A pilot study of macrophage responses to silk fibroin particles
Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical properties, and controllable biodegradability. The particulate form of SF materials may have many potential uses, including the use as a filler for tis...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 101A; no. 5; pp. 1511 - 1517 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2013
Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical properties, and controllable biodegradability. The particulate form of SF materials may have many potential uses, including the use as a filler for tissue defects or as a controlled‐release agent for drug delivery. However, many past in vivo and in vitro studies evaluating the biocompatibility and biodegradability of SF have involved bulk implants. It is essential to evaluate the inflammatory effects of SF particles before further use. In this study, two different sizes of SF particles were evaluated to assess their impact on the release of tumor necrosis factor (TNF)‐α, interleukin (IL)‐1β, and IL‐6, in comparison with lipopolysaccharide positive control stimulation. The inflammatory processes were characterized using real‐time reverse transcription polymerase chain reaction, enzyme‐linked immunosorbent assay, and light microscopy evaluations. The results indicated that small silk fibroin particles and large silk fibroin particles, in culture with RAW 264.7 murine macrophage cells for 24 h, caused up‐regulation of mRNA coding for TNF‐α, which indicated that both size of particles have potential inflammatory effects. There was a statistically significant increase in this up‐regulation under small silk fibroin stimulation. However, the immunosorbent assay suggested that there was virtually no observed release of IL‐1β, IL‐6, or TNF‐α, relative to the control group. The results suggest that SF particles of the chosen dimensions may have good biocompatibility in culture with RAW 264.7 murine macrophages. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013. |
---|---|
AbstractList | Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical properties, and controllable biodegradability. The particulate form of SF materials may have many potential uses, including the use as a filler for tissue defects or as a controlled-release agent for drug delivery. However, many past in vivo and in vitro studies evaluating the biocompatibility and biodegradability of SF have involved bulk implants. It is essential to evaluate the inflammatory effects of SF particles before further use. In this study, two different sizes of SF particles were evaluated to assess their impact on the release of tumor necrosis factor (TNF)- alpha , interleukin (IL)-1 beta , and IL-6, in comparison with lipopolysaccharide positive control stimulation. The inflammatory processes were characterized using real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and light microscopy evaluations. The results indicated that small silk fibroin particles and large silk fibroin particles, in culture with RAW 264.7 murine macrophage cells for 24 h, caused up-regulation of mRNA coding for TNF- alpha , which indicated that both size of particles have potential inflammatory effects. There was a statistically significant increase in this up-regulation under small silk fibroin stimulation. However, the immunosorbent assay suggested that there was virtually no observed release of IL-1 beta , IL-6, or TNF- alpha , relative to the control group. The results suggest that SF particles of the chosen dimensions may have good biocompatibility in culture with RAW 264.7 murine macrophages. copyright 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013. Abstract Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical properties, and controllable biodegradability. The particulate form of SF materials may have many potential uses, including the use as a filler for tissue defects or as a controlled‐release agent for drug delivery. However, many past in vivo and in vitro studies evaluating the biocompatibility and biodegradability of SF have involved bulk implants. It is essential to evaluate the inflammatory effects of SF particles before further use. In this study, two different sizes of SF particles were evaluated to assess their impact on the release of tumor necrosis factor (TNF)‐α, interleukin (IL)‐1β, and IL‐6, in comparison with lipopolysaccharide positive control stimulation. The inflammatory processes were characterized using real‐time reverse transcription polymerase chain reaction, enzyme‐linked immunosorbent assay, and light microscopy evaluations. The results indicated that small silk fibroin particles and large silk fibroin particles, in culture with RAW 264.7 murine macrophage cells for 24 h, caused up‐regulation of mRNA coding for TNF‐α, which indicated that both size of particles have potential inflammatory effects. There was a statistically significant increase in this up‐regulation under small silk fibroin stimulation. However, the immunosorbent assay suggested that there was virtually no observed release of IL‐1β, IL‐6, or TNF‐α, relative to the control group. The results suggest that SF particles of the chosen dimensions may have good biocompatibility in culture with RAW 264.7 murine macrophages. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013. Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical properties, and controllable biodegradability. The particulate form of SF materials may have many potential uses, including the use as a filler for tissue defects or as a controlled-release agent for drug delivery. However, many past in vivo and in vitro studies evaluating the biocompatibility and biodegradability of SF have involved bulk implants. It is essential to evaluate the inflammatory effects of SF particles before further use. In this study, two different sizes of SF particles were evaluated to assess their impact on the release of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, in comparison with lipopolysaccharide positive control stimulation. The inflammatory processes were characterized using real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and light microscopy evaluations. The results indicated that small silk fibroin particles and large silk fibroin particles, in culture with RAW 264.7 murine macrophage cells for 24 h, caused up-regulation of mRNA coding for TNF-α, which indicated that both size of particles have potential inflammatory effects. There was a statistically significant increase in this up-regulation under small silk fibroin stimulation. However, the immunosorbent assay suggested that there was virtually no observed release of IL-1β, IL-6, or TNF-α, relative to the control group. The results suggest that SF particles of the chosen dimensions may have good biocompatibility in culture with RAW 264.7 murine macrophages. Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical properties, and controllable biodegradability. The particulate form of SF materials may have many potential uses, including the use as a filler for tissue defects or as a controlled‐release agent for drug delivery. However, many past in vivo and in vitro studies evaluating the biocompatibility and biodegradability of SF have involved bulk implants. It is essential to evaluate the inflammatory effects of SF particles before further use. In this study, two different sizes of SF particles were evaluated to assess their impact on the release of tumor necrosis factor (TNF)‐α, interleukin (IL)‐1β, and IL‐6, in comparison with lipopolysaccharide positive control stimulation. The inflammatory processes were characterized using real‐time reverse transcription polymerase chain reaction, enzyme‐linked immunosorbent assay, and light microscopy evaluations. The results indicated that small silk fibroin particles and large silk fibroin particles, in culture with RAW 264.7 murine macrophage cells for 24 h, caused up‐regulation of mRNA coding for TNF‐α, which indicated that both size of particles have potential inflammatory effects. There was a statistically significant increase in this up‐regulation under small silk fibroin stimulation. However, the immunosorbent assay suggested that there was virtually no observed release of IL‐1β, IL‐6, or TNF‐α, relative to the control group. The results suggest that SF particles of the chosen dimensions may have good biocompatibility in culture with RAW 264.7 murine macrophages. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013. |
Author | Wen, Jianchuan Cui, Xidong Chen, Xin Zhao, Xia Shao, Zhengzhong Jiang, Jack J. |
Author_xml | – sequence: 1 givenname: Xidong surname: Cui fullname: Cui, Xidong organization: Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China – sequence: 2 givenname: Jianchuan surname: Wen fullname: Wen, Jianchuan organization: Department of Macromolecular Science and the Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China – sequence: 3 givenname: Xia surname: Zhao fullname: Zhao, Xia organization: Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China – sequence: 4 givenname: Xin surname: Chen fullname: Chen, Xin organization: Department of Macromolecular Science and the Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China – sequence: 5 givenname: Zhengzhong surname: Shao fullname: Shao, Zhengzhong organization: Department of Macromolecular Science and the Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China – sequence: 6 givenname: Jack J. surname: Jiang fullname: Jiang, Jack J. email: jackjjiang@gmail.com organization: Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27335146$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23225634$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0ctv1DAQB2ALFdEHnLgjX5AqoSy2x4_mhNoVLaBSJB6Cm-U4Y3CbxMHOCva_J8tuyw3wZXz4Zkaa3yHZG9KAhDzmbMEZE8-vm37hFiDnd48ccKVEJWut9jZ_WVcgar1PDku5nrFmSjwg-wKEUBrkAXlxSsfYpYmWadWuaQq0dz6n8Zv7ijRjGdNQsNAp0RK7Gxpik1Mc6OjyFH2H5SG5H1xX8NGuHpFP5y8_Ll9Vl-8uXi9PLyuvgMsqaMexZq4RiG1A78BoUIb7VmIzC4agfFDhBEC3Lau1d94z3Z6IYBrJFRyR4-3cMafvKyyT7WPx2HVuwLQqlmtjai6N4P9BtRRcArB_UxCMawlmM_XZls7XKSVjsGOOvctry5nd5GDnHKyzv3OY9ZPd4FXTY3tnbw8_g6c74Ip3Xchu8LH8cQZAcalnx7fuR-xw_bed9s3Z29vl1bYnlgl_3vW4fGO1AaPs56sLq758OLs6F0v7Hn4BAxOvdg |
CitedBy_id | crossref_primary_10_1016_j_msec_2017_05_008 crossref_primary_10_1002_jbm_a_35374 crossref_primary_10_1177_22808000231222704 crossref_primary_10_1021_acsbiomaterials_1c01357 crossref_primary_10_1080_13880209_2019_1617749 crossref_primary_10_12677_BP_2021_113003 crossref_primary_10_1039_C4RA02113D crossref_primary_10_1016_j_ijbiomac_2017_04_069 crossref_primary_10_1039_C7SM01631J crossref_primary_10_3390_pharmaceutics15010263 crossref_primary_10_1021_acsbiomaterials_0c00247 crossref_primary_10_5650_oleoscience_20_549 crossref_primary_10_1002_adhm_201800308 crossref_primary_10_1134_S0006297916110031 crossref_primary_10_1038_s41598_017_15687_w crossref_primary_10_1021_acsbiomaterials_6b00119 crossref_primary_10_3389_fphar_2023_1084948 crossref_primary_10_3390_ijms18030237 crossref_primary_10_3390_ph16020248 crossref_primary_10_1002_adbi_201700093 crossref_primary_10_4110_in_2018_18_e37 crossref_primary_10_3390_polym11121933 crossref_primary_10_1016_j_msec_2020_111831 |
Cites_doi | 10.1016/j.biomaterials.2007.08.008 10.1016/j.jconrel.2008.08.005 10.1038/sj.jid.5700701 10.1002/term.245 10.1097/01.blo.0000150311.33227.b1 10.1016/S0142-9612(02)00032-7 10.1016/j.peptides.2010.11.004 10.1016/S0142-9612(03)00158-3 10.1074/jbc.M110.137935 10.1177/000348940411300402 10.1039/b703139d 10.1002/jbm.b.10061 10.1002/jor.1100120111 10.1016/S0169-409X(97)00048-3 10.1002/(SICI)1097-4636(19990905)46:3<434::AID-JBM17>3.0.CO;2-L 10.1021/bm101422j 10.1016/j.tripleo.2008.06.027 10.1007/BF02970143 10.1302/0301-620X.81B3.8737 10.1016/j.biomaterials.2006.05.045 10.1016/j.biomaterials.2011.08.027 10.1002/(SICI)1097-4636(199801)39:1<40::AID-JBM6>3.0.CO;2-I 10.1097/SAP.0b013e3181e6cff7 10.4049/jimmunol.1101392 10.1097/00003086-198807000-00032 10.1016/S0142-9612(02)00353-8 10.1016/j.cbi.2010.03.032 10.1016/j.biomaterials.2006.07.008 10.1016/j.biomaterials.2010.02.024 10.1016/j.otohns.2008.03.028 10.1002/(SICI)1097-4636(1999)48:6<889::AID-JBM19>3.0.CO;2-S 10.1089/ten.2006.12.2729 10.1016/j.joms.2010.07.062 10.1016/j.ijpharm.2009.12.052 10.1002/(SICI)1097-4636(199604)30:4<463::AID-JBM4>3.0.CO;2-N 10.1007/s00405-007-0458-y 10.1007/s10856-009-3834-x |
ContentType | Journal Article |
Copyright | Copyright © 2012 Wiley Periodicals, Inc. 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. – notice: 2014 INIST-CNRS |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M |
DOI | 10.1002/jbm.a.34444 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Engineering Research Database CrossRef MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 1517 |
ExternalDocumentID | 10_1002_jbm_a_34444 23225634 27335146 JBM34444 ark_67375_WNG_5XSBNF2C_R |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Shanghai Science and Technology Committee funderid: 1052nm03801 – fundername: National Natural Science Foundation of China funderid: 81028004 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BSCLL BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT 8W4 ABFLS ABHUG ACXME ADAWD ADDAD AFVGU AGJLS IPNFZ IQODW PQEST CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M |
ID | FETCH-LOGICAL-c5314-f6a1e90ab2eedfeca3763571cd4eb5310e35cf5f8336dd096cacc06d82f7b4153 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 |
IngestDate | Fri Aug 16 22:19:08 EDT 2024 Thu Aug 15 23:44:55 EDT 2024 Fri Aug 16 22:38:43 EDT 2024 Thu Sep 26 17:27:26 EDT 2024 Sat Sep 28 07:51:19 EDT 2024 Thu Nov 24 18:21:04 EST 2022 Sat Aug 24 01:01:56 EDT 2024 Wed Oct 30 10:00:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Biological properties Cytokine Inflammation In vitro Protein Particle Silk Natural fiber Animal fiber Biocompatibility Biomaterial Fibroin Biomedical engineering Macrophage |
Language | English |
License | CC BY 4.0 Copyright © 2012 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5314-f6a1e90ab2eedfeca3763571cd4eb5310e35cf5f8336dd096cacc06d82f7b4153 |
Notes | How to cite this article: Cui X, Wen J, Zhao X, Chen X, Shao Z, Jiang JJ. 2013. A pilot study of macrophage responses to silk fibroin particles. J Biomed Mater Res Part A 2013:101A:1511-1517. ark:/67375/WNG-5XSBNF2C-R National Natural Science Foundation of China - No. 81028004 istex:C173E75E7CDC4B48D4C224661AEB5C10075EECA8 ArticleID:JBM34444 Shanghai Science and Technology Committee - No. 1052nm03801 How to cite this article: Cui X, Wen J, Zhao X, Chen X, Shao Z, Jiang JJ. 2013. A pilot study of macrophage responses to silk fibroin particles. J Biomed Mater Res Part A 2013:101A:1511–1517. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23225634 |
PQID | 1320164371 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1677914721 proquest_miscellaneous_1664214330 proquest_miscellaneous_1320164371 crossref_primary_10_1002_jbm_a_34444 pubmed_primary_23225634 pascalfrancis_primary_27335146 wiley_primary_10_1002_jbm_a_34444_JBM34444 istex_primary_ark_67375_WNG_5XSBNF2C_R |
PublicationCentury | 2000 |
PublicationDate | May 2013 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: May 2013 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J. Biomed. Mater. Res |
PublicationYear | 2013 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Blackwell |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Blackwell |
References | Voronov I, Santerre JP, Hinek A, Callahan JW, Sandhu J, Boynton EL. Macrophage phagocytosis of polyethylene particulate in vitro. J Biomed Mater Res 1998; 39: 40-51. Kweon H, Lee KG, Chae CH, Balázsi C, Min SK, Kim JY, Choi JY, Kim SG. Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute. J Oral Maxillofac Surg 2011; 69: 1578-1586. Gelb H, Schumacher HR, Cuckler J, Ducheyne P, Baker DG. In vivo inflammatory response to polymethylmethacrylate particulate debris: effect of size, morphology, and surface area. J Orthop Res 1994; 12: 83-92. Rajanbabu V, Chen JY. The antimicrobial peptide, tilapia hepcidin 2-3, and PMA differentially regulate the protein kinase C isoforms, TNF-alpha and COX-2, in mouse RAW264.7 macrophages. Peptides 2011; 32: 333-341. Kundu J, Chung YI, Kim YH, Tae G, Kundu SC. Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm 2010; 388: 242-250. Hitchins VM, Merritt K. Decontaminating particles exposed to bacterial endotoxin (LPS). J Biomed Mater Res 1999; 46: 434-437. Caballero M, Bernal-Sprekelsen M, Calvo C, Farre X, Quinto L, Alos L. Polydimethylsiloxane versus polytetrafluoroethylene for vocal fold medialization: histologic evaluation in a rabbit model. J Biomed Mater Res B Appl Biomater 2003; 67: 666-674. Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak-Novakovic G, Merkle HP, Meinel L. Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng 2006; 12: 2729-2738. Hallab NJ, Jacobs JJ. Biologic effects of implant debris. Bull NYU Hosp Jt Dis 2009; 67: 182-188. Ghaznavi AM, Kokai LE, Lovett ML, Kaplan DL, Marra KG. Silk fibroin conduits: a cellular and functional assessment of peripheral nerve repair. Ann Plast Surg 2011; 66: 273-279. da Silva RA, Leonardo MR, da Silva LA, Faccioli LH, de Medeiros AI. Effect of a calcium hydroxide-based paste associated to chlorhexidine on RAW 264.7 macrophage cell line culture. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: e44-e51. Saxena RK, Vallyathan V, Lewis DM. Evidence for lipopolysaccharide-induced differentiation of RAW264.7 murine macrophage cell line into dendritic like cells. J Biosci 2003; 28: 129-134. Yang SY, Ren W, Park Y, Sieving A, Hsu S, Nasser S, et al. Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation. Biomaterials 2002; 23: 3535-3543. Bessa PC, Balmayor ER, Azevedo HS, Nürnberger S, Casal M, van Griensven M, Reis RL, Redl H. Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. J Tissue Eng Regen M 2010; 4: 349-355. Mishra PK, Wu W, Rozo C, Hallab NJ, Benevenia J, Gause WC. Micrometer-sized titanium particles can induce potent Th2-type responses through TLR4-independent pathways. J Immunol 2011; 187: 6491-6498. Ni Y, Zhao X, Zhou L, Shao Z, Yan W, Chen X, Cao Z, Xue Z, Jiang JJ. Radiologic and histologic characterization of silk fibroin as scaffold coating for rabbit tracheal defect repair. Otolaryngol Head Neck Surg 2008; 139: 256-261. Jones LC, Frondoza C, Hungerford DS. Immunohistochemical evaluation of interface membranes from failed cemented and uncemented acetabular components. J Biomed Mater Res 1999; 48: 889-898. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 2007; 127: 514-525. Cao ZB, Chen X, Yao JR, Huang L, Shao ZZ. The preparation of regenerated silk fibroin microspheres. Soft Matter 2007; 3: 910-915. Sargeant A, Goswami T. Pathophysiological aspects of hip implants. J Surg Orthop Adv 2006; 15: 111-112. Chhetri DK, Jahan-Parwar B, Hart SD, Bhuta SM, Berke GS. Injection laryngoplasty with calcium hydroxylapatite gel implant in an in vivo canine model. Ann Otol Rhinol Laryngol 2004; 113: 259-264. Gonzalez O, Smith RL, Goodman SB. Effect of size, concentration, surface area, and volume of polymethylmethacrylate particles on human macrophages in vitro. J Biomed Mater Res 1996; 30: 463-473. Panilaitis B, Altman GH, Chen J, Jin HJ, Karageorgiou V, Kaplan DL. Macrophage responses to silk. Biomaterials 2003; 24: 3079-3085. Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G, Kaplan DL. Silk fibroin microtubes for blood vessel engineering. Biomaterials 2007; 28: 5271-5279. Talukdar S, Nguyen QT, Chen AC, Sah RL, Kundu SC. Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials 2011; 32: 8927-8937. Zysk SP, Gebhard HH, Kalteis T, Schmitt-Sody M, Jansson V, Messmer K, Veihelmann A. Particles of all sizes provoke inflammatory responses in vivo. Clin Orthopaed Relat Res 2005; 433: 258-264. Wenk E, Wandrey AJ, Merkle HP, Meinel L. Silk fibroin spheres as a platform for controlled drug delivery. J Controlled Release 2008; 132: 26-34. Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 2006; 27: 6064-6082. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997; 28: 5-24. Lu Q, Zhang B, Li M, Zuo B, Kaplan DL, Huang Y, Zhu H. Degradation mechanism and control of silk fibroin. Biomacromolecules 2011; 12: 1080-1086. Taira M, Kagiya T, Harada H, Sasaki M, Kimura S, Narushima T, Nezu T, Araki Y. Microscopic observations and inflammatory cytokine productions of human macrophage phagocytising submicron titanium particles. J Mater Sci Mater Med 2010; 21: 267-275. Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR. Controlling silk fibroin particle features for drug delivery. Biomaterials 2010; 31: 4583-4591. Catelas I, Petit A, Marchand R, Zukor DJ, Yahia L, Huk OL. Cytotoxicity and macrophage cytokine release induced by ceramic and polyethylene particles in vitro. J Bone Joint Surg Br 1999; 81: 516-521. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials 2003; 24: 401-416. Lim JY, Kim HS, Kim YH, Kim KM, Choi HS. PMMA (polymethylmetacrylate) microspheres and stabilized hyaluronic acid as an injection laryngoplasty material for the treatment of glottal insufficiency: in vivo canine study. Eur Archiv Oto-Rhino-Laryngol 2008; 265: 321-326. Valles G, Gonzalez-Melendi P, Gonzalez-Carrasco JL, Saldana L, Sanchez-Sabate E, Munuera L, Vilaboa N. Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials 2006; 27: 5199-5211. Rajanbabu V, Pan CY, Lee SC, Lin WJ, Lin CC, Li CL, Chen JY. Tilapia hepcidin 2-3 peptide modulates lipopolysaccharide-induced cytokines and inhibits tumor necrosis factor-alpha through cyclooxygenase-2 and phosphodiesterase 4D. J Biol Chem. 2010; 285: 30577-30586. Byun EB, Sung NY, Kim JH, Choi JI, Matsui T, Byun MW, Lee JW. Enhancement of anti-tumor activity of gamma-irradiated silk fibroin via immunomodulatory effects. Chem Biol Interact 2010; 186: 90-95. 2009; 67 2010; 31 2007; 127 2006; 12 2005; 433 1999; 48 2010; 388 2006; 15 1999; 46 1996; 30 1997; 28 2011; 32 2008; 106 2010; 285 2010; 186 2011; 12 2008; 265 1999; 81 2007; 28 2010; 21 1998; 39 2004; 113 2006; 27 2002; 23 2003; 24 1994; 12 2011; 66 1988; 232 2008; 139 2003; 28 2011; 69 2007; 3 2008; 132 2010; 4 2011; 187 2003; 67 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_13_2 e_1_2_7_12_2 Sargeant A (e_1_2_7_30_2) 2006; 15 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_23_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 e_1_2_7_39_2 Hallab NJ (e_1_2_7_31_2) 2009; 67 |
References_xml | – volume: 48 start-page: 889 year: 1999 end-page: 898 article-title: Immunohistochemical evaluation of interface membranes from failed cemented and uncemented acetabular components publication-title: J Biomed Mater Res – volume: 232 start-page: 255 year: 1988 end-page: 262 article-title: The effects of bulk versus particulate polymethylmethacrylate on bone. Clin Orthop Relat Res – volume: 28 start-page: 5271 year: 2007 end-page: 5279 article-title: Silk fibroin microtubes for blood vessel engineering publication-title: Biomaterials – volume: 433 start-page: 258 year: 2005 end-page: 264 article-title: Particles of all sizes provoke inflammatory responses in vivo publication-title: Clin Orthopaed Relat Res – volume: 12 start-page: 83 year: 1994 end-page: 92 article-title: In vivo inflammatory response to polymethylmethacrylate particulate debris: effect of size, morphology, and surface area publication-title: J Orthop Res – volume: 30 start-page: 463 year: 1996 end-page: 473 article-title: Effect of size, concentration, surface area, and volume of polymethylmethacrylate particles on human macrophages in vitro publication-title: J Biomed Mater Res – volume: 15 start-page: 111 year: 2006 end-page: 112 article-title: Pathophysiological aspects of hip implants publication-title: J Surg Orthop Adv – volume: 139 start-page: 256 year: 2008 end-page: 261 article-title: Radiologic and histologic characterization of silk fibroin as scaffold coating for rabbit tracheal defect repair publication-title: Otolaryngol Head Neck Surg – volume: 46 start-page: 434 year: 1999 end-page: 437 article-title: Decontaminating particles exposed to bacterial endotoxin (LPS) publication-title: J Biomed Mater Res – volume: 12 start-page: 2729 year: 2006 end-page: 2738 article-title: Cartilage‐like tissue engineering using silk scaffolds and mesenchymal stem cells publication-title: Tissue Eng – volume: 12 start-page: 1080 year: 2011 end-page: 1086 article-title: Degradation mechanism and control of silk fibroin publication-title: Biomacromolecules – volume: 187 start-page: 6491 year: 2011 end-page: 6498 article-title: Micrometer‐sized titanium particles can induce potent Th2‐type responses through TLR4‐independent pathways publication-title: J Immunol – volume: 32 start-page: 333 year: 2011 end-page: 341 article-title: The antimicrobial peptide, tilapia hepcidin 2‐3, and PMA differentially regulate the protein kinase C isoforms, TNF‐alpha and COX‐2, in mouse RAW264.7 macrophages publication-title: Peptides – volume: 265 start-page: 321 year: 2008 end-page: 326 article-title: PMMA (polymethylmetacrylate) microspheres and stabilized hyaluronic acid as an injection laryngoplasty material for the treatment of glottal insufficiency: in vivo canine study publication-title: Eur Archiv Oto‐Rhino‐Laryngol – volume: 388 start-page: 242 year: 2010 end-page: 250 article-title: Silk fibroin nanoparticles for cellular uptake and control release publication-title: Int J Pharm – volume: 127 start-page: 514 year: 2007 end-page: 525 article-title: Inflammation in wound repair: molecular and cellular mechanisms publication-title: J Invest Dermatol – volume: 106 start-page: e44 year: 2008 end-page: e51 article-title: Effect of a calcium hydroxide‐based paste associated to chlorhexidine on RAW 264.7 macrophage cell line culture publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod – volume: 28 start-page: 129 year: 2003 end-page: 134 article-title: Evidence for lipopolysaccharide‐induced differentiation of RAW264.7 murine macrophage cell line into dendritic like cells publication-title: J Biosci – volume: 24 start-page: 3079 year: 2003 end-page: 3085 article-title: Macrophage responses to silk publication-title: Biomaterials – volume: 28 start-page: 5 year: 1997 end-page: 24 article-title: Biodegradation and biocompatibility of PLA and PLGA microspheres publication-title: Adv Drug Deliv Rev – volume: 23 start-page: 3535 year: 2002 end-page: 3543 article-title: Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation publication-title: Biomaterials – volume: 132 start-page: 26 year: 2008 end-page: 34 article-title: Silk fibroin spheres as a platform for controlled drug delivery publication-title: J Controlled Release – volume: 69 start-page: 1578 year: 2011 end-page: 1586 article-title: Development of nano‐hydroxyapatite graft with silk fibroin scaffold as a new bone substitute publication-title: J Oral Maxillofac Surg – volume: 66 start-page: 273 year: 2011 end-page: 279 article-title: Silk fibroin conduits: a cellular and functional assessment of peripheral nerve repair publication-title: Ann Plast Surg – volume: 27 start-page: 5199 year: 2006 end-page: 5211 article-title: Differential inflammatory macrophage response to rutile and titanium particles publication-title: Biomaterials – volume: 27 start-page: 6064 year: 2006 end-page: 6082 article-title: Stem cell‐based tissue engineering with silk biomaterials publication-title: Biomaterials – volume: 31 start-page: 4583 year: 2010 end-page: 4591 article-title: Controlling silk fibroin particle features for drug delivery publication-title: Biomaterials – volume: 67 start-page: 182 year: 2009 end-page: 188 article-title: Biologic effects of implant debris publication-title: Bull NYU Hosp Jt Dis – volume: 113 start-page: 259 year: 2004 end-page: 264 article-title: Injection laryngoplasty with calcium hydroxylapatite gel implant in an in vivo canine model publication-title: Ann Otol Rhinol Laryngol – volume: 285 start-page: 30577 year: 2010 end-page: 30586 article-title: Tilapia hepcidin 2‐3 peptide modulates lipopolysaccharide‐induced cytokines and inhibits tumor necrosis factor‐alpha through cyclooxygenase‐2 and phosphodiesterase 4D publication-title: J Biol Chem. – volume: 21 start-page: 267 year: 2010 end-page: 275 article-title: Microscopic observations and inflammatory cytokine productions of human macrophage phagocytising submicron titanium particles publication-title: J Mater Sci Mater Med – volume: 24 start-page: 401 year: 2003 end-page: 416 article-title: Silk‐based biomaterials publication-title: Biomaterials – volume: 39 start-page: 40 year: 1998 end-page: 51 article-title: Macrophage phagocytosis of polyethylene particulate in vitro publication-title: J Biomed Mater Res – volume: 81 start-page: 516 year: 1999 end-page: 521 article-title: Cytotoxicity and macrophage cytokine release induced by ceramic and polyethylene particles in vitro publication-title: J Bone Joint Surg Br – volume: 4 start-page: 349 year: 2010 end-page: 355 article-title: Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release publication-title: J Tissue Eng Regen M – volume: 3 start-page: 910 year: 2007 end-page: 915 article-title: The preparation of regenerated silk fibroin microspheres publication-title: Soft Matter – volume: 67 start-page: 666 year: 2003 end-page: 674 article-title: Polydimethylsiloxane versus polytetrafluoroethylene for vocal fold medialization: histologic evaluation in a rabbit model publication-title: J Biomed Mater Res B Appl Biomater – volume: 32 start-page: 8927 year: 2011 end-page: 8937 article-title: Effect of initial cell seeding density on 3D‐engineered silk fibroin scaffolds for articular cartilage tissue engineering publication-title: Biomaterials – volume: 186 start-page: 90 year: 2010 end-page: 95 article-title: Enhancement of anti‐tumor activity of gamma‐irradiated silk fibroin via immunomodulatory effects publication-title: Chem Biol Interact – ident: e_1_2_7_6_2 doi: 10.1016/j.biomaterials.2007.08.008 – ident: e_1_2_7_10_2 doi: 10.1016/j.jconrel.2008.08.005 – ident: e_1_2_7_20_2 doi: 10.1038/sj.jid.5700701 – ident: e_1_2_7_13_2 doi: 10.1002/term.245 – ident: e_1_2_7_19_2 doi: 10.1097/01.blo.0000150311.33227.b1 – ident: e_1_2_7_18_2 doi: 10.1016/S0142-9612(02)00032-7 – ident: e_1_2_7_37_2 doi: 10.1016/j.peptides.2010.11.004 – ident: e_1_2_7_15_2 doi: 10.1016/S0142-9612(03)00158-3 – ident: e_1_2_7_38_2 doi: 10.1074/jbc.M110.137935 – ident: e_1_2_7_22_2 doi: 10.1177/000348940411300402 – ident: e_1_2_7_33_2 doi: 10.1039/b703139d – ident: e_1_2_7_21_2 doi: 10.1002/jbm.b.10061 – ident: e_1_2_7_16_2 doi: 10.1002/jor.1100120111 – ident: e_1_2_7_40_2 doi: 10.1016/S0169-409X(97)00048-3 – ident: e_1_2_7_34_2 doi: 10.1002/(SICI)1097-4636(19990905)46:3<434::AID-JBM17>3.0.CO;2-L – ident: e_1_2_7_4_2 doi: 10.1021/bm101422j – ident: e_1_2_7_27_2 doi: 10.1016/j.tripleo.2008.06.027 – ident: e_1_2_7_36_2 doi: 10.1007/BF02970143 – volume: 67 start-page: 182 year: 2009 ident: e_1_2_7_31_2 article-title: Biologic effects of implant debris publication-title: Bull NYU Hosp Jt Dis contributor: fullname: Hallab NJ – ident: e_1_2_7_26_2 doi: 10.1302/0301-620X.81B3.8737 – ident: e_1_2_7_29_2 doi: 10.1016/j.biomaterials.2006.05.045 – ident: e_1_2_7_9_2 doi: 10.1016/j.biomaterials.2011.08.027 – ident: e_1_2_7_35_2 doi: 10.1002/(SICI)1097-4636(199801)39:1<40::AID-JBM6>3.0.CO;2-I – ident: e_1_2_7_8_2 doi: 10.1097/SAP.0b013e3181e6cff7 – ident: e_1_2_7_24_2 doi: 10.4049/jimmunol.1101392 – ident: e_1_2_7_14_2 doi: 10.1097/00003086-198807000-00032 – ident: e_1_2_7_2_2 doi: 10.1016/S0142-9612(02)00353-8 – ident: e_1_2_7_39_2 doi: 10.1016/j.cbi.2010.03.032 – ident: e_1_2_7_3_2 doi: 10.1016/j.biomaterials.2006.07.008 – ident: e_1_2_7_11_2 doi: 10.1016/j.biomaterials.2010.02.024 – ident: e_1_2_7_32_2 doi: 10.1016/j.otohns.2008.03.028 – ident: e_1_2_7_25_2 doi: 10.1002/(SICI)1097-4636(1999)48:6<889::AID-JBM19>3.0.CO;2-S – ident: e_1_2_7_5_2 doi: 10.1089/ten.2006.12.2729 – ident: e_1_2_7_7_2 doi: 10.1016/j.joms.2010.07.062 – ident: e_1_2_7_12_2 doi: 10.1016/j.ijpharm.2009.12.052 – ident: e_1_2_7_17_2 doi: 10.1002/(SICI)1097-4636(199604)30:4<463::AID-JBM4>3.0.CO;2-N – ident: e_1_2_7_23_2 doi: 10.1007/s00405-007-0458-y – volume: 15 start-page: 111 year: 2006 ident: e_1_2_7_30_2 article-title: Pathophysiological aspects of hip implants publication-title: J Surg Orthop Adv contributor: fullname: Sargeant A – ident: e_1_2_7_28_2 doi: 10.1007/s10856-009-3834-x |
SSID | ssj0026052 |
Score | 2.2386987 |
Snippet | Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical... Abstract Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical... |
SourceID | proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1511 |
SubjectTerms | Animals Biocompatibility Biocompatible Materials - chemistry Biocompatible Materials - metabolism Biodegradability Biological and medical sciences Biomedical materials Cell Line Culture cytokine fibroin Fibroins - chemistry Fibroins - immunology Gene Expression Regulation - drug effects in vitro inflammation Interleukin-1beta - genetics Interleukin-1beta - immunology Interleukin-6 - genetics Interleukin-6 - immunology macrophage Macrophages Macrophages - drug effects Macrophages - immunology Macrophages - metabolism Medical sciences Mice Particle Size Raw RNA, Messenger - genetics silk Silk fibroin Stimulation Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgical implants Technology. Biomaterials. Equipments Tumor Necrosis Factor-alpha - genetics Tumor Necrosis Factor-alpha - immunology |
Title | A pilot study of macrophage responses to silk fibroin particles |
URI | https://api.istex.fr/ark:/67375/WNG-5XSBNF2C-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.34444 https://www.ncbi.nlm.nih.gov/pubmed/23225634 https://search.proquest.com/docview/1320164371 https://search.proquest.com/docview/1664214330 https://search.proquest.com/docview/1677914721 |
Volume | 101A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBeje9ke9v3hdSsalD0MnNrWh-2n0XbLSqF56FaWNyHJEs3S2iF2oOyv352cpM0Ygc1PBp9AOt1JP1l3vyNkn3tnrLFV7LURMdZDisFuRFwllrsis94IzEY-G8mTC346FuNlbA7mwvT8EOsfbugZYb1GB9emPbglDf1prgd6wDg8sAKnLMeArs_na_IoBOrhrhNOQDHLSrnMzoMvB3fabuxH91G1NxgfqVtQke9rW_wNfG5i2bAZDR_3FVfbwGGIMSjTwaIzA_vrD4bH_x7nE_JoCVPpYW9XT8k9Vz8jD--QFz4nnw7pbHLVdDQw1NLG02uN9cAuYYWi8z701rW0a2g7uZpSD51oJjWdrULxXpCL4ZfvxyfxshxDbMFReeylTl2ZaJPBvuqd1SyQ2aW24s6AROKYsF74gjFZVXA0straRFZF5nMDOIG9JDt1U7vXhDqAcUWJd7JMgrUkZWEtINeKi8TmmfMR2V9Nipr1rBuq51fOFOhDaRX0EZEPYcLWMno-xUC1XKgfo69KjL8djYbZsTqPyN7GjK4bAHjDVAYZkferKVbgX3hpomvXLFqFKeYp3m6mW2QkpgtzxpJtMnlephwO3BF51dvQbS9wVZUMxvMxWMK2MavTo7Pw8uZfhHfJgyzU8cBIzbdkp5sv3DtAU53ZC07zGxX3Gag |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_B9gA88A0LH8NIEw9I6ZI4n09oG5Qy1j6MTfTNsh1bdN2Sqk0lxF_PndN2K0KVIE-Rcpbi8539s333O4C92BqllS59K1XiUz0kH-0m8ctAxyaPtFUJZSP3B2nvPD4eJsPFgRvlwrT8EKsDN_IMN1-Tg9OB9P41a-iFuurIDo_xuQ3b6PCcKhh8PF3RRxFUd7eduAfyeVSki_w8_LJ_o_HairRNyv1JEZJyhkqybXWLv8HPdTTrlqPuAxDLjrRRKOPOvFEd_esPjsf_7-lDuL9AquygNa1HcMtUj-HeDf7CJ_DhgE1Gl3XDHEktqy27klQS7AdOUmzaRt-aGWtqNhtdjpnFv6hHFZsso_Gewnn309lRz19UZPA1-mrs21SGpgikinBptUZL7vjsQl3GRqFEYHiibWJzztOyxN2RlloHaZlHNlMIFfgz2KrqyuwAM4jk8oKuZXmKBhMUudYIXss4CXQWGevB3nJUxKQl3hAtxXIkUB9CCqcPD965EVvJyOmYYtWyRHwffBbJ8NvhoBsdiVMPdteGdNUA8RtlM6QevF2OsUAXo3sTWZl6PhOUZR7SBWe4QSaljOGY82CTTJYVYYx7bg-et0Z0_Rc0saYc-_PemcKmPovjw757efEvwm_gTu-sfyJOvgy-voS7kSvrQYGbr2Crmc7NawRXjdp1HvQbmTQdwg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgkxA88P0RPoaRJh6Q0iWx4yRPaB-UMViFBhN9s2zH1rpuSdWkEuKv585puxWhSpCnSDlL9vnO_jm--x0h29xZbbQpQ6d0GmI9pBDsJg3LyHCbJ8bpFLORjwfi8JQfDdPhPDYHc2E6fojlDzf0DL9eo4NPSrdzRRp6ri97qsc4PDfJJhcswoiug5MlexQidX_ZCUegkCWFmKfnwZeda41XNqRN1O1PDJBUDejIdcUt_oY-V8Gs343697qSq40nMcQglHFv1uqe-fUHxeN_D_Q-uTvHqXS3M6wH5IatHpI719gLH5H3u3Qyuqhb6ilqae3opcKCYGewRNFpF3trG9rWtBldjKmDTtSjik4WsXiPyWn_w_f9w3BejyE04Kk8dELFtoiUTmBjddYo5tnsYlNyq0Eisiw1LnU5Y6Is4WxklDGRKPPEZRqAAntCNqq6ss8ItYDj8gIvZZkAc4mK3BiAriVPI5Ml1gVkezEpctLRbsiOYDmRoA-ppNdHQN76CVvKqOkYI9WyVP4YfJTp8NveoJ_sy5OAbK3M6LIBoDfMZRABebOYYgkOhrcmqrL1rJGYYx7j9Wa8RkZgvjBnLFonk2VFzOHEHZCnnQ1d9QKXVcFgPO-8JawbszzaO_Yvz_9F-DW59fWgL798Gnx-QW4nvqYHRm2-JBvtdGZfAbJq9Zb3n98rHhxx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pilot+study+of+macrophage+responses+to+silk+fibroin+particles&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Cui%2C+Xidong&rft.au=Wen%2C+Jianchuan&rft.au=Zhao%2C+Xia&rft.au=Chen%2C+Xin&rft.date=2013-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=101A&rft.issue=5&rft.spage=1511&rft.epage=1517&rft_id=info:doi/10.1002%2Fjbm.a.34444&rft.externalDBID=10.1002%252Fjbm.a.34444&rft.externalDocID=JBM34444 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |