Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles

A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single‐guide RNA (sgRNA) into the specific cell and organ. An effective and ver...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 33; pp. e1902575 - n/a
Main Authors Liu, Ji, Chang, Jin, Jiang, Ying, Meng, Xiandi, Sun, Tianmeng, Mao, Lanqun, Xu, Qiaobing, Wang, Ming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single‐guide RNA (sgRNA) into the specific cell and organ. An effective and very fast CRISPR/Cas9 genome editing in vitro and in vivo enabled by bioreducible lipid/Cas9 messenger RNA (mRNA) nanoparticle is reported. BAMEA‐O16B, a lipid nanoparticle integrated with disulfide bonds, can efficiently deliver Cas9 mRNA and sgRNA into cells while releasing RNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. It is demonstrated that the simultaneous delivery of Cas9 mRNA and sgRNA using BAMEA‐O16B knocks out green fluorescent protein (GFP) expression of human embryonic kidney cells with efficiency up to 90%. Moreover, the intravenous injection of BAMEA‐O16B/Cas9 mRNA/sgRNA nanoparticle effectively accumulates in hepatocytes, and knocks down proprotein convertase subtilisin/kexin type 9 level in mouse serum down to 20% of nontreatment. The leading lipid nanoparticle, BAMEA‐O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far, and it can broaden the therapeutic promise of mRNA and CRISPR/Cas9 technique further. A bioreducible lipid nanoparticle integrated with disulfide bonds can efficiently deliver Cas9 messenger RNA (mRNA) and single‐guide RNA into cells, while releasing mRNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. The leading lipid nanoparticle, BAMEA‐O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far.
AbstractList A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single-guide RNA (sgRNA) into the specific cell and organ. An effective and very fast CRISPR/Cas9 genome editing in vitro and in vivo enabled by bioreducible lipid/Cas9 messenger RNA (mRNA) nanoparticle is reported. BAMEA-O16B, a lipid nanoparticle integrated with disulfide bonds, can efficiently deliver Cas9 mRNA and sgRNA into cells while releasing RNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. It is demonstrated that the simultaneous delivery of Cas9 mRNA and sgRNA using BAMEA-O16B knocks out green fluorescent protein (GFP) expression of human embryonic kidney cells with efficiency up to 90%. Moreover, the intravenous injection of BAMEA-O16B/Cas9 mRNA/sgRNA nanoparticle effectively accumulates in hepatocytes, and knocks down proprotein convertase subtilisin/kexin type 9 level in mouse serum down to 20% of nontreatment. The leading lipid nanoparticle, BAMEA-O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far, and it can broaden the therapeutic promise of mRNA and CRISPR/Cas9 technique further.
A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single‐guide RNA (sgRNA) into the specific cell and organ. An effective and very fast CRISPR/Cas9 genome editing in vitro and in vivo enabled by bioreducible lipid/Cas9 messenger RNA (mRNA) nanoparticle is reported. BAMEA‐O16B, a lipid nanoparticle integrated with disulfide bonds, can efficiently deliver Cas9 mRNA and sgRNA into cells while releasing RNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. It is demonstrated that the simultaneous delivery of Cas9 mRNA and sgRNA using BAMEA‐O16B knocks out green fluorescent protein (GFP) expression of human embryonic kidney cells with efficiency up to 90%. Moreover, the intravenous injection of BAMEA‐O16B/Cas9 mRNA/sgRNA nanoparticle effectively accumulates in hepatocytes, and knocks down proprotein convertase subtilisin/kexin type 9 level in mouse serum down to 20% of nontreatment. The leading lipid nanoparticle, BAMEA‐O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far, and it can broaden the therapeutic promise of mRNA and CRISPR/Cas9 technique further. A bioreducible lipid nanoparticle integrated with disulfide bonds can efficiently deliver Cas9 messenger RNA (mRNA) and single‐guide RNA into cells, while releasing mRNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. The leading lipid nanoparticle, BAMEA‐O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far.
A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single-guide RNA (sgRNA) into the specific cell and organ. An effective and very fast CRISPR/Cas9 genome editing in vitro and in vivo enabled by bioreducible lipid/Cas9 messenger RNA (mRNA) nanoparticle is reported. BAMEA-O16B, a lipid nanoparticle integrated with disulfide bonds, can efficiently deliver Cas9 mRNA and sgRNA into cells while releasing RNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. It is demonstrated that the simultaneous delivery of Cas9 mRNA and sgRNA using BAMEA-O16B knocks out green fluorescent protein (GFP) expression of human embryonic kidney cells with efficiency up to 90%. Moreover, the intravenous injection of BAMEA-O16B/Cas9 mRNA/sgRNA nanoparticle effectively accumulates in hepatocytes, and knocks down proprotein convertase subtilisin/kexin type 9 level in mouse serum down to 20% of nontreatment. The leading lipid nanoparticle, BAMEA-O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far, and it can broaden the therapeutic promise of mRNA and CRISPR/Cas9 technique further.A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single-guide RNA (sgRNA) into the specific cell and organ. An effective and very fast CRISPR/Cas9 genome editing in vitro and in vivo enabled by bioreducible lipid/Cas9 messenger RNA (mRNA) nanoparticle is reported. BAMEA-O16B, a lipid nanoparticle integrated with disulfide bonds, can efficiently deliver Cas9 mRNA and sgRNA into cells while releasing RNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. It is demonstrated that the simultaneous delivery of Cas9 mRNA and sgRNA using BAMEA-O16B knocks out green fluorescent protein (GFP) expression of human embryonic kidney cells with efficiency up to 90%. Moreover, the intravenous injection of BAMEA-O16B/Cas9 mRNA/sgRNA nanoparticle effectively accumulates in hepatocytes, and knocks down proprotein convertase subtilisin/kexin type 9 level in mouse serum down to 20% of nontreatment. The leading lipid nanoparticle, BAMEA-O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far, and it can broaden the therapeutic promise of mRNA and CRISPR/Cas9 technique further.
Author Liu, Ji
Chang, Jin
Meng, Xiandi
Sun, Tianmeng
Jiang, Ying
Xu, Qiaobing
Mao, Lanqun
Wang, Ming
Author_xml – sequence: 1
  givenname: Ji
  surname: Liu
  fullname: Liu, Ji
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Jin
  surname: Chang
  fullname: Chang, Jin
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Ying
  surname: Jiang
  fullname: Jiang, Ying
  organization: The Chinese Academy of Sciences (CAS)
– sequence: 4
  givenname: Xiandi
  surname: Meng
  fullname: Meng, Xiandi
  organization: Jilin University
– sequence: 5
  givenname: Tianmeng
  surname: Sun
  fullname: Sun, Tianmeng
  organization: Jilin University
– sequence: 6
  givenname: Lanqun
  surname: Mao
  fullname: Mao, Lanqun
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Qiaobing
  surname: Xu
  fullname: Xu, Qiaobing
  email: qiaobing.xu@tufts.edu
  organization: Tufts University
– sequence: 8
  givenname: Ming
  orcidid: 0000-0002-2783-9426
  surname: Wang
  fullname: Wang, Ming
  email: mingwang@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31215123$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEUhS1URNPCliWyxIbNpH6Mx-MNUghpiZQWFB5by-Oxg6sZO9gzRfn3OKQEqIRYWbr3O8fn6pyBEx-8AeA5RlOMELlQba-mBGGBCOPsEZhgRnBRIsFOwAQJygpRlfUpOEvpFiEkKlQ9AacUE8wwoROQLlUaoPItXFjrtDN-gPP18uOH9cVcJQGvjA-9gYvWDc5v4NLDL-4uwIVXTWda2OzgGxeiaUft8gCu3Na1P-2uTUrGb0yE65sZvFE-bFUcnO5MegoeW9Ul8-z-PQefLxef5u-K1fur5Xy2KjSjmBWKNZZboTFlotKIWVwjrEmpWYstUzVtiCmrhvMSc4vytjSVQA1XLUeY8oqeg9cH3-3Y9KbV-baoOrmNrldxJ4Ny8u-Nd1_lJtzJilPC6zobvLo3iOHbaNIge5e06TrlTRiTJKSkpeBUoIy-fIDehjH6fF6mOMFV9tsnevFnomOUX31kYHoAdAwpRWOPCEZyX7jcFy6PhWdB-UCg3aAGF_YXue7fMnGQfXed2f3nEzl7ez37rf0Bwzu-NQ
CitedBy_id crossref_primary_10_1038_s41392_023_01309_7
crossref_primary_10_1002_EXP_20210081
crossref_primary_10_1021_acs_chemrev_1c00244
crossref_primary_10_3390_pharmaceutics16010131
crossref_primary_10_1186_s12951_020_00685_4
crossref_primary_10_1002_smsc_202400192
crossref_primary_10_1016_j_addr_2024_115359
crossref_primary_10_1016_j_biomaterials_2022_121876
crossref_primary_10_1002_ange_202003545
crossref_primary_10_37349_eemd_2024_00011
crossref_primary_10_1038_s41596_021_00665_4
crossref_primary_10_3390_ph17060763
crossref_primary_10_1002_ange_202004994
crossref_primary_10_1039_D1CC05999H
crossref_primary_10_3390_pharmaceutics13111914
crossref_primary_10_1038_s41467_021_27493_0
crossref_primary_10_2147_IJN_S457393
crossref_primary_10_1002_smll_202310531
crossref_primary_10_3390_pharmaceutics13060920
crossref_primary_10_1016_j_biomaterials_2021_121252
crossref_primary_10_1360_SSV_2021_0376
crossref_primary_10_1186_s12943_021_01311_z
crossref_primary_10_1016_j_plana_2022_100001
crossref_primary_10_3390_cimb44100341
crossref_primary_10_1021_acsabm_1c01112
crossref_primary_10_1021_acscentsci_1c01143
crossref_primary_10_1016_j_dmpk_2022_100450
crossref_primary_10_1038_s41467_023_40345_3
crossref_primary_10_1002_anbr_202200082
crossref_primary_10_1002_smll_202005222
crossref_primary_10_3390_ijms222011300
crossref_primary_10_1073_pnas_2116271119
crossref_primary_10_1016_j_nantod_2023_101790
crossref_primary_10_1002_wnan_70002
crossref_primary_10_1016_j_apsb_2023_03_001
crossref_primary_10_1016_j_addr_2020_09_004
crossref_primary_10_1002_anie_202005644
crossref_primary_10_1073_pnas_2020401118
crossref_primary_10_1002_adma_202300665
crossref_primary_10_1016_j_addr_2019_11_005
crossref_primary_10_1039_D3NR02175K
crossref_primary_10_1021_acs_molpharmaceut_1c00916
crossref_primary_10_1007_s12265_024_10587_7
crossref_primary_10_1002_adma_202308029
crossref_primary_10_1016_j_nantod_2022_101482
crossref_primary_10_1016_j_cis_2025_103497
crossref_primary_10_1021_jacs_4c14847
crossref_primary_10_1021_acs_molpharmaceut_1c00461
crossref_primary_10_3389_fnins_2021_803894
crossref_primary_10_1021_acsinfecdis_2c00649
crossref_primary_10_1039_D2NR04095F
crossref_primary_10_3389_fbioe_2020_00323
crossref_primary_10_1016_j_apsb_2022_04_013
crossref_primary_10_1126_sciadv_abc2315
crossref_primary_10_1016_j_ymeth_2021_06_004
crossref_primary_10_1039_D1BM01658J
crossref_primary_10_1016_j_tips_2020_08_001
crossref_primary_10_1016_j_biomaterials_2022_121645
crossref_primary_10_1016_j_jconrel_2021_06_030
crossref_primary_10_1002_adfm_201910575
crossref_primary_10_1016_j_ajps_2023_100854
crossref_primary_10_1021_acsnano_3c09028
crossref_primary_10_1016_j_bioactmat_2021_05_051
crossref_primary_10_1002_adhm_202202688
crossref_primary_10_1016_j_apsb_2024_08_030
crossref_primary_10_1021_jacs_3c09143
crossref_primary_10_1016_j_actbio_2022_09_065
crossref_primary_10_1002_mba2_70
crossref_primary_10_1016_j_copbio_2024_103182
crossref_primary_10_1002_adhm_202203033
crossref_primary_10_1186_s12951_024_02919_1
crossref_primary_10_1007_s12033_023_00708_z
crossref_primary_10_1208_s12248_025_01051_8
crossref_primary_10_1002_advs_202001424
crossref_primary_10_1016_j_tibtech_2023_06_005
crossref_primary_10_1002_adbi_202400374
crossref_primary_10_1002_advs_202105231
crossref_primary_10_1016_j_mtadv_2022_100240
crossref_primary_10_1039_D3BM00387F
crossref_primary_10_1016_j_microc_2024_112638
crossref_primary_10_1186_s12951_021_01233_4
crossref_primary_10_1039_D2TB01055K
crossref_primary_10_1002_adfm_202204947
crossref_primary_10_1002_cbic_202400481
crossref_primary_10_1016_j_biomaterials_2020_120221
crossref_primary_10_31857_S0132342323010232
crossref_primary_10_1016_j_addr_2021_113891
crossref_primary_10_1021_jacs_4c14500
crossref_primary_10_3390_pharmaceutics16030346
crossref_primary_10_1002_ange_202005644
crossref_primary_10_1002_adfm_202011068
crossref_primary_10_1016_j_bioactmat_2022_01_026
crossref_primary_10_3389_fped_2022_863868
crossref_primary_10_1007_s42452_020_03397_4
crossref_primary_10_1039_D1BM00790D
crossref_primary_10_1002_adhm_202000938
crossref_primary_10_1021_jacs_2c10409
crossref_primary_10_1002_cbic_202200801
crossref_primary_10_1016_j_nantod_2022_101617
crossref_primary_10_1002_advs_202300195
crossref_primary_10_1080_02652048_2024_2404414
crossref_primary_10_1021_acs_molpharmaceut_0c00618
crossref_primary_10_1016_j_ymthe_2021_06_003
crossref_primary_10_1002_adtp_202400412
crossref_primary_10_1016_j_jddst_2021_102728
crossref_primary_10_1186_s12935_023_03194_0
crossref_primary_10_1021_acs_molpharmaceut_4c00925
crossref_primary_10_1016_j_jddst_2024_105457
crossref_primary_10_1021_acs_accounts_1c00601
crossref_primary_10_1021_acsami_9b17749
crossref_primary_10_1002_adtp_202000072
crossref_primary_10_1021_acsomega_3c07138
crossref_primary_10_3390_ijms232415758
crossref_primary_10_1186_s12951_025_03254_9
crossref_primary_10_1002_anie_202004994
crossref_primary_10_1038_s41578_022_00529_7
crossref_primary_10_1016_j_ajps_2022_08_001
crossref_primary_10_1080_17425247_2025_2452295
crossref_primary_10_34133_bmr_0023
crossref_primary_10_1007_s11883_022_00986_z
crossref_primary_10_1126_sciadv_abk2855
crossref_primary_10_2174_0115733998263079231011073803
crossref_primary_10_1016_j_addr_2020_06_026
crossref_primary_10_4167_jbv_2024_54_1_012
crossref_primary_10_1016_j_jddst_2024_105547
crossref_primary_10_1002_anie_201914970
crossref_primary_10_1016_j_addr_2020_12_014
crossref_primary_10_1038_s41580_020_0251_y
crossref_primary_10_1016_j_nantod_2023_102097
crossref_primary_10_1002_anie_202013904
crossref_primary_10_1016_j_actbio_2022_05_050
crossref_primary_10_3389_fmed_2021_649896
crossref_primary_10_1016_j_scib_2021_11_016
crossref_primary_10_3390_ijms24087052
crossref_primary_10_1021_acsnano_3c02669
crossref_primary_10_1016_j_jrras_2024_101199
crossref_primary_10_1038_s41565_023_01548_3
crossref_primary_10_1039_D1CS00343G
crossref_primary_10_3390_molecules25245995
crossref_primary_10_1039_D3BM00788J
crossref_primary_10_58209_ijbc_15_1_60
crossref_primary_10_1016_j_supmat_2024_100070
crossref_primary_10_1039_D0TB00207K
crossref_primary_10_1039_D1BM01452H
crossref_primary_10_1016_j_medidd_2020_100023
crossref_primary_10_1002_anie_202003545
crossref_primary_10_1002_ange_202013904
crossref_primary_10_1016_j_nantod_2022_101396
crossref_primary_10_1021_acs_accounts_1c00500
crossref_primary_10_1186_s12951_022_01570_y
crossref_primary_10_1002_ange_201914970
crossref_primary_10_1126_sciadv_abj0624
crossref_primary_10_3390_pharmaceutics13030352
crossref_primary_10_1080_10717544_2022_2152911
crossref_primary_10_1080_17425247_2022_2100342
crossref_primary_10_1016_j_omtn_2020_04_012
crossref_primary_10_1186_s12951_022_01717_x
crossref_primary_10_1016_j_jconrel_2020_06_030
crossref_primary_10_1002_adtp_202000099
crossref_primary_10_1002_smtd_202100402
crossref_primary_10_1039_D1CS00617G
crossref_primary_10_1002_wnan_1938
crossref_primary_10_1039_D1BM00537E
crossref_primary_10_1002_bmm2_12025
crossref_primary_10_1021_acs_chemmater_0c02571
crossref_primary_10_1016_j_drudis_2023_103652
crossref_primary_10_1038_s41578_021_00358_0
crossref_primary_10_3390_biom15030376
crossref_primary_10_1039_D3BM00529A
crossref_primary_10_1002_mco2_187
crossref_primary_10_3389_fimmu_2023_1147991
crossref_primary_10_1002_adom_202201067
crossref_primary_10_1016_j_cell_2022_03_045
crossref_primary_10_1016_j_omtn_2019_12_004
crossref_primary_10_1093_bjd_ljad528
crossref_primary_10_1177_15330338211045206
crossref_primary_10_1016_j_jconrel_2022_02_012
crossref_primary_10_1186_s12951_023_01938_8
crossref_primary_10_1021_acsnano_4c05513
crossref_primary_10_1016_j_jconrel_2024_06_023
crossref_primary_10_1016_j_jconrel_2024_09_019
crossref_primary_10_1016_j_fmre_2023_02_022
crossref_primary_10_1016_j_jconrel_2023_07_007
crossref_primary_10_1021_acsnano_0c04707
crossref_primary_10_1016_j_cej_2022_135116
crossref_primary_10_1089_crispr_2022_0051
crossref_primary_10_1080_14712598_2021_1869208
crossref_primary_10_3390_pharmaceutics15020477
crossref_primary_10_1039_D4NR01357C
crossref_primary_10_1021_acs_nanolett_1c03708
crossref_primary_10_1002_smll_202100546
crossref_primary_10_1021_acsmaterialslett_0c00375
crossref_primary_10_1007_s00018_020_03725_2
crossref_primary_10_1039_D2RA02771B
crossref_primary_10_1016_j_actbio_2024_02_004
crossref_primary_10_1038_s41563_020_00886_0
crossref_primary_10_3389_fpls_2021_691295
crossref_primary_10_3389_fbioe_2022_1053197
crossref_primary_10_1002_adma_202306246
crossref_primary_10_1007_s40097_022_00472_7
crossref_primary_10_1016_j_apsb_2021_05_020
crossref_primary_10_1021_acs_accounts_1c00550
crossref_primary_10_1080_17425247_2023_2185220
crossref_primary_10_1016_j_mattod_2023_04_011
crossref_primary_10_1097_HCO_0000000000000723
crossref_primary_10_1557_s43579_021_00128_7
crossref_primary_10_1021_acs_accounts_3c00597
crossref_primary_10_1021_acs_nanolett_0c03287
crossref_primary_10_1089_crispr_2021_0134
crossref_primary_10_1002_adhm_202401895
crossref_primary_10_1038_s41578_024_00725_7
crossref_primary_10_1002_wnan_1978
crossref_primary_10_1186_s12951_024_02882_x
crossref_primary_10_32604_oncologie_2022_019415
crossref_primary_10_3389_fbioe_2022_1078342
crossref_primary_10_1016_j_apsb_2022_10_004
crossref_primary_10_1016_j_tips_2019_11_006
crossref_primary_10_1039_D1BM00558H
crossref_primary_10_1039_D3BM01981K
crossref_primary_10_1021_acs_nanolett_3c02061
crossref_primary_10_1007_s11356_024_32101_x
crossref_primary_10_1016_j_matdes_2022_111415
crossref_primary_10_3390_pharmaceutics13040544
crossref_primary_10_1021_acs_nanolett_4c00533
crossref_primary_10_1016_j_jddst_2022_103948
crossref_primary_10_3389_fmicb_2022_953218
crossref_primary_10_3389_fchem_2021_786354
crossref_primary_10_1016_j_bbcan_2023_189068
crossref_primary_10_1016_j_jconrel_2022_03_032
crossref_primary_10_1002_advs_202205475
crossref_primary_10_3390_ijms241814299
crossref_primary_10_1007_s12272_020_01257_8
crossref_primary_10_3390_antibiotics13121141
crossref_primary_10_1016_j_addr_2020_07_001
crossref_primary_10_1134_S1068162023010235
crossref_primary_10_3390_pharmaceutics14102129
crossref_primary_10_3390_cells11193079
crossref_primary_10_1002_adma_202310886
crossref_primary_10_1002_cbic_202100225
crossref_primary_10_1016_j_addr_2023_115042
crossref_primary_10_1021_acsnano_0c10144
crossref_primary_10_1016_j_addr_2023_114990
crossref_primary_10_1002_cbic_202300180
crossref_primary_10_1016_j_trac_2025_118164
crossref_primary_10_1016_j_omto_2020_07_007
crossref_primary_10_3390_ijms20235926
crossref_primary_10_3389_fonc_2023_1194350
crossref_primary_10_26599_NR_2025_94907081
crossref_primary_10_1002_mco2_70035
crossref_primary_10_1038_s41392_024_02002_z
crossref_primary_10_1016_j_critrevonc_2024_104576
crossref_primary_10_3390_pharmaceutics13101649
crossref_primary_10_1038_s41392_021_00645_w
crossref_primary_10_1038_s41392_022_01007_w
crossref_primary_10_1186_s12951_024_02627_w
crossref_primary_10_1021_acs_molpharmaceut_1c00798
crossref_primary_10_1186_s12929_023_00977_5
crossref_primary_10_3390_cells13070568
crossref_primary_10_1126_sciadv_abb7107
crossref_primary_10_1016_j_biopha_2024_116470
crossref_primary_10_3390_nano10020364
crossref_primary_10_1002_adma_202307822
crossref_primary_10_1016_j_jconrel_2020_08_031
crossref_primary_10_1021_acs_molpharmaceut_3c00089
crossref_primary_10_1134_S0026893322060218
crossref_primary_10_1021_jacs_4c04565
crossref_primary_10_1016_j_apsb_2024_04_015
crossref_primary_10_1016_j_addr_2020_03_001
crossref_primary_10_3389_fbioe_2022_973326
crossref_primary_10_1016_j_ejpb_2024_114234
crossref_primary_10_1016_j_jddst_2022_103737
crossref_primary_10_23736_S1120_4826_20_02618_X
crossref_primary_10_1021_acs_biochem_0c00860
crossref_primary_10_1002_INMD_20220014
crossref_primary_10_1126_sciadv_abm8011
crossref_primary_10_1016_j_actbio_2022_02_018
crossref_primary_10_1021_acsami_0c08268
crossref_primary_10_1186_s12964_024_01713_8
crossref_primary_10_1021_jacs_1c13067
crossref_primary_10_3390_pharmaceutics12121233
crossref_primary_10_3390_pharmaceutics14071495
Cites_doi 10.1016/j.tibtech.2017.11.006
10.1073/pnas.1520244113
10.1021/acs.accounts.8b00493
10.4330/wjc.v9.i2.76
10.1021/jacs.8b11996
10.1039/C8BM00637G
10.1128/JVI.01879-14
10.1038/nrd4278
10.1126/science.1225829
10.1016/j.cell.2014.05.010
10.1021/acsnano.6b04261
10.1038/nbt.3471
10.1038/s41467-017-02088-w
10.1038/s41551-017-0137-2
10.1002/anie.201506030
10.1038/ng1161
10.1038/cr.2017.16
10.1073/pnas.1811276115
10.1002/anie.201708689
10.1073/pnas.1614193114
10.1002/anie.201311245
10.1038/nature14299
10.1038/nrd.2016.280
10.1002/anie.201610209
10.1126/science.1231143
10.1002/anie.201407234
10.1021/acs.chemrev.6b00799
10.1016/j.jbiotec.2015.04.024
10.1126/science.aat5011
10.1002/advs.201801423
10.1002/anie.201806941
10.1073/pnas.1805358115
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.201902575
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID PMC6732788
31215123
10_1002_adma_201902575
ADMA201902575
Genre article
Journal Article
GrantInformation_xml – fundername: NIH
  funderid: UG3 TR002636‐01; NIH R21 EB024041
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0208100; 2016YFA0200104
– fundername: National Natural Science Foundation of China
  funderid: 21778056; 21790390; 21790391; 21621062; 21435007
– fundername: National Natural Science Foundation of China
  grantid: 21621062
– fundername: NIBIB NIH HHS
  grantid: R21 EB024041
– fundername: National Natural Science Foundation of China
  grantid: 21435007
– fundername: National Key Research and Development Program of China
  grantid: 2016YFA0200104
– fundername: National Natural Science Foundation of China
  grantid: 21790391
– fundername: National Natural Science Foundation of China
  grantid: 21790390
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0208100
– fundername: NIH HHS
  grantid: NIH R21 EB024041
– fundername: NIH HHS
  grantid: UG3 TR002636-01
– fundername: NCATS NIH HHS
  grantid: UG3 TR002636
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c5315-a5bf7f9c13596c05f1801c24c5d1f5a83b2e46b77417f0f184e690b7ad7013763
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Aug 21 18:20:48 EDT 2025
Fri Jul 11 09:25:30 EDT 2025
Fri Jul 25 04:55:09 EDT 2025
Mon Jul 21 05:33:59 EDT 2025
Tue Jul 01 00:44:53 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Wed Jan 22 16:40:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords genome editing
lipid nanoparticles
messenger RNA delivery
CRISPR/Cas9
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5315-a5bf7f9c13596c05f1801c24c5d1f5a83b2e46b77417f0f184e690b7ad7013763
Notes Present address: College of Chemistry, Beijing Normal University, Beijing 100875, China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2783-9426
PMID 31215123
PQID 2272167886
PQPubID 2045203
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6732788
proquest_miscellaneous_2243497390
proquest_journals_2272167886
pubmed_primary_31215123
crossref_primary_10_1002_adma_201902575
crossref_citationtrail_10_1002_adma_201902575
wiley_primary_10_1002_adma_201902575_ADMA201902575
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2019; 7
2017; 1
2019; 6
2019; 52
2017; 27
2015; 520
2015; 54
2015; 208
2019; 141
2017; 114
2017; 9
2014; 88
2017; 117
2016; 34
2014; 157
2003; 34
2018; 9
2013; 339
2017; 16
2017; 11
2018; 115
2017; 56
2016; 113
2014; 13
2012; 337
2018; 36
2018; 57
2014; 53
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_12_1
e_1_2_4_13_1
e_1_2_4_14_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 339
  start-page: 819
  year: 2013
  publication-title: Science
– volume: 7
  start-page: 596
  year: 2019
  publication-title: Biomater. Sci.
– volume: 13
  start-page: 759
  year: 2014
  publication-title: Nat. Rev. Drug Discovery
– volume: 141
  start-page: 3782
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 889
  year: 2017
  publication-title: Nat. Biomed. Eng.
– volume: 57
  start-page: 1491
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  start-page: 2893
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 88
  start-page: 11965
  year: 2014
  publication-title: J. Virol.
– volume: 208
  start-page: 44
  year: 2015
  publication-title: J. Biotechnol.
– volume: 157
  start-page: 1262
  year: 2014
  publication-title: Cell
– volume: 11
  start-page: 95
  year: 2017
  publication-title: ACS Nano
– volume: 337
  start-page: 816
  year: 2012
  publication-title: Science
– volume: 9
  start-page: 1
  year: 2018
  publication-title: Nat. Commun.
– volume: 113
  start-page: 2868
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 117
  start-page: 9874
  year: 2017
  publication-title: Chem. Rev.
– volume: 36
  start-page: 173
  year: 2018
  publication-title: Trends Biotechnol.
– volume: 34
  start-page: 328
  year: 2016
  publication-title: Nat. Biotechnol.
– volume: 114
  start-page: E448
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 115
  start-page: E9944
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 54
  start-page: 12029
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 115
  start-page: E5859
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 387
  year: 2017
  publication-title: Nat. Rev. Drug Discovery
– volume: 57
  start-page: 10268
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 440
  year: 2017
  publication-title: Cell Res.
– volume: 6
  start-page: 1801423
  year: 2019
  publication-title: Adv. Sci.
– volume: 56
  start-page: 1059
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 76
  year: 2017
  publication-title: World J. of Cardiol.
– volume: 53
  start-page: 13444
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 361
  start-page: 866
  year: 2018
  publication-title: Science
– volume: 34
  start-page: 154
  year: 2003
  publication-title: Nat. Genet.
– volume: 520
  start-page: 186
  year: 2015
  publication-title: Nature
– volume: 52
  start-page: 665
  year: 2019
  publication-title: Acc. Chem. Res.
– ident: e_1_2_4_7_1
  doi: 10.1016/j.tibtech.2017.11.006
– ident: e_1_2_4_9_1
  doi: 10.1073/pnas.1520244113
– ident: e_1_2_4_26_1
  doi: 10.1021/acs.accounts.8b00493
– ident: e_1_2_4_32_1
  doi: 10.4330/wjc.v9.i2.76
– ident: e_1_2_4_23_1
  doi: 10.1021/jacs.8b11996
– ident: e_1_2_4_22_1
  doi: 10.1039/C8BM00637G
– ident: e_1_2_4_28_1
  doi: 10.1128/JVI.01879-14
– ident: e_1_2_4_18_1
  doi: 10.1038/nrd4278
– ident: e_1_2_4_2_1
  doi: 10.1126/science.1225829
– ident: e_1_2_4_1_1
  doi: 10.1016/j.cell.2014.05.010
– ident: e_1_2_4_10_1
  doi: 10.1021/acsnano.6b04261
– ident: e_1_2_4_8_1
  doi: 10.1038/nbt.3471
– ident: e_1_2_4_17_1
  doi: 10.1038/s41467-017-02088-w
– ident: e_1_2_4_15_1
  doi: 10.1038/s41551-017-0137-2
– ident: e_1_2_4_11_1
  doi: 10.1002/anie.201506030
– ident: e_1_2_4_30_1
  doi: 10.1038/ng1161
– ident: e_1_2_4_29_1
  doi: 10.1038/cr.2017.16
– ident: e_1_2_4_16_1
  doi: 10.1073/pnas.1811276115
– ident: e_1_2_4_14_1
  doi: 10.1002/anie.201708689
– ident: e_1_2_4_20_1
  doi: 10.1073/pnas.1614193114
– ident: e_1_2_4_24_1
  doi: 10.1002/anie.201311245
– ident: e_1_2_4_31_1
  doi: 10.1038/nature14299
– ident: e_1_2_4_6_1
  doi: 10.1038/nrd.2016.280
– ident: e_1_2_4_27_1
  doi: 10.1002/anie.201610209
– ident: e_1_2_4_3_1
  doi: 10.1126/science.1231143
– ident: e_1_2_4_25_1
  doi: 10.1002/anie.201407234
– ident: e_1_2_4_5_1
  doi: 10.1021/acs.chemrev.6b00799
– ident: e_1_2_4_19_1
  doi: 10.1016/j.jbiotec.2015.04.024
– ident: e_1_2_4_4_1
  doi: 10.1126/science.aat5011
– ident: e_1_2_4_12_1
  doi: 10.1002/advs.201801423
– ident: e_1_2_4_13_1
  doi: 10.1002/anie.201806941
– ident: e_1_2_4_21_1
  doi: 10.1073/pnas.1805358115
SSID ssj0009606
Score 2.6738365
Snippet A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9)...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1902575
SubjectTerms Animals
Biological Transport
Biomedical materials
Cell Line, Tumor
CRISPR
CRISPR-Associated Protein 9 - genetics
CRISPR/Cas9
Editing
Fluorescence
Gene Editing - methods
Gene Knockdown Techniques - methods
Gene Transfer Techniques
genome editing
Genomes
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Humans
lipid nanoparticles
Lipids
Lipids - chemistry
Materials science
messenger RNA delivery
Mice
Nanoparticles
Nanoparticles - chemistry
Nuclease
Oxidation-Reduction
Proprotein Convertase 9 - genetics
Proprotein Convertase 9 - metabolism
Proteins
RNA, Guide, CRISPR-Cas Systems - administration & dosage
RNA, Guide, CRISPR-Cas Systems - chemistry
RNA, Messenger - administration & dosage
RNA, Messenger - chemistry
Title Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201902575
https://www.ncbi.nlm.nih.gov/pubmed/31215123
https://www.proquest.com/docview/2272167886
https://www.proquest.com/docview/2243497390
https://pubmed.ncbi.nlm.nih.gov/PMC6732788
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bb9MwFIcttCd44H4JDGQkJJ68xrEdJ4-ltGxInVBhaG-RryICErS0SPDX4-OkWcuEkOAhUlM7tZOeY__sHH9G6IUBTSqUJ2lQx4QzaYkOQpmkZeELFQ6uYGpgeZofn_G35-J8ZxV_z4cYJ9zAM2J7DQ6udDe5hIYqG7lBFN6TSVhlDgFboIpWl_wokOcRtscEKXNebKmNaTbZv3y_V7oiNa9GTO4q2dgVLW4htb2JPgLl89FmrY_Mz9_4jv9zl7fRzUGn4mlvWHfQNdfcRTd26IX3ULdQ3RqrxuJ55FCESuPZ6uT9u9VkproSv3FN-9Xhua0htBqfNPhj_b3F87hay2L9A7-q2wtAx9bhCwy7aNv4c0vgmcNsI16dTnFo_8PAfojfu4_OFvMPs2My7OFATPBuQZTQXvrSUCbK3KTC09AlmowbYakXqmA6czzXQYRS6dOQyl0Yr2uprAQYYs4eoIOmbdwjhJUyVNPMOWocV6UJLU8YazrGlLfecJYgsv0PKzMAzmGfjS9Vj2bOKniY1fgwE_RyzP-tR3v8Mefh1iSqwcW7KsuAeySLIk_Q8zE5OCe8cVGNazeQhzNeSlamCXrYW9BYFKNRbYVqyz3bGjMA-Hs_pak_RQB4LlkWCk5QFk3nL7Wvpq-X0_Hs8b9c9ARdh8994OMhOlhfbNzTIMbW-ll0uF8vNSqH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMefYByAA-PXWNgAIyFxyprEdpwcS2lpYa1Q2RC3yHYcEQHJtLZI8Nfj5_zYyoSQ4JBDbCdxkvfsr52XjwFeaNSkXBZ-YNWxz6jIfWWFsh-kSZFIuzGJUwPzRTw9ZW8_8S6aEP-FafgQ_YQbeoZrr9HBcUJ6cEENlbkDB4X4oUzw63ADl_V2o6rlBUEKBbrD7VHupzFLOm5jEA22j9_ul66Izasxk5e1rOuMJruguttoYlC-HG3W6kj__I3w-F_3eRfutFKVDBvbugfXTHUfbl8CGD6A1USu1kRWORk7FIWtNRktZx_eLwcjuUrJG1PV3wwZ5yVGV5NZRT6W32sydj9s5UT9IK_K-hzpsaVNILiQdu5ON0ekOU44kuViSGwXYMf2bQjfQzidjE9GU79dxsHX1sG5L7kqRJHqkPI01gEvQtsr6ohpnocFlwlVkWGxsjo0FEVgc5mxQ3YlZC6QhxjTPdip6srsA5FShyqMjAm1YTLVtvGxw01DqSzyQjPqgd-9xEy3jHNcauNr1tCZowwfZtY_TA9e9uXPGrrHH0sedjaRtV6-yqII0UciSWIPnvfZ1j_xo4usTL3BMoyyVNA08OBRY0L9pWjoBJetttgyrr4Asr-3c6rys2OAx4JG9sIeRM52_lL7bPh6Puz3Hv_LQc_g5vRkfpwdzxbvDuAWpjdxkIewsz7fmCdWm63VU-d9vwDGhy6i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bb9MwFIePYEgIHrgPAgOMhMRT1iS24-Sx9MIKtJoKQ3uLHF9EBCTT2iLBX4-P02YtE0KChzwkthPHOSf-2Tn5DPBSoSbl0oaRU8cho0KHpRPKYZRnNpNuYxKnBqaz9OiEvT3lp1t_8bd8iG7CDT3Dv6_Rwc-07V1AQ6X23KAYv5MJfhWusTTK0K6H8wuAFOpzT9ujPMxTlm2wjVHS2y2_2y1d0pqXQya3pazvi8a3QW7uog1B-XK4WpaH6udvgMf_uc07cGstVEm_tay7cMXU9-DmFr7wPizGcrEkstZk5EEUrtJkMJ98OJ73BnKRkzembr4ZMtIVxlaTSU0-Vd8bMvK_a2lS_iCvq-Yc2bGVO0BwGW3tTzdFoDlON5L5rE9cB-BG9usAvgdwMh59HByF60UcQuXcm4eSl1bYXMWU56mKuI1dn6gSpriOLZcZLRPD0tKp0FjYyKUy4wbspZBaIA0xpfuwVze1eQREShWXcWJMrAyTuXKvHjfYNJRKq61iNIBw8wwLtSac40IbX4uWzZwU2JhF15gBvOryn7Vsjz_mPNiYRLH28UWRJAg-ElmWBvCiS3beiZ9cZG2aFeZhlOWC5lEAD1sL6i5FYy-3XLXFjm11GZD8vZtSV589ATwVNHEXDiDxpvOX2hf94bTf7T3-l0LP4frxcFy8n8zePYEbeLgNgjyAveX5yjx1wmxZPvO-9wst2C1a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Efficient+CRISPR%2FCas9+Genome+Editing+In+Vivo+Enabled+by+Bioreducible+Lipid+and+Messenger+RNA+Nanoparticles&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Ji&rft.au=Chang%2C+Jin&rft.au=Jiang%2C+Ying&rft.au=Meng%2C+Xiandi&rft.date=2019-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=33&rft.spage=e1902575&rft.epage=e1902575&rft_id=info:doi/10.1002%2Fadma.201902575&rft_id=info%3Apmid%2F31215123&rft.externalDocID=PMC6732788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon