Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence
Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption w...
Saved in:
Published in | The Journal of ecology Vol. 102; no. 2; pp. 396 - 410 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
John Wiley & Sons Ltd
01.03.2014
Blackwell Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2‐million‐year dune chronosequence in south‐western Australia. We also compared these traits among plants of contrasting nutrient‐acquisition strategies, focusing on N, P and micronutrients. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g⁻¹) and senesced (19–5600 μg P g⁻¹) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover‐weighted mean leaf [P] declined from 1840 to 228 μg P g⁻¹, while P‐resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P‐use strategy on the oldest soils. Declines in cover‐weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g⁻¹ on the youngest soil to 9.5 mg N g⁻¹ on the oldest soil. However, mean leaf N‐resorption efficiency was greatest (45%) on the youngest, N‐poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn‐resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. N₂‐fixing species had high leaf [N] compared with other species. Non‐mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. Synthesis. Our results show community‐wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long‐term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co‐limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies. |
---|---|
AbstractList | Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2‐million‐year dune chronosequence in south‐western Australia. We also compared these traits among plants of contrasting nutrient‐acquisition strategies, focusing on N, P and micronutrients. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g⁻¹) and senesced (19–5600 μg P g⁻¹) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover‐weighted mean leaf [P] declined from 1840 to 228 μg P g⁻¹, while P‐resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P‐use strategy on the oldest soils. Declines in cover‐weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g⁻¹on the youngest soil to 9.5 mg N g⁻¹on the oldest soil. However, mean leaf N‐resorption efficiency was greatest (45%) on the youngest, N‐poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn‐resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. N₂‐fixing species had high leaf [N] compared with other species. Non‐mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. Synthesis. Our results show community‐wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long‐term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co‐limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies. Summary Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2‐million‐year dune chronosequence in south‐western Australia. We also compared these traits among plants of contrasting nutrient‐acquisition strategies, focusing on N, P and micronutrients. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g−1) and senesced (19–5600 μg P g−1) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover‐weighted mean leaf [P] declined from 1840 to 228 μg P g−1, while P‐resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P‐use strategy on the oldest soils. Declines in cover‐weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g−1 on the youngest soil to 9.5 mg N g−1 on the oldest soil. However, mean leaf N‐resorption efficiency was greatest (45%) on the youngest, N‐poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn‐resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. N2‐fixing species had high leaf [N] compared with other species. Non‐mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. Synthesis. Our results show community‐wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long‐term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co‐limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies. Foliar nutrient concentrations and resorption efficiencies across a >2‐million‐year dune chronosequence suggest a shift from nitrogen to phosphorus limitation of productivity during long‐term pedogenesis. Leaf manganese accumulation in non‐mycorrhizal plants likely reflects carboxylate release for phosphorus acquisition. Our results show a strong effect of nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies. Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2‐million‐year dune chronosequence in south‐western Australia. We also compared these traits among plants of contrasting nutrient‐acquisition strategies, focusing on N, P and micronutrients. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g⁻¹) and senesced (19–5600 μg P g⁻¹) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover‐weighted mean leaf [P] declined from 1840 to 228 μg P g⁻¹, while P‐resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P‐use strategy on the oldest soils. Declines in cover‐weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g⁻¹ on the youngest soil to 9.5 mg N g⁻¹ on the oldest soil. However, mean leaf N‐resorption efficiency was greatest (45%) on the youngest, N‐poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn‐resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. N₂‐fixing species had high leaf [N] compared with other species. Non‐mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. Synthesis. Our results show community‐wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long‐term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co‐limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies. Long-term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2-million-year dune chronosequence in south-western Australia. We also compared these traits among plants of contrasting nutrient-acquisition strategies, focusing on N, P and micronutrients. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103-3000 ...g P g...) and senesced (19-5600 ...g P g...) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover-weighted mean leaf [P] declined from 1840 to 228 ...g P g..., while P-resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P-use strategy on the oldest soils. Declines in cover-weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g... on the youngest soil to 9.5 mg N g-1 on the oldest soil. However, mean leaf N-resorption efficiency was greatest (45%) on the youngest, N-poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn-resorption efficiency was greatest (55-74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. N2-fixing species had high leaf [N] compared with other species. Non-mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. Our results show community-wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long-term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co-limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient-use efficiency and reveal considerable differences among plants of contrasting nutrient-acquisition strategies. (ProQuest: ... denotes formulae/symbols omitted.) Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen ( N ) and phosphorus ( P ). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2‐million‐year dune chronosequence in south‐western Australia. We also compared these traits among plants of contrasting nutrient‐acquisition strategies, focusing on N , P and micronutrients. The range in leaf [ P ] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g −1 ) and senesced (19–5600 μg P g −1 ) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover‐weighted mean leaf [ P ] declined from 1840 to 228 μg P g −1 , while P ‐resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P ‐use strategy on the oldest soils. Declines in cover‐weighted mean leaf [ N ] with soil age were less strong than for leaf [ P ], ranging from 13.4 mg N g −1 on the youngest soil to 9.5 mg N g −1 on the oldest soil. However, mean leaf N ‐resorption efficiency was greatest (45%) on the youngest, N ‐poor soils. Leaf N : P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc ( Z n) concentrations were low across all chronosequence stages, but mean Z n‐resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Z n availability at high p H . N 2 ‐fixing species had high leaf [ N ] compared with other species. Non‐mycorrhizal species had very low leaf [ P ] and accumulated M n across all soils. We surmise that this reflects M n solubilization by organic acids released for P acquisition. Synthesis . Our results show community‐wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long‐term ecosystem development. High Z n resorption on young calcareous dunes supports the possibility of micronutrient co‐limitation. High leaf [ M n] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies. 1. Long-term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2-million-year dune chronosequence in south-western Australia. We also compared these traits among plants of contrasting nutrient-acquisition strategies, focusing on N, P and micronutrients. 2. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g–1) and senesced (19–5600 μg P g–1) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover-weighted mean leaf [P] declined from 1840 to 228 μg P g–1, while P-resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P-use strategy on the oldest soils. 3. Declines in cover-weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g–1 on the youngest soil to 9.5 mg N g–1 on the oldest soil. However, mean leaf N-resorption efficiency was greatest (45%) on the youngest, N-poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. 4. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn-resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. 5. N2-fixing species had high leaf [N] compared with other species. Non-mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. 6. Synthesis. Our results show community-wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long-term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co-limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient-use efficiency and reveal considerable differences among plants of contrasting nutrient-acquisition strategies. |
Author | Lambers, Hans Turner, Benjamin L Bellingham, Peter Laliberté, Etienne Hayes, Patrick |
Author_xml | – sequence: 1 fullname: Hayes, Patrick – sequence: 2 fullname: Turner, Benjamin L – sequence: 3 fullname: Lambers, Hans – sequence: 4 fullname: Laliberté, Etienne – sequence: 5 fullname: Bellingham, Peter |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28192186$$DView record in Pascal Francis |
BookMark | eNqFks1uEzEQxy1UJNLCmRPCEkLisq3Hu96PI4paPlSJA_Rseb12cOTYqb2rKjcegWfg0XgSZpO0SJUQc_HH_P4znhmfkpMQgyHkJbBzQLuAshYFbypxDhy6-glZPNyckAVjnBesappn5DTnNWOsbgRbkF9X0TuVaJjG5EwYqY5B45rU6GLIVIWBJpNj2s5naqx1Gjm9oy7QrVdhzDTaWYWSPLqwegj1-8dPpW8nl91emueYZuUMBvUROUU5IhvnPbpxtzP4jmEKhurvKYaYze2Emcxz8tQqn82L43pGbq4uvy0_FtdfPnxavr8utCihLngFAgawTWX7ui8Fa1XfssG2jei6XihRD6bues5B8xZ3oJBTlW7RbG9VeUbeHeJuU8TMeZQbl7XxWKSJU5bQoZWcixbRN4_QdZxSwNdJEAxbXkNdI_X2SKmslbdJBe2y3Ca3UWkneQsdh3bmxIHTKeacjJXajfv-Y8ucl8DkPGE5z1PO85T7CaPu4pHuPvS_FcdMd86b3f9w-flyea97ddCt8xjT3woqUQFvGPpfH_xWRalWCau8-coZVPjPOmAVlH8AqnnR7A |
CODEN | JECOAB |
CitedBy_id | crossref_primary_10_1111_nph_15043 crossref_primary_10_1093_aob_mcab013 crossref_primary_10_2139_ssrn_4120961 crossref_primary_10_3389_fpls_2024_1371123 crossref_primary_10_1007_s11356_022_19775_x crossref_primary_10_1016_j_foreco_2020_118232 crossref_primary_10_1111_1365_2745_13468 crossref_primary_10_3389_feart_2016_00023 crossref_primary_10_1111_1365_2745_13103 crossref_primary_10_1007_s11104_024_06562_5 crossref_primary_10_1007_s11104_020_04567_4 crossref_primary_10_1007_s11258_014_0348_5 crossref_primary_10_1016_j_ecoleng_2020_105763 crossref_primary_10_1007_s10021_020_00537_0 crossref_primary_10_3832_ifor1889_009 crossref_primary_10_1080_01904167_2020_1867576 crossref_primary_10_1016_j_ecolind_2022_109371 crossref_primary_10_1186_s12870_020_02680_1 crossref_primary_10_1111_nph_19513 crossref_primary_10_1007_s11104_021_04886_0 crossref_primary_10_1007_s11104_019_04085_y crossref_primary_10_1016_j_scitotenv_2021_146778 crossref_primary_10_1007_s11104_023_06097_1 crossref_primary_10_1111_1365_2745_12123 crossref_primary_10_1111_jvs_12993 crossref_primary_10_1007_s00468_017_1569_8 crossref_primary_10_1186_s12870_025_06129_1 crossref_primary_10_1002_ecm_1300 crossref_primary_10_1007_s00442_014_3033_4 crossref_primary_10_3390_f11040363 crossref_primary_10_1007_s10533_020_00657_8 crossref_primary_10_1007_s11104_022_05464_8 crossref_primary_10_1007_s00468_016_1457_7 crossref_primary_10_1016_j_scitotenv_2021_146420 crossref_primary_10_3390_plants13131849 crossref_primary_10_1086_706238 crossref_primary_10_3389_ffgc_2020_00083 crossref_primary_10_1890_15_0188_1 crossref_primary_10_1111_1365_2745_13127 crossref_primary_10_1016_j_gecco_2024_e03367 crossref_primary_10_1016_j_tplants_2018_10_004 crossref_primary_10_1126_science_1256330 crossref_primary_10_1111_1365_2745_12392 crossref_primary_10_1007_s13595_018_0727_5 crossref_primary_10_1007_s11104_019_03963_9 crossref_primary_10_3389_fenvs_2022_1066959 crossref_primary_10_1007_s11104_025_07246_4 crossref_primary_10_1016_j_tplants_2014_10_007 crossref_primary_10_1007_s11104_023_06001_x crossref_primary_10_1071_FP22197 crossref_primary_10_1007_s00442_017_3961_x crossref_primary_10_3732_ajb_1400543 crossref_primary_10_1002_ece3_2000 crossref_primary_10_2984_69_2_1 crossref_primary_10_1111_pce_12367 crossref_primary_10_1111_1365_2745_13111 crossref_primary_10_3390_f10030201 crossref_primary_10_1007_s11104_017_3427_2 crossref_primary_10_1007_s11104_022_05562_7 crossref_primary_10_1007_s42965_024_00352_x crossref_primary_10_1016_j_catena_2022_106893 crossref_primary_10_1111_nph_14967 crossref_primary_10_1016_j_envexpbot_2019_03_017 crossref_primary_10_1007_s11104_021_05195_2 crossref_primary_10_1016_j_pbi_2015_04_002 crossref_primary_10_1111_ele_13713 crossref_primary_10_1111_nph_14674 crossref_primary_10_1093_biolinnean_blaa213 crossref_primary_10_1007_s00248_018_1185_1 crossref_primary_10_1007_s00442_018_4230_3 crossref_primary_10_1111_nph_13904 crossref_primary_10_1111_ppl_12700 crossref_primary_10_3389_fpls_2018_00883 crossref_primary_10_1111_ppl_12704 crossref_primary_10_1007_s00468_018_1725_9 crossref_primary_10_1007_s42965_020_00063_z crossref_primary_10_1002_ecm_1477 crossref_primary_10_1007_s11104_019_04021_0 crossref_primary_10_1016_j_scitotenv_2022_157906 crossref_primary_10_1007_s11676_017_0519_z crossref_primary_10_1111_mec_13363 crossref_primary_10_1007_s00442_016_3549_x crossref_primary_10_1016_j_scitotenv_2019_05_222 crossref_primary_10_1111_nph_18588 crossref_primary_10_1139_cjfr_2023_0280 crossref_primary_10_7717_peerj_8382 crossref_primary_10_1098_rspb_2015_1001 crossref_primary_10_1093_treephys_tpx170 crossref_primary_10_1016_j_envexpbot_2017_02_009 crossref_primary_10_1016_j_foreco_2018_08_037 crossref_primary_10_1007_s11104_020_04690_2 crossref_primary_10_1016_j_soilbio_2024_109412 crossref_primary_10_1111_nph_18902 crossref_primary_10_1093_jxb_erz156 crossref_primary_10_1007_s11104_020_04760_5 crossref_primary_10_3389_fpls_2019_00744 crossref_primary_10_1007_s11368_016_1352_2 crossref_primary_10_3390_f14020357 crossref_primary_10_1111_1365_2745_12638 crossref_primary_10_1111_oik_02878 crossref_primary_10_3390_f9090563 crossref_primary_10_1111_1365_2745_13048 crossref_primary_10_1111_1365_2745_13283 crossref_primary_10_1007_s11104_016_3142_4 crossref_primary_10_1111_nph_13203 crossref_primary_10_1016_j_scitotenv_2023_166395 crossref_primary_10_31857_S0367059723040042 crossref_primary_10_1016_j_baae_2022_03_013 crossref_primary_10_1186_s12870_023_04178_y crossref_primary_10_3390_f15020351 crossref_primary_10_3161_15052249PJE2020_70_2_003 crossref_primary_10_1111_1365_2745_13158 crossref_primary_10_1007_s11104_022_05522_1 crossref_primary_10_3390_su13073897 crossref_primary_10_1016_j_scitotenv_2017_07_005 crossref_primary_10_1007_s10265_020_01211_1 crossref_primary_10_1007_s11104_016_2796_2 crossref_primary_10_1093_jpe_rtaa077 crossref_primary_10_3390_w10010042 crossref_primary_10_1007_s11104_023_06177_2 crossref_primary_10_1111_ppl_13384 crossref_primary_10_1093_aob_mcae005 crossref_primary_10_1111_nph_15200 crossref_primary_10_1111_nph_17985 crossref_primary_10_1111_nph_19489 crossref_primary_10_1111_ele_12823 crossref_primary_10_1080_07352689_2015_1078611 crossref_primary_10_1111_1365_2435_13809 crossref_primary_10_1016_j_foreco_2020_117896 crossref_primary_10_1016_j_foreco_2020_118743 crossref_primary_10_1007_s10342_015_0891_1 crossref_primary_10_1007_s11104_017_3473_9 crossref_primary_10_3390_plants13121659 crossref_primary_10_1186_s12870_024_05794_y crossref_primary_10_1111_nph_15688 crossref_primary_10_1038_nplants_2015_109 crossref_primary_10_1007_s11104_014_2364_6 crossref_primary_10_1007_s11104_019_03966_6 crossref_primary_10_1007_s11104_021_05076_8 crossref_primary_10_1016_j_jaridenv_2022_104903 crossref_primary_10_1111_nph_15447 crossref_primary_10_1007_s11104_018_3876_2 crossref_primary_10_1093_treephys_tpx126 crossref_primary_10_3389_fpls_2021_661842 crossref_primary_10_1016_j_envexpbot_2019_01_007 crossref_primary_10_3390_agronomy10020310 crossref_primary_10_1007_s11104_023_06259_1 crossref_primary_10_1007_s11104_022_05602_2 crossref_primary_10_1093_jpe_rtab015 crossref_primary_10_1007_s11104_023_06297_9 crossref_primary_10_1016_j_ecolind_2022_108687 crossref_primary_10_1371_journal_pone_0182569 crossref_primary_10_1016_j_tplants_2021_07_003 crossref_primary_10_1007_s00248_019_01446_z crossref_primary_10_1007_s11104_022_05517_y crossref_primary_10_1111_ejss_12507 crossref_primary_10_1016_j_soilbio_2015_09_021 crossref_primary_10_1093_treephys_tpy104 crossref_primary_10_1134_S1062359021040166 crossref_primary_10_1007_s12224_018_9311_x crossref_primary_10_1093_jxb_erac117 crossref_primary_10_1007_s11104_018_3728_0 crossref_primary_10_1007_s11104_023_05984_x crossref_primary_10_12688_f1000research_8973_1 crossref_primary_10_1038_nplants_2015_50 crossref_primary_10_1002_ldr_5052 crossref_primary_10_1007_s11104_017_3280_3 crossref_primary_10_1007_s11104_020_04657_3 crossref_primary_10_1016_j_xplc_2022_100503 crossref_primary_10_1016_j_envexpbot_2020_104097 crossref_primary_10_1111_1365_2745_13519 crossref_primary_10_1007_s11104_021_04988_9 crossref_primary_10_1111_1365_2745_12546 crossref_primary_10_1002_ldr_4078 crossref_primary_10_1007_s11104_023_06092_6 crossref_primary_10_1111_oik_01584 crossref_primary_10_1093_treephys_tpad150 crossref_primary_10_1038_s41598_017_01418_8 crossref_primary_10_1093_jpe_rtaa030 crossref_primary_10_1111_ele_14402 crossref_primary_10_3389_fpls_2021_636056 crossref_primary_10_1002_ece3_7544 crossref_primary_10_1111_mec_13778 crossref_primary_10_1007_s11104_022_05559_2 crossref_primary_10_1111_nph_12778 crossref_primary_10_1111_rec_14017 crossref_primary_10_1016_j_soilbio_2024_109385 crossref_primary_10_1093_jxb_eraa515 crossref_primary_10_1093_aobpla_ply032 crossref_primary_10_1111_1365_2435_13327 crossref_primary_10_1007_s11104_024_06655_1 crossref_primary_10_1111_nph_13175 crossref_primary_10_1016_j_scitotenv_2017_11_030 crossref_primary_10_1007_s10021_023_00894_6 crossref_primary_10_1111_nph_13970 crossref_primary_10_1016_j_scitotenv_2021_144951 crossref_primary_10_1007_s11104_023_05935_6 crossref_primary_10_1146_annurev_arplant_102720_125738 crossref_primary_10_1007_s10021_014_9830_0 crossref_primary_10_1126_science_abc0393 crossref_primary_10_1007_s40626_020_00180_z crossref_primary_10_1111_nph_15910 crossref_primary_10_3390_f10030261 crossref_primary_10_1016_j_geoderma_2014_07_005 crossref_primary_10_1016_j_jenvman_2024_123418 crossref_primary_10_1111_nph_20015 crossref_primary_10_1111_ele_12323 crossref_primary_10_1007_s11104_019_04289_2 crossref_primary_10_1007_s10265_016_0826_z crossref_primary_10_1111_nph_18612 crossref_primary_10_1126_science_aai8291 crossref_primary_10_3389_fpls_2018_01483 crossref_primary_10_1016_j_foreco_2020_117910 crossref_primary_10_1016_j_geoderma_2015_04_027 crossref_primary_10_1111_jvs_13095 crossref_primary_10_1007_s00442_016_3581_x crossref_primary_10_1111_pce_13124 crossref_primary_10_3389_fpls_2022_905358 crossref_primary_10_1007_s00442_015_3449_5 crossref_primary_10_1007_s11104_025_07362_1 crossref_primary_10_1016_j_scitotenv_2023_162075 crossref_primary_10_35193_bseufbd_641833 crossref_primary_10_1038_s41597_021_01006_6 crossref_primary_10_1016_j_foreco_2023_121392 crossref_primary_10_1111_1365_2435_13479 crossref_primary_10_1007_s10021_020_00493_9 crossref_primary_10_3389_fpls_2021_614613 crossref_primary_10_1007_s11104_022_05477_3 crossref_primary_10_3389_fpls_2023_1139945 crossref_primary_10_2139_ssrn_4047743 crossref_primary_10_5897_JSSEM15_0528 crossref_primary_10_1007_s11104_024_07035_5 crossref_primary_10_1111_jvs_12450 crossref_primary_10_1371_journal_pone_0114290 crossref_primary_10_1071_FP16035 crossref_primary_10_1093_jpe_rtac090 crossref_primary_10_1111_ppl_14519 crossref_primary_10_1111_jvs_12338 crossref_primary_10_1007_s00442_015_3283_9 crossref_primary_10_5194_bg_13_4429_2016 |
Cites_doi | 10.18637/jss.v008.i15 10.1016/0016-7061(76)90066-5 10.1111/j.0030-1299.2005.13587.x 10.2307/2265777 10.1111/j.1469-8137.2004.01283.x 10.1111/j.1365-2745.2012.01965.x 10.1111/j.1365-2745.2012.01962.x 10.1111/j.1469-8137.2004.01192.x 10.1007/s00442‐013‐2747‐z 10.2136/sssaj1980.03615995004400050024x 10.1111/j.1365-2745.2011.01805.x 10.1139/b72-289 10.1086/283931 10.1093/aob/mcs004 10.1038/nature05038 10.1007/BF02860714 10.1515/9780691190341 10.1111/j.1365-2435.2008.01513.x 10.1111/1365-2745.12081 10.1111/j.1469-8137.2008.02513.x 10.1016/S0065-2504(08)60016-1 10.1023/A:1026463307043 10.1111/j.1365-2435.2008.01426.x 10.1111/j.1365-3040.2007.01733.x 10.1093/conphys/cot010 10.2307/2261481 10.1111/j.1461-0248.2007.01113.x 10.1104/pp.111.174318 10.1007/s11104-011-1023-4 10.1007/s10021-003-0229-6 10.1007/s00442-004-1501-y 10.1016/j.quageo.2007.10.001 10.2307/2404783 10.2136/sssaj1982.03615995004600020020x 10.1890/11-0416.1 10.1023/A:1005757218475 10.1007/s11104-013-1649-5 10.1146/annurev.ecolsys.35.112202.130201 10.1007/s11104-010-0444-9 10.1093/jxb/44.5.879 10.1111/1365-2745.12123 10.1023/A:1015798428743 10.1023/A:1022323215010 10.1111/j.1442-9993.1977.tb01135.x 10.1007/BF00336518 10.1111/j.1469-8137.2012.04190.x 10.1016/j.tree.2007.10.008 10.2307/1938144 10.1890/04-1830 10.2307/1939338 10.2307/1941561 10.2307/2405065 10.1038/35002501 10.1007/BF00203769 10.1016/0277-3791(91)90005-F 10.1007/s11104-012-1159-x 10.1890/09-1552.1 10.1093/aob/mcl114 10.1023/A:1016249704336 10.1111/j.1399-3054.2005.00527.x 10.1890/04-0524 10.1007/BF02374894 10.1007/978-0-387-78341-3 10.1007/978-1-4419-0318-1 10.1139/x2012-023 10.1007/s11104-011-0874-z 10.1111/j.1469-8137.2012.04285.x |
ContentType | Journal Article |
Copyright | 2014 British Ecological Society 2013 The Authors. Journal of Ecology © 2013 British Ecological Society 2015 INIST-CNRS Copyright Blackwell Publishing Ltd. Mar 2014 |
Copyright_xml | – notice: 2014 British Ecological Society – notice: 2013 The Authors. Journal of Ecology © 2013 British Ecological Society – notice: 2015 INIST-CNRS – notice: Copyright Blackwell Publishing Ltd. Mar 2014 |
DBID | FBQ AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
DOI | 10.1111/1365-2745.12196 |
DatabaseName | AGRIS CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany |
EISSN | 1365-2745 |
EndPage | 410 |
ExternalDocumentID | 3231504491 28192186 10_1111_1365_2745_12196 JEC12196 24541270 US201400091041 |
Genre | article Feature |
GrantInformation_xml | – fundername: School of Plant Biology – fundername: ARC DECRA funderid: DE120100352 – fundername: UWA Research Development – fundername: ARC Discovery funderid: DP0985685 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29K 2AX 2WC 3-9 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABAWQ ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABPVW ABSQW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHIC ACHJO ACNCT ACPOU ACPRK ACSCC ACSTJ ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFXHP AFZJQ AGHNM AGUYK AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CUYZI D-E D-F D-I DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EAU EBS ECGQY EJD F00 F01 F04 F5P FBQ FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XIH Y6R YF5 YQT YXE YZZ ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY 24P ABYAD ACTWD AEUQT AFPWT DOOOF ESX JSODD WRC AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c5316-24151d1f74fb6b3508ab80df87599b5a56de69b221c28e691afb6a4c8888fbfa3 |
IEDL.DBID | DR2 |
ISSN | 0022-0477 |
IngestDate | Fri Jul 11 18:26:50 EDT 2025 Fri Jul 25 10:49:10 EDT 2025 Wed Apr 02 07:46:49 EDT 2025 Tue Jul 01 03:13:37 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 Wed Jan 22 16:30:34 EST 2025 Thu Jul 03 22:44:50 EDT 2025 Thu Apr 03 09:43:57 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Soil fertility Resorption Phosphorus Nitrogen Accumulation Zinc Efficient use Chronosequence plant-soil (below-ground) interactions soil fertility gradient manganese accumulation Nutrient Strategy nutrient-resorption proficiency Soil interaction nutrient-resorption efficiency Dunes Manganese nutrient-use efficiency |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5316-24151d1f74fb6b3508ab80df87599b5a56de69b221c28e691afb6a4c8888fbfa3 |
Notes | http://dx.doi.org/10.1111/1365-2745.12196 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.12196 |
PQID | 1502746166 |
PQPubID | 37508 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1999932258 proquest_journals_1502746166 pascalfrancis_primary_28192186 crossref_citationtrail_10_1111_1365_2745_12196 crossref_primary_10_1111_1365_2745_12196 wiley_primary_10_1111_1365_2745_12196_JEC12196 jstor_primary_24541270 fao_agris_US201400091041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2014 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: March 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2014 |
Publisher | John Wiley & Sons Ltd Blackwell Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons Ltd – name: Blackwell – name: Blackwell Publishing Ltd |
References | 1987; 1 2004; 164 2013; 1 1991; 10 1984; 21 2004; 7 1980; 44 1995; 76 1976 2013; 367 2011; 99 1974 2008; 3 2007; 30 2011; 156 1979 1983; 14 1996; 77 1996; 33 2003; 248 1990 2000 2000; 403 2003; 8 2004; 35 1972; 50 2005; 109 2008; 23 1984 2008; 22 2004; 139 2006; 442 2009; 23 1979; 289 2012; 82 2012; 100 2012 2002; 57–58 2006; 98 1993; 44 1991; 72 2013; 101 2008 2005; 86 1995 2005 2004 1983; 70 2007; 10 2010; 80 2012; 109 1982; 46 2012; 195 2012; 196 1982; 48 1993; 16 2011; 348 2005; 165 1982; 119 2002; 242 2000; 226 2005; 124 2010; 334 1997; 37 2000; 30 1996; 84 1977; 2 2008; 179 2013 2012; 356 1976; 15 1994; 5 2012; 42 1968 1994; 4 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 Grime J.P. (e_1_2_7_22_1) 1979 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Pate J.S. (e_1_2_7_55_1) 1984 Playford P.E. (e_1_2_7_59_1) 1976 Berendse F. (e_1_2_7_6_1) 1987; 1 McArthur W.M. (e_1_2_7_50_1) 1974 e_1_2_7_73_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_39_1 Smith S.E. (e_1_2_7_68_1) 2008 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 Griffin E.A. (e_1_2_7_21_1) 1990 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 Jaffré T. (e_1_2_7_30_1) 1979; 289 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_29_1 McKey D. (e_1_2_7_51_1) 1994; 5 Epstein E. (e_1_2_7_16_1) 2005 e_1_2_7_72_1 e_1_2_7_70_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_74_1 e_1_2_7_34_1 e_1_2_7_57_1 Pinheiro J.C. (e_1_2_7_58_1) 2012 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_78_1 e_1_2_7_38_1 Hewgill F. (e_1_2_7_27_1) 1983; 14 Department of Conservation and Land Management (e_1_2_7_14_1) 1995 Black C.A. (e_1_2_7_7_1) 1968 |
References_xml | – volume: 80 start-page: 509 year: 2010 end-page: 529 article-title: Understanding ecosystem retrogression publication-title: Ecological Monographs – volume: 86 start-page: 20 year: 2005 end-page: 25 article-title: Resorption proficiency along a chronosequence: responses among communities and within species publication-title: Ecology – volume: 42 start-page: 807 year: 2012 end-page: 813 article-title: Isolation and identification of diazotrophic bacteria from internal tissues of and publication-title: Canadian Journal of Forest Research – volume: 99 start-page: 849 year: 2011 end-page: 857 article-title: Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo publication-title: Journal of Ecology – volume: 356 start-page: 35 year: 2012 end-page: 49 article-title: The contribution of nitrogen fixation to sugarcane ( L.), and the identification and characterization of part of the associated diazotrophic bacterial community publication-title: Plant and Soil – year: 2005 – volume: 72 start-page: 2083 year: 1991 end-page: 2100 article-title: Phosphorus availability in acid organic soils of the lower North Carolina coastal plain publication-title: Ecology – volume: 1 start-page: 293 year: 1987 end-page: 296 article-title: Nitrogen‐use‐efficiency: a biologically meaningful definition? publication-title: Functional Ecology – volume: 195 start-page: 306 year: 2012 end-page: 320 article-title: Opportunities for improving phosphorus‐use efficiency in crop plants publication-title: New Phytologist – volume: 101 start-page: 1088 year: 2013 end-page: 1092 article-title: Nutrient limitation along the Jurien Bay dune chronosequence: response to Uren & Parsons (2013) publication-title: Journal of Ecology – volume: 119 start-page: 553 year: 1982 end-page: 572 article-title: Nutrient cycling and nutrient use efficiency publication-title: American Naturalist – volume: 367 start-page: 77 year: 2013 end-page: 91 article-title: Soil drainage and phosphorus depletion contribute to retrogressive succession along a New Zealand chronosequence publication-title: Plant and Soil – year: 1979 – volume: 196 start-page: 1098 year: 2012 end-page: 1108 article-title: Proteaceae from severely phosphorus‐impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus‐use‐efficiency publication-title: New Phytologist – volume: 35 start-page: 623 year: 2004 end-page: 650 article-title: The Southwest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 76 start-page: 1407 year: 1995 end-page: 1424 article-title: Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii publication-title: Ecology – start-page: 25 year: 1990 end-page: 38 – volume: 23 start-page: 95 year: 2008 end-page: 103 article-title: Plant nutrient‐acquisition strategies change with soil age publication-title: Trends in Ecology & Evolution – volume: 165 start-page: 887 year: 2005 end-page: 898 article-title: The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform‐root development in (Cyperaceae) publication-title: New Phytologist – volume: 403 start-page: 853 year: 2000 end-page: 858 article-title: Biodiversity hotspots for conservation priorities publication-title: Nature – volume: 76 start-page: 712 year: 1995 end-page: 720 article-title: Foliar nutrients during long‐term soil development in Hawaiian montane rain forest publication-title: Ecology – volume: 70 start-page: 391 year: 1983 end-page: 402 article-title: The acquisition of phosphorus by L., IV: the effect of interplanting wheat and white lupin on the growth and mineral composition of the two species publication-title: Plant and Soil – volume: 7 start-page: 259 year: 2004 end-page: 274 article-title: Soil phosphorus fractionation and phosphorus‐use efficiency of a Bornean tropical montane rain forest during soil aging with podzolization publication-title: Ecosystems – volume: 10 start-page: 1135 year: 2007 end-page: 1142 article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems publication-title: Ecology Letters – volume: 3 start-page: 26 year: 2008 end-page: 55 article-title: Carbonate eolianites, quartz sands, and Quaternary sea‐level cycles, Western Australia: a chronostratigraphic approach publication-title: Quaternary Geochronology – year: 2008 – volume: 98 start-page: 693 year: 2006 end-page: 713 article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits publication-title: Annals of Botany – year: 2004 – volume: 48 start-page: 597 year: 1982 end-page: 689 article-title: Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia publication-title: Botanical Review – volume: 139 start-page: 267 year: 2004 end-page: 276 article-title: Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence publication-title: Oecologia – volume: 348 start-page: 453 year: 2011 end-page: 470 article-title: Sand‐binding roots in Haemodoraceae: global survey and morphology in a phylogenetic context publication-title: Plant and Soil – volume: 289 start-page: 425 year: 1979 end-page: 428 article-title: Accumulation du manganèse par les Protéacées de Nouvelle‐Calédonie publication-title: Comptes Rendus Hebdomadaires des Scéanes de l'Académie des Sciences de Paris. Série D, Sciences Naturelles – volume: 242 start-page: 205 year: 2002 end-page: 215 article-title: The effect of inoculating endophytic N ‐fixing bacteria on micropropagated sugarcane plants publication-title: Plant and Soil – volume: 1 start-page: cot010 year: 2013 article-title: Phosphorus nutrition of phosphorus‐sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot publication-title: Conservation Physiology – volume: 57–58 start-page: 1 year: 2002 end-page: 45 article-title: Towards an ecological understanding of biological nitrogen fixation publication-title: Biogeochemistry – volume: 37 start-page: 63 year: 1997 end-page: 75 article-title: Nutrient limitation and soil development: experimental test of a biogeochemical theory publication-title: Biogeochemistry – year: 1976 – volume: 21 start-page: 1029 year: 1984 end-page: 1040 article-title: Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility publication-title: Journal of Applied Ecology – volume: 50 start-page: 2227 year: 1972 end-page: 2233 article-title: Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants publication-title: Canadian Journal of Botany – volume: 44 start-page: 879 year: 1993 end-page: 891 article-title: Phosphate regulation of nitrate assimilation in soybean publication-title: Journal of Experimental Botany – volume: 84 start-page: 597 year: 1996 end-page: 608 article-title: Nutrient resorption from senescing leaves of perennials: are there general patterns? publication-title: Journal of Ecology – volume: 30 start-page: 1 year: 2000 end-page: 67 article-title: The mineral nutrition of wild plants revisited: a re‐evaluation of processes and patterns publication-title: Advances in Ecological Research – volume: 77 start-page: 1716 year: 1996 end-page: 1727 article-title: Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency publication-title: Ecology – volume: 23 start-page: 442 year: 2009 end-page: 453 article-title: Among‐ and within‐species variation in plant litter decomposition in contrasting long‐term chronosequences publication-title: Functional Ecology – volume: 16 start-page: 66 year: 1993 end-page: 70 article-title: Hyphal transport by a vesicular‐arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate publication-title: Biology and Fertility of Soils – year: 1968 – volume: 5 start-page: 211 year: 1994 end-page: 228 article-title: Legumes and nitrogen: the evolutionary ecology of a nitrogen‐demanding lifestyle publication-title: Advances in Legume Systematics – year: 2000 – volume: 100 start-page: 631 year: 2012 end-page: 642 article-title: Experimental assessment of nutrient limitation along a 2‐million year dune chronosequence in the south‐western Australia biodiversity hotspot publication-title: Journal of Ecology – volume: 442 start-page: 555 year: 2006 end-page: 558 article-title: Plant litter decomposition in a semi‐arid ecosystem controlled by photodegradation publication-title: Nature – volume: 10 start-page: 419 year: 1991 end-page: 439 article-title: Pliocene‐Pleistocene coastal events and history along the western margin of Australia publication-title: Quaternary Science Reviews – volume: 46 start-page: 314 year: 1982 end-page: 317 article-title: Dissolution of oxides of manganese and iron by root exudate components publication-title: Soil Science Society of America Journal – volume: 226 start-page: 79 year: 2000 end-page: 85 article-title: Nitrate uptake by bean ( L.) roots under phosphate deficiency publication-title: Plant and Soil – volume: 14 start-page: 215 year: 1983 end-page: 217 article-title: Routine ESR dating of emergent Pleistocene marine units in Western Australia publication-title: Search – volume: 179 start-page: 829 year: 2008 end-page: 836 article-title: Nutrient concentration ratios and co‐limitation in South African grasslands publication-title: New Phytologist – volume: 100 start-page: 678 year: 2012 end-page: 689 article-title: Changes in coexistence mechanisms along a long‐term soil chronosequence revealed by functional trait diversity publication-title: Journal of Ecology – volume: 86 start-page: 2780 year: 2005 end-page: 2792 article-title: Resorption efficiency decreases with increasing green leaf nutrients in a global leaf dataset publication-title: Ecology – volume: 367 start-page: 183 year: 2013 end-page: 197 article-title: Decoupled responses of tree and shrub leaf and litter trait values to ecosystem retrogression across an island area gradient publication-title: Plant and Soil – volume: 4 start-page: 105 year: 1994 end-page: 108 article-title: The improvement of plant N acquisition from an ammonium‐treated, drought‐stressed soil by the fungal symbiont in arbuscular mycorrhizae publication-title: Mycorrhiza – volume: 33 start-page: 1441 year: 1996 end-page: 1450 article-title: The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation publication-title: Journal of Applied Ecology – year: 2012 – volume: 15 start-page: 1 year: 1976 end-page: 19 article-title: The fate of phosphorus during pedogenesis publication-title: Geoderma – volume: 101 start-page: 1085 year: 2013 end-page: 1087 article-title: Nutritional characteristics of soils on an inferred chronosequence. A comment on Laliberté et al. (2012) publication-title: Journal of Ecology – year: 1984 – volume: 124 start-page: 441 year: 2005 end-page: 450 article-title: Manganese accumulation in leaves of (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply publication-title: Physiologia Plantarum – volume: 109 start-page: 71 year: 2005 end-page: 80 article-title: Nutrient limitation and botanical diversity in wetlands: can fertilisation raise species richness? publication-title: Oikos – volume: 44 start-page: 993 year: 1980 article-title: Plant effects on soil manganese availability publication-title: Soil Science Society of America Journal – volume: 8 start-page: 1 year: 2003 end-page: 27 article-title: Effect displays in R for generalised linear models publication-title: Journal of Statistical Software – volume: 156 start-page: 1058 year: 2011 end-page: 1066 article-title: Phosphorus nutrition of Proteaceae in severely phosphorus‐impoverished soils: are there lessons to be learned for future crops? publication-title: Plant Physiology – volume: 109 start-page: 887 year: 2012 end-page: 896 article-title: Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of (Leguminosae: Mimosoideae) publication-title: Annals of Botany – volume: 30 start-page: 1557 year: 2007 end-page: 1565 article-title: species (Proteaceae) from severely phosphorus‐impoverished soils exhibit extreme efficiency in the use and re‐mobilization of phosphorus publication-title: Plant, Cell & Environment – volume: 22 start-page: 738 year: 2008 end-page: 745 article-title: Shifts in leaf N:P ratio during resorption reflect soil P in temperate rainforest publication-title: Functional Ecology – year: 1995 – year: 1974 – year: 2013 article-title: Does cluster‐root activity of (Proteaceae) benefit phosphorus or micronutrient uptake and growth of neighbouring shrubs? publication-title: Oecologia – volume: 248 start-page: 257 year: 2003 end-page: 268 article-title: Interaction of nitrogen and phosphorus nutrition in determining growth publication-title: Plant and Soil – volume: 2 start-page: 179 year: 1977 end-page: 186 article-title: The heath‐savannah problem: the effect of fertilizer on sand‐heath vegetation of North Stradbroke Island, Queensland publication-title: Australian Journal of Ecology – volume: 334 start-page: 11 year: 2010 end-page: 31 article-title: Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies publication-title: Plant and Soil – volume: 164 start-page: 243 year: 2004 end-page: 266 article-title: N:P ratios in terrestrial plants: variation and functional significance publication-title: New Phytologist – volume: 82 start-page: 205 year: 2012 end-page: 220 article-title: Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants publication-title: Ecological Monographs – volume-title: Geology of the Perth Basin, Western Australia year: 1976 ident: e_1_2_7_59_1 – ident: e_1_2_7_17_1 doi: 10.18637/jss.v008.i15 – ident: e_1_2_7_81_1 doi: 10.1016/0016-7061(76)90066-5 – volume: 1 start-page: 293 year: 1987 ident: e_1_2_7_6_1 article-title: Nitrogen‐use‐efficiency: a biologically meaningful definition? publication-title: Functional Ecology – volume-title: Plant Strategies and Vegetation Processes year: 1979 ident: e_1_2_7_22_1 – ident: e_1_2_7_24_1 doi: 10.1111/j.0030-1299.2005.13587.x – ident: e_1_2_7_34_1 doi: 10.2307/2265777 – ident: e_1_2_7_64_1 doi: 10.1111/j.1469-8137.2004.01283.x – ident: e_1_2_7_49_1 doi: 10.1111/j.1365-2745.2012.01965.x – ident: e_1_2_7_39_1 doi: 10.1111/j.1365-2745.2012.01962.x – ident: e_1_2_7_23_1 doi: 10.1111/j.1469-8137.2004.01192.x – ident: e_1_2_7_52_1 doi: 10.1007/s00442‐013‐2747‐z – ident: e_1_2_7_20_1 doi: 10.2136/sssaj1980.03615995004400050024x – ident: e_1_2_7_28_1 doi: 10.1111/j.1365-2745.2011.01805.x – ident: e_1_2_7_66_1 doi: 10.1139/b72-289 – ident: e_1_2_7_75_1 doi: 10.1086/283931 – ident: e_1_2_7_25_1 doi: 10.1093/aob/mcs004 – ident: e_1_2_7_4_1 doi: 10.1038/nature05038 – ident: e_1_2_7_48_1 doi: 10.1007/BF02860714 – ident: e_1_2_7_76_1 doi: 10.1515/9780691190341 – ident: e_1_2_7_82_1 doi: 10.1111/j.1365-2435.2008.01513.x – ident: e_1_2_7_72_1 doi: 10.1111/1365-2745.12081 – ident: e_1_2_7_10_1 doi: 10.1111/j.1469-8137.2008.02513.x – ident: e_1_2_7_3_1 doi: 10.1016/S0065-2504(08)60016-1 – ident: e_1_2_7_19_1 doi: 10.1023/A:1026463307043 – ident: e_1_2_7_60_1 doi: 10.1111/j.1365-2435.2008.01426.x – ident: e_1_2_7_13_1 doi: 10.1111/j.1365-3040.2007.01733.x – ident: e_1_2_7_47_1 doi: 10.1093/conphys/cot010 – volume-title: Kwongan: Plant Life of the Sandplain year: 1984 ident: e_1_2_7_55_1 – ident: e_1_2_7_2_1 doi: 10.2307/2261481 – ident: e_1_2_7_15_1 doi: 10.1111/j.1461-0248.2007.01113.x – start-page: 25 volume-title: Nature Conservation, Landscape and Recreation Values of the Lesueur Area year: 1990 ident: e_1_2_7_21_1 – volume: 14 start-page: 215 year: 1983 ident: e_1_2_7_27_1 article-title: Routine ESR dating of emergent Pleistocene marine units in Western Australia publication-title: Search – ident: e_1_2_7_45_1 doi: 10.1104/pp.111.174318 – ident: e_1_2_7_70_1 doi: 10.1007/s11104-011-1023-4 – ident: e_1_2_7_35_1 doi: 10.1007/s10021-003-0229-6 – ident: e_1_2_7_61_1 doi: 10.1007/s00442-004-1501-y – ident: e_1_2_7_26_1 doi: 10.1016/j.quageo.2007.10.001 – volume-title: Development and Distribution of Soils of the Swan Coastal Plain, Western Australia year: 1974 ident: e_1_2_7_50_1 – volume-title: Mineral Nutrition of Plants: Principles and Perspectives year: 2005 ident: e_1_2_7_16_1 – ident: e_1_2_7_37_1 doi: 10.2307/2404783 – volume-title: nlme: Linear and Nonlinear Mixed Effects Models year: 2012 ident: e_1_2_7_58_1 – ident: e_1_2_7_31_1 doi: 10.2136/sssaj1982.03615995004600020020x – ident: e_1_2_7_74_1 doi: 10.1890/11-0416.1 – ident: e_1_2_7_77_1 doi: 10.1023/A:1005757218475 – ident: e_1_2_7_9_1 doi: 10.1007/s11104-013-1649-5 – ident: e_1_2_7_29_1 doi: 10.1146/annurev.ecolsys.35.112202.130201 – ident: e_1_2_7_44_1 doi: 10.1007/s11104-010-0444-9 – ident: e_1_2_7_63_1 doi: 10.1093/jxb/44.5.879 – volume-title: Soil‐Plant Relationships year: 1968 ident: e_1_2_7_7_1 – ident: e_1_2_7_40_1 doi: 10.1111/1365-2745.12123 – ident: e_1_2_7_79_1 doi: 10.1023/A:1015798428743 – volume-title: Management Plan, Lesueur National Park and Coomallo Nature Reserve year: 1995 ident: e_1_2_7_14_1 – volume: 5 start-page: 211 year: 1994 ident: e_1_2_7_51_1 article-title: Legumes and nitrogen: the evolutionary ecology of a nitrogen‐demanding lifestyle publication-title: Advances in Legume Systematics – ident: e_1_2_7_12_1 doi: 10.1023/A:1022323215010 – ident: e_1_2_7_69_1 doi: 10.1111/j.1442-9993.1977.tb01135.x – ident: e_1_2_7_32_1 doi: 10.1007/BF00336518 – ident: e_1_2_7_73_1 doi: 10.1111/j.1469-8137.2012.04190.x – ident: e_1_2_7_43_1 doi: 10.1016/j.tree.2007.10.008 – ident: e_1_2_7_11_1 doi: 10.2307/1938144 – ident: e_1_2_7_36_1 doi: 10.1890/04-1830 – ident: e_1_2_7_78_1 doi: 10.2307/1939338 – ident: e_1_2_7_80_1 doi: 10.2307/1941561 – ident: e_1_2_7_8_1 doi: 10.2307/2405065 – ident: e_1_2_7_53_1 doi: 10.1038/35002501 – ident: e_1_2_7_71_1 doi: 10.1007/BF00203769 – ident: e_1_2_7_33_1 doi: 10.1016/0277-3791(91)90005-F – ident: e_1_2_7_38_1 doi: 10.1007/s11104-012-1159-x – ident: e_1_2_7_56_1 doi: 10.1890/09-1552.1 – ident: e_1_2_7_42_1 doi: 10.1093/aob/mcl114 – ident: e_1_2_7_54_1 doi: 10.1023/A:1016249704336 – ident: e_1_2_7_65_1 doi: 10.1111/j.1399-3054.2005.00527.x – volume: 289 start-page: 425 year: 1979 ident: e_1_2_7_30_1 article-title: Accumulation du manganèse par les Protéacées de Nouvelle‐Calédonie publication-title: Comptes Rendus Hebdomadaires des Scéanes de l'Académie des Sciences de Paris. Série D, Sciences Naturelles – ident: e_1_2_7_62_1 doi: 10.1890/04-0524 – ident: e_1_2_7_18_1 doi: 10.1007/BF02374894 – ident: e_1_2_7_41_1 doi: 10.1007/978-0-387-78341-3 – ident: e_1_2_7_57_1 doi: 10.1007/978-1-4419-0318-1 – ident: e_1_2_7_5_1 doi: 10.1139/x2012-023 – volume-title: Mycorrhizal Symbiosis year: 2008 ident: e_1_2_7_68_1 – ident: e_1_2_7_67_1 doi: 10.1007/s11104-011-0874-z – ident: e_1_2_7_46_1 doi: 10.1111/j.1469-8137.2012.04285.x |
SSID | ssj0006750 |
Score | 2.552434 |
Snippet | Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability... 1. Long-term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the... Summary Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the... Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen ( N ) and phosphorus ( P ). Changes in the... Long-term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability... |
SourceID | proquest pascalfrancis crossref wiley jstor fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 396 |
SubjectTerms | age of soil Agricultural soils Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences Chronosequences Dunes Ecological succession ecosystems Flowers & plants Fundamental and applied biological sciences. Psychology General aspects Human ecology Leaves manganese manganese accumulation Micronutrients Nitrogen Nitrogen fixation Nutrient availability Nutrient concentrations nutrient content Nutrient use efficiency nutrient‐resorption efficiency nutrient‐resorption proficiency Organic acids organic acids and salts Pedogenesis Phosphorus Plant ecology Plant nutrition Plant–soil (below-ground) interactions resorption Soil ecology Soil fertility soil fertility gradient Soil nutrients soil productivity Soils solubilization Zinc |
Title | Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence |
URI | https://www.jstor.org/stable/24541270 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12196 https://www.proquest.com/docview/1502746166 https://www.proquest.com/docview/1999932258 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbhMxFLWgohIbHoWqgVIZiQWbicYztmdmCVWiqhIsgEjsRn6iiGimzWQWYdVP6DfwaXwJ93oebSohhNhEVnztiePr63OT42NC3ujCcpHZNOLcwIuL06jgSkXCMGeFlQULOgUfPsqzBT__KgY2IZ6F6fQhxh_ccGWEeI0LXOnm1iLvT1NxgQIJBYpu4zsIiz7dCEgBHI4HvfCYZ1kv7oNcnjvtd_al-17VA0ER2ZKqgS_Mdzdd7EDR24A27Ejzx0QPY-mIKN-n7UZPzY87Mo__Ndgn5FGPV-m7zsGeknuuOiD73Q2W2wPy4H0N6BIK-7Mgf719Rn7O69VSrWmFOv-wpVGDJyOrXp63oaqyFHL8eh2CFXVBwwIPgNJlRS9WyMuhtaeBQ68aZGWPXf26ulbmsl12PDPabAadC6pWNdgpmoAJXqQE1VDawjKmtq0cNagBXA-88edkMZ99OT2L-psgIgMxQkYIM5hlPuNeS50CqFQ6j62HZKsotFBCWicLnSTMJDmUmAI7xQ2k97nXXqWHZK-qK3dEqExt6p03sXaSC8C_QluWyYwxlSGcmpDp4Ael6WXS8baOVTmkSzgXJc5FGeZiQt6ODS46hZA_mx6BY5XqG8TvcvE5wew2RsDG2YQcBm8bu0i44MgKmJCTHfe7MQhSdjl0ejz4Y9nHn6YEmA-PlUxC9euxGiIH_h2kKle3YAO5QYHxPIcxB-f72-cvz2enofDiXxu8JA9xtB1575jsbdatewVobqNPwoL9DY1TP5A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF7RQkUv_BSqBkpZJA5cHHnt9do-QpUolLYHaKTerP1zFRHZJY4P6YlH4Bl4NJ6EmfVPk0oIIS7RSh5vvNnZ2W-cb78h5K1KDY9iE3qca_iwfuilXEov0syayIiUOZ2Cs3MxmfKTy-hy7SxMow_Rv3DDleHiNS5wfCG9tsrb41Q8QoWEVGyR-1jX26VVn28lpAAQ-51iuM_juJX3QTbPnQ42dqatXJYdRRH5krKCnyxval1sgNF1SOv2pPFjorvRNFSUr8N6qYb65o7Q4_8N9wl51EJW-r7xsafkni32yE5TxHK1Rx58KAFgQmNn5BSwV8_Iz3E5n8kFLVDqH3Y1qvFwZNEq9FZUFoZCml8uXLyi1slY4BlQOivo9RypObTMqaPRywqJ2X1Xv77_kPpbPWuoZrRadlIXVM5LsJM0ABOspQSXobWClUxNXViqUQa47Kjjz8l0PLo4nnhtMQhPQ5gQHiINZlge81wJFQKulCrxTQ75VpqqSEbCWJGqIGA6SKDFJNhJriHDT3KVy3CfbBdlYQ8IFaEJc5trX1nBwWPSSBkWi5gxGSOiGpBh5wiZbpXSsWDHPOsyJpyLDOcic3MxIO_6G64bkZA_mx6AZ2XyCkJ4Nv0SYILrI2bjbED2nbv1XQQ84kgMGJCjDf-7NXBqdgl0etg5ZNaGoCoDpA9fK5iAy2_6yxA88B8hWdiyBhtID1IM6QmM2Xnf354_Oxkdu8aLf73hNXk4uTg7zU4_nn96SXZx5A2X75BsLxe1fQXgbqmO3Or9DWvFQ6s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELZooagXfgpVA6UYiQOXjda7Xu_uEdpEpUCFgEjcVv5FEdFumk0O4cQj8Aw8Gk_CjPenTSWEEJfIkmedOJ4Zf5N8_kzIc5UbnqQmDjjX8GLDOMi5lEGimTWJETnzOgXvzsXphJ99Tjo2IZ6FafQh-h_cMDJ8vsYAnxt3Jcjb01Q8QYGEXGyRm1yEGTr2yYdLBSnAw2EnGB7yNG3VfZDMc22AjY1py8mqYygiXVLW8I255qqLDSx6FdH6LWl8l6huMg0T5etwtVRD_e2azuN_zfYeudMCVvqy8bD75IYt98hOc4Xleo_celUBvITGzsjrX68fkJ_jajaVC1qi0D_saVTj0ciy1eetqSwNhSK_WvhsRa0XscAToHRa0vkMiTm0ctST6GWNtOx-qF_ff0h9sZo2RDNaLzuhCypnFdhJGoEJ3qQE3dBaQxxTsyot1SgCXHXE8YdkMh59Oj4N2qsgAg1JQgSIM5hhLuVOCRUDqpQqC42DaivPVSITYazIVRQxHWXQYhLsJNdQ32dOORnvk-2yKu0BoSI2sbNOh8oKngAATpRhqUgZkyniqQEZdn5Q6FYnHa_rmBVdvYRrUeBaFH4tBuRF_8C8kQj5s-kBOFYhv0ACLyYfIyxvQ0RsnA3Ivve2foiIJxxpAQNytOF-lwZeyy6DQQ87fyzaBFQXgPPhbQUT0P2s74bUgf8HydJWK7CB4iDHhJ7BnL3z_e3zF2ejY9949K8PPCW335-Mi7evz988Jrs48YbId0i2l4uVfQLIbqmOfOz-BoTXQmM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Foliar+nutrient+concentrations+and+resorption+efficiency+in+plants+of+contrasting+nutrient%E2%80%90acquisition+strategies+along+a+2%E2%80%90million%E2%80%90year+dune+chronosequence&rft.jtitle=The+Journal+of+ecology&rft.au=Hayes%2C+Patrick&rft.au=Turner%2C+Benjamin+L.&rft.au=Lambers%2C+Hans&rft.au=Lalibert%C3%A9%2C+Etienne&rft.date=2014-03-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=102&rft.issue=2&rft.spage=396&rft.epage=410&rft_id=info:doi/10.1111%2F1365-2745.12196&rft.externalDBID=10.1111%252F1365-2745.12196&rft.externalDocID=JEC12196 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |