ5YH7-xfb4n-Z8j9zpACzdayXuPrlhqwfkZpvS8hxKPUeDff6QLEbo6zfTjvJzbqnu6E9oXVKQWgyepC177aKxdFJRgKL0TFffmvqHpRgBCpd4uoc7WVVNNHxqJpWm2_26mU2DHfoFDvSTgG6vWxir7c4jctTvHe4P_C7Jg29Q_X2TA2ZDRqCYx9aK0loTlbENtZAFbL25LLW1TMiwSI1gNs6TXEB1WCRo0uQ8eUw2qrqyTwktoSZLwtwiQREcziKEoYRkmiOuLbRH-Op3KtMxoGMijlPlLPEMo9ZweRUuL-bnDJVbXrX0SLTu-b1lAblGnzdOYtYddDNFLzqeqq_j9yoN32VvPyVDdeCRrZVIKdBtNNjoytaLmYoAPnAAhFe3QGpJmXF5dQtkcxJZknnkSSutvyfgOGHjyCOZk7lrz0yNevtYevavHbfIrcHhaKiGH8Yfn5Pbjt3AhXe-IBsgd_Yl4Lx5_srp7y-7F0Ik
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKxCX8qahQH1AqD0k5OH4cSztLqV0V4Ao9GY5idOuFpIqu1tt-fXMONmFolaqEDfLsS15MmN_ycx8Q8grHioDODXyC5kWPgPE4cu8EH4hVMQyFudJibnDgyHfP2IHx-lxF_-EuTAtP8Tyhxtahjuv0cDPivJN55VsjdxFaCk2d_kmAXxZSBUAnlxlHFoIkD7Hf3gUXAVUQOwxHD0y6aJ6Og_nlStduqpWUerzq3DoZVjr7qX-PTJe7KgNRxkHs2kW5D__Inv8P1u-T9Y6-Ep3Wn17QG7Z6iG53Ra0vIBWz5FgXzwiswFG-k2MI_ycWmo68hNalxR0FlMnactdO2ssHVUUgCj9YaqTpj63FPM_4ROe7uA5VlUjA4-aUWXoVr9uJuNgm36F6_w0oFvLEbk1dvsxOer3vuzu-12JBz9H4_fzDBAb8gHFIrZWltbmURnb0EhVwMGbqdJYy6QKizSXzMZZkknoDosEHZpCJE_ISlVXdp3QEnp4EmYW6YngapYhLCUVMwJRbWE8IhZvU-cd_zmW4fiunR-eYc4ailejeLE6Z6idePXcI9Fy5lnLAXKDOa-dwiwnmGaMMXQi1d-G73Qa7vG3n5JDfeCRzYVGabBsdNeYytaziY4APAiAg9ePQGJJxYW6fgRyOUmecI88bZX19wYcI2wceYQ7lbvxzvSgt4utZ_86cZPc-bjX14fvhx82yF1HbeByO5-TFVA7-wJA3jR76az3F80IQNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microsatellite+analysis+of+genetic+structure+in+the+mangrove+species+Avicennia+marina+%28Forsk.%29+Vierh.+%28Avicenniaceae%29&rft.jtitle=Molecular+ecology&rft.au=Maguire%2C+T+L&rft.au=Saenger%2C+P&rft.au=Baverstock%2C+P&rft.au=Henry%2C+R&rft.date=2000-11-01&rft.issn=0962-1083&rft.volume=9&rft.issue=11&rft.spage=1853&rft_id=info:doi/10.1046%2Fj.1365-294x.2000.01089.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon