Grain-size segregation and levee formation in geophysical mass flows

Data from large‐scale debris‐flow experiments are combined with modeling of particle‐size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water‐saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Earth Surface Vol. 117; no. F1
Main Authors Johnson, C. G., Kokelaar, B. P., Iverson, R. M., Logan, M., LaHusen, R. G., Gray, J. M. N. T.
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.03.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data from large‐scale debris‐flow experiments are combined with modeling of particle‐size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water‐saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s−1 during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s−1. When excavated from the deposit these were distributed in a horseshoe‐shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three‐dimensional velocity field resembling the experimental observations, and use this with a particle‐size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size‐segregation, before being advected to the flow edges and deposited to form coarse‐particle‐enriched levees. Key Points Coarse particle levees form in debris flows by progressive streamwise accretion Coarse grains are transported to the flow front, then laterally into the levees Grain size segregation profoundly affects flow dynamics and deposit structure
AbstractList Data from large‐scale debris‐flow experiments are combined with modeling of particle‐size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m 3 of water‐saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s −1 during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s −1 . When excavated from the deposit these were distributed in a horseshoe‐shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three‐dimensional velocity field resembling the experimental observations, and use this with a particle‐size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size‐segregation, before being advected to the flow edges and deposited to form coarse‐particle‐enriched levees. Coarse particle levees form in debris flows by progressive streamwise accretion Coarse grains are transported to the flow front, then laterally into the levees Grain size segregation profoundly affects flow dynamics and deposit structure
Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled 80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at 2 m s1 during most of the runout. Segregation was measured by placing 600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at 67.5 cm s1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.
Data from large‐scale debris‐flow experiments are combined with modeling of particle‐size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water‐saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s−1 during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s−1. When excavated from the deposit these were distributed in a horseshoe‐shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three‐dimensional velocity field resembling the experimental observations, and use this with a particle‐size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size‐segregation, before being advected to the flow edges and deposited to form coarse‐particle‐enriched levees. Key Points Coarse particle levees form in debris flows by progressive streamwise accretion Coarse grains are transported to the flow front, then laterally into the levees Grain size segregation profoundly affects flow dynamics and deposit structure
Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled 80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at 2 m s-1 during most of the runout. Segregation was measured by placing 600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at 6-7.5 cm s-1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees. Key Points Coarse particle levees form in debris flows by progressive streamwise accretion Coarse grains are transported to the flow front, then laterally into the levees Grain size segregation profoundly affects flow dynamics and deposit structure
Author LaHusen, R. G.
Gray, J. M. N. T.
Johnson, C. G.
Iverson, R. M.
Logan, M.
Kokelaar, B. P.
Author_xml – sequence: 1
  givenname: C. G.
  surname: Johnson
  fullname: Johnson, C. G.
  email: chris.johnson@bristol.ac.uk
  organization: School of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester, Manchester, UK
– sequence: 2
  givenname: B. P.
  surname: Kokelaar
  fullname: Kokelaar, B. P.
  organization: Department of Earth Sciences, University of Liverpool, Liverpool, UK
– sequence: 3
  givenname: R. M.
  surname: Iverson
  fullname: Iverson, R. M.
  organization: Cascades Volcano Observatory, U.S. Geological Survey, Vancouver, Washington, USA
– sequence: 4
  givenname: M.
  surname: Logan
  fullname: Logan, M.
  organization: Cascades Volcano Observatory, U.S. Geological Survey, Vancouver, Washington, USA
– sequence: 5
  givenname: R. G.
  surname: LaHusen
  fullname: LaHusen, R. G.
  organization: Cascades Volcano Observatory, U.S. Geological Survey, Vancouver, Washington, USA
– sequence: 6
  givenname: J. M. N. T.
  surname: Gray
  fullname: Gray, J. M. N. T.
  organization: School of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester, Manchester, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25974248$$DView record in Pascal Francis
BookMark eNp9kU1v1DAQQC1UJJbSGz8gAnEjdDzxR3xEC7tQtSDBIo6W450sLtlksVPK8usxTYsqpHYulkbvzYxnHrODfuiJsaccXnFAc4zA-ckCAHktH7AZcqlKRMADNgMu6hIQ9SN2lNI55BBSCeAz9mYZXejLFH5TkWgTaePGMPSF69dFRz-JinaI2ykX-mJDw-7bPgXvumLrUirabrhMT9jD1nWJjq7fQ_Zl8XY1f1eefly-n78-Lb2suCprbAiVMU6v29zccWgaApKe01qptcmDixrbWhoPssHGo9faAdbUoKNaV4fs2VR3F4cfF5RGez5cxD63tEZVQgAC3AsJ0CAQTIae3wVxjdwYkFxm6sU15VL-cRtd70Oyuxi2Lu4tSqMFijpzOHE-DilFaq0P49XOxrzdznKwf09kb58oSy__k27q3oHzCb8MHe3vZe3J8tPCoMpOOTkhjfTrn-Pid6t0paX9-mFpz9Tn1eqMz21V_QFGxq02
CitedBy_id crossref_primary_10_1016_j_jvolgeores_2015_09_009
crossref_primary_10_1007_s11629_021_6709_3
crossref_primary_10_1111_nzg_12002
crossref_primary_10_1038_s41598_023_41589_1
crossref_primary_10_1103_PhysRevLett_118_118001
crossref_primary_10_1016_j_crhy_2014_11_006
crossref_primary_10_1017_jfm_2022_1089
crossref_primary_10_1144_SP520_2021_142
crossref_primary_10_2113_EEG_D_20_00115
crossref_primary_10_1029_2019JF005348
crossref_primary_10_1002_2014GL062470
crossref_primary_10_1016_j_geomorph_2018_05_025
crossref_primary_10_1016_j_geomorph_2013_03_015
crossref_primary_10_1016_j_apt_2019_04_019
crossref_primary_10_1016_j_epsl_2015_03_001
crossref_primary_10_1016_j_epsl_2024_118835
crossref_primary_10_1017_jfm_2015_438
crossref_primary_10_1002_2015JF003725
crossref_primary_10_1103_PhysRevResearch_6_L022015
crossref_primary_10_1007_s10346_021_01711_8
crossref_primary_10_1111_gto_12037
crossref_primary_10_1038_s41598_024_80361_x
crossref_primary_10_1029_2023JF007171
crossref_primary_10_1144_SP467_12
crossref_primary_10_1093_gji_ggt352
crossref_primary_10_1007_s10035_017_0764_z
crossref_primary_10_1103_PhysRevE_102_062901
crossref_primary_10_1017_jfm_2019_63
crossref_primary_10_1007_s10035_023_01391_2
crossref_primary_10_1007_s00348_022_03562_y
crossref_primary_10_1002_dep2_309
crossref_primary_10_1007_s10346_023_02134_3
crossref_primary_10_1016_j_jcp_2024_113072
crossref_primary_10_1002_2016JF003933
crossref_primary_10_1103_PhysRevE_94_052901
crossref_primary_10_1029_2020JF005590
crossref_primary_10_1007_s10346_021_01733_2
crossref_primary_10_2166_hydro_2024_103
crossref_primary_10_1029_2021JB022274
crossref_primary_10_1016_j_palaeo_2022_111103
crossref_primary_10_1017_jfm_2012_348
crossref_primary_10_1017_jfm_2023_1022
crossref_primary_10_1029_2022EA002590
crossref_primary_10_1007_s10706_017_0241_9
crossref_primary_10_1007_s10346_014_0484_y
crossref_primary_10_2113_EEG_D_20_00010
crossref_primary_10_1002_esp_4677
crossref_primary_10_1016_j_matcom_2019_03_014
crossref_primary_10_1002_esp_4794
crossref_primary_10_1063_1_4867253
crossref_primary_10_1017_jfm_2014_503
crossref_primary_10_1016_j_geomorph_2019_07_002
crossref_primary_10_1144_SP467_2
crossref_primary_10_1103_PhysRevE_92_052204
crossref_primary_10_5575_geosoc_2022_0017
crossref_primary_10_1002_2014JF003331
crossref_primary_10_1007_s10064_024_04018_9
crossref_primary_10_1016_j_enggeo_2015_02_009
crossref_primary_10_1029_2018GL077526
crossref_primary_10_1038_s41598_017_08573_y
crossref_primary_10_1016_j_geomorph_2014_04_028
crossref_primary_10_5800_GT_2019_10_4_0457
crossref_primary_10_1063_1_4812639
crossref_primary_10_1098_rspa_2013_0819
crossref_primary_10_1016_j_jvolgeores_2013_11_013
crossref_primary_10_1144_qjegh2017_071
crossref_primary_10_1002_2016GL069661
crossref_primary_10_1002_esp_5986
crossref_primary_10_1017_jfm_2021_342
crossref_primary_10_1111_1755_6724_13416
crossref_primary_10_1017_jfm_2021_348
crossref_primary_10_1016_j_jvolgeores_2020_107105
crossref_primary_10_1002_2015JF003525
crossref_primary_10_1007_s10035_016_0662_9
crossref_primary_10_1016_j_cnsns_2023_107624
crossref_primary_10_1007_s10035_018_0818_x
crossref_primary_10_1016_j_ijrmms_2023_105496
crossref_primary_10_1007_s12665_025_12109_3
crossref_primary_10_1016_j_jvolgeores_2013_08_017
crossref_primary_10_1017_jfm_2013_42
crossref_primary_10_1016_j_geomorph_2015_03_043
crossref_primary_10_1007_s10064_021_02202_9
crossref_primary_10_1029_2022JF006664
crossref_primary_10_1111_sed_12727
crossref_primary_10_1017_jfm_2015_684
crossref_primary_10_5194_nhess_22_4011_2022
crossref_primary_10_1016_j_jvolgeores_2017_12_004
crossref_primary_10_1002_2017JE005320
crossref_primary_10_1016_j_catena_2021_105727
crossref_primary_10_1007_s10652_022_09850_9
crossref_primary_10_1017_jfm_2019_215
crossref_primary_10_1139_cgj_2018_0092
crossref_primary_10_1016_j_advwatres_2023_104592
crossref_primary_10_1002_jgrf_20148
crossref_primary_10_1103_PhysRevFluids_8_074301
crossref_primary_10_1007_s00445_022_01617_w
crossref_primary_10_3189_2016AoG71A039
crossref_primary_10_1098_rspa_2013_0820
crossref_primary_10_1017_jfm_2021_688
crossref_primary_10_2113_EEG_D_20_00106
crossref_primary_10_1103_PhysRevFluids_7_014305
crossref_primary_10_5331_seppyo_84_5_453
crossref_primary_10_3208_jgssp_JPN_033
crossref_primary_10_1061__ASCE_NH_1527_6996_0000286
crossref_primary_10_1016_j_icarus_2015_06_017
crossref_primary_10_1073_pnas_2307061121
crossref_primary_10_1007_s11440_021_01265_y
crossref_primary_10_1103_PhysRevE_92_022210
crossref_primary_10_1007_s11440_020_01036_1
crossref_primary_10_1007_s10035_017_0741_6
crossref_primary_10_1051_e3sconf_202341503023
crossref_primary_10_1016_j_jseaes_2017_08_007
crossref_primary_10_1016_j_epsl_2019_07_003
crossref_primary_10_20965_jdr_2017_p0607
crossref_primary_10_1029_2020JB019536
crossref_primary_10_1016_j_ijsrc_2023_08_002
crossref_primary_10_1016_j_jvolgeores_2012_06_030
crossref_primary_10_1007_s10346_021_01629_1
crossref_primary_10_1002_2016JB013624
crossref_primary_10_1017_jfm_2012_603
crossref_primary_10_1016_j_enggeo_2017_11_007
crossref_primary_10_1007_s10064_022_02803_y
crossref_primary_10_1029_2022GL102373
crossref_primary_10_1111_bre_12172
crossref_primary_10_1007_s10346_024_02375_w
crossref_primary_10_2110_jsr_2020_186
crossref_primary_10_1098_rspa_2013_0203
crossref_primary_10_1007_s10346_018_1117_7
crossref_primary_10_1016_j_pmatsci_2023_101157
crossref_primary_10_1007_s10346_022_01987_4
crossref_primary_10_1016_j_icarus_2022_115363
crossref_primary_10_1029_2020GL088994
crossref_primary_10_1017_jfm_2017_41
crossref_primary_10_1061__ASCE_GM_1943_5622_0002421
crossref_primary_10_1017_jfm_2018_348
crossref_primary_10_1680_jgele_17_00159
crossref_primary_10_1007_s10035_018_0806_1
crossref_primary_10_1007_s11440_019_00842_6
crossref_primary_10_1017_jfm_2016_170
crossref_primary_10_1002_esp_4844
crossref_primary_10_1017_jfm_2013_675
crossref_primary_10_1007_s10346_022_01878_8
crossref_primary_10_1080_19648189_2020_1762751
crossref_primary_10_1017_jfm_2017_419
crossref_primary_10_1007_s11629_024_8954_8
crossref_primary_10_1016_j_epsl_2013_10_043
crossref_primary_10_1051_e3sconf_202341501030
crossref_primary_10_1061__ASCE_GT_1943_5606_0001922
crossref_primary_10_1007_s11629_018_5012_4
crossref_primary_10_1016_j_enggeo_2021_106211
crossref_primary_10_1016_j_geomorph_2022_108521
crossref_primary_10_1016_j_geomorph_2022_108538
crossref_primary_10_1007_s11629_018_5314_6
crossref_primary_10_1007_s10346_019_01298_1
crossref_primary_10_3390_s22155565
crossref_primary_10_1007_s42241_022_0055_y
crossref_primary_10_1016_j_quascirev_2017_06_002
crossref_primary_10_1002_2013JF003078
crossref_primary_10_1029_2020GL087643
crossref_primary_10_1016_j_enggeo_2015_03_019
crossref_primary_10_1007_s00445_023_01662_z
crossref_primary_10_1146_annurev_fluid_122316_045201
crossref_primary_10_1007_s10346_019_01243_2
crossref_primary_10_3189_2012JoG11J011
crossref_primary_10_1007_s11440_016_0509_x
crossref_primary_10_1029_2024JE008319
crossref_primary_10_1017_jfm_2019_518
crossref_primary_10_1061__ASCE_GT_1943_5606_0002485
crossref_primary_10_1029_2021JF006372
crossref_primary_10_1130_B37027_1
crossref_primary_10_1029_2019JE006302
crossref_primary_10_1029_2022JF006712
crossref_primary_10_5194_nhess_19_181_2019
crossref_primary_10_1002_2014JB011729
crossref_primary_10_1140_epje_i2013_13036_9
crossref_primary_10_1016_j_geoderma_2016_11_011
crossref_primary_10_1002_esp_3963
crossref_primary_10_3390_w9030205
crossref_primary_10_5194_nhess_24_1035_2024
crossref_primary_10_2110_jsr_2020_020
crossref_primary_10_1007_s11069_025_07153_y
crossref_primary_10_1016_j_ijsrc_2017_06_003
crossref_primary_10_1002_esp_4939
crossref_primary_10_1007_s10035_016_0620_6
crossref_primary_10_1139_cgj_2016_0502
crossref_primary_10_1029_2020GL090874
crossref_primary_10_1017_jfm_2023_904
crossref_primary_10_1029_2018JF004667
crossref_primary_10_5194_se_13_1631_2022
crossref_primary_10_1007_s10346_020_01607_z
crossref_primary_10_1017_jfm_2016_673
crossref_primary_10_1016_j_geomorph_2014_12_007
crossref_primary_10_1016_j_icarus_2019_113464
crossref_primary_10_1051_e3sconf_20184005051
crossref_primary_10_1038_s41598_022_24397_x
crossref_primary_10_1080_19475705_2017_1414718
crossref_primary_10_1007_s00521_021_06197_y
crossref_primary_10_1016_j_enggeo_2024_107495
crossref_primary_10_1002_2017GL072591
crossref_primary_10_1007_s10346_022_01948_x
crossref_primary_10_5194_esurf_10_775_2022
crossref_primary_10_1007_s11629_020_6164_6
crossref_primary_10_1126_sciadv_abe8737
crossref_primary_10_1016_j_marpetgeo_2021_105376
crossref_primary_10_1007_s10064_020_02004_5
crossref_primary_10_1680_jphmg_16_00018
crossref_primary_10_1029_2019JF005204
crossref_primary_10_2208_jscejhe_74_I_1081
crossref_primary_10_3390_w14091352
crossref_primary_10_1029_2021JB022755
crossref_primary_10_1007_s11629_021_7292_3
crossref_primary_10_1016_j_geomorph_2020_107431
crossref_primary_10_1016_j_geomorph_2021_107992
crossref_primary_10_1007_s10346_023_02129_0
crossref_primary_10_1016_j_geomorph_2024_109109
crossref_primary_10_1016_j_heliyon_2019_e02463
crossref_primary_10_1103_PhysRevLett_114_238001
crossref_primary_10_1029_2011JF002189
crossref_primary_10_1088_1674_1056_acf040
crossref_primary_10_1017_jfm_2022_400
crossref_primary_10_1029_2023JF007074
crossref_primary_10_1051_e3sconf_202341501001
crossref_primary_10_1007_s10035_021_01134_1
Cites_doi 10.1103/PhysRevE.80.042301
10.1130/0016‐7606(1999)111<1424:DFDEOP>2.3.CO;2
10.1029/97RG00426
10.1007/978-94-015-9498-1_3
10.1017/S002211201000011X
10.1017/S0022112003005317
10.1017/S0022112089000340
10.1017/jfm.2011.2
10.1111/j.1365‐3091.1976.tb00045.x
10.1016/0032-5910(94)02954-M
10.1017/jfm.2011.138
10.1016/S0012‐821X(04)00111‐6
10.1098/rspa.1999.0383
10.1038/386816a0
10.1017/S0022112007009445
10.1017/S0022112009006466
10.1130/0016‐7606(1953)64[547:MOAWSC]2.0.CO;2
10.1029/2009JE003540
10.1063/1.3536658
10.1130/0091‐7613(2001)029<0115:NVOGMF>2.0.CO;2
10.1016/j.geomorph.2009.08.015
10.1017/S0022112005007676
10.3189/002214309790152384
10.1017/S0956792507007280
10.1029/2000JB900329
10.1086/515930
10.1017/S002211208800103X
10.1029/2009JF001514
10.1017/S0022112006002977
10.1098/rspa.1954.0186
10.1063/1.166435
10.1017/S0022112010003241
10.1098/rspa.2004.1420
10.1016/S0377‐0273(00)00207‐9
ContentType Journal Article
Copyright Copyright 2012 by the American Geophysical Union
2015 INIST-CNRS
Copyright American Geophysical Union 2012
Copyright_xml – notice: Copyright 2012 by the American Geophysical Union
– notice: 2015 INIST-CNRS
– notice: Copyright American Geophysical Union 2012
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
PRINS
DOI 10.1029/2011JF002185
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Research Library
Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
ProQuest Central China
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
ProQuest Central China
DatabaseTitleList CrossRef
Research Library Prep

Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9011
EndPage n/a
ExternalDocumentID 2623447871
2617695331
3835782061
25974248
10_1029_2011JF002185
JGRF926
ark_67375_WNG_M6STTM1C_3
Genre article
Feature
GrantInformation_xml – fundername: EPSRC
  funderid: GR/S50052/01; GR/S50069/01
– fundername: NERC
  funderid: NE/E003206/1; NE/G523747/1
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
05W
0R~
33P
3V.
52M
702
7ST
7TG
7UA
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ABJCF
ACGOD
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
C1K
CCPQU
DPXWK
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
KL.
KR7
L.G
L6V
L7M
LEEKS
LK5
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
PTHSS
PYCSY
Q9U
R.K
SOI
SUPJJ
WBKPD
PRINS
ID FETCH-LOGICAL-c5316-82be2699a7df401a10bbe0e5c1ed66d9185482f859c05b2bc2c77a028eb2ae873
IEDL.DBID BENPR
ISSN 0148-0227
2169-9003
IngestDate Fri Jul 25 10:43:07 EDT 2025
Fri Jul 25 10:40:48 EDT 2025
Fri Jul 25 19:07:18 EDT 2025
Mon Jul 21 09:13:21 EDT 2025
Thu Apr 24 23:05:10 EDT 2025
Tue Jul 01 02:42:21 EDT 2025
Wed Jan 22 16:55:06 EST 2025
Wed Oct 30 09:57:02 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue F1
Keywords experimental studies
models
Particle size
pebbles
shear
tracers
sampling
debris flows
Velocity distribution
transport
Seeding
Modeling
trajectory
grains
gravel
accretion
sand
grain size
materials
flumes
segregation
flow
Mass flow
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5316-82be2699a7df401a10bbe0e5c1ed66d9185482f859c05b2bc2c77a028eb2ae873
Notes ark:/67375/WNG-M6STTM1C-3
ArticleID:2011JF002185
istex:0CD27B6D95F229114669496CBD3F8F1743721FB3
NERC - No. NE/E003206/1; No. NE/G523747/1
EPSRC - No. GR/S50052/01; No. GR/S50069/01
Animation 1. The 25th August 2009 experiment at the USGS debris-flow flume. The animation shows the debris flow resulting release of ∼ 10 m3 of water-saturated sand and gravel from a hopper at the top of the 95 m long flume. Colored tracer cubes are seeded onto the flow surface when it first reaches the flume mouth. As the flow deposits on the runout pad, a board is brought down across the flow to divert the watery "tail" to one side.Animation 2. An overhead view of runout of the 25th August experiment. The rows of colored tracer cubes that are seeded onto the flow surface are initially shown on the far left. Coarse-enriched levees form spontaneously during the runout, which channelize the flow and cause the deposit to maintain a constant width. The grid shows 1 m squares.Animation 3. An animation of , showing the path of a sequence of particles that initially start at the same transverse locations. Particles marked 1, which are initially the farthest downstream, are the first to reach the flow head and be advected towards the lateral margins. These particles deposit first, followed by particles 2, 3, 4, and 5 in turn. When deposited in the levees, the spatial order of the particles is reversed, with particles marked 5 farthest downstream.Animation 4. Surface flow speeds of the 25th August experiment, calculated from particle tracking velocimetry. A detailed velocity field is shown for the frame at t = 3.50 s in . Animation 4 shows that this snapshot is representative of the flow throughout the regime of steady front propagation and levee formation. The streamwise growth of the levees (shown in black) and the lack of downstream-variation in the velocity field of the levee-channelized section are also evident.Animation 5. An overhead view of the 25th August experiment, in a frame moving with the flow front. In this frame, the near-steady nature of flow can be seen. Surface material in the central channel moves to the right, towards the flow front, while surface material at the lateral margins of the flow moves to the left, away from it. Animation 5 shows the runout between t ∼ 2 s, when the levees first begin to form on the runout pad, to t ∼ 4.5 s, when the flow diverter is brought down. The animation is slowed down by a factor of six.Animation 6. Particle paths through the debris-flow head with a plug-flow vertical velocity profile (shown in ). Particles at the surface and base of the flow travel at the same velocity. They are transported into the flow head near the center, and leave the head at the lateral margins. All particles on the surface remain there, with none passing over the flow front.Animation 7. Particle paths through the debris-flow head with a simple shear vertical velocity profile (shown in ). Particles are transported into the head at the upper half of the flow, and leave it in the lower half. Nearly all particles pass over the flow front.Animation 8. Particle paths through the debris-flow head with a combination of basal slip and shear (shown in ). Surface particles near the flow certerline pass over the flow front and are transferred to the base of the flow, but those closer the edges of the flow remain on the surface as they are advected out of the head.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Feature-1
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2011JF002185
PQID 1721990515
PQPubID 54727
PageCount 23
ParticipantIDs proquest_journals_963440200
proquest_journals_940704209
proquest_journals_1721990515
pascalfrancis_primary_25974248
crossref_citationtrail_10_1029_2011JF002185
crossref_primary_10_1029_2011JF002185
wiley_primary_10_1029_2011JF002185_JGRF926
istex_primary_ark_67375_WNG_M6STTM1C_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2012
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: March 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Earth Surface
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Bartelt, P., and B. W. McArdell (2009), Granulometric investigations of snow avalanches, J. Glaciol., 55(193), 829-833, doi:10.3189/002214309790152384.
Heim, A. (1932), Bergsturz und Menschenleben, Fretz and Wasmuth, Zürich, Switzerland.
Iverson, R. M., and J. W. Vallance (2001), New views of granular mass flows, Geology, 29(2), 115-118, doi:10.1130/0091-7613(2001)029<0115:NVOGMF>2.0.CO;2.
Major, J. J., and R. M. Iverson (1999), Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins, Geol. Soc. Am. Bull., 111(10), 1424-1434, doi:10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2.
Gray, J. M. N. T., and C. Ancey (2011), Multi-component particle size segregation in shallow granular avalanches, J. Fluid Mech., 678, 535-588, doi:10.1017/jfm.2011.138.
Wiederseiner, S., N. Andreini, G. Epely-Chauvin, G. Moser, M. Monnereau, J. M. N. T. Gray, and C. Ancey (2011), Experimental investigation into segregating granular flows down chutes, Phys. Fluids, 23, 013301, doi:10.1063/1.3536658.
Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge Univ. Press., Cambridge, U. K.
Bagnold, R. A. (1954), Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. A, 225(1160), 49-63, doi:10.1098/rspa.1954.0186.
Gray, J. M. N. T., and A. R. Thornton (2005), A theory for particle size segregation in shallow granular free-surface flows, Proc. R. Soc. A, 461(2057), 1447-1473, doi:10.1098/rspa.2004.1420.
Gray, J. M. N. T., and C. Ancey (2009), Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts, J. Fluid Mech., 629, 387-423, doi:10.1017/S0022112009006466.
Denlinger, R. P., and R. M. Iverson (2004), Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation, J. Geophys. Res, 109, F01014, doi:10.1029/2003JF000085.
Major, J. J. (1997), Depositional processes in large-scale debris-flow experiments, J. Geol., 105(3), 345-366, doi:10.1086/515930.
Stiny, J. (1910), Die Muren, Verl. der Wagnerischen Univ.-Buchhandl., Innsbruck, Austria, doi:10.1111/j.1365-3091.1976.tb00045.x.
Golick, L. A., and K. E. Daniels (2009), Mixing and segregation rates in sheared granular materials, Phys. Rev. E, 80, 042301, doi:10.1103/PhysRevE.80.042301.
Sparks, R. (1976), Grain size variations in ignimbrites and implications for the transport of pyroclastic flows, Sedimentology, 23(2), 147-188, doi:10.1111/j.1365-3091.1976.tb00045.x.
Dolgunin, V. N., and A. A. Ukolov (1995), Segregation modelling of particle rapid gravity flow, Powder Technol., 83(2), 95-103, doi:0032-5910(94)02954-M.
Iverson, R. M., M. Logan, R. G. LaHusen, and M. Berti (2010), The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res., 115, F03005, doi:10.1029/2009JF001514.
Iverson, R. M. (1997), The physics of debris flows, Rev. Geophys., 35(3), 245-296, doi:10.1029/97RG00426.
Pouliquen, O., J. Delour, and S. B. Savage (1997), Fingering in granular flows, Nature, 386, 816-817, doi:10.1038/386816a0.
Thornton, A. R., and J. M. N. T. Gray (2008), Breaking size segregation waves and particle recirculation in granular avalanches, J. Fluid Mech., 596, 261-284, doi:10.1017/S0022112007009445.
Hoblitt, R. P. (1986), Observations of the eruptions of Jully 22 and August 7, 1980, at Mount St. Helents, Washington, U.S. Geol. Surv. Prof. Pap., 1250, 44 pp.
Savage, S. B., and K. Hutter (1989), The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215, doi:10.1017/S0022112089000340.
Calder, E. S., R. S. J. Sparks, and M. C. Gardeweg (2000), Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile, J. Vocanol. Geotherm. Res., 104(1-4), 201-235, doi:10.1016/S0377-0273(00)00207-9.
Gray, J. M. N. T., and V. A. Chugunov (2006), Particle-size segregation and diffusive remixing in shallow granular avalanches, J. Fluid Mech., 569, 365-398, doi:10.1017/S0022112006002977.
Thornton, A. R., J. M. N. T. Gray, and A. J. Hogg (2006), A three-phase mixture theory for particle size segregation in shallow granular free-surface flows, J. Fluid Mech., 550, 1-25, doi:10.1017/S0022112005007676.
Johnson, C. G., and J. M. N. T. Gray (2011), Granular jets and hydraulic jumps on an inclined plane, J. Fluid Mech., 675, 87-116, doi:10.1017/jfm.2011.2.
Mangold, N., A. Mangeney, V. Migeon, V. Ansan, A. Lucas, D. Baratoux, and F. Bouchut (2010), Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties, J. Geophys. Res., 115, E11001, doi:10.1029/2009JE003540.
Iverson, R. M., and R. P. Denlinger (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., 106(B1), 537-552, doi:10.1029/2000JB900329.
Branney, M. J., and B. P. Kokelaar (2002), Pyroclastic Density Currents and the Sedimentation of Ignimbrites, Geol. Soc. Mem., vol. 27, Geol. Soc., London.
Gray, J. M. N. T., Y. C. Tai, and S. Noelle (2003), Shock waves, dead zones and particle-free regions in rapid granular free-surface flows, J. Fluid Mech., 491, 161-181, doi:10.1017/S0022112003005317.
Gray, J. M. N. T., M. Wieland, and K. Hutter (1999), Free surface flow of cohesionless granular avalanches over complex basal topography, Proc. R. Soc. A, 455(1985), 1841-1874, doi:10.1098/rspa.1999.0383.
Pouliquen, O., and J. W. Vallance (1999), Segregation induced instabilities of granular fronts, Chaos, 9, 621-630, doi:10.1063/1.166435.
Sharp, R. P., and L. Nobles (1953), Mudflow of 1941 at Wrightwood, southern California, Geol. Soc. Am. Bull., 64(5), 547-560, doi:10.1130/0016-7606(1953)64[547:MOAWSC]2.0.CO;2.
Conway, S. J., A. Decaulne, M. R. Balme, J. B. Murray, and M. C. Towner (2010), A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland, Geomorphology, 114(4), 556-572, doi:10.1016/j.geomorph.2009.08.015.
Gray, J. M. N. T., and B. P. Kokelaar (2010a), Large particle segregation, transport and accumulation in granular free-surface flows, J. Fluid Mech., 652, 105-137, doi:10.1017/S002211201000011X.
Savage, S. B., and C. K. K. Lun (1988), Particle size segregation in inclined chute flow of dry cohesionless granular solids, J. Fluid Mech., 189, 311-335, doi:10.1017/S002211208800103X.
Johnson, A. M. (1970), Physical processes in geology, W. H. Freeman, New York.
Gray, J. M. N. T., and B. P. Kokelaar (2010b), Large particle segregation, transport and accumulation in granular free-surface flows-Erratum, J. Fluid Mech., 657, 539, doi:10.1017/S0022112010003241.
Shearer, M., J. M. N. T. Gray, and A. R. Thornton (2008), Stable solutions of a scalar conservation law for particle-size segregation in dense granular avalanches, Eur. J. Appl. Math., 19, 61-86, doi:10.1017/S0956792507007280.
Félix, G., and N. Thomas (2004), Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits, Earth Planet. Sci. Lett., 221(1-4), 197-213, doi:10.1016/S0012-821X(04)00111-6.
2004; 221
1986; 1250
2011; 675
1970; 7
1981; 1250
1976; 23
2011; 678
2009; 80
2008; 19
1989; 199
1932
1976
1910
2003; 491
1988; 189
2006; 550
1970
2001; 29
1954; 225
2004; 109
2001; 106
1999; 9
2002; 27
2009; 55
1995; 83
1997; 105
2009; 629
2005; 461
2010; 657
2000
2000; 104
2010; 114
2010; 115
1997; 35
1997; 386
2010; 652
1965
1986
1984
1999; 455
2011; 23
1999; 111
2008; 596
2006; 569
1967
1953; 64
e_1_2_10_23_1
Middleton G. V. (e_1_2_10_33_1) 1970
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_41_1
e_1_2_10_40_1
Hoblitt R. P. (e_1_2_10_21_1) 1986; 1250
Middleton G. V. (e_1_2_10_34_1) 1976
Johnson A. M. (e_1_2_10_28_1) 1984
Wilson L. (e_1_2_10_49_1) 1981
e_1_2_10_2_1
Denlinger R. P. (e_1_2_10_8_1) 2004; 109
Heim A. (e_1_2_10_20_1) 1932
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_32_1
Rowley P. D. (e_1_2_10_38_1) 1981
e_1_2_10_31_1
Pierson T. (e_1_2_10_35_1) 1986
Johnson A. M. (e_1_2_10_27_1) 1970
e_1_2_10_30_1
e_1_2_10_29_1
Batchelor G. K. (e_1_2_10_4_1) 1967
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – reference: Calder, E. S., R. S. J. Sparks, and M. C. Gardeweg (2000), Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile, J. Vocanol. Geotherm. Res., 104(1-4), 201-235, doi:10.1016/S0377-0273(00)00207-9.
– reference: Pouliquen, O., J. Delour, and S. B. Savage (1997), Fingering in granular flows, Nature, 386, 816-817, doi:10.1038/386816a0.
– reference: Stiny, J. (1910), Die Muren, Verl. der Wagnerischen Univ.-Buchhandl., Innsbruck, Austria, doi:10.1111/j.1365-3091.1976.tb00045.x.
– reference: Golick, L. A., and K. E. Daniels (2009), Mixing and segregation rates in sheared granular materials, Phys. Rev. E, 80, 042301, doi:10.1103/PhysRevE.80.042301.
– reference: Mangold, N., A. Mangeney, V. Migeon, V. Ansan, A. Lucas, D. Baratoux, and F. Bouchut (2010), Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties, J. Geophys. Res., 115, E11001, doi:10.1029/2009JE003540.
– reference: Gray, J. M. N. T., and B. P. Kokelaar (2010a), Large particle segregation, transport and accumulation in granular free-surface flows, J. Fluid Mech., 652, 105-137, doi:10.1017/S002211201000011X.
– reference: Major, J. J., and R. M. Iverson (1999), Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins, Geol. Soc. Am. Bull., 111(10), 1424-1434, doi:10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2.
– reference: Wiederseiner, S., N. Andreini, G. Epely-Chauvin, G. Moser, M. Monnereau, J. M. N. T. Gray, and C. Ancey (2011), Experimental investigation into segregating granular flows down chutes, Phys. Fluids, 23, 013301, doi:10.1063/1.3536658.
– reference: Gray, J. M. N. T., and C. Ancey (2009), Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts, J. Fluid Mech., 629, 387-423, doi:10.1017/S0022112009006466.
– reference: Gray, J. M. N. T., and A. R. Thornton (2005), A theory for particle size segregation in shallow granular free-surface flows, Proc. R. Soc. A, 461(2057), 1447-1473, doi:10.1098/rspa.2004.1420.
– reference: Iverson, R. M. (1997), The physics of debris flows, Rev. Geophys., 35(3), 245-296, doi:10.1029/97RG00426.
– reference: Johnson, A. M. (1970), Physical processes in geology, W. H. Freeman, New York.
– reference: Iverson, R. M., and J. W. Vallance (2001), New views of granular mass flows, Geology, 29(2), 115-118, doi:10.1130/0091-7613(2001)029<0115:NVOGMF>2.0.CO;2.
– reference: Gray, J. M. N. T., Y. C. Tai, and S. Noelle (2003), Shock waves, dead zones and particle-free regions in rapid granular free-surface flows, J. Fluid Mech., 491, 161-181, doi:10.1017/S0022112003005317.
– reference: Sparks, R. (1976), Grain size variations in ignimbrites and implications for the transport of pyroclastic flows, Sedimentology, 23(2), 147-188, doi:10.1111/j.1365-3091.1976.tb00045.x.
– reference: Gray, J. M. N. T., and V. A. Chugunov (2006), Particle-size segregation and diffusive remixing in shallow granular avalanches, J. Fluid Mech., 569, 365-398, doi:10.1017/S0022112006002977.
– reference: Hoblitt, R. P. (1986), Observations of the eruptions of Jully 22 and August 7, 1980, at Mount St. Helents, Washington, U.S. Geol. Surv. Prof. Pap., 1250, 44 pp.
– reference: Pouliquen, O., and J. W. Vallance (1999), Segregation induced instabilities of granular fronts, Chaos, 9, 621-630, doi:10.1063/1.166435.
– reference: Gray, J. M. N. T., and B. P. Kokelaar (2010b), Large particle segregation, transport and accumulation in granular free-surface flows-Erratum, J. Fluid Mech., 657, 539, doi:10.1017/S0022112010003241.
– reference: Heim, A. (1932), Bergsturz und Menschenleben, Fretz and Wasmuth, Zürich, Switzerland.
– reference: Savage, S. B., and K. Hutter (1989), The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215, doi:10.1017/S0022112089000340.
– reference: Iverson, R. M., and R. P. Denlinger (2001), Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory, J. Geophys. Res., 106(B1), 537-552, doi:10.1029/2000JB900329.
– reference: Iverson, R. M., M. Logan, R. G. LaHusen, and M. Berti (2010), The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res., 115, F03005, doi:10.1029/2009JF001514.
– reference: Gray, J. M. N. T., M. Wieland, and K. Hutter (1999), Free surface flow of cohesionless granular avalanches over complex basal topography, Proc. R. Soc. A, 455(1985), 1841-1874, doi:10.1098/rspa.1999.0383.
– reference: Shearer, M., J. M. N. T. Gray, and A. R. Thornton (2008), Stable solutions of a scalar conservation law for particle-size segregation in dense granular avalanches, Eur. J. Appl. Math., 19, 61-86, doi:10.1017/S0956792507007280.
– reference: Major, J. J. (1997), Depositional processes in large-scale debris-flow experiments, J. Geol., 105(3), 345-366, doi:10.1086/515930.
– reference: Bagnold, R. A. (1954), Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. A, 225(1160), 49-63, doi:10.1098/rspa.1954.0186.
– reference: Branney, M. J., and B. P. Kokelaar (2002), Pyroclastic Density Currents and the Sedimentation of Ignimbrites, Geol. Soc. Mem., vol. 27, Geol. Soc., London.
– reference: Félix, G., and N. Thomas (2004), Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits, Earth Planet. Sci. Lett., 221(1-4), 197-213, doi:10.1016/S0012-821X(04)00111-6.
– reference: Savage, S. B., and C. K. K. Lun (1988), Particle size segregation in inclined chute flow of dry cohesionless granular solids, J. Fluid Mech., 189, 311-335, doi:10.1017/S002211208800103X.
– reference: Thornton, A. R., J. M. N. T. Gray, and A. J. Hogg (2006), A three-phase mixture theory for particle size segregation in shallow granular free-surface flows, J. Fluid Mech., 550, 1-25, doi:10.1017/S0022112005007676.
– reference: Gray, J. M. N. T., and C. Ancey (2011), Multi-component particle size segregation in shallow granular avalanches, J. Fluid Mech., 678, 535-588, doi:10.1017/jfm.2011.138.
– reference: Johnson, C. G., and J. M. N. T. Gray (2011), Granular jets and hydraulic jumps on an inclined plane, J. Fluid Mech., 675, 87-116, doi:10.1017/jfm.2011.2.
– reference: Thornton, A. R., and J. M. N. T. Gray (2008), Breaking size segregation waves and particle recirculation in granular avalanches, J. Fluid Mech., 596, 261-284, doi:10.1017/S0022112007009445.
– reference: Bartelt, P., and B. W. McArdell (2009), Granulometric investigations of snow avalanches, J. Glaciol., 55(193), 829-833, doi:10.3189/002214309790152384.
– reference: Denlinger, R. P., and R. M. Iverson (2004), Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation, J. Geophys. Res, 109, F01014, doi:10.1029/2003JF000085.
– reference: Sharp, R. P., and L. Nobles (1953), Mudflow of 1941 at Wrightwood, southern California, Geol. Soc. Am. Bull., 64(5), 547-560, doi:10.1130/0016-7606(1953)64[547:MOAWSC]2.0.CO;2.
– reference: Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge Univ. Press., Cambridge, U. K.
– reference: Dolgunin, V. N., and A. A. Ukolov (1995), Segregation modelling of particle rapid gravity flow, Powder Technol., 83(2), 95-103, doi:0032-5910(94)02954-M.
– reference: Conway, S. J., A. Decaulne, M. R. Balme, J. B. Murray, and M. C. Towner (2010), A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland, Geomorphology, 114(4), 556-572, doi:10.1016/j.geomorph.2009.08.015.
– volume: 678
  start-page: 535
  year: 2011
  end-page: 588
  article-title: Multi‐component particle size segregation in shallow granular avalanches
  publication-title: J. Fluid Mech.
– start-page: 269
  year: 1986
  end-page: 296
– year: 1910
– volume: 35
  start-page: 245
  issue: 3
  year: 1997
  end-page: 296
  article-title: The physics of debris flows
  publication-title: Rev. Geophys.
– volume: 596
  start-page: 261
  year: 2008
  end-page: 284
  article-title: Breaking size segregation waves and particle recirculation in granular avalanches
  publication-title: J. Fluid Mech.
– volume: 114
  start-page: 556
  issue: 4
  year: 2010
  end-page: 572
  article-title: A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland
  publication-title: Geomorphology
– volume: 225
  start-page: 49
  issue: 1160
  year: 1954
  end-page: 63
  article-title: Experiments on a gravity‐free dispersion of large solid spheres in a Newtonian fluid under shear
  publication-title: Proc. R. Soc. A
– volume: 199
  start-page: 177
  year: 1989
  end-page: 215
  article-title: The motion of a finite mass of granular material down a rough incline
  publication-title: J. Fluid Mech.
– volume: 80
  year: 2009
  article-title: Mixing and segregation rates in sheared granular materials
  publication-title: Phys. Rev. E
– volume: 105
  start-page: 345
  issue: 3
  year: 1997
  end-page: 366
  article-title: Depositional processes in large‐scale debris‐flow experiments
  publication-title: J. Geol.
– volume: 111
  start-page: 1424
  issue: 10
  year: 1999
  end-page: 1434
  article-title: Debris‐flow deposition: Effects of pore‐fluid pressure and friction concentrated at flow margins
  publication-title: Geol. Soc. Am. Bull.
– volume: 461
  start-page: 1447
  issue: 2057
  year: 2005
  end-page: 1473
  article-title: A theory for particle size segregation in shallow granular free‐surface flows
  publication-title: Proc. R. Soc. A
– volume: 109
  year: 2004
  article-title: Granular avalanches across irregular three‐dimensional terrain: 1. Theory and computation
  publication-title: J. Geophys. Res
– volume: 1250
  start-page: 513
  year: 1981
  end-page: 524
– volume: 64
  start-page: 547
  issue: 5
  year: 1953
  end-page: 560
  article-title: Mudflow of 1941 at Wrightwood, southern California
  publication-title: Geol. Soc. Am. Bull.
– volume: 675
  start-page: 87
  year: 2011
  end-page: 116
  article-title: Granular jets and hydraulic jumps on an inclined plane
  publication-title: J. Fluid Mech.
– volume: 23
  year: 2011
  article-title: Experimental investigation into segregating granular flows down chutes,
  publication-title: Fluids
– volume: 491
  start-page: 161
  year: 2003
  end-page: 181
  article-title: Shock waves, dead zones and particle‐free regions in rapid granular free‐surface flows
  publication-title: J. Fluid Mech.
– volume: 386
  start-page: 816
  year: 1997
  end-page: 817
  article-title: Fingering in granular flows
  publication-title: Nature
– volume: 652
  start-page: 105
  year: 2010
  end-page: 137
  article-title: Large particle segregation, transport and accumulation in granular free‐surface flows
  publication-title: J. Fluid Mech.
– volume: 23
  start-page: 147
  issue: 2
  year: 1976
  end-page: 188
  article-title: Grain size variations in ignimbrites and implications for the transport of pyroclastic flows
  publication-title: Sedimentology
– volume: 1250
  year: 1986
  article-title: Observations of the eruptions of Jully 22 and August 7, 1980, at Mount St. Helents, Washington
  publication-title: U.S. Geol. Surv. Prof. Pap.
– year: 1932
– volume: 29
  start-page: 115
  issue: 2
  year: 2001
  end-page: 118
  article-title: New views of granular mass flows
  publication-title: Geology
– volume: 19
  start-page: 61
  year: 2008
  end-page: 86
  article-title: Stable solutions of a scalar conservation law for particle‐size segregation in dense granular avalanches
  publication-title: Eur. J. Appl. Math.
– volume: 629
  start-page: 387
  year: 2009
  end-page: 423
  article-title: Segregation, recirculation and deposition of coarse particles near two‐dimensional avalanche fronts
  publication-title: J. Fluid Mech.
– volume: 657
  start-page: 539
  year: 2010
  article-title: Large particle segregation, transport and accumulation in granular free‐surface flows—Erratum
  publication-title: J. Fluid Mech.
– year: 1965
– volume: 55
  start-page: 829
  issue: 193
  year: 2009
  end-page: 833
  article-title: Granulometric investigations of snow avalanches
  publication-title: J. Glaciol.
– year: 1967
– volume: 221
  start-page: 197
  issue: 1–4
  year: 2004
  end-page: 213
  article-title: Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits
  publication-title: Earth Planet. Sci. Lett.
– volume: 9
  start-page: 621
  year: 1999
  end-page: 630
  article-title: Segregation induced instabilities of granular fronts
  publication-title: Chaos
– volume: 106
  start-page: 537
  issue: B1
  year: 2001
  end-page: 552
  article-title: Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: The perfect debris flow? Aggregated results from 28 large‐scale experiments
  publication-title: J. Geophys. Res.
– volume: 7
  start-page: 253
  year: 1970
  end-page: 272
– volume: 27
  year: 2002
– start-page: 197
  year: 1976
  end-page: 218
– year: 1970
– volume: 189
  start-page: 311
  year: 1988
  end-page: 335
  article-title: Particle size segregation in inclined chute flow of dry cohesionless granular solids
  publication-title: J. Fluid Mech.
– volume: 455
  start-page: 1841
  issue: 1985
  year: 1999
  end-page: 1874
  article-title: Free surface flow of cohesionless granular avalanches over complex basal topography
  publication-title: Proc. R. Soc. A
– volume: 1250
  start-page: 489
  year: 1981
  end-page: 512
– start-page: 31
  year: 2000
  end-page: 52
– volume: 550
  start-page: 1
  year: 2006
  end-page: 25
  article-title: A three‐phase mixture theory for particle size segregation in shallow granular free‐surface flows
  publication-title: J. Fluid Mech.
– volume: 115
  year: 2010
  article-title: Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties
  publication-title: J. Geophys. Res.
– volume: 569
  start-page: 365
  year: 2006
  end-page: 398
  article-title: Particle‐size segregation and diffusive remixing in shallow granular avalanches
  publication-title: J. Fluid Mech.
– volume: 104
  start-page: 201
  issue: 1–4
  year: 2000
  end-page: 235
  article-title: Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile
  publication-title: J. Vocanol. Geotherm. Res.
– volume: 83
  start-page: 95
  issue: 2
  year: 1995
  end-page: 103
  article-title: Segregation modelling of particle rapid gravity flow
  publication-title: Powder Technol.
– start-page: 257
  year: 1984
  end-page: 361
– start-page: 253
  volume-title: Flysch Sedimentology in North America
  year: 1970
  ident: e_1_2_10_33_1
– ident: e_1_2_10_5_1
– ident: e_1_2_10_11_1
  doi: 10.1103/PhysRevE.80.042301
– volume: 1250
  year: 1986
  ident: e_1_2_10_21_1
  article-title: Observations of the eruptions of Jully 22 and August 7, 1980, at Mount St. Helents, Washington
  publication-title: U.S. Geol. Surv. Prof. Pap.
– ident: e_1_2_10_31_1
  doi: 10.1130/0016‐7606(1999)111<1424:DFDEOP>2.3.CO;2
– volume-title: Bergsturz und Menschenleben
  year: 1932
  ident: e_1_2_10_20_1
– ident: e_1_2_10_22_1
  doi: 10.1029/97RG00426
– ident: e_1_2_10_47_1
  doi: 10.1007/978-94-015-9498-1_3
– ident: e_1_2_10_15_1
  doi: 10.1017/S002211201000011X
– ident: e_1_2_10_19_1
  doi: 10.1017/S0022112003005317
– volume: 109
  year: 2004
  ident: e_1_2_10_8_1
  article-title: Granular avalanches across irregular three‐dimensional terrain: 1. Theory and computation
  publication-title: J. Geophys. Res
– ident: e_1_2_10_39_1
  doi: 10.1017/S0022112089000340
– start-page: 513
  volume-title: The 1980 Eruptions of Mount St. Helens, Washington
  year: 1981
  ident: e_1_2_10_49_1
– ident: e_1_2_10_29_1
  doi: 10.1017/jfm.2011.2
– ident: e_1_2_10_43_1
  doi: 10.1111/j.1365‐3091.1976.tb00045.x
– ident: e_1_2_10_9_1
  doi: 10.1016/0032-5910(94)02954-M
– ident: e_1_2_10_13_1
  doi: 10.1017/jfm.2011.138
– start-page: 197
  volume-title: Marine Sediment Transport and Environmental Management
  year: 1976
  ident: e_1_2_10_34_1
– ident: e_1_2_10_10_1
  doi: 10.1016/S0012‐821X(04)00111‐6
– ident: e_1_2_10_18_1
  doi: 10.1098/rspa.1999.0383
– start-page: 257
  volume-title: Slope Instability
  year: 1984
  ident: e_1_2_10_28_1
– ident: e_1_2_10_37_1
  doi: 10.1038/386816a0
– start-page: 489
  volume-title: The 1980 Eruptions of Mount St. Helens, Washington
  year: 1981
  ident: e_1_2_10_38_1
– ident: e_1_2_10_45_1
  doi: 10.1017/S0022112007009445
– ident: e_1_2_10_12_1
  doi: 10.1017/S0022112009006466
– ident: e_1_2_10_41_1
  doi: 10.1130/0016‐7606(1953)64[547:MOAWSC]2.0.CO;2
– ident: e_1_2_10_26_1
– ident: e_1_2_10_32_1
  doi: 10.1029/2009JE003540
– ident: e_1_2_10_48_1
  doi: 10.1063/1.3536658
– ident: e_1_2_10_24_1
  doi: 10.1130/0091‐7613(2001)029<0115:NVOGMF>2.0.CO;2
– volume-title: An Introduction to Fluid Dynamics
  year: 1967
  ident: e_1_2_10_4_1
– ident: e_1_2_10_7_1
  doi: 10.1016/j.geomorph.2009.08.015
– ident: e_1_2_10_46_1
  doi: 10.1017/S0022112005007676
– ident: e_1_2_10_3_1
  doi: 10.3189/002214309790152384
– ident: e_1_2_10_42_1
  doi: 10.1017/S0956792507007280
– volume-title: Physical processes in geology
  year: 1970
  ident: e_1_2_10_27_1
– ident: e_1_2_10_23_1
  doi: 10.1029/2000JB900329
– ident: e_1_2_10_30_1
  doi: 10.1086/515930
– ident: e_1_2_10_40_1
  doi: 10.1017/S002211208800103X
– ident: e_1_2_10_25_1
  doi: 10.1029/2009JF001514
– start-page: 269
  volume-title: Hillslope Processes
  year: 1986
  ident: e_1_2_10_35_1
– ident: e_1_2_10_44_1
  doi: 10.1111/j.1365‐3091.1976.tb00045.x
– ident: e_1_2_10_14_1
  doi: 10.1017/S0022112006002977
– ident: e_1_2_10_2_1
  doi: 10.1098/rspa.1954.0186
– ident: e_1_2_10_36_1
  doi: 10.1063/1.166435
– ident: e_1_2_10_16_1
  doi: 10.1017/S0022112010003241
– ident: e_1_2_10_17_1
  doi: 10.1098/rspa.2004.1420
– ident: e_1_2_10_6_1
  doi: 10.1016/S0377‐0273(00)00207‐9
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816912
Score 2.528116
Snippet Data from large‐scale debris‐flow experiments are combined with modeling of particle‐size segregation to explain the formation of lateral levees enriched in...
Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Accretion
avalanche
Debris flow
deposit
Earth sciences
Earth, ocean, space
Exact sciences and technology
Grading
Gravel
Hydrology
Landslides & mudslides
Levees
Particle size
segregation
Surface velocity
Volcanoes
Title Grain-size segregation and levee formation in geophysical mass flows
URI https://api.istex.fr/ark:/67375/WNG-M6STTM1C-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JF002185
https://www.proquest.com/docview/1721990515
https://www.proquest.com/docview/940704209
https://www.proquest.com/docview/963440200
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED6x9YUXxASIsK3yA_AAspY4sWM_TWMsnSq1QqMTe7PsxJkmSlqWbSB-PefUDauAvUWyHSXf2Xf3nc8-gNe5jTNTJpLWwgma8VRRya2haSUqtGc5E8ofFJ5Mxel5Nr7gFyHg1oa0yrVO7BR1tSh9jPzAUxXlL5Pih8vv1FeN8ruroYTGFgxQBUskX4MPJ9NPZ32UxZeVUN2WJ8MH6sN2Ifs9ZurAG79x0Zk5vmGXBh7inz5P0rQIVb2qcbHhhN53ZTtbVDyFJ8GJJEcrqe_AI9c8g48jX-2Btle_HGkd0ujLDnRimorM3Z1zpD-oSK4acukWyyAj8g09aFLPFz_a53BenMyOT2mokUBLXD2CSmYd4qlMXtVIlUwSW-tix8vEVUJUCv8sk6yWXJUxt8yWrMxzg04FMmrjZJ6-gO1m0biXQPB9BlsSl6ciS0xthbAmrp1yyhouqgjerxHSZbhA3NexmOtuI5spfR_PCN70vZerizP-0-9tB3bfyVx_9clmOddfpiM9EZ9ns0lyrNMIhhvS6Acwz4lYJiPYW4tHh4XY6j_TJoLdv5sV8llUW7H6d6tIM8-v4wjedeJ-8E_0eHRWKCZePfwdu_AYR7FVHtsebN9c37p9dGxu7BC2ZDEahjn8G14z8gc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXVASI9IUPlAPIauLETnxACLVkt9vuHmArejN24lQVS3ZpCgV-FL-RcV50BfTWWyQ_5MyM_c1njz0Az2LjRzoLEloIK2jEQ0kTbjQNc5EjnsVMSHdReDwRw5NodMpPV-BXdxfGhVV2a2K9UOfzzO2R7zmqIt1jUvz14gt1WaPc6WqXQqMxiyP74wopW_Xq8AD1u8tY-na6P6RtVgGaob0JmjBjcQRSx3mB5EIHvjHWtzwLbC5ELhHAooQVCZeZzw0zGcviWCMMIwfVNolD7PcOrEVhKN2MStJBv6fjkljI-oCV4Qd1m4RtrL3P5J6D2lFagypfQsE1p9DvLipTV6iYosmoseTyXneca-RL1-F-67KSN42NPYAVWz6Eg4HLLUGr85-WVBZJ-1mtYqLLnMzsN2tJfy2SnJfkzM4XrUWQz-ivk2I2v6oewcmtyO4xrJbz0j4Bgv1pLAlsHIoo0IURwmi_sNJKo7nIPXjZSUhl7XPlLmvGTNXH5kyq6_L0YLevvWie6fhPvee1sPtK-uKTC22LufowGaixeD-djoN9FXqws6SNvgFzDIxFiQdbnXpUO-0r9cdIPdj8u1gie8ZF0pf_LhVh5Ni878GLWt03_okaDd6lkomNm8fxFO4Op-NjdXw4OdqEe9gDayLotmD18uKr3UaX6tLs1HZM4ONtT5zfLJksTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXQlxQSBAhJbiA-UAsjZxEic-IATdZtstu6rKVvTm2olTVSzZpSkU-Gn8OsZ50RXQW2-R_JAz39gznz32ADyPtBuo1Itpzg2nQegLGodaUT_jGdqziHFhLwpPpnz3KBgfh8dr8Ku9C2PDKts1sVqos0Vq98gHlqoI-5hUOMibsIiDYfJm-YXaDFL2pLVNp1GryL75cYn0rXy9N0SstxhLdmbbu7TJMEBT1D1OY6YNjkaoKMuRaCjP1dq4Jkw9k3GeCTRmQczyOBSpG2qmU5ZGkUKTjHxUmTjysd9b0I-QFbk96L_bmR4cdjs8NqWFqI5bGX5Qu2XYRN67TAys4R0nlYkNV2xi38L73cZoqhJhyuv8GisO8FU3urKDyT242ziw5G2tcfdhzRQPYDiymSZoefbTkNIghT-tACeqyMjcfDOGdJckyVlBTs1i2egH-YzeO8nni8vyIRzdiPQeQa9YFOYxEOxPYYlnIp8Hnso151q5uRFGaBXyzIFXrYRk2jxebnNozGV1iM6EvCpPB7a62sv60Y7_1HtRCburpM4_2UC3KJQfpyM54R9ms4m3LX0HNlfQ6Bowy8dYEDuw0cIjm0WglH9U1oH1v4uF1ZqAueLfpdwPLLd3HXhZwX3tn8jx6DARjD-5fhzP4DZOGvl-b7q_DnewA1aH021A7-L8q3mK_tWF3mwUmcDJTc-d34GZMeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grain-size+segregation+and+levee+formation+in+geophysical+mass+flows&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Johnson%2C+C.+G.&rft.au=Kokelaar%2C+B.+P.&rft.au=Iverson%2C+R.+M.&rft.au=Logan%2C+M.&rft.date=2012-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=F1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2011JF002185&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_M6STTM1C_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon