Grain-size segregation and levee formation in geophysical mass flows
Data from large‐scale debris‐flow experiments are combined with modeling of particle‐size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water‐saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume...
Saved in:
Published in | Journal of Geophysical Research: Earth Surface Vol. 117; no. F1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.03.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data from large‐scale debris‐flow experiments are combined with modeling of particle‐size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water‐saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s−1 during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s−1. When excavated from the deposit these were distributed in a horseshoe‐shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three‐dimensional velocity field resembling the experimental observations, and use this with a particle‐size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size‐segregation, before being advected to the flow edges and deposited to form coarse‐particle‐enriched levees.
Key Points
Coarse particle levees form in debris flows by progressive streamwise accretion
Coarse grains are transported to the flow front, then laterally into the levees
Grain size segregation profoundly affects flow dynamics and deposit structure |
---|---|
AbstractList | Data from large‐scale debris‐flow experiments are combined with modeling of particle‐size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m
3
of water‐saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s
−1
during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s
−1
. When excavated from the deposit these were distributed in a horseshoe‐shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three‐dimensional velocity field resembling the experimental observations, and use this with a particle‐size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size‐segregation, before being advected to the flow edges and deposited to form coarse‐particle‐enriched levees.
Coarse particle levees form in debris flows by progressive streamwise accretion
Coarse grains are transported to the flow front, then laterally into the levees
Grain size segregation profoundly affects flow dynamics and deposit structure Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled 80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at 2 m s1 during most of the runout. Segregation was measured by placing 600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at 67.5 cm s1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees. Data from large‐scale debris‐flow experiments are combined with modeling of particle‐size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water‐saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s−1 during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s−1. When excavated from the deposit these were distributed in a horseshoe‐shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three‐dimensional velocity field resembling the experimental observations, and use this with a particle‐size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size‐segregation, before being advected to the flow edges and deposited to form coarse‐particle‐enriched levees. Key Points Coarse particle levees form in debris flows by progressive streamwise accretion Coarse grains are transported to the flow front, then laterally into the levees Grain size segregation profoundly affects flow dynamics and deposit structure Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled 80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at 2 m s-1 during most of the runout. Segregation was measured by placing 600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at 6-7.5 cm s-1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees. Key Points Coarse particle levees form in debris flows by progressive streamwise accretion Coarse grains are transported to the flow front, then laterally into the levees Grain size segregation profoundly affects flow dynamics and deposit structure |
Author | LaHusen, R. G. Gray, J. M. N. T. Johnson, C. G. Iverson, R. M. Logan, M. Kokelaar, B. P. |
Author_xml | – sequence: 1 givenname: C. G. surname: Johnson fullname: Johnson, C. G. email: chris.johnson@bristol.ac.uk organization: School of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester, Manchester, UK – sequence: 2 givenname: B. P. surname: Kokelaar fullname: Kokelaar, B. P. organization: Department of Earth Sciences, University of Liverpool, Liverpool, UK – sequence: 3 givenname: R. M. surname: Iverson fullname: Iverson, R. M. organization: Cascades Volcano Observatory, U.S. Geological Survey, Vancouver, Washington, USA – sequence: 4 givenname: M. surname: Logan fullname: Logan, M. organization: Cascades Volcano Observatory, U.S. Geological Survey, Vancouver, Washington, USA – sequence: 5 givenname: R. G. surname: LaHusen fullname: LaHusen, R. G. organization: Cascades Volcano Observatory, U.S. Geological Survey, Vancouver, Washington, USA – sequence: 6 givenname: J. M. N. T. surname: Gray fullname: Gray, J. M. N. T. organization: School of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester, Manchester, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25974248$$DView record in Pascal Francis |
BookMark | eNp9kU1v1DAQQC1UJJbSGz8gAnEjdDzxR3xEC7tQtSDBIo6W450sLtlksVPK8usxTYsqpHYulkbvzYxnHrODfuiJsaccXnFAc4zA-ckCAHktH7AZcqlKRMADNgMu6hIQ9SN2lNI55BBSCeAz9mYZXejLFH5TkWgTaePGMPSF69dFRz-JinaI2ykX-mJDw-7bPgXvumLrUirabrhMT9jD1nWJjq7fQ_Zl8XY1f1eefly-n78-Lb2suCprbAiVMU6v29zccWgaApKe01qptcmDixrbWhoPssHGo9faAdbUoKNaV4fs2VR3F4cfF5RGez5cxD63tEZVQgAC3AsJ0CAQTIae3wVxjdwYkFxm6sU15VL-cRtd70Oyuxi2Lu4tSqMFijpzOHE-DilFaq0P49XOxrzdznKwf09kb58oSy__k27q3oHzCb8MHe3vZe3J8tPCoMpOOTkhjfTrn-Pid6t0paX9-mFpz9Tn1eqMz21V_QFGxq02 |
CitedBy_id | crossref_primary_10_1016_j_jvolgeores_2015_09_009 crossref_primary_10_1007_s11629_021_6709_3 crossref_primary_10_1111_nzg_12002 crossref_primary_10_1038_s41598_023_41589_1 crossref_primary_10_1103_PhysRevLett_118_118001 crossref_primary_10_1016_j_crhy_2014_11_006 crossref_primary_10_1017_jfm_2022_1089 crossref_primary_10_1144_SP520_2021_142 crossref_primary_10_2113_EEG_D_20_00115 crossref_primary_10_1029_2019JF005348 crossref_primary_10_1002_2014GL062470 crossref_primary_10_1016_j_geomorph_2018_05_025 crossref_primary_10_1016_j_geomorph_2013_03_015 crossref_primary_10_1016_j_apt_2019_04_019 crossref_primary_10_1016_j_epsl_2015_03_001 crossref_primary_10_1016_j_epsl_2024_118835 crossref_primary_10_1017_jfm_2015_438 crossref_primary_10_1002_2015JF003725 crossref_primary_10_1103_PhysRevResearch_6_L022015 crossref_primary_10_1007_s10346_021_01711_8 crossref_primary_10_1111_gto_12037 crossref_primary_10_1038_s41598_024_80361_x crossref_primary_10_1029_2023JF007171 crossref_primary_10_1144_SP467_12 crossref_primary_10_1093_gji_ggt352 crossref_primary_10_1007_s10035_017_0764_z crossref_primary_10_1103_PhysRevE_102_062901 crossref_primary_10_1017_jfm_2019_63 crossref_primary_10_1007_s10035_023_01391_2 crossref_primary_10_1007_s00348_022_03562_y crossref_primary_10_1002_dep2_309 crossref_primary_10_1007_s10346_023_02134_3 crossref_primary_10_1016_j_jcp_2024_113072 crossref_primary_10_1002_2016JF003933 crossref_primary_10_1103_PhysRevE_94_052901 crossref_primary_10_1029_2020JF005590 crossref_primary_10_1007_s10346_021_01733_2 crossref_primary_10_2166_hydro_2024_103 crossref_primary_10_1029_2021JB022274 crossref_primary_10_1016_j_palaeo_2022_111103 crossref_primary_10_1017_jfm_2012_348 crossref_primary_10_1017_jfm_2023_1022 crossref_primary_10_1029_2022EA002590 crossref_primary_10_1007_s10706_017_0241_9 crossref_primary_10_1007_s10346_014_0484_y crossref_primary_10_2113_EEG_D_20_00010 crossref_primary_10_1002_esp_4677 crossref_primary_10_1016_j_matcom_2019_03_014 crossref_primary_10_1002_esp_4794 crossref_primary_10_1063_1_4867253 crossref_primary_10_1017_jfm_2014_503 crossref_primary_10_1016_j_geomorph_2019_07_002 crossref_primary_10_1144_SP467_2 crossref_primary_10_1103_PhysRevE_92_052204 crossref_primary_10_5575_geosoc_2022_0017 crossref_primary_10_1002_2014JF003331 crossref_primary_10_1007_s10064_024_04018_9 crossref_primary_10_1016_j_enggeo_2015_02_009 crossref_primary_10_1029_2018GL077526 crossref_primary_10_1038_s41598_017_08573_y crossref_primary_10_1016_j_geomorph_2014_04_028 crossref_primary_10_5800_GT_2019_10_4_0457 crossref_primary_10_1063_1_4812639 crossref_primary_10_1098_rspa_2013_0819 crossref_primary_10_1016_j_jvolgeores_2013_11_013 crossref_primary_10_1144_qjegh2017_071 crossref_primary_10_1002_2016GL069661 crossref_primary_10_1002_esp_5986 crossref_primary_10_1017_jfm_2021_342 crossref_primary_10_1111_1755_6724_13416 crossref_primary_10_1017_jfm_2021_348 crossref_primary_10_1016_j_jvolgeores_2020_107105 crossref_primary_10_1002_2015JF003525 crossref_primary_10_1007_s10035_016_0662_9 crossref_primary_10_1016_j_cnsns_2023_107624 crossref_primary_10_1007_s10035_018_0818_x crossref_primary_10_1016_j_ijrmms_2023_105496 crossref_primary_10_1007_s12665_025_12109_3 crossref_primary_10_1016_j_jvolgeores_2013_08_017 crossref_primary_10_1017_jfm_2013_42 crossref_primary_10_1016_j_geomorph_2015_03_043 crossref_primary_10_1007_s10064_021_02202_9 crossref_primary_10_1029_2022JF006664 crossref_primary_10_1111_sed_12727 crossref_primary_10_1017_jfm_2015_684 crossref_primary_10_5194_nhess_22_4011_2022 crossref_primary_10_1016_j_jvolgeores_2017_12_004 crossref_primary_10_1002_2017JE005320 crossref_primary_10_1016_j_catena_2021_105727 crossref_primary_10_1007_s10652_022_09850_9 crossref_primary_10_1017_jfm_2019_215 crossref_primary_10_1139_cgj_2018_0092 crossref_primary_10_1016_j_advwatres_2023_104592 crossref_primary_10_1002_jgrf_20148 crossref_primary_10_1103_PhysRevFluids_8_074301 crossref_primary_10_1007_s00445_022_01617_w crossref_primary_10_3189_2016AoG71A039 crossref_primary_10_1098_rspa_2013_0820 crossref_primary_10_1017_jfm_2021_688 crossref_primary_10_2113_EEG_D_20_00106 crossref_primary_10_1103_PhysRevFluids_7_014305 crossref_primary_10_5331_seppyo_84_5_453 crossref_primary_10_3208_jgssp_JPN_033 crossref_primary_10_1061__ASCE_NH_1527_6996_0000286 crossref_primary_10_1016_j_icarus_2015_06_017 crossref_primary_10_1073_pnas_2307061121 crossref_primary_10_1007_s11440_021_01265_y crossref_primary_10_1103_PhysRevE_92_022210 crossref_primary_10_1007_s11440_020_01036_1 crossref_primary_10_1007_s10035_017_0741_6 crossref_primary_10_1051_e3sconf_202341503023 crossref_primary_10_1016_j_jseaes_2017_08_007 crossref_primary_10_1016_j_epsl_2019_07_003 crossref_primary_10_20965_jdr_2017_p0607 crossref_primary_10_1029_2020JB019536 crossref_primary_10_1016_j_ijsrc_2023_08_002 crossref_primary_10_1016_j_jvolgeores_2012_06_030 crossref_primary_10_1007_s10346_021_01629_1 crossref_primary_10_1002_2016JB013624 crossref_primary_10_1017_jfm_2012_603 crossref_primary_10_1016_j_enggeo_2017_11_007 crossref_primary_10_1007_s10064_022_02803_y crossref_primary_10_1029_2022GL102373 crossref_primary_10_1111_bre_12172 crossref_primary_10_1007_s10346_024_02375_w crossref_primary_10_2110_jsr_2020_186 crossref_primary_10_1098_rspa_2013_0203 crossref_primary_10_1007_s10346_018_1117_7 crossref_primary_10_1016_j_pmatsci_2023_101157 crossref_primary_10_1007_s10346_022_01987_4 crossref_primary_10_1016_j_icarus_2022_115363 crossref_primary_10_1029_2020GL088994 crossref_primary_10_1017_jfm_2017_41 crossref_primary_10_1061__ASCE_GM_1943_5622_0002421 crossref_primary_10_1017_jfm_2018_348 crossref_primary_10_1680_jgele_17_00159 crossref_primary_10_1007_s10035_018_0806_1 crossref_primary_10_1007_s11440_019_00842_6 crossref_primary_10_1017_jfm_2016_170 crossref_primary_10_1002_esp_4844 crossref_primary_10_1017_jfm_2013_675 crossref_primary_10_1007_s10346_022_01878_8 crossref_primary_10_1080_19648189_2020_1762751 crossref_primary_10_1017_jfm_2017_419 crossref_primary_10_1007_s11629_024_8954_8 crossref_primary_10_1016_j_epsl_2013_10_043 crossref_primary_10_1051_e3sconf_202341501030 crossref_primary_10_1061__ASCE_GT_1943_5606_0001922 crossref_primary_10_1007_s11629_018_5012_4 crossref_primary_10_1016_j_enggeo_2021_106211 crossref_primary_10_1016_j_geomorph_2022_108521 crossref_primary_10_1016_j_geomorph_2022_108538 crossref_primary_10_1007_s11629_018_5314_6 crossref_primary_10_1007_s10346_019_01298_1 crossref_primary_10_3390_s22155565 crossref_primary_10_1007_s42241_022_0055_y crossref_primary_10_1016_j_quascirev_2017_06_002 crossref_primary_10_1002_2013JF003078 crossref_primary_10_1029_2020GL087643 crossref_primary_10_1016_j_enggeo_2015_03_019 crossref_primary_10_1007_s00445_023_01662_z crossref_primary_10_1146_annurev_fluid_122316_045201 crossref_primary_10_1007_s10346_019_01243_2 crossref_primary_10_3189_2012JoG11J011 crossref_primary_10_1007_s11440_016_0509_x crossref_primary_10_1029_2024JE008319 crossref_primary_10_1017_jfm_2019_518 crossref_primary_10_1061__ASCE_GT_1943_5606_0002485 crossref_primary_10_1029_2021JF006372 crossref_primary_10_1130_B37027_1 crossref_primary_10_1029_2019JE006302 crossref_primary_10_1029_2022JF006712 crossref_primary_10_5194_nhess_19_181_2019 crossref_primary_10_1002_2014JB011729 crossref_primary_10_1140_epje_i2013_13036_9 crossref_primary_10_1016_j_geoderma_2016_11_011 crossref_primary_10_1002_esp_3963 crossref_primary_10_3390_w9030205 crossref_primary_10_5194_nhess_24_1035_2024 crossref_primary_10_2110_jsr_2020_020 crossref_primary_10_1007_s11069_025_07153_y crossref_primary_10_1016_j_ijsrc_2017_06_003 crossref_primary_10_1002_esp_4939 crossref_primary_10_1007_s10035_016_0620_6 crossref_primary_10_1139_cgj_2016_0502 crossref_primary_10_1029_2020GL090874 crossref_primary_10_1017_jfm_2023_904 crossref_primary_10_1029_2018JF004667 crossref_primary_10_5194_se_13_1631_2022 crossref_primary_10_1007_s10346_020_01607_z crossref_primary_10_1017_jfm_2016_673 crossref_primary_10_1016_j_geomorph_2014_12_007 crossref_primary_10_1016_j_icarus_2019_113464 crossref_primary_10_1051_e3sconf_20184005051 crossref_primary_10_1038_s41598_022_24397_x crossref_primary_10_1080_19475705_2017_1414718 crossref_primary_10_1007_s00521_021_06197_y crossref_primary_10_1016_j_enggeo_2024_107495 crossref_primary_10_1002_2017GL072591 crossref_primary_10_1007_s10346_022_01948_x crossref_primary_10_5194_esurf_10_775_2022 crossref_primary_10_1007_s11629_020_6164_6 crossref_primary_10_1126_sciadv_abe8737 crossref_primary_10_1016_j_marpetgeo_2021_105376 crossref_primary_10_1007_s10064_020_02004_5 crossref_primary_10_1680_jphmg_16_00018 crossref_primary_10_1029_2019JF005204 crossref_primary_10_2208_jscejhe_74_I_1081 crossref_primary_10_3390_w14091352 crossref_primary_10_1029_2021JB022755 crossref_primary_10_1007_s11629_021_7292_3 crossref_primary_10_1016_j_geomorph_2020_107431 crossref_primary_10_1016_j_geomorph_2021_107992 crossref_primary_10_1007_s10346_023_02129_0 crossref_primary_10_1016_j_geomorph_2024_109109 crossref_primary_10_1016_j_heliyon_2019_e02463 crossref_primary_10_1103_PhysRevLett_114_238001 crossref_primary_10_1029_2011JF002189 crossref_primary_10_1088_1674_1056_acf040 crossref_primary_10_1017_jfm_2022_400 crossref_primary_10_1029_2023JF007074 crossref_primary_10_1051_e3sconf_202341501001 crossref_primary_10_1007_s10035_021_01134_1 |
Cites_doi | 10.1103/PhysRevE.80.042301 10.1130/0016‐7606(1999)111<1424:DFDEOP>2.3.CO;2 10.1029/97RG00426 10.1007/978-94-015-9498-1_3 10.1017/S002211201000011X 10.1017/S0022112003005317 10.1017/S0022112089000340 10.1017/jfm.2011.2 10.1111/j.1365‐3091.1976.tb00045.x 10.1016/0032-5910(94)02954-M 10.1017/jfm.2011.138 10.1016/S0012‐821X(04)00111‐6 10.1098/rspa.1999.0383 10.1038/386816a0 10.1017/S0022112007009445 10.1017/S0022112009006466 10.1130/0016‐7606(1953)64[547:MOAWSC]2.0.CO;2 10.1029/2009JE003540 10.1063/1.3536658 10.1130/0091‐7613(2001)029<0115:NVOGMF>2.0.CO;2 10.1016/j.geomorph.2009.08.015 10.1017/S0022112005007676 10.3189/002214309790152384 10.1017/S0956792507007280 10.1029/2000JB900329 10.1086/515930 10.1017/S002211208800103X 10.1029/2009JF001514 10.1017/S0022112006002977 10.1098/rspa.1954.0186 10.1063/1.166435 10.1017/S0022112010003241 10.1098/rspa.2004.1420 10.1016/S0377‐0273(00)00207‐9 |
ContentType | Journal Article |
Copyright | Copyright 2012 by the American Geophysical Union 2015 INIST-CNRS Copyright American Geophysical Union 2012 |
Copyright_xml | – notice: Copyright 2012 by the American Geophysical Union – notice: 2015 INIST-CNRS – notice: Copyright American Geophysical Union 2012 |
DBID | BSCLL AAYXX CITATION IQODW 3V. 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI PRINS |
DOI | 10.1029/2011JF002185 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Research Library Science Database (ProQuest) Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts ProQuest Central China |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) ProQuest Central China |
DatabaseTitleList | CrossRef Research Library Prep Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9011 |
EndPage | n/a |
ExternalDocumentID | 2623447871 2617695331 3835782061 25974248 10_1029_2011JF002185 JGRF926 ark_67375_WNG_M6STTM1C_3 |
Genre | article Feature |
GrantInformation_xml | – fundername: EPSRC funderid: GR/S50052/01; GR/S50069/01 – fundername: NERC funderid: NE/E003206/1; NE/G523747/1 |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW 05W 0R~ 33P 3V. 52M 702 7ST 7TG 7UA 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ABJCF ACGOD ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AFRAH AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ C1K CCPQU DPXWK F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ KL. KR7 L.G L6V L7M LEEKS LK5 M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PROAC PTHSS PYCSY Q9U R.K SOI SUPJJ WBKPD PRINS |
ID | FETCH-LOGICAL-c5316-82be2699a7df401a10bbe0e5c1ed66d9185482f859c05b2bc2c77a028eb2ae873 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9003 |
IngestDate | Fri Jul 25 10:43:07 EDT 2025 Fri Jul 25 10:40:48 EDT 2025 Fri Jul 25 19:07:18 EDT 2025 Mon Jul 21 09:13:21 EDT 2025 Thu Apr 24 23:05:10 EDT 2025 Tue Jul 01 02:42:21 EDT 2025 Wed Jan 22 16:55:06 EST 2025 Wed Oct 30 09:57:02 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | F1 |
Keywords | experimental studies models Particle size pebbles shear tracers sampling debris flows Velocity distribution transport Seeding Modeling trajectory grains gravel accretion sand grain size materials flumes segregation flow Mass flow |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5316-82be2699a7df401a10bbe0e5c1ed66d9185482f859c05b2bc2c77a028eb2ae873 |
Notes | ark:/67375/WNG-M6STTM1C-3 ArticleID:2011JF002185 istex:0CD27B6D95F229114669496CBD3F8F1743721FB3 NERC - No. NE/E003206/1; No. NE/G523747/1 EPSRC - No. GR/S50052/01; No. GR/S50069/01 Animation 1. The 25th August 2009 experiment at the USGS debris-flow flume. The animation shows the debris flow resulting release of ∼ 10 m3 of water-saturated sand and gravel from a hopper at the top of the 95 m long flume. Colored tracer cubes are seeded onto the flow surface when it first reaches the flume mouth. As the flow deposits on the runout pad, a board is brought down across the flow to divert the watery "tail" to one side.Animation 2. An overhead view of runout of the 25th August experiment. The rows of colored tracer cubes that are seeded onto the flow surface are initially shown on the far left. Coarse-enriched levees form spontaneously during the runout, which channelize the flow and cause the deposit to maintain a constant width. The grid shows 1 m squares.Animation 3. An animation of , showing the path of a sequence of particles that initially start at the same transverse locations. Particles marked 1, which are initially the farthest downstream, are the first to reach the flow head and be advected towards the lateral margins. These particles deposit first, followed by particles 2, 3, 4, and 5 in turn. When deposited in the levees, the spatial order of the particles is reversed, with particles marked 5 farthest downstream.Animation 4. Surface flow speeds of the 25th August experiment, calculated from particle tracking velocimetry. A detailed velocity field is shown for the frame at t = 3.50 s in . Animation 4 shows that this snapshot is representative of the flow throughout the regime of steady front propagation and levee formation. The streamwise growth of the levees (shown in black) and the lack of downstream-variation in the velocity field of the levee-channelized section are also evident.Animation 5. An overhead view of the 25th August experiment, in a frame moving with the flow front. In this frame, the near-steady nature of flow can be seen. Surface material in the central channel moves to the right, towards the flow front, while surface material at the lateral margins of the flow moves to the left, away from it. Animation 5 shows the runout between t ∼ 2 s, when the levees first begin to form on the runout pad, to t ∼ 4.5 s, when the flow diverter is brought down. The animation is slowed down by a factor of six.Animation 6. Particle paths through the debris-flow head with a plug-flow vertical velocity profile (shown in ). Particles at the surface and base of the flow travel at the same velocity. They are transported into the flow head near the center, and leave the head at the lateral margins. All particles on the surface remain there, with none passing over the flow front.Animation 7. Particle paths through the debris-flow head with a simple shear vertical velocity profile (shown in ). Particles are transported into the head at the upper half of the flow, and leave it in the lower half. Nearly all particles pass over the flow front.Animation 8. Particle paths through the debris-flow head with a combination of basal slip and shear (shown in ). Surface particles near the flow certerline pass over the flow front and are transferred to the base of the flow, but those closer the edges of the flow remain on the surface as they are advected out of the head. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Feature-1 |
OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2011JF002185 |
PQID | 1721990515 |
PQPubID | 54727 |
PageCount | 23 |
ParticipantIDs | proquest_journals_963440200 proquest_journals_940704209 proquest_journals_1721990515 pascalfrancis_primary_25974248 crossref_citationtrail_10_1029_2011JF002185 crossref_primary_10_1029_2011JF002185 wiley_primary_10_1029_2011JF002185_JGRF926 istex_primary_ark_67375_WNG_M6STTM1C_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2012 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: March 2012 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Journal of Geophysical Research: Earth Surface |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Bartelt, P., and B. W. McArdell (2009), Granulometric investigations of snow avalanches, J. Glaciol., 55(193), 829-833, doi:10.3189/002214309790152384. Heim, A. (1932), Bergsturz und Menschenleben, Fretz and Wasmuth, Zürich, Switzerland. Iverson, R. M., and J. W. Vallance (2001), New views of granular mass flows, Geology, 29(2), 115-118, doi:10.1130/0091-7613(2001)029<0115:NVOGMF>2.0.CO;2. Major, J. J., and R. M. Iverson (1999), Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins, Geol. Soc. Am. Bull., 111(10), 1424-1434, doi:10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2. Gray, J. M. N. T., and C. Ancey (2011), Multi-component particle size segregation in shallow granular avalanches, J. Fluid Mech., 678, 535-588, doi:10.1017/jfm.2011.138. Wiederseiner, S., N. Andreini, G. Epely-Chauvin, G. Moser, M. Monnereau, J. M. N. T. Gray, and C. Ancey (2011), Experimental investigation into segregating granular flows down chutes, Phys. Fluids, 23, 013301, doi:10.1063/1.3536658. Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge Univ. Press., Cambridge, U. K. Bagnold, R. A. (1954), Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. A, 225(1160), 49-63, doi:10.1098/rspa.1954.0186. Gray, J. M. N. T., and A. R. Thornton (2005), A theory for particle size segregation in shallow granular free-surface flows, Proc. R. Soc. A, 461(2057), 1447-1473, doi:10.1098/rspa.2004.1420. Gray, J. M. N. T., and C. Ancey (2009), Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts, J. Fluid Mech., 629, 387-423, doi:10.1017/S0022112009006466. Denlinger, R. P., and R. M. Iverson (2004), Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation, J. Geophys. Res, 109, F01014, doi:10.1029/2003JF000085. Major, J. J. (1997), Depositional processes in large-scale debris-flow experiments, J. Geol., 105(3), 345-366, doi:10.1086/515930. Stiny, J. (1910), Die Muren, Verl. der Wagnerischen Univ.-Buchhandl., Innsbruck, Austria, doi:10.1111/j.1365-3091.1976.tb00045.x. Golick, L. A., and K. E. Daniels (2009), Mixing and segregation rates in sheared granular materials, Phys. Rev. E, 80, 042301, doi:10.1103/PhysRevE.80.042301. Sparks, R. (1976), Grain size variations in ignimbrites and implications for the transport of pyroclastic flows, Sedimentology, 23(2), 147-188, doi:10.1111/j.1365-3091.1976.tb00045.x. Dolgunin, V. N., and A. A. Ukolov (1995), Segregation modelling of particle rapid gravity flow, Powder Technol., 83(2), 95-103, doi:0032-5910(94)02954-M. Iverson, R. M., M. Logan, R. G. LaHusen, and M. Berti (2010), The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res., 115, F03005, doi:10.1029/2009JF001514. Iverson, R. M. (1997), The physics of debris flows, Rev. Geophys., 35(3), 245-296, doi:10.1029/97RG00426. Pouliquen, O., J. Delour, and S. B. Savage (1997), Fingering in granular flows, Nature, 386, 816-817, doi:10.1038/386816a0. Thornton, A. R., and J. M. N. T. Gray (2008), Breaking size segregation waves and particle recirculation in granular avalanches, J. Fluid Mech., 596, 261-284, doi:10.1017/S0022112007009445. Hoblitt, R. P. (1986), Observations of the eruptions of Jully 22 and August 7, 1980, at Mount St. Helents, Washington, U.S. Geol. Surv. Prof. Pap., 1250, 44 pp. Savage, S. B., and K. Hutter (1989), The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215, doi:10.1017/S0022112089000340. Calder, E. S., R. S. J. Sparks, and M. C. Gardeweg (2000), Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile, J. Vocanol. Geotherm. Res., 104(1-4), 201-235, doi:10.1016/S0377-0273(00)00207-9. Gray, J. M. N. T., and V. A. Chugunov (2006), Particle-size segregation and diffusive remixing in shallow granular avalanches, J. Fluid Mech., 569, 365-398, doi:10.1017/S0022112006002977. Thornton, A. R., J. M. N. T. Gray, and A. J. Hogg (2006), A three-phase mixture theory for particle size segregation in shallow granular free-surface flows, J. Fluid Mech., 550, 1-25, doi:10.1017/S0022112005007676. Johnson, C. G., and J. M. N. T. Gray (2011), Granular jets and hydraulic jumps on an inclined plane, J. Fluid Mech., 675, 87-116, doi:10.1017/jfm.2011.2. Mangold, N., A. Mangeney, V. Migeon, V. Ansan, A. Lucas, D. Baratoux, and F. Bouchut (2010), Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties, J. Geophys. Res., 115, E11001, doi:10.1029/2009JE003540. Iverson, R. M., and R. P. Denlinger (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., 106(B1), 537-552, doi:10.1029/2000JB900329. Branney, M. J., and B. P. Kokelaar (2002), Pyroclastic Density Currents and the Sedimentation of Ignimbrites, Geol. Soc. Mem., vol. 27, Geol. Soc., London. Gray, J. M. N. T., Y. C. Tai, and S. Noelle (2003), Shock waves, dead zones and particle-free regions in rapid granular free-surface flows, J. Fluid Mech., 491, 161-181, doi:10.1017/S0022112003005317. Gray, J. M. N. T., M. Wieland, and K. Hutter (1999), Free surface flow of cohesionless granular avalanches over complex basal topography, Proc. R. Soc. A, 455(1985), 1841-1874, doi:10.1098/rspa.1999.0383. Pouliquen, O., and J. W. Vallance (1999), Segregation induced instabilities of granular fronts, Chaos, 9, 621-630, doi:10.1063/1.166435. Sharp, R. P., and L. Nobles (1953), Mudflow of 1941 at Wrightwood, southern California, Geol. Soc. Am. Bull., 64(5), 547-560, doi:10.1130/0016-7606(1953)64[547:MOAWSC]2.0.CO;2. Conway, S. J., A. Decaulne, M. R. Balme, J. B. Murray, and M. C. Towner (2010), A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland, Geomorphology, 114(4), 556-572, doi:10.1016/j.geomorph.2009.08.015. Gray, J. M. N. T., and B. P. Kokelaar (2010a), Large particle segregation, transport and accumulation in granular free-surface flows, J. Fluid Mech., 652, 105-137, doi:10.1017/S002211201000011X. Savage, S. B., and C. K. K. Lun (1988), Particle size segregation in inclined chute flow of dry cohesionless granular solids, J. Fluid Mech., 189, 311-335, doi:10.1017/S002211208800103X. Johnson, A. M. (1970), Physical processes in geology, W. H. Freeman, New York. Gray, J. M. N. T., and B. P. Kokelaar (2010b), Large particle segregation, transport and accumulation in granular free-surface flows-Erratum, J. Fluid Mech., 657, 539, doi:10.1017/S0022112010003241. Shearer, M., J. M. N. T. Gray, and A. R. Thornton (2008), Stable solutions of a scalar conservation law for particle-size segregation in dense granular avalanches, Eur. J. Appl. Math., 19, 61-86, doi:10.1017/S0956792507007280. Félix, G., and N. Thomas (2004), Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits, Earth Planet. Sci. Lett., 221(1-4), 197-213, doi:10.1016/S0012-821X(04)00111-6. 2004; 221 1986; 1250 2011; 675 1970; 7 1981; 1250 1976; 23 2011; 678 2009; 80 2008; 19 1989; 199 1932 1976 1910 2003; 491 1988; 189 2006; 550 1970 2001; 29 1954; 225 2004; 109 2001; 106 1999; 9 2002; 27 2009; 55 1995; 83 1997; 105 2009; 629 2005; 461 2010; 657 2000 2000; 104 2010; 114 2010; 115 1997; 35 1997; 386 2010; 652 1965 1986 1984 1999; 455 2011; 23 1999; 111 2008; 596 2006; 569 1967 1953; 64 e_1_2_10_23_1 Middleton G. V. (e_1_2_10_33_1) 1970 e_1_2_10_46_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_41_1 e_1_2_10_40_1 Hoblitt R. P. (e_1_2_10_21_1) 1986; 1250 Middleton G. V. (e_1_2_10_34_1) 1976 Johnson A. M. (e_1_2_10_28_1) 1984 Wilson L. (e_1_2_10_49_1) 1981 e_1_2_10_2_1 Denlinger R. P. (e_1_2_10_8_1) 2004; 109 Heim A. (e_1_2_10_20_1) 1932 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_32_1 Rowley P. D. (e_1_2_10_38_1) 1981 e_1_2_10_31_1 Pierson T. (e_1_2_10_35_1) 1986 Johnson A. M. (e_1_2_10_27_1) 1970 e_1_2_10_30_1 e_1_2_10_29_1 Batchelor G. K. (e_1_2_10_4_1) 1967 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – reference: Calder, E. S., R. S. J. Sparks, and M. C. Gardeweg (2000), Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile, J. Vocanol. Geotherm. Res., 104(1-4), 201-235, doi:10.1016/S0377-0273(00)00207-9. – reference: Pouliquen, O., J. Delour, and S. B. Savage (1997), Fingering in granular flows, Nature, 386, 816-817, doi:10.1038/386816a0. – reference: Stiny, J. (1910), Die Muren, Verl. der Wagnerischen Univ.-Buchhandl., Innsbruck, Austria, doi:10.1111/j.1365-3091.1976.tb00045.x. – reference: Golick, L. A., and K. E. Daniels (2009), Mixing and segregation rates in sheared granular materials, Phys. Rev. E, 80, 042301, doi:10.1103/PhysRevE.80.042301. – reference: Mangold, N., A. Mangeney, V. Migeon, V. Ansan, A. Lucas, D. Baratoux, and F. Bouchut (2010), Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties, J. Geophys. Res., 115, E11001, doi:10.1029/2009JE003540. – reference: Gray, J. M. N. T., and B. P. Kokelaar (2010a), Large particle segregation, transport and accumulation in granular free-surface flows, J. Fluid Mech., 652, 105-137, doi:10.1017/S002211201000011X. – reference: Major, J. J., and R. M. Iverson (1999), Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins, Geol. Soc. Am. Bull., 111(10), 1424-1434, doi:10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2. – reference: Wiederseiner, S., N. Andreini, G. Epely-Chauvin, G. Moser, M. Monnereau, J. M. N. T. Gray, and C. Ancey (2011), Experimental investigation into segregating granular flows down chutes, Phys. Fluids, 23, 013301, doi:10.1063/1.3536658. – reference: Gray, J. M. N. T., and C. Ancey (2009), Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts, J. Fluid Mech., 629, 387-423, doi:10.1017/S0022112009006466. – reference: Gray, J. M. N. T., and A. R. Thornton (2005), A theory for particle size segregation in shallow granular free-surface flows, Proc. R. Soc. A, 461(2057), 1447-1473, doi:10.1098/rspa.2004.1420. – reference: Iverson, R. M. (1997), The physics of debris flows, Rev. Geophys., 35(3), 245-296, doi:10.1029/97RG00426. – reference: Johnson, A. M. (1970), Physical processes in geology, W. H. Freeman, New York. – reference: Iverson, R. M., and J. W. Vallance (2001), New views of granular mass flows, Geology, 29(2), 115-118, doi:10.1130/0091-7613(2001)029<0115:NVOGMF>2.0.CO;2. – reference: Gray, J. M. N. T., Y. C. Tai, and S. Noelle (2003), Shock waves, dead zones and particle-free regions in rapid granular free-surface flows, J. Fluid Mech., 491, 161-181, doi:10.1017/S0022112003005317. – reference: Sparks, R. (1976), Grain size variations in ignimbrites and implications for the transport of pyroclastic flows, Sedimentology, 23(2), 147-188, doi:10.1111/j.1365-3091.1976.tb00045.x. – reference: Gray, J. M. N. T., and V. A. Chugunov (2006), Particle-size segregation and diffusive remixing in shallow granular avalanches, J. Fluid Mech., 569, 365-398, doi:10.1017/S0022112006002977. – reference: Hoblitt, R. P. (1986), Observations of the eruptions of Jully 22 and August 7, 1980, at Mount St. Helents, Washington, U.S. Geol. Surv. Prof. Pap., 1250, 44 pp. – reference: Pouliquen, O., and J. W. Vallance (1999), Segregation induced instabilities of granular fronts, Chaos, 9, 621-630, doi:10.1063/1.166435. – reference: Gray, J. M. N. T., and B. P. Kokelaar (2010b), Large particle segregation, transport and accumulation in granular free-surface flows-Erratum, J. Fluid Mech., 657, 539, doi:10.1017/S0022112010003241. – reference: Heim, A. (1932), Bergsturz und Menschenleben, Fretz and Wasmuth, Zürich, Switzerland. – reference: Savage, S. B., and K. Hutter (1989), The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215, doi:10.1017/S0022112089000340. – reference: Iverson, R. M., and R. P. Denlinger (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., 106(B1), 537-552, doi:10.1029/2000JB900329. – reference: Iverson, R. M., M. Logan, R. G. LaHusen, and M. Berti (2010), The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res., 115, F03005, doi:10.1029/2009JF001514. – reference: Gray, J. M. N. T., M. Wieland, and K. Hutter (1999), Free surface flow of cohesionless granular avalanches over complex basal topography, Proc. R. Soc. A, 455(1985), 1841-1874, doi:10.1098/rspa.1999.0383. – reference: Shearer, M., J. M. N. T. Gray, and A. R. Thornton (2008), Stable solutions of a scalar conservation law for particle-size segregation in dense granular avalanches, Eur. J. Appl. Math., 19, 61-86, doi:10.1017/S0956792507007280. – reference: Major, J. J. (1997), Depositional processes in large-scale debris-flow experiments, J. Geol., 105(3), 345-366, doi:10.1086/515930. – reference: Bagnold, R. A. (1954), Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. A, 225(1160), 49-63, doi:10.1098/rspa.1954.0186. – reference: Branney, M. J., and B. P. Kokelaar (2002), Pyroclastic Density Currents and the Sedimentation of Ignimbrites, Geol. Soc. Mem., vol. 27, Geol. Soc., London. – reference: Félix, G., and N. Thomas (2004), Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits, Earth Planet. Sci. Lett., 221(1-4), 197-213, doi:10.1016/S0012-821X(04)00111-6. – reference: Savage, S. B., and C. K. K. Lun (1988), Particle size segregation in inclined chute flow of dry cohesionless granular solids, J. Fluid Mech., 189, 311-335, doi:10.1017/S002211208800103X. – reference: Thornton, A. R., J. M. N. T. Gray, and A. J. Hogg (2006), A three-phase mixture theory for particle size segregation in shallow granular free-surface flows, J. Fluid Mech., 550, 1-25, doi:10.1017/S0022112005007676. – reference: Gray, J. M. N. T., and C. Ancey (2011), Multi-component particle size segregation in shallow granular avalanches, J. Fluid Mech., 678, 535-588, doi:10.1017/jfm.2011.138. – reference: Johnson, C. G., and J. M. N. T. Gray (2011), Granular jets and hydraulic jumps on an inclined plane, J. Fluid Mech., 675, 87-116, doi:10.1017/jfm.2011.2. – reference: Thornton, A. R., and J. M. N. T. Gray (2008), Breaking size segregation waves and particle recirculation in granular avalanches, J. Fluid Mech., 596, 261-284, doi:10.1017/S0022112007009445. – reference: Bartelt, P., and B. W. McArdell (2009), Granulometric investigations of snow avalanches, J. Glaciol., 55(193), 829-833, doi:10.3189/002214309790152384. – reference: Denlinger, R. P., and R. M. Iverson (2004), Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation, J. Geophys. Res, 109, F01014, doi:10.1029/2003JF000085. – reference: Sharp, R. P., and L. Nobles (1953), Mudflow of 1941 at Wrightwood, southern California, Geol. Soc. Am. Bull., 64(5), 547-560, doi:10.1130/0016-7606(1953)64[547:MOAWSC]2.0.CO;2. – reference: Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge Univ. Press., Cambridge, U. K. – reference: Dolgunin, V. N., and A. A. Ukolov (1995), Segregation modelling of particle rapid gravity flow, Powder Technol., 83(2), 95-103, doi:0032-5910(94)02954-M. – reference: Conway, S. J., A. Decaulne, M. R. Balme, J. B. Murray, and M. C. Towner (2010), A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland, Geomorphology, 114(4), 556-572, doi:10.1016/j.geomorph.2009.08.015. – volume: 678 start-page: 535 year: 2011 end-page: 588 article-title: Multi‐component particle size segregation in shallow granular avalanches publication-title: J. Fluid Mech. – start-page: 269 year: 1986 end-page: 296 – year: 1910 – volume: 35 start-page: 245 issue: 3 year: 1997 end-page: 296 article-title: The physics of debris flows publication-title: Rev. Geophys. – volume: 596 start-page: 261 year: 2008 end-page: 284 article-title: Breaking size segregation waves and particle recirculation in granular avalanches publication-title: J. Fluid Mech. – volume: 114 start-page: 556 issue: 4 year: 2010 end-page: 572 article-title: A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland publication-title: Geomorphology – volume: 225 start-page: 49 issue: 1160 year: 1954 end-page: 63 article-title: Experiments on a gravity‐free dispersion of large solid spheres in a Newtonian fluid under shear publication-title: Proc. R. Soc. A – volume: 199 start-page: 177 year: 1989 end-page: 215 article-title: The motion of a finite mass of granular material down a rough incline publication-title: J. Fluid Mech. – volume: 80 year: 2009 article-title: Mixing and segregation rates in sheared granular materials publication-title: Phys. Rev. E – volume: 105 start-page: 345 issue: 3 year: 1997 end-page: 366 article-title: Depositional processes in large‐scale debris‐flow experiments publication-title: J. Geol. – volume: 111 start-page: 1424 issue: 10 year: 1999 end-page: 1434 article-title: Debris‐flow deposition: Effects of pore‐fluid pressure and friction concentrated at flow margins publication-title: Geol. Soc. Am. Bull. – volume: 461 start-page: 1447 issue: 2057 year: 2005 end-page: 1473 article-title: A theory for particle size segregation in shallow granular free‐surface flows publication-title: Proc. R. Soc. A – volume: 109 year: 2004 article-title: Granular avalanches across irregular three‐dimensional terrain: 1. Theory and computation publication-title: J. Geophys. Res – volume: 1250 start-page: 513 year: 1981 end-page: 524 – volume: 64 start-page: 547 issue: 5 year: 1953 end-page: 560 article-title: Mudflow of 1941 at Wrightwood, southern California publication-title: Geol. Soc. Am. Bull. – volume: 675 start-page: 87 year: 2011 end-page: 116 article-title: Granular jets and hydraulic jumps on an inclined plane publication-title: J. Fluid Mech. – volume: 23 year: 2011 article-title: Experimental investigation into segregating granular flows down chutes, publication-title: Fluids – volume: 491 start-page: 161 year: 2003 end-page: 181 article-title: Shock waves, dead zones and particle‐free regions in rapid granular free‐surface flows publication-title: J. Fluid Mech. – volume: 386 start-page: 816 year: 1997 end-page: 817 article-title: Fingering in granular flows publication-title: Nature – volume: 652 start-page: 105 year: 2010 end-page: 137 article-title: Large particle segregation, transport and accumulation in granular free‐surface flows publication-title: J. Fluid Mech. – volume: 23 start-page: 147 issue: 2 year: 1976 end-page: 188 article-title: Grain size variations in ignimbrites and implications for the transport of pyroclastic flows publication-title: Sedimentology – volume: 1250 year: 1986 article-title: Observations of the eruptions of Jully 22 and August 7, 1980, at Mount St. Helents, Washington publication-title: U.S. Geol. Surv. Prof. Pap. – year: 1932 – volume: 29 start-page: 115 issue: 2 year: 2001 end-page: 118 article-title: New views of granular mass flows publication-title: Geology – volume: 19 start-page: 61 year: 2008 end-page: 86 article-title: Stable solutions of a scalar conservation law for particle‐size segregation in dense granular avalanches publication-title: Eur. J. Appl. Math. – volume: 629 start-page: 387 year: 2009 end-page: 423 article-title: Segregation, recirculation and deposition of coarse particles near two‐dimensional avalanche fronts publication-title: J. Fluid Mech. – volume: 657 start-page: 539 year: 2010 article-title: Large particle segregation, transport and accumulation in granular free‐surface flows—Erratum publication-title: J. Fluid Mech. – year: 1965 – volume: 55 start-page: 829 issue: 193 year: 2009 end-page: 833 article-title: Granulometric investigations of snow avalanches publication-title: J. Glaciol. – year: 1967 – volume: 221 start-page: 197 issue: 1–4 year: 2004 end-page: 213 article-title: Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits publication-title: Earth Planet. Sci. Lett. – volume: 9 start-page: 621 year: 1999 end-page: 630 article-title: Segregation induced instabilities of granular fronts publication-title: Chaos – volume: 106 start-page: 537 issue: B1 year: 2001 end-page: 552 article-title: Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory publication-title: J. Geophys. Res. – volume: 115 year: 2010 article-title: The perfect debris flow? Aggregated results from 28 large‐scale experiments publication-title: J. Geophys. Res. – volume: 7 start-page: 253 year: 1970 end-page: 272 – volume: 27 year: 2002 – start-page: 197 year: 1976 end-page: 218 – year: 1970 – volume: 189 start-page: 311 year: 1988 end-page: 335 article-title: Particle size segregation in inclined chute flow of dry cohesionless granular solids publication-title: J. Fluid Mech. – volume: 455 start-page: 1841 issue: 1985 year: 1999 end-page: 1874 article-title: Free surface flow of cohesionless granular avalanches over complex basal topography publication-title: Proc. R. Soc. A – volume: 1250 start-page: 489 year: 1981 end-page: 512 – start-page: 31 year: 2000 end-page: 52 – volume: 550 start-page: 1 year: 2006 end-page: 25 article-title: A three‐phase mixture theory for particle size segregation in shallow granular free‐surface flows publication-title: J. Fluid Mech. – volume: 115 year: 2010 article-title: Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties publication-title: J. Geophys. Res. – volume: 569 start-page: 365 year: 2006 end-page: 398 article-title: Particle‐size segregation and diffusive remixing in shallow granular avalanches publication-title: J. Fluid Mech. – volume: 104 start-page: 201 issue: 1–4 year: 2000 end-page: 235 article-title: Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile publication-title: J. Vocanol. Geotherm. Res. – volume: 83 start-page: 95 issue: 2 year: 1995 end-page: 103 article-title: Segregation modelling of particle rapid gravity flow publication-title: Powder Technol. – start-page: 257 year: 1984 end-page: 361 – start-page: 253 volume-title: Flysch Sedimentology in North America year: 1970 ident: e_1_2_10_33_1 – ident: e_1_2_10_5_1 – ident: e_1_2_10_11_1 doi: 10.1103/PhysRevE.80.042301 – volume: 1250 year: 1986 ident: e_1_2_10_21_1 article-title: Observations of the eruptions of Jully 22 and August 7, 1980, at Mount St. Helents, Washington publication-title: U.S. Geol. Surv. Prof. Pap. – ident: e_1_2_10_31_1 doi: 10.1130/0016‐7606(1999)111<1424:DFDEOP>2.3.CO;2 – volume-title: Bergsturz und Menschenleben year: 1932 ident: e_1_2_10_20_1 – ident: e_1_2_10_22_1 doi: 10.1029/97RG00426 – ident: e_1_2_10_47_1 doi: 10.1007/978-94-015-9498-1_3 – ident: e_1_2_10_15_1 doi: 10.1017/S002211201000011X – ident: e_1_2_10_19_1 doi: 10.1017/S0022112003005317 – volume: 109 year: 2004 ident: e_1_2_10_8_1 article-title: Granular avalanches across irregular three‐dimensional terrain: 1. Theory and computation publication-title: J. Geophys. Res – ident: e_1_2_10_39_1 doi: 10.1017/S0022112089000340 – start-page: 513 volume-title: The 1980 Eruptions of Mount St. Helens, Washington year: 1981 ident: e_1_2_10_49_1 – ident: e_1_2_10_29_1 doi: 10.1017/jfm.2011.2 – ident: e_1_2_10_43_1 doi: 10.1111/j.1365‐3091.1976.tb00045.x – ident: e_1_2_10_9_1 doi: 10.1016/0032-5910(94)02954-M – ident: e_1_2_10_13_1 doi: 10.1017/jfm.2011.138 – start-page: 197 volume-title: Marine Sediment Transport and Environmental Management year: 1976 ident: e_1_2_10_34_1 – ident: e_1_2_10_10_1 doi: 10.1016/S0012‐821X(04)00111‐6 – ident: e_1_2_10_18_1 doi: 10.1098/rspa.1999.0383 – start-page: 257 volume-title: Slope Instability year: 1984 ident: e_1_2_10_28_1 – ident: e_1_2_10_37_1 doi: 10.1038/386816a0 – start-page: 489 volume-title: The 1980 Eruptions of Mount St. Helens, Washington year: 1981 ident: e_1_2_10_38_1 – ident: e_1_2_10_45_1 doi: 10.1017/S0022112007009445 – ident: e_1_2_10_12_1 doi: 10.1017/S0022112009006466 – ident: e_1_2_10_41_1 doi: 10.1130/0016‐7606(1953)64[547:MOAWSC]2.0.CO;2 – ident: e_1_2_10_26_1 – ident: e_1_2_10_32_1 doi: 10.1029/2009JE003540 – ident: e_1_2_10_48_1 doi: 10.1063/1.3536658 – ident: e_1_2_10_24_1 doi: 10.1130/0091‐7613(2001)029<0115:NVOGMF>2.0.CO;2 – volume-title: An Introduction to Fluid Dynamics year: 1967 ident: e_1_2_10_4_1 – ident: e_1_2_10_7_1 doi: 10.1016/j.geomorph.2009.08.015 – ident: e_1_2_10_46_1 doi: 10.1017/S0022112005007676 – ident: e_1_2_10_3_1 doi: 10.3189/002214309790152384 – ident: e_1_2_10_42_1 doi: 10.1017/S0956792507007280 – volume-title: Physical processes in geology year: 1970 ident: e_1_2_10_27_1 – ident: e_1_2_10_23_1 doi: 10.1029/2000JB900329 – ident: e_1_2_10_30_1 doi: 10.1086/515930 – ident: e_1_2_10_40_1 doi: 10.1017/S002211208800103X – ident: e_1_2_10_25_1 doi: 10.1029/2009JF001514 – start-page: 269 volume-title: Hillslope Processes year: 1986 ident: e_1_2_10_35_1 – ident: e_1_2_10_44_1 doi: 10.1111/j.1365‐3091.1976.tb00045.x – ident: e_1_2_10_14_1 doi: 10.1017/S0022112006002977 – ident: e_1_2_10_2_1 doi: 10.1098/rspa.1954.0186 – ident: e_1_2_10_36_1 doi: 10.1063/1.166435 – ident: e_1_2_10_16_1 doi: 10.1017/S0022112010003241 – ident: e_1_2_10_17_1 doi: 10.1098/rspa.2004.1420 – ident: e_1_2_10_6_1 doi: 10.1016/S0377‐0273(00)00207‐9 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816912 |
Score | 2.528116 |
Snippet | Data from large‐scale debris‐flow experiments are combined with modeling of particle‐size segregation to explain the formation of lateral levees enriched in... Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Accretion avalanche Debris flow deposit Earth sciences Earth, ocean, space Exact sciences and technology Grading Gravel Hydrology Landslides & mudslides Levees Particle size segregation Surface velocity Volcanoes |
Title | Grain-size segregation and levee formation in geophysical mass flows |
URI | https://api.istex.fr/ark:/67375/WNG-M6STTM1C-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JF002185 https://www.proquest.com/docview/1721990515 https://www.proquest.com/docview/940704209 https://www.proquest.com/docview/963440200 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED6x9YUXxASIsK3yA_AAspY4sWM_TWMsnSq1QqMTe7PsxJkmSlqWbSB-PefUDauAvUWyHSXf2Xf3nc8-gNe5jTNTJpLWwgma8VRRya2haSUqtGc5E8ofFJ5Mxel5Nr7gFyHg1oa0yrVO7BR1tSh9jPzAUxXlL5Pih8vv1FeN8ruroYTGFgxQBUskX4MPJ9NPZ32UxZeVUN2WJ8MH6sN2Ifs9ZurAG79x0Zk5vmGXBh7inz5P0rQIVb2qcbHhhN53ZTtbVDyFJ8GJJEcrqe_AI9c8g48jX-2Btle_HGkd0ujLDnRimorM3Z1zpD-oSK4acukWyyAj8g09aFLPFz_a53BenMyOT2mokUBLXD2CSmYd4qlMXtVIlUwSW-tix8vEVUJUCv8sk6yWXJUxt8yWrMxzg04FMmrjZJ6-gO1m0biXQPB9BlsSl6ciS0xthbAmrp1yyhouqgjerxHSZbhA3NexmOtuI5spfR_PCN70vZerizP-0-9tB3bfyVx_9clmOddfpiM9EZ9ns0lyrNMIhhvS6Acwz4lYJiPYW4tHh4XY6j_TJoLdv5sV8llUW7H6d6tIM8-v4wjedeJ-8E_0eHRWKCZePfwdu_AYR7FVHtsebN9c37p9dGxu7BC2ZDEahjn8G14z8gc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXVASI9IUPlAPIauLETnxACLVkt9vuHmArejN24lQVS3ZpCgV-FL-RcV50BfTWWyQ_5MyM_c1njz0Az2LjRzoLEloIK2jEQ0kTbjQNc5EjnsVMSHdReDwRw5NodMpPV-BXdxfGhVV2a2K9UOfzzO2R7zmqIt1jUvz14gt1WaPc6WqXQqMxiyP74wopW_Xq8AD1u8tY-na6P6RtVgGaob0JmjBjcQRSx3mB5EIHvjHWtzwLbC5ELhHAooQVCZeZzw0zGcviWCMMIwfVNolD7PcOrEVhKN2MStJBv6fjkljI-oCV4Qd1m4RtrL3P5J6D2lFagypfQsE1p9DvLipTV6iYosmoseTyXneca-RL1-F-67KSN42NPYAVWz6Eg4HLLUGr85-WVBZJ-1mtYqLLnMzsN2tJfy2SnJfkzM4XrUWQz-ivk2I2v6oewcmtyO4xrJbz0j4Bgv1pLAlsHIoo0IURwmi_sNJKo7nIPXjZSUhl7XPlLmvGTNXH5kyq6_L0YLevvWie6fhPvee1sPtK-uKTC22LufowGaixeD-djoN9FXqws6SNvgFzDIxFiQdbnXpUO-0r9cdIPdj8u1gie8ZF0pf_LhVh5Ni878GLWt03_okaDd6lkomNm8fxFO4Op-NjdXw4OdqEe9gDayLotmD18uKr3UaX6tLs1HZM4ONtT5zfLJksTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXQlxQSBAhJbiA-UAsjZxEic-IATdZtstu6rKVvTm2olTVSzZpSkU-Gn8OsZ50RXQW2-R_JAz39gznz32ADyPtBuo1Itpzg2nQegLGodaUT_jGdqziHFhLwpPpnz3KBgfh8dr8Ku9C2PDKts1sVqos0Vq98gHlqoI-5hUOMibsIiDYfJm-YXaDFL2pLVNp1GryL75cYn0rXy9N0SstxhLdmbbu7TJMEBT1D1OY6YNjkaoKMuRaCjP1dq4Jkw9k3GeCTRmQczyOBSpG2qmU5ZGkUKTjHxUmTjysd9b0I-QFbk96L_bmR4cdjs8NqWFqI5bGX5Qu2XYRN67TAys4R0nlYkNV2xi38L73cZoqhJhyuv8GisO8FU3urKDyT242ziw5G2tcfdhzRQPYDiymSZoefbTkNIghT-tACeqyMjcfDOGdJckyVlBTs1i2egH-YzeO8nni8vyIRzdiPQeQa9YFOYxEOxPYYlnIp8Hnso151q5uRFGaBXyzIFXrYRk2jxebnNozGV1iM6EvCpPB7a62sv60Y7_1HtRCburpM4_2UC3KJQfpyM54R9ms4m3LX0HNlfQ6Bowy8dYEDuw0cIjm0WglH9U1oH1v4uF1ZqAueLfpdwPLLd3HXhZwX3tn8jx6DARjD-5fhzP4DZOGvl-b7q_DnewA1aH021A7-L8q3mK_tWF3mwUmcDJTc-d34GZMeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grain-size+segregation+and+levee+formation+in+geophysical+mass+flows&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Johnson%2C+C.+G.&rft.au=Kokelaar%2C+B.+P.&rft.au=Iverson%2C+R.+M.&rft.au=Logan%2C+M.&rft.date=2012-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=F1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2011JF002185&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_M6STTM1C_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |