Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles
A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single‐guide RNA (sgRNA) into the specific cell and organ. An effective and ver...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 33; pp. e1902575 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single‐guide RNA (sgRNA) into the specific cell and organ. An effective and very fast CRISPR/Cas9 genome editing in vitro and in vivo enabled by bioreducible lipid/Cas9 messenger RNA (mRNA) nanoparticle is reported. BAMEA‐O16B, a lipid nanoparticle integrated with disulfide bonds, can efficiently deliver Cas9 mRNA and sgRNA into cells while releasing RNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. It is demonstrated that the simultaneous delivery of Cas9 mRNA and sgRNA using BAMEA‐O16B knocks out green fluorescent protein (GFP) expression of human embryonic kidney cells with efficiency up to 90%. Moreover, the intravenous injection of BAMEA‐O16B/Cas9 mRNA/sgRNA nanoparticle effectively accumulates in hepatocytes, and knocks down proprotein convertase subtilisin/kexin type 9 level in mouse serum down to 20% of nontreatment. The leading lipid nanoparticle, BAMEA‐O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far, and it can broaden the therapeutic promise of mRNA and CRISPR/Cas9 technique further.
A bioreducible lipid nanoparticle integrated with disulfide bonds can efficiently deliver Cas9 messenger RNA (mRNA) and single‐guide RNA into cells, while releasing mRNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. The leading lipid nanoparticle, BAMEA‐O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far. |
---|---|
AbstractList | A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single-guide RNA (sgRNA) into the specific cell and organ. An effective and very fast CRISPR/Cas9 genome editing in vitro and in vivo enabled by bioreducible lipid/Cas9 messenger RNA (mRNA) nanoparticle is reported. BAMEA-O16B, a lipid nanoparticle integrated with disulfide bonds, can efficiently deliver Cas9 mRNA and sgRNA into cells while releasing RNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. It is demonstrated that the simultaneous delivery of Cas9 mRNA and sgRNA using BAMEA-O16B knocks out green fluorescent protein (GFP) expression of human embryonic kidney cells with efficiency up to 90%. Moreover, the intravenous injection of BAMEA-O16B/Cas9 mRNA/sgRNA nanoparticle effectively accumulates in hepatocytes, and knocks down proprotein convertase subtilisin/kexin type 9 level in mouse serum down to 20% of nontreatment. The leading lipid nanoparticle, BAMEA-O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far, and it can broaden the therapeutic promise of mRNA and CRISPR/Cas9 technique further. A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single‐guide RNA (sgRNA) into the specific cell and organ. An effective and very fast CRISPR/Cas9 genome editing in vitro and in vivo enabled by bioreducible lipid/Cas9 messenger RNA (mRNA) nanoparticle is reported. BAMEA‐O16B, a lipid nanoparticle integrated with disulfide bonds, can efficiently deliver Cas9 mRNA and sgRNA into cells while releasing RNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. It is demonstrated that the simultaneous delivery of Cas9 mRNA and sgRNA using BAMEA‐O16B knocks out green fluorescent protein (GFP) expression of human embryonic kidney cells with efficiency up to 90%. Moreover, the intravenous injection of BAMEA‐O16B/Cas9 mRNA/sgRNA nanoparticle effectively accumulates in hepatocytes, and knocks down proprotein convertase subtilisin/kexin type 9 level in mouse serum down to 20% of nontreatment. The leading lipid nanoparticle, BAMEA‐O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far, and it can broaden the therapeutic promise of mRNA and CRISPR/Cas9 technique further. A bioreducible lipid nanoparticle integrated with disulfide bonds can efficiently deliver Cas9 messenger RNA (mRNA) and single‐guide RNA into cells, while releasing mRNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. The leading lipid nanoparticle, BAMEA‐O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far. A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single-guide RNA (sgRNA) into the specific cell and organ. An effective and very fast CRISPR/Cas9 genome editing in vitro and in vivo enabled by bioreducible lipid/Cas9 messenger RNA (mRNA) nanoparticle is reported. BAMEA-O16B, a lipid nanoparticle integrated with disulfide bonds, can efficiently deliver Cas9 mRNA and sgRNA into cells while releasing RNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. It is demonstrated that the simultaneous delivery of Cas9 mRNA and sgRNA using BAMEA-O16B knocks out green fluorescent protein (GFP) expression of human embryonic kidney cells with efficiency up to 90%. Moreover, the intravenous injection of BAMEA-O16B/Cas9 mRNA/sgRNA nanoparticle effectively accumulates in hepatocytes, and knocks down proprotein convertase subtilisin/kexin type 9 level in mouse serum down to 20% of nontreatment. The leading lipid nanoparticle, BAMEA-O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far, and it can broaden the therapeutic promise of mRNA and CRISPR/Cas9 technique further.A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single-guide RNA (sgRNA) into the specific cell and organ. An effective and very fast CRISPR/Cas9 genome editing in vitro and in vivo enabled by bioreducible lipid/Cas9 messenger RNA (mRNA) nanoparticle is reported. BAMEA-O16B, a lipid nanoparticle integrated with disulfide bonds, can efficiently deliver Cas9 mRNA and sgRNA into cells while releasing RNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. It is demonstrated that the simultaneous delivery of Cas9 mRNA and sgRNA using BAMEA-O16B knocks out green fluorescent protein (GFP) expression of human embryonic kidney cells with efficiency up to 90%. Moreover, the intravenous injection of BAMEA-O16B/Cas9 mRNA/sgRNA nanoparticle effectively accumulates in hepatocytes, and knocks down proprotein convertase subtilisin/kexin type 9 level in mouse serum down to 20% of nontreatment. The leading lipid nanoparticle, BAMEA-O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far, and it can broaden the therapeutic promise of mRNA and CRISPR/Cas9 technique further. |
Author | Liu, Ji Chang, Jin Meng, Xiandi Sun, Tianmeng Jiang, Ying Xu, Qiaobing Mao, Lanqun Wang, Ming |
Author_xml | – sequence: 1 givenname: Ji surname: Liu fullname: Liu, Ji organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Jin surname: Chang fullname: Chang, Jin organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Ying surname: Jiang fullname: Jiang, Ying organization: The Chinese Academy of Sciences (CAS) – sequence: 4 givenname: Xiandi surname: Meng fullname: Meng, Xiandi organization: Jilin University – sequence: 5 givenname: Tianmeng surname: Sun fullname: Sun, Tianmeng organization: Jilin University – sequence: 6 givenname: Lanqun surname: Mao fullname: Mao, Lanqun organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Qiaobing surname: Xu fullname: Xu, Qiaobing email: qiaobing.xu@tufts.edu organization: Tufts University – sequence: 8 givenname: Ming orcidid: 0000-0002-2783-9426 surname: Wang fullname: Wang, Ming email: mingwang@iccas.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31215123$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEUhS1URNPCliWyxIbNpH6Mx-MNUghpiZQWFB5by-Oxg6sZO9gzRfn3OKQEqIRYWbr3O8fn6pyBEx-8AeA5RlOMELlQba-mBGGBCOPsEZhgRnBRIsFOwAQJygpRlfUpOEvpFiEkKlQ9AacUE8wwoROQLlUaoPItXFjrtDN-gPP18uOH9cVcJQGvjA-9gYvWDc5v4NLDL-4uwIVXTWda2OzgGxeiaUft8gCu3Na1P-2uTUrGb0yE65sZvFE-bFUcnO5MegoeW9Ul8-z-PQefLxef5u-K1fur5Xy2KjSjmBWKNZZboTFlotKIWVwjrEmpWYstUzVtiCmrhvMSc4vytjSVQA1XLUeY8oqeg9cH3-3Y9KbV-baoOrmNrldxJ4Ny8u-Nd1_lJtzJilPC6zobvLo3iOHbaNIge5e06TrlTRiTJKSkpeBUoIy-fIDehjH6fF6mOMFV9tsnevFnomOUX31kYHoAdAwpRWOPCEZyX7jcFy6PhWdB-UCg3aAGF_YXue7fMnGQfXed2f3nEzl7ez37rf0Bwzu-NQ |
CitedBy_id | crossref_primary_10_1038_s41392_023_01309_7 crossref_primary_10_1002_EXP_20210081 crossref_primary_10_1021_acs_chemrev_1c00244 crossref_primary_10_3390_pharmaceutics16010131 crossref_primary_10_1186_s12951_020_00685_4 crossref_primary_10_1002_smsc_202400192 crossref_primary_10_1016_j_addr_2024_115359 crossref_primary_10_1016_j_biomaterials_2022_121876 crossref_primary_10_1002_ange_202003545 crossref_primary_10_37349_eemd_2024_00011 crossref_primary_10_1038_s41596_021_00665_4 crossref_primary_10_3390_ph17060763 crossref_primary_10_1002_ange_202004994 crossref_primary_10_1039_D1CC05999H crossref_primary_10_3390_pharmaceutics13111914 crossref_primary_10_1038_s41467_021_27493_0 crossref_primary_10_2147_IJN_S457393 crossref_primary_10_1002_smll_202310531 crossref_primary_10_3390_pharmaceutics13060920 crossref_primary_10_1016_j_biomaterials_2021_121252 crossref_primary_10_1360_SSV_2021_0376 crossref_primary_10_1186_s12943_021_01311_z crossref_primary_10_1016_j_plana_2022_100001 crossref_primary_10_3390_cimb44100341 crossref_primary_10_1021_acsabm_1c01112 crossref_primary_10_1021_acscentsci_1c01143 crossref_primary_10_1016_j_dmpk_2022_100450 crossref_primary_10_1038_s41467_023_40345_3 crossref_primary_10_1002_anbr_202200082 crossref_primary_10_1002_smll_202005222 crossref_primary_10_3390_ijms222011300 crossref_primary_10_1073_pnas_2116271119 crossref_primary_10_1016_j_nantod_2023_101790 crossref_primary_10_1002_wnan_70002 crossref_primary_10_1016_j_apsb_2023_03_001 crossref_primary_10_1016_j_addr_2020_09_004 crossref_primary_10_1002_anie_202005644 crossref_primary_10_1073_pnas_2020401118 crossref_primary_10_1002_adma_202300665 crossref_primary_10_1016_j_addr_2019_11_005 crossref_primary_10_1039_D3NR02175K crossref_primary_10_1021_acs_molpharmaceut_1c00916 crossref_primary_10_1007_s12265_024_10587_7 crossref_primary_10_1002_adma_202308029 crossref_primary_10_1016_j_nantod_2022_101482 crossref_primary_10_1016_j_cis_2025_103497 crossref_primary_10_1021_jacs_4c14847 crossref_primary_10_1021_acs_molpharmaceut_1c00461 crossref_primary_10_3389_fnins_2021_803894 crossref_primary_10_1021_acsinfecdis_2c00649 crossref_primary_10_1039_D2NR04095F crossref_primary_10_3389_fbioe_2020_00323 crossref_primary_10_1016_j_apsb_2022_04_013 crossref_primary_10_1126_sciadv_abc2315 crossref_primary_10_1016_j_ymeth_2021_06_004 crossref_primary_10_1039_D1BM01658J crossref_primary_10_1016_j_tips_2020_08_001 crossref_primary_10_1016_j_biomaterials_2022_121645 crossref_primary_10_1016_j_jconrel_2021_06_030 crossref_primary_10_1002_adfm_201910575 crossref_primary_10_1016_j_ajps_2023_100854 crossref_primary_10_1021_acsnano_3c09028 crossref_primary_10_1016_j_bioactmat_2021_05_051 crossref_primary_10_1002_adhm_202202688 crossref_primary_10_1016_j_apsb_2024_08_030 crossref_primary_10_1021_jacs_3c09143 crossref_primary_10_1016_j_actbio_2022_09_065 crossref_primary_10_1002_mba2_70 crossref_primary_10_1016_j_copbio_2024_103182 crossref_primary_10_1002_adhm_202203033 crossref_primary_10_1186_s12951_024_02919_1 crossref_primary_10_1007_s12033_023_00708_z crossref_primary_10_1208_s12248_025_01051_8 crossref_primary_10_1002_advs_202001424 crossref_primary_10_1016_j_tibtech_2023_06_005 crossref_primary_10_1002_adbi_202400374 crossref_primary_10_1002_advs_202105231 crossref_primary_10_1016_j_mtadv_2022_100240 crossref_primary_10_1039_D3BM00387F crossref_primary_10_1016_j_microc_2024_112638 crossref_primary_10_1186_s12951_021_01233_4 crossref_primary_10_1039_D2TB01055K crossref_primary_10_1002_adfm_202204947 crossref_primary_10_1002_cbic_202400481 crossref_primary_10_1016_j_biomaterials_2020_120221 crossref_primary_10_31857_S0132342323010232 crossref_primary_10_1016_j_addr_2021_113891 crossref_primary_10_1021_jacs_4c14500 crossref_primary_10_3390_pharmaceutics16030346 crossref_primary_10_1002_ange_202005644 crossref_primary_10_1002_adfm_202011068 crossref_primary_10_1016_j_bioactmat_2022_01_026 crossref_primary_10_3389_fped_2022_863868 crossref_primary_10_1007_s42452_020_03397_4 crossref_primary_10_1039_D1BM00790D crossref_primary_10_1002_adhm_202000938 crossref_primary_10_1021_jacs_2c10409 crossref_primary_10_1002_cbic_202200801 crossref_primary_10_1016_j_nantod_2022_101617 crossref_primary_10_1002_advs_202300195 crossref_primary_10_1080_02652048_2024_2404414 crossref_primary_10_1021_acs_molpharmaceut_0c00618 crossref_primary_10_1016_j_ymthe_2021_06_003 crossref_primary_10_1002_adtp_202400412 crossref_primary_10_1016_j_jddst_2021_102728 crossref_primary_10_1186_s12935_023_03194_0 crossref_primary_10_1021_acs_molpharmaceut_4c00925 crossref_primary_10_1016_j_jddst_2024_105457 crossref_primary_10_1021_acs_accounts_1c00601 crossref_primary_10_1021_acsami_9b17749 crossref_primary_10_1002_adtp_202000072 crossref_primary_10_1021_acsomega_3c07138 crossref_primary_10_3390_ijms232415758 crossref_primary_10_1186_s12951_025_03254_9 crossref_primary_10_1002_anie_202004994 crossref_primary_10_1038_s41578_022_00529_7 crossref_primary_10_1016_j_ajps_2022_08_001 crossref_primary_10_1080_17425247_2025_2452295 crossref_primary_10_34133_bmr_0023 crossref_primary_10_1007_s11883_022_00986_z crossref_primary_10_1126_sciadv_abk2855 crossref_primary_10_2174_0115733998263079231011073803 crossref_primary_10_1016_j_addr_2020_06_026 crossref_primary_10_4167_jbv_2024_54_1_012 crossref_primary_10_1016_j_jddst_2024_105547 crossref_primary_10_1002_anie_201914970 crossref_primary_10_1016_j_addr_2020_12_014 crossref_primary_10_1038_s41580_020_0251_y crossref_primary_10_1016_j_nantod_2023_102097 crossref_primary_10_1002_anie_202013904 crossref_primary_10_1016_j_actbio_2022_05_050 crossref_primary_10_3389_fmed_2021_649896 crossref_primary_10_1016_j_scib_2021_11_016 crossref_primary_10_3390_ijms24087052 crossref_primary_10_1021_acsnano_3c02669 crossref_primary_10_1016_j_jrras_2024_101199 crossref_primary_10_1038_s41565_023_01548_3 crossref_primary_10_1039_D1CS00343G crossref_primary_10_3390_molecules25245995 crossref_primary_10_1039_D3BM00788J crossref_primary_10_58209_ijbc_15_1_60 crossref_primary_10_1016_j_supmat_2024_100070 crossref_primary_10_1039_D0TB00207K crossref_primary_10_1039_D1BM01452H crossref_primary_10_1016_j_medidd_2020_100023 crossref_primary_10_1002_anie_202003545 crossref_primary_10_1002_ange_202013904 crossref_primary_10_1016_j_nantod_2022_101396 crossref_primary_10_1021_acs_accounts_1c00500 crossref_primary_10_1186_s12951_022_01570_y crossref_primary_10_1002_ange_201914970 crossref_primary_10_1126_sciadv_abj0624 crossref_primary_10_3390_pharmaceutics13030352 crossref_primary_10_1080_10717544_2022_2152911 crossref_primary_10_1080_17425247_2022_2100342 crossref_primary_10_1016_j_omtn_2020_04_012 crossref_primary_10_1186_s12951_022_01717_x crossref_primary_10_1016_j_jconrel_2020_06_030 crossref_primary_10_1002_adtp_202000099 crossref_primary_10_1002_smtd_202100402 crossref_primary_10_1039_D1CS00617G crossref_primary_10_1002_wnan_1938 crossref_primary_10_1039_D1BM00537E crossref_primary_10_1002_bmm2_12025 crossref_primary_10_1021_acs_chemmater_0c02571 crossref_primary_10_1016_j_drudis_2023_103652 crossref_primary_10_1038_s41578_021_00358_0 crossref_primary_10_3390_biom15030376 crossref_primary_10_1039_D3BM00529A crossref_primary_10_1002_mco2_187 crossref_primary_10_3389_fimmu_2023_1147991 crossref_primary_10_1002_adom_202201067 crossref_primary_10_1016_j_cell_2022_03_045 crossref_primary_10_1016_j_omtn_2019_12_004 crossref_primary_10_1093_bjd_ljad528 crossref_primary_10_1177_15330338211045206 crossref_primary_10_1016_j_jconrel_2022_02_012 crossref_primary_10_1186_s12951_023_01938_8 crossref_primary_10_1021_acsnano_4c05513 crossref_primary_10_1016_j_jconrel_2024_06_023 crossref_primary_10_1016_j_jconrel_2024_09_019 crossref_primary_10_1016_j_fmre_2023_02_022 crossref_primary_10_1016_j_jconrel_2023_07_007 crossref_primary_10_1021_acsnano_0c04707 crossref_primary_10_1016_j_cej_2022_135116 crossref_primary_10_1089_crispr_2022_0051 crossref_primary_10_1080_14712598_2021_1869208 crossref_primary_10_3390_pharmaceutics15020477 crossref_primary_10_1039_D4NR01357C crossref_primary_10_1021_acs_nanolett_1c03708 crossref_primary_10_1002_smll_202100546 crossref_primary_10_1021_acsmaterialslett_0c00375 crossref_primary_10_1007_s00018_020_03725_2 crossref_primary_10_1039_D2RA02771B crossref_primary_10_1016_j_actbio_2024_02_004 crossref_primary_10_1038_s41563_020_00886_0 crossref_primary_10_3389_fpls_2021_691295 crossref_primary_10_3389_fbioe_2022_1053197 crossref_primary_10_1002_adma_202306246 crossref_primary_10_1007_s40097_022_00472_7 crossref_primary_10_1016_j_apsb_2021_05_020 crossref_primary_10_1021_acs_accounts_1c00550 crossref_primary_10_1080_17425247_2023_2185220 crossref_primary_10_1016_j_mattod_2023_04_011 crossref_primary_10_1097_HCO_0000000000000723 crossref_primary_10_1557_s43579_021_00128_7 crossref_primary_10_1021_acs_accounts_3c00597 crossref_primary_10_1021_acs_nanolett_0c03287 crossref_primary_10_1089_crispr_2021_0134 crossref_primary_10_1002_adhm_202401895 crossref_primary_10_1038_s41578_024_00725_7 crossref_primary_10_1002_wnan_1978 crossref_primary_10_1186_s12951_024_02882_x crossref_primary_10_32604_oncologie_2022_019415 crossref_primary_10_3389_fbioe_2022_1078342 crossref_primary_10_1016_j_apsb_2022_10_004 crossref_primary_10_1016_j_tips_2019_11_006 crossref_primary_10_1039_D1BM00558H crossref_primary_10_1039_D3BM01981K crossref_primary_10_1021_acs_nanolett_3c02061 crossref_primary_10_1007_s11356_024_32101_x crossref_primary_10_1016_j_matdes_2022_111415 crossref_primary_10_3390_pharmaceutics13040544 crossref_primary_10_1021_acs_nanolett_4c00533 crossref_primary_10_1016_j_jddst_2022_103948 crossref_primary_10_3389_fmicb_2022_953218 crossref_primary_10_3389_fchem_2021_786354 crossref_primary_10_1016_j_bbcan_2023_189068 crossref_primary_10_1016_j_jconrel_2022_03_032 crossref_primary_10_1002_advs_202205475 crossref_primary_10_3390_ijms241814299 crossref_primary_10_1007_s12272_020_01257_8 crossref_primary_10_3390_antibiotics13121141 crossref_primary_10_1016_j_addr_2020_07_001 crossref_primary_10_1134_S1068162023010235 crossref_primary_10_3390_pharmaceutics14102129 crossref_primary_10_3390_cells11193079 crossref_primary_10_1002_adma_202310886 crossref_primary_10_1002_cbic_202100225 crossref_primary_10_1016_j_addr_2023_115042 crossref_primary_10_1021_acsnano_0c10144 crossref_primary_10_1016_j_addr_2023_114990 crossref_primary_10_1002_cbic_202300180 crossref_primary_10_1016_j_trac_2025_118164 crossref_primary_10_1016_j_omto_2020_07_007 crossref_primary_10_3390_ijms20235926 crossref_primary_10_3389_fonc_2023_1194350 crossref_primary_10_26599_NR_2025_94907081 crossref_primary_10_1002_mco2_70035 crossref_primary_10_1038_s41392_024_02002_z crossref_primary_10_1016_j_critrevonc_2024_104576 crossref_primary_10_3390_pharmaceutics13101649 crossref_primary_10_1038_s41392_021_00645_w crossref_primary_10_1038_s41392_022_01007_w crossref_primary_10_1186_s12951_024_02627_w crossref_primary_10_1021_acs_molpharmaceut_1c00798 crossref_primary_10_1186_s12929_023_00977_5 crossref_primary_10_3390_cells13070568 crossref_primary_10_1126_sciadv_abb7107 crossref_primary_10_1016_j_biopha_2024_116470 crossref_primary_10_3390_nano10020364 crossref_primary_10_1002_adma_202307822 crossref_primary_10_1016_j_jconrel_2020_08_031 crossref_primary_10_1021_acs_molpharmaceut_3c00089 crossref_primary_10_1134_S0026893322060218 crossref_primary_10_1021_jacs_4c04565 crossref_primary_10_1016_j_apsb_2024_04_015 crossref_primary_10_1016_j_addr_2020_03_001 crossref_primary_10_3389_fbioe_2022_973326 crossref_primary_10_1016_j_ejpb_2024_114234 crossref_primary_10_1016_j_jddst_2022_103737 crossref_primary_10_23736_S1120_4826_20_02618_X crossref_primary_10_1021_acs_biochem_0c00860 crossref_primary_10_1002_INMD_20220014 crossref_primary_10_1126_sciadv_abm8011 crossref_primary_10_1016_j_actbio_2022_02_018 crossref_primary_10_1021_acsami_0c08268 crossref_primary_10_1186_s12964_024_01713_8 crossref_primary_10_1021_jacs_1c13067 crossref_primary_10_3390_pharmaceutics12121233 crossref_primary_10_3390_pharmaceutics14071495 |
Cites_doi | 10.1016/j.tibtech.2017.11.006 10.1073/pnas.1520244113 10.1021/acs.accounts.8b00493 10.4330/wjc.v9.i2.76 10.1021/jacs.8b11996 10.1039/C8BM00637G 10.1128/JVI.01879-14 10.1038/nrd4278 10.1126/science.1225829 10.1016/j.cell.2014.05.010 10.1021/acsnano.6b04261 10.1038/nbt.3471 10.1038/s41467-017-02088-w 10.1038/s41551-017-0137-2 10.1002/anie.201506030 10.1038/ng1161 10.1038/cr.2017.16 10.1073/pnas.1811276115 10.1002/anie.201708689 10.1073/pnas.1614193114 10.1002/anie.201311245 10.1038/nature14299 10.1038/nrd.2016.280 10.1002/anie.201610209 10.1126/science.1231143 10.1002/anie.201407234 10.1021/acs.chemrev.6b00799 10.1016/j.jbiotec.2015.04.024 10.1126/science.aat5011 10.1002/advs.201801423 10.1002/anie.201806941 10.1073/pnas.1805358115 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1002/adma.201902575 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | PMC6732788 31215123 10_1002_adma_201902575 ADMA201902575 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NIH funderid: UG3 TR002636‐01; NIH R21 EB024041 – fundername: National Key Research and Development Program of China funderid: 2017YFA0208100; 2016YFA0200104 – fundername: National Natural Science Foundation of China funderid: 21778056; 21790390; 21790391; 21621062; 21435007 – fundername: National Natural Science Foundation of China grantid: 21621062 – fundername: NIBIB NIH HHS grantid: R21 EB024041 – fundername: National Natural Science Foundation of China grantid: 21435007 – fundername: National Key Research and Development Program of China grantid: 2016YFA0200104 – fundername: National Natural Science Foundation of China grantid: 21790391 – fundername: National Natural Science Foundation of China grantid: 21790390 – fundername: National Key Research and Development Program of China grantid: 2017YFA0208100 – fundername: NIH HHS grantid: NIH R21 EB024041 – fundername: NIH HHS grantid: UG3 TR002636-01 – fundername: NCATS NIH HHS grantid: UG3 TR002636 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c5315-a5bf7f9c13596c05f1801c24c5d1f5a83b2e46b77417f0f184e690b7ad7013763 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Aug 21 18:20:48 EDT 2025 Fri Jul 11 09:25:30 EDT 2025 Fri Jul 25 04:55:09 EDT 2025 Mon Jul 21 05:33:59 EDT 2025 Tue Jul 01 00:44:53 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Wed Jan 22 16:40:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | genome editing lipid nanoparticles messenger RNA delivery CRISPR/Cas9 |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5315-a5bf7f9c13596c05f1801c24c5d1f5a83b2e46b77417f0f184e690b7ad7013763 |
Notes | Present address: College of Chemistry, Beijing Normal University, Beijing 100875, China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2783-9426 |
PMID | 31215123 |
PQID | 2272167886 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6732788 proquest_miscellaneous_2243497390 proquest_journals_2272167886 pubmed_primary_31215123 crossref_primary_10_1002_adma_201902575 crossref_citationtrail_10_1002_adma_201902575 wiley_primary_10_1002_adma_201902575_ADMA201902575 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2019; 7 2017; 1 2019; 6 2019; 52 2017; 27 2015; 520 2015; 54 2015; 208 2019; 141 2017; 114 2017; 9 2014; 88 2017; 117 2016; 34 2014; 157 2003; 34 2018; 9 2013; 339 2017; 16 2017; 11 2018; 115 2017; 56 2016; 113 2014; 13 2012; 337 2018; 36 2018; 57 2014; 53 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_12_1 e_1_2_4_13_1 e_1_2_4_14_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 339 start-page: 819 year: 2013 publication-title: Science – volume: 7 start-page: 596 year: 2019 publication-title: Biomater. Sci. – volume: 13 start-page: 759 year: 2014 publication-title: Nat. Rev. Drug Discovery – volume: 141 start-page: 3782 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 889 year: 2017 publication-title: Nat. Biomed. Eng. – volume: 57 start-page: 1491 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 53 start-page: 2893 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 88 start-page: 11965 year: 2014 publication-title: J. Virol. – volume: 208 start-page: 44 year: 2015 publication-title: J. Biotechnol. – volume: 157 start-page: 1262 year: 2014 publication-title: Cell – volume: 11 start-page: 95 year: 2017 publication-title: ACS Nano – volume: 337 start-page: 816 year: 2012 publication-title: Science – volume: 9 start-page: 1 year: 2018 publication-title: Nat. Commun. – volume: 113 start-page: 2868 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 117 start-page: 9874 year: 2017 publication-title: Chem. Rev. – volume: 36 start-page: 173 year: 2018 publication-title: Trends Biotechnol. – volume: 34 start-page: 328 year: 2016 publication-title: Nat. Biotechnol. – volume: 114 start-page: E448 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 115 start-page: E9944 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 54 start-page: 12029 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 115 start-page: E5859 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 387 year: 2017 publication-title: Nat. Rev. Drug Discovery – volume: 57 start-page: 10268 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 440 year: 2017 publication-title: Cell Res. – volume: 6 start-page: 1801423 year: 2019 publication-title: Adv. Sci. – volume: 56 start-page: 1059 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 76 year: 2017 publication-title: World J. of Cardiol. – volume: 53 start-page: 13444 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 361 start-page: 866 year: 2018 publication-title: Science – volume: 34 start-page: 154 year: 2003 publication-title: Nat. Genet. – volume: 520 start-page: 186 year: 2015 publication-title: Nature – volume: 52 start-page: 665 year: 2019 publication-title: Acc. Chem. Res. – ident: e_1_2_4_7_1 doi: 10.1016/j.tibtech.2017.11.006 – ident: e_1_2_4_9_1 doi: 10.1073/pnas.1520244113 – ident: e_1_2_4_26_1 doi: 10.1021/acs.accounts.8b00493 – ident: e_1_2_4_32_1 doi: 10.4330/wjc.v9.i2.76 – ident: e_1_2_4_23_1 doi: 10.1021/jacs.8b11996 – ident: e_1_2_4_22_1 doi: 10.1039/C8BM00637G – ident: e_1_2_4_28_1 doi: 10.1128/JVI.01879-14 – ident: e_1_2_4_18_1 doi: 10.1038/nrd4278 – ident: e_1_2_4_2_1 doi: 10.1126/science.1225829 – ident: e_1_2_4_1_1 doi: 10.1016/j.cell.2014.05.010 – ident: e_1_2_4_10_1 doi: 10.1021/acsnano.6b04261 – ident: e_1_2_4_8_1 doi: 10.1038/nbt.3471 – ident: e_1_2_4_17_1 doi: 10.1038/s41467-017-02088-w – ident: e_1_2_4_15_1 doi: 10.1038/s41551-017-0137-2 – ident: e_1_2_4_11_1 doi: 10.1002/anie.201506030 – ident: e_1_2_4_30_1 doi: 10.1038/ng1161 – ident: e_1_2_4_29_1 doi: 10.1038/cr.2017.16 – ident: e_1_2_4_16_1 doi: 10.1073/pnas.1811276115 – ident: e_1_2_4_14_1 doi: 10.1002/anie.201708689 – ident: e_1_2_4_20_1 doi: 10.1073/pnas.1614193114 – ident: e_1_2_4_24_1 doi: 10.1002/anie.201311245 – ident: e_1_2_4_31_1 doi: 10.1038/nature14299 – ident: e_1_2_4_6_1 doi: 10.1038/nrd.2016.280 – ident: e_1_2_4_27_1 doi: 10.1002/anie.201610209 – ident: e_1_2_4_3_1 doi: 10.1126/science.1231143 – ident: e_1_2_4_25_1 doi: 10.1002/anie.201407234 – ident: e_1_2_4_5_1 doi: 10.1021/acs.chemrev.6b00799 – ident: e_1_2_4_19_1 doi: 10.1016/j.jbiotec.2015.04.024 – ident: e_1_2_4_4_1 doi: 10.1126/science.aat5011 – ident: e_1_2_4_12_1 doi: 10.1002/advs.201801423 – ident: e_1_2_4_13_1 doi: 10.1002/anie.201806941 – ident: e_1_2_4_21_1 doi: 10.1073/pnas.1805358115 |
SSID | ssj0009606 |
Score | 2.6738365 |
Snippet | A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9)... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1902575 |
SubjectTerms | Animals Biological Transport Biomedical materials Cell Line, Tumor CRISPR CRISPR-Associated Protein 9 - genetics CRISPR/Cas9 Editing Fluorescence Gene Editing - methods Gene Knockdown Techniques - methods Gene Transfer Techniques genome editing Genomes Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Humans lipid nanoparticles Lipids Lipids - chemistry Materials science messenger RNA delivery Mice Nanoparticles Nanoparticles - chemistry Nuclease Oxidation-Reduction Proprotein Convertase 9 - genetics Proprotein Convertase 9 - metabolism Proteins RNA, Guide, CRISPR-Cas Systems - administration & dosage RNA, Guide, CRISPR-Cas Systems - chemistry RNA, Messenger - administration & dosage RNA, Messenger - chemistry |
Title | Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201902575 https://www.ncbi.nlm.nih.gov/pubmed/31215123 https://www.proquest.com/docview/2272167886 https://www.proquest.com/docview/2243497390 https://pubmed.ncbi.nlm.nih.gov/PMC6732788 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bb9MwFIcttCd44H4JDGQkJJ68xrEdJ4-ltGxInVBhaG-RryICErS0SPDX4-OkWcuEkOAhUlM7tZOeY__sHH9G6IUBTSqUJ2lQx4QzaYkOQpmkZeELFQ6uYGpgeZofn_G35-J8ZxV_z4cYJ9zAM2J7DQ6udDe5hIYqG7lBFN6TSVhlDgFboIpWl_wokOcRtscEKXNebKmNaTbZv3y_V7oiNa9GTO4q2dgVLW4htb2JPgLl89FmrY_Mz9_4jv9zl7fRzUGn4mlvWHfQNdfcRTd26IX3ULdQ3RqrxuJ55FCESuPZ6uT9u9VkproSv3FN-9Xhua0htBqfNPhj_b3F87hay2L9A7-q2wtAx9bhCwy7aNv4c0vgmcNsI16dTnFo_8PAfojfu4_OFvMPs2My7OFATPBuQZTQXvrSUCbK3KTC09AlmowbYakXqmA6czzXQYRS6dOQyl0Yr2uprAQYYs4eoIOmbdwjhJUyVNPMOWocV6UJLU8YazrGlLfecJYgsv0PKzMAzmGfjS9Vj2bOKniY1fgwE_RyzP-tR3v8Mefh1iSqwcW7KsuAeySLIk_Q8zE5OCe8cVGNazeQhzNeSlamCXrYW9BYFKNRbYVqyz3bGjMA-Hs_pak_RQB4LlkWCk5QFk3nL7Wvpq-X0_Hs8b9c9ARdh8994OMhOlhfbNzTIMbW-ll0uF8vNSqH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMefYByAA-PXWNgAIyFxyprEdpwcS2lpYa1Q2RC3yHYcEQHJtLZI8Nfj5_zYyoSQ4JBDbCdxkvfsr52XjwFeaNSkXBZ-YNWxz6jIfWWFsh-kSZFIuzGJUwPzRTw9ZW8_8S6aEP-FafgQ_YQbeoZrr9HBcUJ6cEENlbkDB4X4oUzw63ADl_V2o6rlBUEKBbrD7VHupzFLOm5jEA22j9_ul66Izasxk5e1rOuMJruguttoYlC-HG3W6kj__I3w-F_3eRfutFKVDBvbugfXTHUfbl8CGD6A1USu1kRWORk7FIWtNRktZx_eLwcjuUrJG1PV3wwZ5yVGV5NZRT6W32sydj9s5UT9IK_K-hzpsaVNILiQdu5ON0ekOU44kuViSGwXYMf2bQjfQzidjE9GU79dxsHX1sG5L7kqRJHqkPI01gEvQtsr6ohpnocFlwlVkWGxsjo0FEVgc5mxQ3YlZC6QhxjTPdip6srsA5FShyqMjAm1YTLVtvGxw01DqSzyQjPqgd-9xEy3jHNcauNr1tCZowwfZtY_TA9e9uXPGrrHH0sedjaRtV6-yqII0UciSWIPnvfZ1j_xo4usTL3BMoyyVNA08OBRY0L9pWjoBJetttgyrr4Asr-3c6rys2OAx4JG9sIeRM52_lL7bPh6Puz3Hv_LQc_g5vRkfpwdzxbvDuAWpjdxkIewsz7fmCdWm63VU-d9vwDGhy6i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bb9MwFIePYEgIHrgPAgOMhMRT1iS24-Sx9MIKtJoKQ3uLHF9EBCTT2iLBX4-P02YtE0KChzwkthPHOSf-2Tn5DPBSoSbl0oaRU8cho0KHpRPKYZRnNpNuYxKnBqaz9OiEvT3lp1t_8bd8iG7CDT3Dv6_Rwc-07V1AQ6X23KAYv5MJfhWusTTK0K6H8wuAFOpzT9ujPMxTlm2wjVHS2y2_2y1d0pqXQya3pazvi8a3QW7uog1B-XK4WpaH6udvgMf_uc07cGstVEm_tay7cMXU9-DmFr7wPizGcrEkstZk5EEUrtJkMJ98OJ73BnKRkzembr4ZMtIVxlaTSU0-Vd8bMvK_a2lS_iCvq-Yc2bGVO0BwGW3tTzdFoDlON5L5rE9cB-BG9usAvgdwMh59HByF60UcQuXcm4eSl1bYXMWU56mKuI1dn6gSpriOLZcZLRPD0tKp0FjYyKUy4wbspZBaIA0xpfuwVze1eQREShWXcWJMrAyTuXKvHjfYNJRKq61iNIBw8wwLtSac40IbX4uWzZwU2JhF15gBvOryn7Vsjz_mPNiYRLH28UWRJAg-ElmWBvCiS3beiZ9cZG2aFeZhlOWC5lEAD1sL6i5FYy-3XLXFjm11GZD8vZtSV589ATwVNHEXDiDxpvOX2hf94bTf7T3-l0LP4frxcFy8n8zePYEbeLgNgjyAveX5yjx1wmxZPvO-9wst2C1a |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Efficient+CRISPR%2FCas9+Genome+Editing+In+Vivo+Enabled+by+Bioreducible+Lipid+and+Messenger+RNA+Nanoparticles&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Ji&rft.au=Chang%2C+Jin&rft.au=Jiang%2C+Ying&rft.au=Meng%2C+Xiandi&rft.date=2019-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=33&rft.spage=e1902575&rft.epage=e1902575&rft_id=info:doi/10.1002%2Fadma.201902575&rft_id=info%3Apmid%2F31215123&rft.externalDocID=PMC6732788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |