Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence

Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption w...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of ecology Vol. 102; no. 2; pp. 396 - 410
Main Authors Hayes, Patrick, Turner, Benjamin L, Lambers, Hans, Laliberté, Etienne, Bellingham, Peter
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons Ltd 01.03.2014
Blackwell
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2‐million‐year dune chronosequence in south‐western Australia. We also compared these traits among plants of contrasting nutrient‐acquisition strategies, focusing on N, P and micronutrients. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g⁻¹) and senesced (19–5600 μg P g⁻¹) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover‐weighted mean leaf [P] declined from 1840 to 228 μg P g⁻¹, while P‐resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P‐use strategy on the oldest soils. Declines in cover‐weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g⁻¹ on the youngest soil to 9.5 mg N g⁻¹ on the oldest soil. However, mean leaf N‐resorption efficiency was greatest (45%) on the youngest, N‐poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn‐resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. N₂‐fixing species had high leaf [N] compared with other species. Non‐mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. Synthesis. Our results show community‐wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long‐term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co‐limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies.
AbstractList Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2‐million‐year dune chronosequence in south‐western Australia. We also compared these traits among plants of contrasting nutrient‐acquisition strategies, focusing on N, P and micronutrients. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g⁻¹) and senesced (19–5600 μg P g⁻¹) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover‐weighted mean leaf [P] declined from 1840 to 228 μg P g⁻¹, while P‐resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P‐use strategy on the oldest soils. Declines in cover‐weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g⁻¹on the youngest soil to 9.5 mg N g⁻¹on the oldest soil. However, mean leaf N‐resorption efficiency was greatest (45%) on the youngest, N‐poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn‐resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. N₂‐fixing species had high leaf [N] compared with other species. Non‐mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. Synthesis. Our results show community‐wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long‐term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co‐limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies.
Summary Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2‐million‐year dune chronosequence in south‐western Australia. We also compared these traits among plants of contrasting nutrient‐acquisition strategies, focusing on N, P and micronutrients. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g−1) and senesced (19–5600 μg P g−1) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover‐weighted mean leaf [P] declined from 1840 to 228 μg P g−1, while P‐resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P‐use strategy on the oldest soils. Declines in cover‐weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g−1 on the youngest soil to 9.5 mg N g−1 on the oldest soil. However, mean leaf N‐resorption efficiency was greatest (45%) on the youngest, N‐poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn‐resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. N2‐fixing species had high leaf [N] compared with other species. Non‐mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. Synthesis. Our results show community‐wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long‐term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co‐limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies. Foliar nutrient concentrations and resorption efficiencies across a >2‐million‐year dune chronosequence suggest a shift from nitrogen to phosphorus limitation of productivity during long‐term pedogenesis. Leaf manganese accumulation in non‐mycorrhizal plants likely reflects carboxylate release for phosphorus acquisition. Our results show a strong effect of nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies.
Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2‐million‐year dune chronosequence in south‐western Australia. We also compared these traits among plants of contrasting nutrient‐acquisition strategies, focusing on N, P and micronutrients. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g⁻¹) and senesced (19–5600 μg P g⁻¹) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover‐weighted mean leaf [P] declined from 1840 to 228 μg P g⁻¹, while P‐resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P‐use strategy on the oldest soils. Declines in cover‐weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g⁻¹ on the youngest soil to 9.5 mg N g⁻¹ on the oldest soil. However, mean leaf N‐resorption efficiency was greatest (45%) on the youngest, N‐poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn‐resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. N₂‐fixing species had high leaf [N] compared with other species. Non‐mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. Synthesis. Our results show community‐wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long‐term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co‐limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies.
Long-term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2-million-year dune chronosequence in south-western Australia. We also compared these traits among plants of contrasting nutrient-acquisition strategies, focusing on N, P and micronutrients. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103-3000 ...g P g...) and senesced (19-5600 ...g P g...) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover-weighted mean leaf [P] declined from 1840 to 228 ...g P g..., while P-resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P-use strategy on the oldest soils. Declines in cover-weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g... on the youngest soil to 9.5 mg N g-1 on the oldest soil. However, mean leaf N-resorption efficiency was greatest (45%) on the youngest, N-poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn-resorption efficiency was greatest (55-74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. N2-fixing species had high leaf [N] compared with other species. Non-mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. Our results show community-wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long-term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co-limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient-use efficiency and reveal considerable differences among plants of contrasting nutrient-acquisition strategies. (ProQuest: ... denotes formulae/symbols omitted.)
Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen ( N ) and phosphorus ( P ). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2‐million‐year dune chronosequence in south‐western Australia. We also compared these traits among plants of contrasting nutrient‐acquisition strategies, focusing on N , P and micronutrients. The range in leaf [ P ] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g −1 ) and senesced (19–5600 μg P g −1 ) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover‐weighted mean leaf [ P ] declined from 1840 to 228 μg P g −1 , while P ‐resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P ‐use strategy on the oldest soils. Declines in cover‐weighted mean leaf [ N ] with soil age were less strong than for leaf [ P ], ranging from 13.4 mg N g −1 on the youngest soil to 9.5 mg N g −1 on the oldest soil. However, mean leaf N ‐resorption efficiency was greatest (45%) on the youngest, N ‐poor soils. Leaf N : P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc ( Z n) concentrations were low across all chronosequence stages, but mean Z n‐resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Z n availability at high p H . N 2 ‐fixing species had high leaf [ N ] compared with other species. Non‐mycorrhizal species had very low leaf [ P ] and accumulated M n across all soils. We surmise that this reflects M n solubilization by organic acids released for P acquisition. Synthesis . Our results show community‐wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long‐term ecosystem development. High Z n resorption on young calcareous dunes supports the possibility of micronutrient co‐limitation. High leaf [ M n] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies.
1. Long-term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2-million-year dune chronosequence in south-western Australia. We also compared these traits among plants of contrasting nutrient-acquisition strategies, focusing on N, P and micronutrients. 2. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g–1) and senesced (19–5600 μg P g–1) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover-weighted mean leaf [P] declined from 1840 to 228 μg P g–1, while P-resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P-use strategy on the oldest soils. 3. Declines in cover-weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g–1 on the youngest soil to 9.5 mg N g–1 on the oldest soil. However, mean leaf N-resorption efficiency was greatest (45%) on the youngest, N-poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. 4. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn-resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. 5. N2-fixing species had high leaf [N] compared with other species. Non-mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. 6. Synthesis. Our results show community-wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long-term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co-limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient-use efficiency and reveal considerable differences among plants of contrasting nutrient-acquisition strategies.
Author Lambers, Hans
Turner, Benjamin L
Bellingham, Peter
Laliberté, Etienne
Hayes, Patrick
Author_xml – sequence: 1
  fullname: Hayes, Patrick
– sequence: 2
  fullname: Turner, Benjamin L
– sequence: 3
  fullname: Lambers, Hans
– sequence: 4
  fullname: Laliberté, Etienne
– sequence: 5
  fullname: Bellingham, Peter
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28192186$$DView record in Pascal Francis
BookMark eNqFks1uEzEQxy1UJNLCmRPCEkLisq3Hu96PI4paPlSJA_Rseb12cOTYqb2rKjcegWfg0XgSZpO0SJUQc_HH_P4znhmfkpMQgyHkJbBzQLuAshYFbypxDhy6-glZPNyckAVjnBesappn5DTnNWOsbgRbkF9X0TuVaJjG5EwYqY5B45rU6GLIVIWBJpNj2s5naqx1Gjm9oy7QrVdhzDTaWYWSPLqwegj1-8dPpW8nl91emueYZuUMBvUROUU5IhvnPbpxtzP4jmEKhurvKYaYze2Emcxz8tQqn82L43pGbq4uvy0_FtdfPnxavr8utCihLngFAgawTWX7ui8Fa1XfssG2jei6XihRD6bues5B8xZ3oJBTlW7RbG9VeUbeHeJuU8TMeZQbl7XxWKSJU5bQoZWcixbRN4_QdZxSwNdJEAxbXkNdI_X2SKmslbdJBe2y3Ca3UWkneQsdh3bmxIHTKeacjJXajfv-Y8ucl8DkPGE5z1PO85T7CaPu4pHuPvS_FcdMd86b3f9w-flyea97ddCt8xjT3woqUQFvGPpfH_xWRalWCau8-coZVPjPOmAVlH8AqnnR7A
CODEN JECOAB
CitedBy_id crossref_primary_10_1111_nph_15043
crossref_primary_10_1093_aob_mcab013
crossref_primary_10_2139_ssrn_4120961
crossref_primary_10_3389_fpls_2024_1371123
crossref_primary_10_1007_s11356_022_19775_x
crossref_primary_10_1016_j_foreco_2020_118232
crossref_primary_10_1111_1365_2745_13468
crossref_primary_10_3389_feart_2016_00023
crossref_primary_10_1111_1365_2745_13103
crossref_primary_10_1007_s11104_024_06562_5
crossref_primary_10_1007_s11104_020_04567_4
crossref_primary_10_1007_s11258_014_0348_5
crossref_primary_10_1016_j_ecoleng_2020_105763
crossref_primary_10_1007_s10021_020_00537_0
crossref_primary_10_3832_ifor1889_009
crossref_primary_10_1080_01904167_2020_1867576
crossref_primary_10_1016_j_ecolind_2022_109371
crossref_primary_10_1186_s12870_020_02680_1
crossref_primary_10_1111_nph_19513
crossref_primary_10_1007_s11104_021_04886_0
crossref_primary_10_1007_s11104_019_04085_y
crossref_primary_10_1016_j_scitotenv_2021_146778
crossref_primary_10_1007_s11104_023_06097_1
crossref_primary_10_1111_1365_2745_12123
crossref_primary_10_1111_jvs_12993
crossref_primary_10_1007_s00468_017_1569_8
crossref_primary_10_1186_s12870_025_06129_1
crossref_primary_10_1002_ecm_1300
crossref_primary_10_1007_s00442_014_3033_4
crossref_primary_10_3390_f11040363
crossref_primary_10_1007_s10533_020_00657_8
crossref_primary_10_1007_s11104_022_05464_8
crossref_primary_10_1007_s00468_016_1457_7
crossref_primary_10_1016_j_scitotenv_2021_146420
crossref_primary_10_3390_plants13131849
crossref_primary_10_1086_706238
crossref_primary_10_3389_ffgc_2020_00083
crossref_primary_10_1890_15_0188_1
crossref_primary_10_1111_1365_2745_13127
crossref_primary_10_1016_j_gecco_2024_e03367
crossref_primary_10_1016_j_tplants_2018_10_004
crossref_primary_10_1126_science_1256330
crossref_primary_10_1111_1365_2745_12392
crossref_primary_10_1007_s13595_018_0727_5
crossref_primary_10_1007_s11104_019_03963_9
crossref_primary_10_3389_fenvs_2022_1066959
crossref_primary_10_1007_s11104_025_07246_4
crossref_primary_10_1016_j_tplants_2014_10_007
crossref_primary_10_1007_s11104_023_06001_x
crossref_primary_10_1071_FP22197
crossref_primary_10_1007_s00442_017_3961_x
crossref_primary_10_3732_ajb_1400543
crossref_primary_10_1002_ece3_2000
crossref_primary_10_2984_69_2_1
crossref_primary_10_1111_pce_12367
crossref_primary_10_1111_1365_2745_13111
crossref_primary_10_3390_f10030201
crossref_primary_10_1007_s11104_017_3427_2
crossref_primary_10_1007_s11104_022_05562_7
crossref_primary_10_1007_s42965_024_00352_x
crossref_primary_10_1016_j_catena_2022_106893
crossref_primary_10_1111_nph_14967
crossref_primary_10_1016_j_envexpbot_2019_03_017
crossref_primary_10_1007_s11104_021_05195_2
crossref_primary_10_1016_j_pbi_2015_04_002
crossref_primary_10_1111_ele_13713
crossref_primary_10_1111_nph_14674
crossref_primary_10_1093_biolinnean_blaa213
crossref_primary_10_1007_s00248_018_1185_1
crossref_primary_10_1007_s00442_018_4230_3
crossref_primary_10_1111_nph_13904
crossref_primary_10_1111_ppl_12700
crossref_primary_10_3389_fpls_2018_00883
crossref_primary_10_1111_ppl_12704
crossref_primary_10_1007_s00468_018_1725_9
crossref_primary_10_1007_s42965_020_00063_z
crossref_primary_10_1002_ecm_1477
crossref_primary_10_1007_s11104_019_04021_0
crossref_primary_10_1016_j_scitotenv_2022_157906
crossref_primary_10_1007_s11676_017_0519_z
crossref_primary_10_1111_mec_13363
crossref_primary_10_1007_s00442_016_3549_x
crossref_primary_10_1016_j_scitotenv_2019_05_222
crossref_primary_10_1111_nph_18588
crossref_primary_10_1139_cjfr_2023_0280
crossref_primary_10_7717_peerj_8382
crossref_primary_10_1098_rspb_2015_1001
crossref_primary_10_1093_treephys_tpx170
crossref_primary_10_1016_j_envexpbot_2017_02_009
crossref_primary_10_1016_j_foreco_2018_08_037
crossref_primary_10_1007_s11104_020_04690_2
crossref_primary_10_1016_j_soilbio_2024_109412
crossref_primary_10_1111_nph_18902
crossref_primary_10_1093_jxb_erz156
crossref_primary_10_1007_s11104_020_04760_5
crossref_primary_10_3389_fpls_2019_00744
crossref_primary_10_1007_s11368_016_1352_2
crossref_primary_10_3390_f14020357
crossref_primary_10_1111_1365_2745_12638
crossref_primary_10_1111_oik_02878
crossref_primary_10_3390_f9090563
crossref_primary_10_1111_1365_2745_13048
crossref_primary_10_1111_1365_2745_13283
crossref_primary_10_1007_s11104_016_3142_4
crossref_primary_10_1111_nph_13203
crossref_primary_10_1016_j_scitotenv_2023_166395
crossref_primary_10_31857_S0367059723040042
crossref_primary_10_1016_j_baae_2022_03_013
crossref_primary_10_1186_s12870_023_04178_y
crossref_primary_10_3390_f15020351
crossref_primary_10_3161_15052249PJE2020_70_2_003
crossref_primary_10_1111_1365_2745_13158
crossref_primary_10_1007_s11104_022_05522_1
crossref_primary_10_3390_su13073897
crossref_primary_10_1016_j_scitotenv_2017_07_005
crossref_primary_10_1007_s10265_020_01211_1
crossref_primary_10_1007_s11104_016_2796_2
crossref_primary_10_1093_jpe_rtaa077
crossref_primary_10_3390_w10010042
crossref_primary_10_1007_s11104_023_06177_2
crossref_primary_10_1111_ppl_13384
crossref_primary_10_1093_aob_mcae005
crossref_primary_10_1111_nph_15200
crossref_primary_10_1111_nph_17985
crossref_primary_10_1111_nph_19489
crossref_primary_10_1111_ele_12823
crossref_primary_10_1080_07352689_2015_1078611
crossref_primary_10_1111_1365_2435_13809
crossref_primary_10_1016_j_foreco_2020_117896
crossref_primary_10_1016_j_foreco_2020_118743
crossref_primary_10_1007_s10342_015_0891_1
crossref_primary_10_1007_s11104_017_3473_9
crossref_primary_10_3390_plants13121659
crossref_primary_10_1186_s12870_024_05794_y
crossref_primary_10_1111_nph_15688
crossref_primary_10_1038_nplants_2015_109
crossref_primary_10_1007_s11104_014_2364_6
crossref_primary_10_1007_s11104_019_03966_6
crossref_primary_10_1007_s11104_021_05076_8
crossref_primary_10_1016_j_jaridenv_2022_104903
crossref_primary_10_1111_nph_15447
crossref_primary_10_1007_s11104_018_3876_2
crossref_primary_10_1093_treephys_tpx126
crossref_primary_10_3389_fpls_2021_661842
crossref_primary_10_1016_j_envexpbot_2019_01_007
crossref_primary_10_3390_agronomy10020310
crossref_primary_10_1007_s11104_023_06259_1
crossref_primary_10_1007_s11104_022_05602_2
crossref_primary_10_1093_jpe_rtab015
crossref_primary_10_1007_s11104_023_06297_9
crossref_primary_10_1016_j_ecolind_2022_108687
crossref_primary_10_1371_journal_pone_0182569
crossref_primary_10_1016_j_tplants_2021_07_003
crossref_primary_10_1007_s00248_019_01446_z
crossref_primary_10_1007_s11104_022_05517_y
crossref_primary_10_1111_ejss_12507
crossref_primary_10_1016_j_soilbio_2015_09_021
crossref_primary_10_1093_treephys_tpy104
crossref_primary_10_1134_S1062359021040166
crossref_primary_10_1007_s12224_018_9311_x
crossref_primary_10_1093_jxb_erac117
crossref_primary_10_1007_s11104_018_3728_0
crossref_primary_10_1007_s11104_023_05984_x
crossref_primary_10_12688_f1000research_8973_1
crossref_primary_10_1038_nplants_2015_50
crossref_primary_10_1002_ldr_5052
crossref_primary_10_1007_s11104_017_3280_3
crossref_primary_10_1007_s11104_020_04657_3
crossref_primary_10_1016_j_xplc_2022_100503
crossref_primary_10_1016_j_envexpbot_2020_104097
crossref_primary_10_1111_1365_2745_13519
crossref_primary_10_1007_s11104_021_04988_9
crossref_primary_10_1111_1365_2745_12546
crossref_primary_10_1002_ldr_4078
crossref_primary_10_1007_s11104_023_06092_6
crossref_primary_10_1111_oik_01584
crossref_primary_10_1093_treephys_tpad150
crossref_primary_10_1038_s41598_017_01418_8
crossref_primary_10_1093_jpe_rtaa030
crossref_primary_10_1111_ele_14402
crossref_primary_10_3389_fpls_2021_636056
crossref_primary_10_1002_ece3_7544
crossref_primary_10_1111_mec_13778
crossref_primary_10_1007_s11104_022_05559_2
crossref_primary_10_1111_nph_12778
crossref_primary_10_1111_rec_14017
crossref_primary_10_1016_j_soilbio_2024_109385
crossref_primary_10_1093_jxb_eraa515
crossref_primary_10_1093_aobpla_ply032
crossref_primary_10_1111_1365_2435_13327
crossref_primary_10_1007_s11104_024_06655_1
crossref_primary_10_1111_nph_13175
crossref_primary_10_1016_j_scitotenv_2017_11_030
crossref_primary_10_1007_s10021_023_00894_6
crossref_primary_10_1111_nph_13970
crossref_primary_10_1016_j_scitotenv_2021_144951
crossref_primary_10_1007_s11104_023_05935_6
crossref_primary_10_1146_annurev_arplant_102720_125738
crossref_primary_10_1007_s10021_014_9830_0
crossref_primary_10_1126_science_abc0393
crossref_primary_10_1007_s40626_020_00180_z
crossref_primary_10_1111_nph_15910
crossref_primary_10_3390_f10030261
crossref_primary_10_1016_j_geoderma_2014_07_005
crossref_primary_10_1016_j_jenvman_2024_123418
crossref_primary_10_1111_nph_20015
crossref_primary_10_1111_ele_12323
crossref_primary_10_1007_s11104_019_04289_2
crossref_primary_10_1007_s10265_016_0826_z
crossref_primary_10_1111_nph_18612
crossref_primary_10_1126_science_aai8291
crossref_primary_10_3389_fpls_2018_01483
crossref_primary_10_1016_j_foreco_2020_117910
crossref_primary_10_1016_j_geoderma_2015_04_027
crossref_primary_10_1111_jvs_13095
crossref_primary_10_1007_s00442_016_3581_x
crossref_primary_10_1111_pce_13124
crossref_primary_10_3389_fpls_2022_905358
crossref_primary_10_1007_s00442_015_3449_5
crossref_primary_10_1007_s11104_025_07362_1
crossref_primary_10_1016_j_scitotenv_2023_162075
crossref_primary_10_35193_bseufbd_641833
crossref_primary_10_1038_s41597_021_01006_6
crossref_primary_10_1016_j_foreco_2023_121392
crossref_primary_10_1111_1365_2435_13479
crossref_primary_10_1007_s10021_020_00493_9
crossref_primary_10_3389_fpls_2021_614613
crossref_primary_10_1007_s11104_022_05477_3
crossref_primary_10_3389_fpls_2023_1139945
crossref_primary_10_2139_ssrn_4047743
crossref_primary_10_5897_JSSEM15_0528
crossref_primary_10_1007_s11104_024_07035_5
crossref_primary_10_1111_jvs_12450
crossref_primary_10_1371_journal_pone_0114290
crossref_primary_10_1071_FP16035
crossref_primary_10_1093_jpe_rtac090
crossref_primary_10_1111_ppl_14519
crossref_primary_10_1111_jvs_12338
crossref_primary_10_1007_s00442_015_3283_9
crossref_primary_10_5194_bg_13_4429_2016
Cites_doi 10.18637/jss.v008.i15
10.1016/0016-7061(76)90066-5
10.1111/j.0030-1299.2005.13587.x
10.2307/2265777
10.1111/j.1469-8137.2004.01283.x
10.1111/j.1365-2745.2012.01965.x
10.1111/j.1365-2745.2012.01962.x
10.1111/j.1469-8137.2004.01192.x
10.1007/s00442‐013‐2747‐z
10.2136/sssaj1980.03615995004400050024x
10.1111/j.1365-2745.2011.01805.x
10.1139/b72-289
10.1086/283931
10.1093/aob/mcs004
10.1038/nature05038
10.1007/BF02860714
10.1515/9780691190341
10.1111/j.1365-2435.2008.01513.x
10.1111/1365-2745.12081
10.1111/j.1469-8137.2008.02513.x
10.1016/S0065-2504(08)60016-1
10.1023/A:1026463307043
10.1111/j.1365-2435.2008.01426.x
10.1111/j.1365-3040.2007.01733.x
10.1093/conphys/cot010
10.2307/2261481
10.1111/j.1461-0248.2007.01113.x
10.1104/pp.111.174318
10.1007/s11104-011-1023-4
10.1007/s10021-003-0229-6
10.1007/s00442-004-1501-y
10.1016/j.quageo.2007.10.001
10.2307/2404783
10.2136/sssaj1982.03615995004600020020x
10.1890/11-0416.1
10.1023/A:1005757218475
10.1007/s11104-013-1649-5
10.1146/annurev.ecolsys.35.112202.130201
10.1007/s11104-010-0444-9
10.1093/jxb/44.5.879
10.1111/1365-2745.12123
10.1023/A:1015798428743
10.1023/A:1022323215010
10.1111/j.1442-9993.1977.tb01135.x
10.1007/BF00336518
10.1111/j.1469-8137.2012.04190.x
10.1016/j.tree.2007.10.008
10.2307/1938144
10.1890/04-1830
10.2307/1939338
10.2307/1941561
10.2307/2405065
10.1038/35002501
10.1007/BF00203769
10.1016/0277-3791(91)90005-F
10.1007/s11104-012-1159-x
10.1890/09-1552.1
10.1093/aob/mcl114
10.1023/A:1016249704336
10.1111/j.1399-3054.2005.00527.x
10.1890/04-0524
10.1007/BF02374894
10.1007/978-0-387-78341-3
10.1007/978-1-4419-0318-1
10.1139/x2012-023
10.1007/s11104-011-0874-z
10.1111/j.1469-8137.2012.04285.x
ContentType Journal Article
Copyright 2014 British Ecological Society
2013 The Authors. Journal of Ecology © 2013 British Ecological Society
2015 INIST-CNRS
Copyright Blackwell Publishing Ltd. Mar 2014
Copyright_xml – notice: 2014 British Ecological Society
– notice: 2013 The Authors. Journal of Ecology © 2013 British Ecological Society
– notice: 2015 INIST-CNRS
– notice: Copyright Blackwell Publishing Ltd. Mar 2014
DBID FBQ
AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
DOI 10.1111/1365-2745.12196
DatabaseName AGRIS
CrossRef
Pascal-Francis
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
EISSN 1365-2745
EndPage 410
ExternalDocumentID 3231504491
28192186
10_1111_1365_2745_12196
JEC12196
24541270
US201400091041
Genre article
Feature
GrantInformation_xml – fundername: School of Plant Biology
– fundername: ARC DECRA
  funderid: DE120100352
– fundername: UWA Research Development
– fundername: ARC Discovery
  funderid: DP0985685
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29K
2AX
2WC
3-9
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABPVW
ABSQW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHIC
ACHJO
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFXHP
AFZJQ
AGHNM
AGUYK
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CUYZI
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAU
EBS
ECGQY
EJD
F00
F01
F04
F5P
FBQ
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XIH
Y6R
YF5
YQT
YXE
YZZ
ZCA
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
24P
ABYAD
ACTWD
AEUQT
AFPWT
DOOOF
ESX
JSODD
WRC
AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c5316-24151d1f74fb6b3508ab80df87599b5a56de69b221c28e691afb6a4c8888fbfa3
IEDL.DBID DR2
ISSN 0022-0477
IngestDate Fri Jul 11 18:26:50 EDT 2025
Fri Jul 25 10:49:10 EDT 2025
Wed Apr 02 07:46:49 EDT 2025
Tue Jul 01 03:13:37 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Wed Jan 22 16:30:34 EST 2025
Thu Jul 03 22:44:50 EDT 2025
Thu Apr 03 09:43:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Soil fertility
Resorption
Phosphorus
Nitrogen
Accumulation
Zinc
Efficient use
Chronosequence
plant-soil (below-ground) interactions
soil fertility gradient
manganese accumulation
Nutrient
Strategy
nutrient-resorption proficiency
Soil interaction
nutrient-resorption efficiency
Dunes
Manganese
nutrient-use efficiency
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5316-24151d1f74fb6b3508ab80df87599b5a56de69b221c28e691afb6a4c8888fbfa3
Notes http://dx.doi.org/10.1111/1365-2745.12196
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.12196
PQID 1502746166
PQPubID 37508
PageCount 15
ParticipantIDs proquest_miscellaneous_1999932258
proquest_journals_1502746166
pascalfrancis_primary_28192186
crossref_citationtrail_10_1111_1365_2745_12196
crossref_primary_10_1111_1365_2745_12196
wiley_primary_10_1111_1365_2745_12196_JEC12196
jstor_primary_24541270
fao_agris_US201400091041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2014
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: March 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2014
Publisher John Wiley & Sons Ltd
Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons Ltd
– name: Blackwell
– name: Blackwell Publishing Ltd
References 1987; 1
2004; 164
2013; 1
1991; 10
1984; 21
2004; 7
1980; 44
1995; 76
1976
2013; 367
2011; 99
1974
2008; 3
2007; 30
2011; 156
1979
1983; 14
1996; 77
1996; 33
2003; 248
1990
2000
2000; 403
2003; 8
2004; 35
1972; 50
2005; 109
2008; 23
1984
2008; 22
2004; 139
2006; 442
2009; 23
1979; 289
2012; 82
2012; 100
2012
2002; 57–58
2006; 98
1993; 44
1991; 72
2013; 101
2008
2005; 86
1995
2005
2004
1983; 70
2007; 10
2010; 80
2012; 109
1982; 46
2012; 195
2012; 196
1982; 48
1993; 16
2011; 348
2005; 165
1982; 119
2002; 242
2000; 226
2005; 124
2010; 334
1997; 37
2000; 30
1996; 84
1977; 2
2008; 179
2013
2012; 356
1976; 15
1994; 5
2012; 42
1968
1994; 4
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
Grime J.P. (e_1_2_7_22_1) 1979
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Pate J.S. (e_1_2_7_55_1) 1984
Playford P.E. (e_1_2_7_59_1) 1976
Berendse F. (e_1_2_7_6_1) 1987; 1
McArthur W.M. (e_1_2_7_50_1) 1974
e_1_2_7_73_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_39_1
Smith S.E. (e_1_2_7_68_1) 2008
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
Griffin E.A. (e_1_2_7_21_1) 1990
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
Jaffré T. (e_1_2_7_30_1) 1979; 289
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_29_1
McKey D. (e_1_2_7_51_1) 1994; 5
Epstein E. (e_1_2_7_16_1) 2005
e_1_2_7_72_1
e_1_2_7_70_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_74_1
e_1_2_7_34_1
e_1_2_7_57_1
Pinheiro J.C. (e_1_2_7_58_1) 2012
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_78_1
e_1_2_7_38_1
Hewgill F. (e_1_2_7_27_1) 1983; 14
Department of Conservation and Land Management (e_1_2_7_14_1) 1995
Black C.A. (e_1_2_7_7_1) 1968
References_xml – volume: 80
  start-page: 509
  year: 2010
  end-page: 529
  article-title: Understanding ecosystem retrogression
  publication-title: Ecological Monographs
– volume: 86
  start-page: 20
  year: 2005
  end-page: 25
  article-title: Resorption proficiency along a chronosequence: responses among communities and within species
  publication-title: Ecology
– volume: 42
  start-page: 807
  year: 2012
  end-page: 813
  article-title: Isolation and identification of diazotrophic bacteria from internal tissues of and
  publication-title: Canadian Journal of Forest Research
– volume: 99
  start-page: 849
  year: 2011
  end-page: 857
  article-title: Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo
  publication-title: Journal of Ecology
– volume: 356
  start-page: 35
  year: 2012
  end-page: 49
  article-title: The contribution of nitrogen fixation to sugarcane ( L.), and the identification and characterization of part of the associated diazotrophic bacterial community
  publication-title: Plant and Soil
– year: 2005
– volume: 72
  start-page: 2083
  year: 1991
  end-page: 2100
  article-title: Phosphorus availability in acid organic soils of the lower North Carolina coastal plain
  publication-title: Ecology
– volume: 1
  start-page: 293
  year: 1987
  end-page: 296
  article-title: Nitrogen‐use‐efficiency: a biologically meaningful definition?
  publication-title: Functional Ecology
– volume: 195
  start-page: 306
  year: 2012
  end-page: 320
  article-title: Opportunities for improving phosphorus‐use efficiency in crop plants
  publication-title: New Phytologist
– volume: 101
  start-page: 1088
  year: 2013
  end-page: 1092
  article-title: Nutrient limitation along the Jurien Bay dune chronosequence: response to Uren & Parsons (2013)
  publication-title: Journal of Ecology
– volume: 119
  start-page: 553
  year: 1982
  end-page: 572
  article-title: Nutrient cycling and nutrient use efficiency
  publication-title: American Naturalist
– volume: 367
  start-page: 77
  year: 2013
  end-page: 91
  article-title: Soil drainage and phosphorus depletion contribute to retrogressive succession along a New Zealand chronosequence
  publication-title: Plant and Soil
– year: 1979
– volume: 196
  start-page: 1098
  year: 2012
  end-page: 1108
  article-title: Proteaceae from severely phosphorus‐impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus‐use‐efficiency
  publication-title: New Phytologist
– volume: 35
  start-page: 623
  year: 2004
  end-page: 650
  article-title: The Southwest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 76
  start-page: 1407
  year: 1995
  end-page: 1424
  article-title: Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii
  publication-title: Ecology
– start-page: 25
  year: 1990
  end-page: 38
– volume: 23
  start-page: 95
  year: 2008
  end-page: 103
  article-title: Plant nutrient‐acquisition strategies change with soil age
  publication-title: Trends in Ecology & Evolution
– volume: 165
  start-page: 887
  year: 2005
  end-page: 898
  article-title: The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform‐root development in (Cyperaceae)
  publication-title: New Phytologist
– volume: 403
  start-page: 853
  year: 2000
  end-page: 858
  article-title: Biodiversity hotspots for conservation priorities
  publication-title: Nature
– volume: 76
  start-page: 712
  year: 1995
  end-page: 720
  article-title: Foliar nutrients during long‐term soil development in Hawaiian montane rain forest
  publication-title: Ecology
– volume: 70
  start-page: 391
  year: 1983
  end-page: 402
  article-title: The acquisition of phosphorus by L., IV: the effect of interplanting wheat and white lupin on the growth and mineral composition of the two species
  publication-title: Plant and Soil
– volume: 7
  start-page: 259
  year: 2004
  end-page: 274
  article-title: Soil phosphorus fractionation and phosphorus‐use efficiency of a Bornean tropical montane rain forest during soil aging with podzolization
  publication-title: Ecosystems
– volume: 10
  start-page: 1135
  year: 2007
  end-page: 1142
  article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 3
  start-page: 26
  year: 2008
  end-page: 55
  article-title: Carbonate eolianites, quartz sands, and Quaternary sea‐level cycles, Western Australia: a chronostratigraphic approach
  publication-title: Quaternary Geochronology
– year: 2008
– volume: 98
  start-page: 693
  year: 2006
  end-page: 713
  article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits
  publication-title: Annals of Botany
– year: 2004
– volume: 48
  start-page: 597
  year: 1982
  end-page: 689
  article-title: Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia
  publication-title: Botanical Review
– volume: 139
  start-page: 267
  year: 2004
  end-page: 276
  article-title: Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence
  publication-title: Oecologia
– volume: 348
  start-page: 453
  year: 2011
  end-page: 470
  article-title: Sand‐binding roots in Haemodoraceae: global survey and morphology in a phylogenetic context
  publication-title: Plant and Soil
– volume: 289
  start-page: 425
  year: 1979
  end-page: 428
  article-title: Accumulation du manganèse par les Protéacées de Nouvelle‐Calédonie
  publication-title: Comptes Rendus Hebdomadaires des Scéanes de l'Académie des Sciences de Paris. Série D, Sciences Naturelles
– volume: 242
  start-page: 205
  year: 2002
  end-page: 215
  article-title: The effect of inoculating endophytic N ‐fixing bacteria on micropropagated sugarcane plants
  publication-title: Plant and Soil
– volume: 1
  start-page: cot010
  year: 2013
  article-title: Phosphorus nutrition of phosphorus‐sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot
  publication-title: Conservation Physiology
– volume: 57–58
  start-page: 1
  year: 2002
  end-page: 45
  article-title: Towards an ecological understanding of biological nitrogen fixation
  publication-title: Biogeochemistry
– volume: 37
  start-page: 63
  year: 1997
  end-page: 75
  article-title: Nutrient limitation and soil development: experimental test of a biogeochemical theory
  publication-title: Biogeochemistry
– year: 1976
– volume: 21
  start-page: 1029
  year: 1984
  end-page: 1040
  article-title: Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility
  publication-title: Journal of Applied Ecology
– volume: 50
  start-page: 2227
  year: 1972
  end-page: 2233
  article-title: Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants
  publication-title: Canadian Journal of Botany
– volume: 44
  start-page: 879
  year: 1993
  end-page: 891
  article-title: Phosphate regulation of nitrate assimilation in soybean
  publication-title: Journal of Experimental Botany
– volume: 84
  start-page: 597
  year: 1996
  end-page: 608
  article-title: Nutrient resorption from senescing leaves of perennials: are there general patterns?
  publication-title: Journal of Ecology
– volume: 30
  start-page: 1
  year: 2000
  end-page: 67
  article-title: The mineral nutrition of wild plants revisited: a re‐evaluation of processes and patterns
  publication-title: Advances in Ecological Research
– volume: 77
  start-page: 1716
  year: 1996
  end-page: 1727
  article-title: Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency
  publication-title: Ecology
– volume: 23
  start-page: 442
  year: 2009
  end-page: 453
  article-title: Among‐ and within‐species variation in plant litter decomposition in contrasting long‐term chronosequences
  publication-title: Functional Ecology
– volume: 16
  start-page: 66
  year: 1993
  end-page: 70
  article-title: Hyphal transport by a vesicular‐arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate
  publication-title: Biology and Fertility of Soils
– year: 1968
– volume: 5
  start-page: 211
  year: 1994
  end-page: 228
  article-title: Legumes and nitrogen: the evolutionary ecology of a nitrogen‐demanding lifestyle
  publication-title: Advances in Legume Systematics
– year: 2000
– volume: 100
  start-page: 631
  year: 2012
  end-page: 642
  article-title: Experimental assessment of nutrient limitation along a 2‐million year dune chronosequence in the south‐western Australia biodiversity hotspot
  publication-title: Journal of Ecology
– volume: 442
  start-page: 555
  year: 2006
  end-page: 558
  article-title: Plant litter decomposition in a semi‐arid ecosystem controlled by photodegradation
  publication-title: Nature
– volume: 10
  start-page: 419
  year: 1991
  end-page: 439
  article-title: Pliocene‐Pleistocene coastal events and history along the western margin of Australia
  publication-title: Quaternary Science Reviews
– volume: 46
  start-page: 314
  year: 1982
  end-page: 317
  article-title: Dissolution of oxides of manganese and iron by root exudate components
  publication-title: Soil Science Society of America Journal
– volume: 226
  start-page: 79
  year: 2000
  end-page: 85
  article-title: Nitrate uptake by bean ( L.) roots under phosphate deficiency
  publication-title: Plant and Soil
– volume: 14
  start-page: 215
  year: 1983
  end-page: 217
  article-title: Routine ESR dating of emergent Pleistocene marine units in Western Australia
  publication-title: Search
– volume: 179
  start-page: 829
  year: 2008
  end-page: 836
  article-title: Nutrient concentration ratios and co‐limitation in South African grasslands
  publication-title: New Phytologist
– volume: 100
  start-page: 678
  year: 2012
  end-page: 689
  article-title: Changes in coexistence mechanisms along a long‐term soil chronosequence revealed by functional trait diversity
  publication-title: Journal of Ecology
– volume: 86
  start-page: 2780
  year: 2005
  end-page: 2792
  article-title: Resorption efficiency decreases with increasing green leaf nutrients in a global leaf dataset
  publication-title: Ecology
– volume: 367
  start-page: 183
  year: 2013
  end-page: 197
  article-title: Decoupled responses of tree and shrub leaf and litter trait values to ecosystem retrogression across an island area gradient
  publication-title: Plant and Soil
– volume: 4
  start-page: 105
  year: 1994
  end-page: 108
  article-title: The improvement of plant N acquisition from an ammonium‐treated, drought‐stressed soil by the fungal symbiont in arbuscular mycorrhizae
  publication-title: Mycorrhiza
– volume: 33
  start-page: 1441
  year: 1996
  end-page: 1450
  article-title: The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation
  publication-title: Journal of Applied Ecology
– year: 2012
– volume: 15
  start-page: 1
  year: 1976
  end-page: 19
  article-title: The fate of phosphorus during pedogenesis
  publication-title: Geoderma
– volume: 101
  start-page: 1085
  year: 2013
  end-page: 1087
  article-title: Nutritional characteristics of soils on an inferred chronosequence. A comment on Laliberté et al. (2012)
  publication-title: Journal of Ecology
– year: 1984
– volume: 124
  start-page: 441
  year: 2005
  end-page: 450
  article-title: Manganese accumulation in leaves of (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply
  publication-title: Physiologia Plantarum
– volume: 109
  start-page: 71
  year: 2005
  end-page: 80
  article-title: Nutrient limitation and botanical diversity in wetlands: can fertilisation raise species richness?
  publication-title: Oikos
– volume: 44
  start-page: 993
  year: 1980
  article-title: Plant effects on soil manganese availability
  publication-title: Soil Science Society of America Journal
– volume: 8
  start-page: 1
  year: 2003
  end-page: 27
  article-title: Effect displays in R for generalised linear models
  publication-title: Journal of Statistical Software
– volume: 156
  start-page: 1058
  year: 2011
  end-page: 1066
  article-title: Phosphorus nutrition of Proteaceae in severely phosphorus‐impoverished soils: are there lessons to be learned for future crops?
  publication-title: Plant Physiology
– volume: 109
  start-page: 887
  year: 2012
  end-page: 896
  article-title: Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of (Leguminosae: Mimosoideae)
  publication-title: Annals of Botany
– volume: 30
  start-page: 1557
  year: 2007
  end-page: 1565
  article-title: species (Proteaceae) from severely phosphorus‐impoverished soils exhibit extreme efficiency in the use and re‐mobilization of phosphorus
  publication-title: Plant, Cell & Environment
– volume: 22
  start-page: 738
  year: 2008
  end-page: 745
  article-title: Shifts in leaf N:P ratio during resorption reflect soil P in temperate rainforest
  publication-title: Functional Ecology
– year: 1995
– year: 1974
– year: 2013
  article-title: Does cluster‐root activity of (Proteaceae) benefit phosphorus or micronutrient uptake and growth of neighbouring shrubs?
  publication-title: Oecologia
– volume: 248
  start-page: 257
  year: 2003
  end-page: 268
  article-title: Interaction of nitrogen and phosphorus nutrition in determining growth
  publication-title: Plant and Soil
– volume: 2
  start-page: 179
  year: 1977
  end-page: 186
  article-title: The heath‐savannah problem: the effect of fertilizer on sand‐heath vegetation of North Stradbroke Island, Queensland
  publication-title: Australian Journal of Ecology
– volume: 334
  start-page: 11
  year: 2010
  end-page: 31
  article-title: Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies
  publication-title: Plant and Soil
– volume: 164
  start-page: 243
  year: 2004
  end-page: 266
  article-title: N:P ratios in terrestrial plants: variation and functional significance
  publication-title: New Phytologist
– volume: 82
  start-page: 205
  year: 2012
  end-page: 220
  article-title: Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants
  publication-title: Ecological Monographs
– volume-title: Geology of the Perth Basin, Western Australia
  year: 1976
  ident: e_1_2_7_59_1
– ident: e_1_2_7_17_1
  doi: 10.18637/jss.v008.i15
– ident: e_1_2_7_81_1
  doi: 10.1016/0016-7061(76)90066-5
– volume: 1
  start-page: 293
  year: 1987
  ident: e_1_2_7_6_1
  article-title: Nitrogen‐use‐efficiency: a biologically meaningful definition?
  publication-title: Functional Ecology
– volume-title: Plant Strategies and Vegetation Processes
  year: 1979
  ident: e_1_2_7_22_1
– ident: e_1_2_7_24_1
  doi: 10.1111/j.0030-1299.2005.13587.x
– ident: e_1_2_7_34_1
  doi: 10.2307/2265777
– ident: e_1_2_7_64_1
  doi: 10.1111/j.1469-8137.2004.01283.x
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1365-2745.2012.01965.x
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1365-2745.2012.01962.x
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1469-8137.2004.01192.x
– ident: e_1_2_7_52_1
  doi: 10.1007/s00442‐013‐2747‐z
– ident: e_1_2_7_20_1
  doi: 10.2136/sssaj1980.03615995004400050024x
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1365-2745.2011.01805.x
– ident: e_1_2_7_66_1
  doi: 10.1139/b72-289
– ident: e_1_2_7_75_1
  doi: 10.1086/283931
– ident: e_1_2_7_25_1
  doi: 10.1093/aob/mcs004
– ident: e_1_2_7_4_1
  doi: 10.1038/nature05038
– ident: e_1_2_7_48_1
  doi: 10.1007/BF02860714
– ident: e_1_2_7_76_1
  doi: 10.1515/9780691190341
– ident: e_1_2_7_82_1
  doi: 10.1111/j.1365-2435.2008.01513.x
– ident: e_1_2_7_72_1
  doi: 10.1111/1365-2745.12081
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1469-8137.2008.02513.x
– ident: e_1_2_7_3_1
  doi: 10.1016/S0065-2504(08)60016-1
– ident: e_1_2_7_19_1
  doi: 10.1023/A:1026463307043
– ident: e_1_2_7_60_1
  doi: 10.1111/j.1365-2435.2008.01426.x
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1365-3040.2007.01733.x
– ident: e_1_2_7_47_1
  doi: 10.1093/conphys/cot010
– volume-title: Kwongan: Plant Life of the Sandplain
  year: 1984
  ident: e_1_2_7_55_1
– ident: e_1_2_7_2_1
  doi: 10.2307/2261481
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1461-0248.2007.01113.x
– start-page: 25
  volume-title: Nature Conservation, Landscape and Recreation Values of the Lesueur Area
  year: 1990
  ident: e_1_2_7_21_1
– volume: 14
  start-page: 215
  year: 1983
  ident: e_1_2_7_27_1
  article-title: Routine ESR dating of emergent Pleistocene marine units in Western Australia
  publication-title: Search
– ident: e_1_2_7_45_1
  doi: 10.1104/pp.111.174318
– ident: e_1_2_7_70_1
  doi: 10.1007/s11104-011-1023-4
– ident: e_1_2_7_35_1
  doi: 10.1007/s10021-003-0229-6
– ident: e_1_2_7_61_1
  doi: 10.1007/s00442-004-1501-y
– ident: e_1_2_7_26_1
  doi: 10.1016/j.quageo.2007.10.001
– volume-title: Development and Distribution of Soils of the Swan Coastal Plain, Western Australia
  year: 1974
  ident: e_1_2_7_50_1
– volume-title: Mineral Nutrition of Plants: Principles and Perspectives
  year: 2005
  ident: e_1_2_7_16_1
– ident: e_1_2_7_37_1
  doi: 10.2307/2404783
– volume-title: nlme: Linear and Nonlinear Mixed Effects Models
  year: 2012
  ident: e_1_2_7_58_1
– ident: e_1_2_7_31_1
  doi: 10.2136/sssaj1982.03615995004600020020x
– ident: e_1_2_7_74_1
  doi: 10.1890/11-0416.1
– ident: e_1_2_7_77_1
  doi: 10.1023/A:1005757218475
– ident: e_1_2_7_9_1
  doi: 10.1007/s11104-013-1649-5
– ident: e_1_2_7_29_1
  doi: 10.1146/annurev.ecolsys.35.112202.130201
– ident: e_1_2_7_44_1
  doi: 10.1007/s11104-010-0444-9
– ident: e_1_2_7_63_1
  doi: 10.1093/jxb/44.5.879
– volume-title: Soil‐Plant Relationships
  year: 1968
  ident: e_1_2_7_7_1
– ident: e_1_2_7_40_1
  doi: 10.1111/1365-2745.12123
– ident: e_1_2_7_79_1
  doi: 10.1023/A:1015798428743
– volume-title: Management Plan, Lesueur National Park and Coomallo Nature Reserve
  year: 1995
  ident: e_1_2_7_14_1
– volume: 5
  start-page: 211
  year: 1994
  ident: e_1_2_7_51_1
  article-title: Legumes and nitrogen: the evolutionary ecology of a nitrogen‐demanding lifestyle
  publication-title: Advances in Legume Systematics
– ident: e_1_2_7_12_1
  doi: 10.1023/A:1022323215010
– ident: e_1_2_7_69_1
  doi: 10.1111/j.1442-9993.1977.tb01135.x
– ident: e_1_2_7_32_1
  doi: 10.1007/BF00336518
– ident: e_1_2_7_73_1
  doi: 10.1111/j.1469-8137.2012.04190.x
– ident: e_1_2_7_43_1
  doi: 10.1016/j.tree.2007.10.008
– ident: e_1_2_7_11_1
  doi: 10.2307/1938144
– ident: e_1_2_7_36_1
  doi: 10.1890/04-1830
– ident: e_1_2_7_78_1
  doi: 10.2307/1939338
– ident: e_1_2_7_80_1
  doi: 10.2307/1941561
– ident: e_1_2_7_8_1
  doi: 10.2307/2405065
– ident: e_1_2_7_53_1
  doi: 10.1038/35002501
– ident: e_1_2_7_71_1
  doi: 10.1007/BF00203769
– ident: e_1_2_7_33_1
  doi: 10.1016/0277-3791(91)90005-F
– ident: e_1_2_7_38_1
  doi: 10.1007/s11104-012-1159-x
– ident: e_1_2_7_56_1
  doi: 10.1890/09-1552.1
– ident: e_1_2_7_42_1
  doi: 10.1093/aob/mcl114
– ident: e_1_2_7_54_1
  doi: 10.1023/A:1016249704336
– ident: e_1_2_7_65_1
  doi: 10.1111/j.1399-3054.2005.00527.x
– volume: 289
  start-page: 425
  year: 1979
  ident: e_1_2_7_30_1
  article-title: Accumulation du manganèse par les Protéacées de Nouvelle‐Calédonie
  publication-title: Comptes Rendus Hebdomadaires des Scéanes de l'Académie des Sciences de Paris. Série D, Sciences Naturelles
– ident: e_1_2_7_62_1
  doi: 10.1890/04-0524
– ident: e_1_2_7_18_1
  doi: 10.1007/BF02374894
– ident: e_1_2_7_41_1
  doi: 10.1007/978-0-387-78341-3
– ident: e_1_2_7_57_1
  doi: 10.1007/978-1-4419-0318-1
– ident: e_1_2_7_5_1
  doi: 10.1139/x2012-023
– volume-title: Mycorrhizal Symbiosis
  year: 2008
  ident: e_1_2_7_68_1
– ident: e_1_2_7_67_1
  doi: 10.1007/s11104-011-0874-z
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1469-8137.2012.04285.x
SSID ssj0006750
Score 2.552434
Snippet Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability...
1. Long-term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the...
Summary Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the...
Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen ( N ) and phosphorus ( P ). Changes in the...
Long-term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 396
SubjectTerms age of soil
Agricultural soils
Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Chronosequences
Dunes
Ecological succession
ecosystems
Flowers & plants
Fundamental and applied biological sciences. Psychology
General aspects
Human ecology
Leaves
manganese
manganese accumulation
Micronutrients
Nitrogen
Nitrogen fixation
Nutrient availability
Nutrient concentrations
nutrient content
Nutrient use efficiency
nutrient‐resorption efficiency
nutrient‐resorption proficiency
Organic acids
organic acids and salts
Pedogenesis
Phosphorus
Plant ecology
Plant nutrition
Plant–soil (below-ground) interactions
resorption
Soil ecology
Soil fertility
soil fertility gradient
Soil nutrients
soil productivity
Soils
solubilization
Zinc
Title Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence
URI https://www.jstor.org/stable/24541270
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12196
https://www.proquest.com/docview/1502746166
https://www.proquest.com/docview/1999932258
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbhMxFLWgohIbHoWqgVIZiQWbicYztmdmCVWiqhIsgEjsRn6iiGimzWQWYdVP6DfwaXwJ93oebSohhNhEVnztiePr63OT42NC3ujCcpHZNOLcwIuL06jgSkXCMGeFlQULOgUfPsqzBT__KgY2IZ6F6fQhxh_ccGWEeI0LXOnm1iLvT1NxgQIJBYpu4zsIiz7dCEgBHI4HvfCYZ1kv7oNcnjvtd_al-17VA0ER2ZKqgS_Mdzdd7EDR24A27Ejzx0QPY-mIKN-n7UZPzY87Mo__Ndgn5FGPV-m7zsGeknuuOiD73Q2W2wPy4H0N6BIK-7Mgf719Rn7O69VSrWmFOv-wpVGDJyOrXp63oaqyFHL8eh2CFXVBwwIPgNJlRS9WyMuhtaeBQ68aZGWPXf26ulbmsl12PDPabAadC6pWNdgpmoAJXqQE1VDawjKmtq0cNagBXA-88edkMZ99OT2L-psgIgMxQkYIM5hlPuNeS50CqFQ6j62HZKsotFBCWicLnSTMJDmUmAI7xQ2k97nXXqWHZK-qK3dEqExt6p03sXaSC8C_QluWyYwxlSGcmpDp4Ael6WXS8baOVTmkSzgXJc5FGeZiQt6ODS46hZA_mx6BY5XqG8TvcvE5wew2RsDG2YQcBm8bu0i44MgKmJCTHfe7MQhSdjl0ejz4Y9nHn6YEmA-PlUxC9euxGiIH_h2kKle3YAO5QYHxPIcxB-f72-cvz2enofDiXxu8JA9xtB1575jsbdatewVobqNPwoL9DY1TP5A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF7RQkUv_BSqBkpZJA5cHHnt9do-QpUolLYHaKTerP1zFRHZJY4P6YlH4Bl4NJ6EmfVPk0oIIS7RSh5vvNnZ2W-cb78h5K1KDY9iE3qca_iwfuilXEov0syayIiUOZ2Cs3MxmfKTy-hy7SxMow_Rv3DDleHiNS5wfCG9tsrb41Q8QoWEVGyR-1jX26VVn28lpAAQ-51iuM_juJX3QTbPnQ42dqatXJYdRRH5krKCnyxval1sgNF1SOv2pPFjorvRNFSUr8N6qYb65o7Q4_8N9wl51EJW-r7xsafkni32yE5TxHK1Rx58KAFgQmNn5BSwV8_Iz3E5n8kFLVDqH3Y1qvFwZNEq9FZUFoZCml8uXLyi1slY4BlQOivo9RypObTMqaPRywqJ2X1Xv77_kPpbPWuoZrRadlIXVM5LsJM0ABOspQSXobWClUxNXViqUQa47Kjjz8l0PLo4nnhtMQhPQ5gQHiINZlge81wJFQKulCrxTQ75VpqqSEbCWJGqIGA6SKDFJNhJriHDT3KVy3CfbBdlYQ8IFaEJc5trX1nBwWPSSBkWi5gxGSOiGpBh5wiZbpXSsWDHPOsyJpyLDOcic3MxIO_6G64bkZA_mx6AZ2XyCkJ4Nv0SYILrI2bjbED2nbv1XQQ84kgMGJCjDf-7NXBqdgl0etg5ZNaGoCoDpA9fK5iAy2_6yxA88B8hWdiyBhtID1IM6QmM2Xnf354_Oxkdu8aLf73hNXk4uTg7zU4_nn96SXZx5A2X75BsLxe1fQXgbqmO3Or9DWvFQ6s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELZooagXfgpVA6UYiQOXjda7Xu_uEdpEpUCFgEjcVv5FEdFumk0O4cQj8Aw8Gk_CjPenTSWEEJfIkmedOJ4Zf5N8_kzIc5UbnqQmDjjX8GLDOMi5lEGimTWJETnzOgXvzsXphJ99Tjo2IZ6FafQh-h_cMDJ8vsYAnxt3Jcjb01Q8QYGEXGyRm1yEGTr2yYdLBSnAw2EnGB7yNG3VfZDMc22AjY1py8mqYygiXVLW8I255qqLDSx6FdH6LWl8l6huMg0T5etwtVRD_e2azuN_zfYeudMCVvqy8bD75IYt98hOc4Xleo_celUBvITGzsjrX68fkJ_jajaVC1qi0D_saVTj0ciy1eetqSwNhSK_WvhsRa0XscAToHRa0vkMiTm0ctST6GWNtOx-qF_ff0h9sZo2RDNaLzuhCypnFdhJGoEJ3qQE3dBaQxxTsyot1SgCXHXE8YdkMh59Oj4N2qsgAg1JQgSIM5hhLuVOCRUDqpQqC42DaivPVSITYazIVRQxHWXQYhLsJNdQ32dOORnvk-2yKu0BoSI2sbNOh8oKngAATpRhqUgZkyniqQEZdn5Q6FYnHa_rmBVdvYRrUeBaFH4tBuRF_8C8kQj5s-kBOFYhv0ACLyYfIyxvQ0RsnA3Ivve2foiIJxxpAQNytOF-lwZeyy6DQQ87fyzaBFQXgPPhbQUT0P2s74bUgf8HydJWK7CB4iDHhJ7BnL3z_e3zF2ejY9949K8PPCW335-Mi7evz988Jrs48YbId0i2l4uVfQLIbqmOfOz-BoTXQmM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Foliar+nutrient+concentrations+and+resorption+efficiency+in+plants+of+contrasting+nutrient%E2%80%90acquisition+strategies+along+a+2%E2%80%90million%E2%80%90year+dune+chronosequence&rft.jtitle=The+Journal+of+ecology&rft.au=Hayes%2C+Patrick&rft.au=Turner%2C+Benjamin+L.&rft.au=Lambers%2C+Hans&rft.au=Lalibert%C3%A9%2C+Etienne&rft.date=2014-03-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=102&rft.issue=2&rft.spage=396&rft.epage=410&rft_id=info:doi/10.1111%2F1365-2745.12196&rft.externalDBID=10.1111%252F1365-2745.12196&rft.externalDocID=JEC12196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon