A pilot study of macrophage responses to silk fibroin particles

Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical properties, and controllable biodegradability. The particulate form of SF materials may have many potential uses, including the use as a filler for tis...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 101A; no. 5; pp. 1511 - 1517
Main Authors Cui, Xidong, Wen, Jianchuan, Zhao, Xia, Chen, Xin, Shao, Zhengzhong, Jiang, Jack J.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2013
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical properties, and controllable biodegradability. The particulate form of SF materials may have many potential uses, including the use as a filler for tissue defects or as a controlled‐release agent for drug delivery. However, many past in vivo and in vitro studies evaluating the biocompatibility and biodegradability of SF have involved bulk implants. It is essential to evaluate the inflammatory effects of SF particles before further use. In this study, two different sizes of SF particles were evaluated to assess their impact on the release of tumor necrosis factor (TNF)‐α, interleukin (IL)‐1β, and IL‐6, in comparison with lipopolysaccharide positive control stimulation. The inflammatory processes were characterized using real‐time reverse transcription polymerase chain reaction, enzyme‐linked immunosorbent assay, and light microscopy evaluations. The results indicated that small silk fibroin particles and large silk fibroin particles, in culture with RAW 264.7 murine macrophage cells for 24 h, caused up‐regulation of mRNA coding for TNF‐α, which indicated that both size of particles have potential inflammatory effects. There was a statistically significant increase in this up‐regulation under small silk fibroin stimulation. However, the immunosorbent assay suggested that there was virtually no observed release of IL‐1β, IL‐6, or TNF‐α, relative to the control group. The results suggest that SF particles of the chosen dimensions may have good biocompatibility in culture with RAW 264.7 murine macrophages. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.
AbstractList Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical properties, and controllable biodegradability. The particulate form of SF materials may have many potential uses, including the use as a filler for tissue defects or as a controlled-release agent for drug delivery. However, many past in vivo and in vitro studies evaluating the biocompatibility and biodegradability of SF have involved bulk implants. It is essential to evaluate the inflammatory effects of SF particles before further use. In this study, two different sizes of SF particles were evaluated to assess their impact on the release of tumor necrosis factor (TNF)- alpha , interleukin (IL)-1 beta , and IL-6, in comparison with lipopolysaccharide positive control stimulation. The inflammatory processes were characterized using real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and light microscopy evaluations. The results indicated that small silk fibroin particles and large silk fibroin particles, in culture with RAW 264.7 murine macrophage cells for 24 h, caused up-regulation of mRNA coding for TNF- alpha , which indicated that both size of particles have potential inflammatory effects. There was a statistically significant increase in this up-regulation under small silk fibroin stimulation. However, the immunosorbent assay suggested that there was virtually no observed release of IL-1 beta , IL-6, or TNF- alpha , relative to the control group. The results suggest that SF particles of the chosen dimensions may have good biocompatibility in culture with RAW 264.7 murine macrophages. copyright 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.
Abstract Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical properties, and controllable biodegradability. The particulate form of SF materials may have many potential uses, including the use as a filler for tissue defects or as a controlled‐release agent for drug delivery. However, many past in vivo and in vitro studies evaluating the biocompatibility and biodegradability of SF have involved bulk implants. It is essential to evaluate the inflammatory effects of SF particles before further use. In this study, two different sizes of SF particles were evaluated to assess their impact on the release of tumor necrosis factor (TNF)‐α, interleukin (IL)‐1β, and IL‐6, in comparison with lipopolysaccharide positive control stimulation. The inflammatory processes were characterized using real‐time reverse transcription polymerase chain reaction, enzyme‐linked immunosorbent assay, and light microscopy evaluations. The results indicated that small silk fibroin particles and large silk fibroin particles, in culture with RAW 264.7 murine macrophage cells for 24 h, caused up‐regulation of mRNA coding for TNF‐α, which indicated that both size of particles have potential inflammatory effects. There was a statistically significant increase in this up‐regulation under small silk fibroin stimulation. However, the immunosorbent assay suggested that there was virtually no observed release of IL‐1β, IL‐6, or TNF‐α, relative to the control group. The results suggest that SF particles of the chosen dimensions may have good biocompatibility in culture with RAW 264.7 murine macrophages. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.
Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical properties, and controllable biodegradability. The particulate form of SF materials may have many potential uses, including the use as a filler for tissue defects or as a controlled-release agent for drug delivery. However, many past in vivo and in vitro studies evaluating the biocompatibility and biodegradability of SF have involved bulk implants. It is essential to evaluate the inflammatory effects of SF particles before further use. In this study, two different sizes of SF particles were evaluated to assess their impact on the release of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, in comparison with lipopolysaccharide positive control stimulation. The inflammatory processes were characterized using real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and light microscopy evaluations. The results indicated that small silk fibroin particles and large silk fibroin particles, in culture with RAW 264.7 murine macrophage cells for 24 h, caused up-regulation of mRNA coding for TNF-α, which indicated that both size of particles have potential inflammatory effects. There was a statistically significant increase in this up-regulation under small silk fibroin stimulation. However, the immunosorbent assay suggested that there was virtually no observed release of IL-1β, IL-6, or TNF-α, relative to the control group. The results suggest that SF particles of the chosen dimensions may have good biocompatibility in culture with RAW 264.7 murine macrophages.
Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical properties, and controllable biodegradability. The particulate form of SF materials may have many potential uses, including the use as a filler for tissue defects or as a controlled‐release agent for drug delivery. However, many past in vivo and in vitro studies evaluating the biocompatibility and biodegradability of SF have involved bulk implants. It is essential to evaluate the inflammatory effects of SF particles before further use. In this study, two different sizes of SF particles were evaluated to assess their impact on the release of tumor necrosis factor (TNF)‐α, interleukin (IL)‐1β, and IL‐6, in comparison with lipopolysaccharide positive control stimulation. The inflammatory processes were characterized using real‐time reverse transcription polymerase chain reaction, enzyme‐linked immunosorbent assay, and light microscopy evaluations. The results indicated that small silk fibroin particles and large silk fibroin particles, in culture with RAW 264.7 murine macrophage cells for 24 h, caused up‐regulation of mRNA coding for TNF‐α, which indicated that both size of particles have potential inflammatory effects. There was a statistically significant increase in this up‐regulation under small silk fibroin stimulation. However, the immunosorbent assay suggested that there was virtually no observed release of IL‐1β, IL‐6, or TNF‐α, relative to the control group. The results suggest that SF particles of the chosen dimensions may have good biocompatibility in culture with RAW 264.7 murine macrophages. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.
Author Wen, Jianchuan
Cui, Xidong
Chen, Xin
Zhao, Xia
Shao, Zhengzhong
Jiang, Jack J.
Author_xml – sequence: 1
  givenname: Xidong
  surname: Cui
  fullname: Cui, Xidong
  organization: Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
– sequence: 2
  givenname: Jianchuan
  surname: Wen
  fullname: Wen, Jianchuan
  organization: Department of Macromolecular Science and the Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
– sequence: 3
  givenname: Xia
  surname: Zhao
  fullname: Zhao, Xia
  organization: Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China
– sequence: 4
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
  organization: Department of Macromolecular Science and the Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
– sequence: 5
  givenname: Zhengzhong
  surname: Shao
  fullname: Shao, Zhengzhong
  organization: Department of Macromolecular Science and the Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
– sequence: 6
  givenname: Jack J.
  surname: Jiang
  fullname: Jiang, Jack J.
  email: jackjjiang@gmail.com
  organization: Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27335146$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23225634$$D View this record in MEDLINE/PubMed
BookMark eNqN0ctv1DAQB2ALFdEHnLgjX5AqoSy2x4_mhNoVLaBSJB6Cm-U4Y3CbxMHOCva_J8tuyw3wZXz4Zkaa3yHZG9KAhDzmbMEZE8-vm37hFiDnd48ccKVEJWut9jZ_WVcgar1PDku5nrFmSjwg-wKEUBrkAXlxSsfYpYmWadWuaQq0dz6n8Zv7ijRjGdNQsNAp0RK7Gxpik1Mc6OjyFH2H5SG5H1xX8NGuHpFP5y8_Ll9Vl-8uXi9PLyuvgMsqaMexZq4RiG1A78BoUIb7VmIzC4agfFDhBEC3Lau1d94z3Z6IYBrJFRyR4-3cMafvKyyT7WPx2HVuwLQqlmtjai6N4P9BtRRcArB_UxCMawlmM_XZls7XKSVjsGOOvctry5nd5GDnHKyzv3OY9ZPd4FXTY3tnbw8_g6c74Ip3Xchu8LH8cQZAcalnx7fuR-xw_bed9s3Z29vl1bYnlgl_3vW4fGO1AaPs56sLq758OLs6F0v7Hn4BAxOvdg
CitedBy_id crossref_primary_10_1016_j_msec_2017_05_008
crossref_primary_10_1002_jbm_a_35374
crossref_primary_10_1177_22808000231222704
crossref_primary_10_1021_acsbiomaterials_1c01357
crossref_primary_10_1080_13880209_2019_1617749
crossref_primary_10_12677_BP_2021_113003
crossref_primary_10_1039_C4RA02113D
crossref_primary_10_1016_j_ijbiomac_2017_04_069
crossref_primary_10_1039_C7SM01631J
crossref_primary_10_3390_pharmaceutics15010263
crossref_primary_10_1021_acsbiomaterials_0c00247
crossref_primary_10_5650_oleoscience_20_549
crossref_primary_10_1002_adhm_201800308
crossref_primary_10_1134_S0006297916110031
crossref_primary_10_1038_s41598_017_15687_w
crossref_primary_10_1021_acsbiomaterials_6b00119
crossref_primary_10_3389_fphar_2023_1084948
crossref_primary_10_3390_ijms18030237
crossref_primary_10_3390_ph16020248
crossref_primary_10_1002_adbi_201700093
crossref_primary_10_4110_in_2018_18_e37
crossref_primary_10_3390_polym11121933
crossref_primary_10_1016_j_msec_2020_111831
Cites_doi 10.1016/j.biomaterials.2007.08.008
10.1016/j.jconrel.2008.08.005
10.1038/sj.jid.5700701
10.1002/term.245
10.1097/01.blo.0000150311.33227.b1
10.1016/S0142-9612(02)00032-7
10.1016/j.peptides.2010.11.004
10.1016/S0142-9612(03)00158-3
10.1074/jbc.M110.137935
10.1177/000348940411300402
10.1039/b703139d
10.1002/jbm.b.10061
10.1002/jor.1100120111
10.1016/S0169-409X(97)00048-3
10.1002/(SICI)1097-4636(19990905)46:3<434::AID-JBM17>3.0.CO;2-L
10.1021/bm101422j
10.1016/j.tripleo.2008.06.027
10.1007/BF02970143
10.1302/0301-620X.81B3.8737
10.1016/j.biomaterials.2006.05.045
10.1016/j.biomaterials.2011.08.027
10.1002/(SICI)1097-4636(199801)39:1<40::AID-JBM6>3.0.CO;2-I
10.1097/SAP.0b013e3181e6cff7
10.4049/jimmunol.1101392
10.1097/00003086-198807000-00032
10.1016/S0142-9612(02)00353-8
10.1016/j.cbi.2010.03.032
10.1016/j.biomaterials.2006.07.008
10.1016/j.biomaterials.2010.02.024
10.1016/j.otohns.2008.03.028
10.1002/(SICI)1097-4636(1999)48:6<889::AID-JBM19>3.0.CO;2-S
10.1089/ten.2006.12.2729
10.1016/j.joms.2010.07.062
10.1016/j.ijpharm.2009.12.052
10.1002/(SICI)1097-4636(199604)30:4<463::AID-JBM4>3.0.CO;2-N
10.1007/s00405-007-0458-y
10.1007/s10856-009-3834-x
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
– notice: 2014 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
DOI 10.1002/jbm.a.34444
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Engineering Research Database
CrossRef
MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 1517
ExternalDocumentID 10_1002_jbm_a_34444
23225634
27335146
JBM34444
ark_67375_WNG_5XSBNF2C_R
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Shanghai Science and Technology Committee
  funderid: 1052nm03801
– fundername: National Natural Science Foundation of China
  funderid: 81028004
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
8W4
ABFLS
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IPNFZ
IQODW
PQEST
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
ID FETCH-LOGICAL-c5314-f6a1e90ab2eedfeca3763571cd4eb5310e35cf5f8336dd096cacc06d82f7b4153
IEDL.DBID DR2
ISSN 1549-3296
IngestDate Fri Aug 16 22:19:08 EDT 2024
Thu Aug 15 23:44:55 EDT 2024
Fri Aug 16 22:38:43 EDT 2024
Thu Sep 26 17:27:26 EDT 2024
Sat Sep 28 07:51:19 EDT 2024
Thu Nov 24 18:21:04 EST 2022
Sat Aug 24 01:01:56 EDT 2024
Wed Oct 30 10:00:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Biological properties
Cytokine
Inflammation
In vitro
Protein
Particle
Silk
Natural fiber
Animal fiber
Biocompatibility
Biomaterial
Fibroin
Biomedical engineering
Macrophage
Language English
License CC BY 4.0
Copyright © 2012 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5314-f6a1e90ab2eedfeca3763571cd4eb5310e35cf5f8336dd096cacc06d82f7b4153
Notes How to cite this article: Cui X, Wen J, Zhao X, Chen X, Shao Z, Jiang JJ. 2013. A pilot study of macrophage responses to silk fibroin particles. J Biomed Mater Res Part A 2013:101A:1511-1517.
ark:/67375/WNG-5XSBNF2C-R
National Natural Science Foundation of China - No. 81028004
istex:C173E75E7CDC4B48D4C224661AEB5C10075EECA8
ArticleID:JBM34444
Shanghai Science and Technology Committee - No. 1052nm03801
How to cite this article: Cui X, Wen J, Zhao X, Chen X, Shao Z, Jiang JJ. 2013. A pilot study of macrophage responses to silk fibroin particles. J Biomed Mater Res Part A 2013:101A:1511–1517.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23225634
PQID 1320164371
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1677914721
proquest_miscellaneous_1664214330
proquest_miscellaneous_1320164371
crossref_primary_10_1002_jbm_a_34444
pubmed_primary_23225634
pascalfrancis_primary_27335146
wiley_primary_10_1002_jbm_a_34444_JBM34444
istex_primary_ark_67375_WNG_5XSBNF2C_R
PublicationCentury 2000
PublicationDate May 2013
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: May 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J. Biomed. Mater. Res
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Blackwell
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Blackwell
References Voronov I, Santerre JP, Hinek A, Callahan JW, Sandhu J, Boynton EL. Macrophage phagocytosis of polyethylene particulate in vitro. J Biomed Mater Res 1998; 39: 40-51.
Kweon H, Lee KG, Chae CH, Balázsi C, Min SK, Kim JY, Choi JY, Kim SG. Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute. J Oral Maxillofac Surg 2011; 69: 1578-1586.
Gelb H, Schumacher HR, Cuckler J, Ducheyne P, Baker DG. In vivo inflammatory response to polymethylmethacrylate particulate debris: effect of size, morphology, and surface area. J Orthop Res 1994; 12: 83-92.
Rajanbabu V, Chen JY. The antimicrobial peptide, tilapia hepcidin 2-3, and PMA differentially regulate the protein kinase C isoforms, TNF-alpha and COX-2, in mouse RAW264.7 macrophages. Peptides 2011; 32: 333-341.
Kundu J, Chung YI, Kim YH, Tae G, Kundu SC. Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm 2010; 388: 242-250.
Hitchins VM, Merritt K. Decontaminating particles exposed to bacterial endotoxin (LPS). J Biomed Mater Res 1999; 46: 434-437.
Caballero M, Bernal-Sprekelsen M, Calvo C, Farre X, Quinto L, Alos L. Polydimethylsiloxane versus polytetrafluoroethylene for vocal fold medialization: histologic evaluation in a rabbit model. J Biomed Mater Res B Appl Biomater 2003; 67: 666-674.
Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak-Novakovic G, Merkle HP, Meinel L. Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng 2006; 12: 2729-2738.
Hallab NJ, Jacobs JJ. Biologic effects of implant debris. Bull NYU Hosp Jt Dis 2009; 67: 182-188.
Ghaznavi AM, Kokai LE, Lovett ML, Kaplan DL, Marra KG. Silk fibroin conduits: a cellular and functional assessment of peripheral nerve repair. Ann Plast Surg 2011; 66: 273-279.
da Silva RA, Leonardo MR, da Silva LA, Faccioli LH, de Medeiros AI. Effect of a calcium hydroxide-based paste associated to chlorhexidine on RAW 264.7 macrophage cell line culture. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: e44-e51.
Saxena RK, Vallyathan V, Lewis DM. Evidence for lipopolysaccharide-induced differentiation of RAW264.7 murine macrophage cell line into dendritic like cells. J Biosci 2003; 28: 129-134.
Yang SY, Ren W, Park Y, Sieving A, Hsu S, Nasser S, et al. Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation. Biomaterials 2002; 23: 3535-3543.
Bessa PC, Balmayor ER, Azevedo HS, Nürnberger S, Casal M, van Griensven M, Reis RL, Redl H. Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. J Tissue Eng Regen M 2010; 4: 349-355.
Mishra PK, Wu W, Rozo C, Hallab NJ, Benevenia J, Gause WC. Micrometer-sized titanium particles can induce potent Th2-type responses through TLR4-independent pathways. J Immunol 2011; 187: 6491-6498.
Ni Y, Zhao X, Zhou L, Shao Z, Yan W, Chen X, Cao Z, Xue Z, Jiang JJ. Radiologic and histologic characterization of silk fibroin as scaffold coating for rabbit tracheal defect repair. Otolaryngol Head Neck Surg 2008; 139: 256-261.
Jones LC, Frondoza C, Hungerford DS. Immunohistochemical evaluation of interface membranes from failed cemented and uncemented acetabular components. J Biomed Mater Res 1999; 48: 889-898.
Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 2007; 127: 514-525.
Cao ZB, Chen X, Yao JR, Huang L, Shao ZZ. The preparation of regenerated silk fibroin microspheres. Soft Matter 2007; 3: 910-915.
Sargeant A, Goswami T. Pathophysiological aspects of hip implants. J Surg Orthop Adv 2006; 15: 111-112.
Chhetri DK, Jahan-Parwar B, Hart SD, Bhuta SM, Berke GS. Injection laryngoplasty with calcium hydroxylapatite gel implant in an in vivo canine model. Ann Otol Rhinol Laryngol 2004; 113: 259-264.
Gonzalez O, Smith RL, Goodman SB. Effect of size, concentration, surface area, and volume of polymethylmethacrylate particles on human macrophages in vitro. J Biomed Mater Res 1996; 30: 463-473.
Panilaitis B, Altman GH, Chen J, Jin HJ, Karageorgiou V, Kaplan DL. Macrophage responses to silk. Biomaterials 2003; 24: 3079-3085.
Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G, Kaplan DL. Silk fibroin microtubes for blood vessel engineering. Biomaterials 2007; 28: 5271-5279.
Talukdar S, Nguyen QT, Chen AC, Sah RL, Kundu SC. Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials 2011; 32: 8927-8937.
Zysk SP, Gebhard HH, Kalteis T, Schmitt-Sody M, Jansson V, Messmer K, Veihelmann A. Particles of all sizes provoke inflammatory responses in vivo. Clin Orthopaed Relat Res 2005; 433: 258-264.
Wenk E, Wandrey AJ, Merkle HP, Meinel L. Silk fibroin spheres as a platform for controlled drug delivery. J Controlled Release 2008; 132: 26-34.
Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 2006; 27: 6064-6082.
Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997; 28: 5-24.
Lu Q, Zhang B, Li M, Zuo B, Kaplan DL, Huang Y, Zhu H. Degradation mechanism and control of silk fibroin. Biomacromolecules 2011; 12: 1080-1086.
Taira M, Kagiya T, Harada H, Sasaki M, Kimura S, Narushima T, Nezu T, Araki Y. Microscopic observations and inflammatory cytokine productions of human macrophage phagocytising submicron titanium particles. J Mater Sci Mater Med 2010; 21: 267-275.
Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR. Controlling silk fibroin particle features for drug delivery. Biomaterials 2010; 31: 4583-4591.
Catelas I, Petit A, Marchand R, Zukor DJ, Yahia L, Huk OL. Cytotoxicity and macrophage cytokine release induced by ceramic and polyethylene particles in vitro. J Bone Joint Surg Br 1999; 81: 516-521.
Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials 2003; 24: 401-416.
Lim JY, Kim HS, Kim YH, Kim KM, Choi HS. PMMA (polymethylmetacrylate) microspheres and stabilized hyaluronic acid as an injection laryngoplasty material for the treatment of glottal insufficiency: in vivo canine study. Eur Archiv Oto-Rhino-Laryngol 2008; 265: 321-326.
Valles G, Gonzalez-Melendi P, Gonzalez-Carrasco JL, Saldana L, Sanchez-Sabate E, Munuera L, Vilaboa N. Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials 2006; 27: 5199-5211.
Rajanbabu V, Pan CY, Lee SC, Lin WJ, Lin CC, Li CL, Chen JY. Tilapia hepcidin 2-3 peptide modulates lipopolysaccharide-induced cytokines and inhibits tumor necrosis factor-alpha through cyclooxygenase-2 and phosphodiesterase 4D. J Biol Chem. 2010; 285: 30577-30586.
Byun EB, Sung NY, Kim JH, Choi JI, Matsui T, Byun MW, Lee JW. Enhancement of anti-tumor activity of gamma-irradiated silk fibroin via immunomodulatory effects. Chem Biol Interact 2010; 186: 90-95.
2009; 67
2010; 31
2007; 127
2006; 12
2005; 433
1999; 48
2010; 388
2006; 15
1999; 46
1996; 30
1997; 28
2011; 32
2008; 106
2010; 285
2010; 186
2011; 12
2008; 265
1999; 81
2007; 28
2010; 21
1998; 39
2004; 113
2006; 27
2002; 23
2003; 24
1994; 12
2011; 66
1988; 232
2008; 139
2003; 28
2011; 69
2007; 3
2008; 132
2010; 4
2011; 187
2003; 67
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_12_2
Sargeant A (e_1_2_7_30_2) 2006; 15
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
Hallab NJ (e_1_2_7_31_2) 2009; 67
References_xml – volume: 48
  start-page: 889
  year: 1999
  end-page: 898
  article-title: Immunohistochemical evaluation of interface membranes from failed cemented and uncemented acetabular components
  publication-title: J Biomed Mater Res
– volume: 232
  start-page: 255
  year: 1988
  end-page: 262
  article-title: The effects of bulk versus particulate polymethylmethacrylate on bone. Clin Orthop Relat Res
– volume: 28
  start-page: 5271
  year: 2007
  end-page: 5279
  article-title: Silk fibroin microtubes for blood vessel engineering
  publication-title: Biomaterials
– volume: 433
  start-page: 258
  year: 2005
  end-page: 264
  article-title: Particles of all sizes provoke inflammatory responses in vivo
  publication-title: Clin Orthopaed Relat Res
– volume: 12
  start-page: 83
  year: 1994
  end-page: 92
  article-title: In vivo inflammatory response to polymethylmethacrylate particulate debris: effect of size, morphology, and surface area
  publication-title: J Orthop Res
– volume: 30
  start-page: 463
  year: 1996
  end-page: 473
  article-title: Effect of size, concentration, surface area, and volume of polymethylmethacrylate particles on human macrophages in vitro
  publication-title: J Biomed Mater Res
– volume: 15
  start-page: 111
  year: 2006
  end-page: 112
  article-title: Pathophysiological aspects of hip implants
  publication-title: J Surg Orthop Adv
– volume: 139
  start-page: 256
  year: 2008
  end-page: 261
  article-title: Radiologic and histologic characterization of silk fibroin as scaffold coating for rabbit tracheal defect repair
  publication-title: Otolaryngol Head Neck Surg
– volume: 46
  start-page: 434
  year: 1999
  end-page: 437
  article-title: Decontaminating particles exposed to bacterial endotoxin (LPS)
  publication-title: J Biomed Mater Res
– volume: 12
  start-page: 2729
  year: 2006
  end-page: 2738
  article-title: Cartilage‐like tissue engineering using silk scaffolds and mesenchymal stem cells
  publication-title: Tissue Eng
– volume: 12
  start-page: 1080
  year: 2011
  end-page: 1086
  article-title: Degradation mechanism and control of silk fibroin
  publication-title: Biomacromolecules
– volume: 187
  start-page: 6491
  year: 2011
  end-page: 6498
  article-title: Micrometer‐sized titanium particles can induce potent Th2‐type responses through TLR4‐independent pathways
  publication-title: J Immunol
– volume: 32
  start-page: 333
  year: 2011
  end-page: 341
  article-title: The antimicrobial peptide, tilapia hepcidin 2‐3, and PMA differentially regulate the protein kinase C isoforms, TNF‐alpha and COX‐2, in mouse RAW264.7 macrophages
  publication-title: Peptides
– volume: 265
  start-page: 321
  year: 2008
  end-page: 326
  article-title: PMMA (polymethylmetacrylate) microspheres and stabilized hyaluronic acid as an injection laryngoplasty material for the treatment of glottal insufficiency: in vivo canine study
  publication-title: Eur Archiv Oto‐Rhino‐Laryngol
– volume: 388
  start-page: 242
  year: 2010
  end-page: 250
  article-title: Silk fibroin nanoparticles for cellular uptake and control release
  publication-title: Int J Pharm
– volume: 127
  start-page: 514
  year: 2007
  end-page: 525
  article-title: Inflammation in wound repair: molecular and cellular mechanisms
  publication-title: J Invest Dermatol
– volume: 106
  start-page: e44
  year: 2008
  end-page: e51
  article-title: Effect of a calcium hydroxide‐based paste associated to chlorhexidine on RAW 264.7 macrophage cell line culture
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
– volume: 28
  start-page: 129
  year: 2003
  end-page: 134
  article-title: Evidence for lipopolysaccharide‐induced differentiation of RAW264.7 murine macrophage cell line into dendritic like cells
  publication-title: J Biosci
– volume: 24
  start-page: 3079
  year: 2003
  end-page: 3085
  article-title: Macrophage responses to silk
  publication-title: Biomaterials
– volume: 28
  start-page: 5
  year: 1997
  end-page: 24
  article-title: Biodegradation and biocompatibility of PLA and PLGA microspheres
  publication-title: Adv Drug Deliv Rev
– volume: 23
  start-page: 3535
  year: 2002
  end-page: 3543
  article-title: Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation
  publication-title: Biomaterials
– volume: 132
  start-page: 26
  year: 2008
  end-page: 34
  article-title: Silk fibroin spheres as a platform for controlled drug delivery
  publication-title: J Controlled Release
– volume: 69
  start-page: 1578
  year: 2011
  end-page: 1586
  article-title: Development of nano‐hydroxyapatite graft with silk fibroin scaffold as a new bone substitute
  publication-title: J Oral Maxillofac Surg
– volume: 66
  start-page: 273
  year: 2011
  end-page: 279
  article-title: Silk fibroin conduits: a cellular and functional assessment of peripheral nerve repair
  publication-title: Ann Plast Surg
– volume: 27
  start-page: 5199
  year: 2006
  end-page: 5211
  article-title: Differential inflammatory macrophage response to rutile and titanium particles
  publication-title: Biomaterials
– volume: 27
  start-page: 6064
  year: 2006
  end-page: 6082
  article-title: Stem cell‐based tissue engineering with silk biomaterials
  publication-title: Biomaterials
– volume: 31
  start-page: 4583
  year: 2010
  end-page: 4591
  article-title: Controlling silk fibroin particle features for drug delivery
  publication-title: Biomaterials
– volume: 67
  start-page: 182
  year: 2009
  end-page: 188
  article-title: Biologic effects of implant debris
  publication-title: Bull NYU Hosp Jt Dis
– volume: 113
  start-page: 259
  year: 2004
  end-page: 264
  article-title: Injection laryngoplasty with calcium hydroxylapatite gel implant in an in vivo canine model
  publication-title: Ann Otol Rhinol Laryngol
– volume: 285
  start-page: 30577
  year: 2010
  end-page: 30586
  article-title: Tilapia hepcidin 2‐3 peptide modulates lipopolysaccharide‐induced cytokines and inhibits tumor necrosis factor‐alpha through cyclooxygenase‐2 and phosphodiesterase 4D
  publication-title: J Biol Chem.
– volume: 21
  start-page: 267
  year: 2010
  end-page: 275
  article-title: Microscopic observations and inflammatory cytokine productions of human macrophage phagocytising submicron titanium particles
  publication-title: J Mater Sci Mater Med
– volume: 24
  start-page: 401
  year: 2003
  end-page: 416
  article-title: Silk‐based biomaterials
  publication-title: Biomaterials
– volume: 39
  start-page: 40
  year: 1998
  end-page: 51
  article-title: Macrophage phagocytosis of polyethylene particulate in vitro
  publication-title: J Biomed Mater Res
– volume: 81
  start-page: 516
  year: 1999
  end-page: 521
  article-title: Cytotoxicity and macrophage cytokine release induced by ceramic and polyethylene particles in vitro
  publication-title: J Bone Joint Surg Br
– volume: 4
  start-page: 349
  year: 2010
  end-page: 355
  article-title: Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release
  publication-title: J Tissue Eng Regen M
– volume: 3
  start-page: 910
  year: 2007
  end-page: 915
  article-title: The preparation of regenerated silk fibroin microspheres
  publication-title: Soft Matter
– volume: 67
  start-page: 666
  year: 2003
  end-page: 674
  article-title: Polydimethylsiloxane versus polytetrafluoroethylene for vocal fold medialization: histologic evaluation in a rabbit model
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 32
  start-page: 8927
  year: 2011
  end-page: 8937
  article-title: Effect of initial cell seeding density on 3D‐engineered silk fibroin scaffolds for articular cartilage tissue engineering
  publication-title: Biomaterials
– volume: 186
  start-page: 90
  year: 2010
  end-page: 95
  article-title: Enhancement of anti‐tumor activity of gamma‐irradiated silk fibroin via immunomodulatory effects
  publication-title: Chem Biol Interact
– ident: e_1_2_7_6_2
  doi: 10.1016/j.biomaterials.2007.08.008
– ident: e_1_2_7_10_2
  doi: 10.1016/j.jconrel.2008.08.005
– ident: e_1_2_7_20_2
  doi: 10.1038/sj.jid.5700701
– ident: e_1_2_7_13_2
  doi: 10.1002/term.245
– ident: e_1_2_7_19_2
  doi: 10.1097/01.blo.0000150311.33227.b1
– ident: e_1_2_7_18_2
  doi: 10.1016/S0142-9612(02)00032-7
– ident: e_1_2_7_37_2
  doi: 10.1016/j.peptides.2010.11.004
– ident: e_1_2_7_15_2
  doi: 10.1016/S0142-9612(03)00158-3
– ident: e_1_2_7_38_2
  doi: 10.1074/jbc.M110.137935
– ident: e_1_2_7_22_2
  doi: 10.1177/000348940411300402
– ident: e_1_2_7_33_2
  doi: 10.1039/b703139d
– ident: e_1_2_7_21_2
  doi: 10.1002/jbm.b.10061
– ident: e_1_2_7_16_2
  doi: 10.1002/jor.1100120111
– ident: e_1_2_7_40_2
  doi: 10.1016/S0169-409X(97)00048-3
– ident: e_1_2_7_34_2
  doi: 10.1002/(SICI)1097-4636(19990905)46:3<434::AID-JBM17>3.0.CO;2-L
– ident: e_1_2_7_4_2
  doi: 10.1021/bm101422j
– ident: e_1_2_7_27_2
  doi: 10.1016/j.tripleo.2008.06.027
– ident: e_1_2_7_36_2
  doi: 10.1007/BF02970143
– volume: 67
  start-page: 182
  year: 2009
  ident: e_1_2_7_31_2
  article-title: Biologic effects of implant debris
  publication-title: Bull NYU Hosp Jt Dis
  contributor:
    fullname: Hallab NJ
– ident: e_1_2_7_26_2
  doi: 10.1302/0301-620X.81B3.8737
– ident: e_1_2_7_29_2
  doi: 10.1016/j.biomaterials.2006.05.045
– ident: e_1_2_7_9_2
  doi: 10.1016/j.biomaterials.2011.08.027
– ident: e_1_2_7_35_2
  doi: 10.1002/(SICI)1097-4636(199801)39:1<40::AID-JBM6>3.0.CO;2-I
– ident: e_1_2_7_8_2
  doi: 10.1097/SAP.0b013e3181e6cff7
– ident: e_1_2_7_24_2
  doi: 10.4049/jimmunol.1101392
– ident: e_1_2_7_14_2
  doi: 10.1097/00003086-198807000-00032
– ident: e_1_2_7_2_2
  doi: 10.1016/S0142-9612(02)00353-8
– ident: e_1_2_7_39_2
  doi: 10.1016/j.cbi.2010.03.032
– ident: e_1_2_7_3_2
  doi: 10.1016/j.biomaterials.2006.07.008
– ident: e_1_2_7_11_2
  doi: 10.1016/j.biomaterials.2010.02.024
– ident: e_1_2_7_32_2
  doi: 10.1016/j.otohns.2008.03.028
– ident: e_1_2_7_25_2
  doi: 10.1002/(SICI)1097-4636(1999)48:6<889::AID-JBM19>3.0.CO;2-S
– ident: e_1_2_7_5_2
  doi: 10.1089/ten.2006.12.2729
– ident: e_1_2_7_7_2
  doi: 10.1016/j.joms.2010.07.062
– ident: e_1_2_7_12_2
  doi: 10.1016/j.ijpharm.2009.12.052
– ident: e_1_2_7_17_2
  doi: 10.1002/(SICI)1097-4636(199604)30:4<463::AID-JBM4>3.0.CO;2-N
– ident: e_1_2_7_23_2
  doi: 10.1007/s00405-007-0458-y
– volume: 15
  start-page: 111
  year: 2006
  ident: e_1_2_7_30_2
  article-title: Pathophysiological aspects of hip implants
  publication-title: J Surg Orthop Adv
  contributor:
    fullname: Sargeant A
– ident: e_1_2_7_28_2
  doi: 10.1007/s10856-009-3834-x
SSID ssj0026052
Score 2.2386987
Snippet Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical...
Abstract Silk fibroin (SF) shows promise for tissue engineering and other biomedical applications due to its excellent biocompatibility, unique biomechanical...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1511
SubjectTerms Animals
Biocompatibility
Biocompatible Materials - chemistry
Biocompatible Materials - metabolism
Biodegradability
Biological and medical sciences
Biomedical materials
Cell Line
Culture
cytokine
fibroin
Fibroins - chemistry
Fibroins - immunology
Gene Expression Regulation - drug effects
in vitro
inflammation
Interleukin-1beta - genetics
Interleukin-1beta - immunology
Interleukin-6 - genetics
Interleukin-6 - immunology
macrophage
Macrophages
Macrophages - drug effects
Macrophages - immunology
Macrophages - metabolism
Medical sciences
Mice
Particle Size
Raw
RNA, Messenger - genetics
silk
Silk fibroin
Stimulation
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Technology. Biomaterials. Equipments
Tumor Necrosis Factor-alpha - genetics
Tumor Necrosis Factor-alpha - immunology
Title A pilot study of macrophage responses to silk fibroin particles
URI https://api.istex.fr/ark:/67375/WNG-5XSBNF2C-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.34444
https://www.ncbi.nlm.nih.gov/pubmed/23225634
https://search.proquest.com/docview/1320164371
https://search.proquest.com/docview/1664214330
https://search.proquest.com/docview/1677914721
Volume 101A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBeje9ke9v3hdSsalD0MnNrWh-2n0XbLSqF56FaWNyHJEs3S2iF2oOyv352cpM0Ygc1PBp9AOt1JP1l3vyNkn3tnrLFV7LURMdZDisFuRFwllrsis94IzEY-G8mTC346FuNlbA7mwvT8EOsfbugZYb1GB9emPbglDf1prgd6wDg8sAKnLMeArs_na_IoBOrhrhNOQDHLSrnMzoMvB3fabuxH91G1NxgfqVtQke9rW_wNfG5i2bAZDR_3FVfbwGGIMSjTwaIzA_vrD4bH_x7nE_JoCVPpYW9XT8k9Vz8jD--QFz4nnw7pbHLVdDQw1NLG02uN9cAuYYWi8z701rW0a2g7uZpSD51oJjWdrULxXpCL4ZfvxyfxshxDbMFReeylTl2ZaJPBvuqd1SyQ2aW24s6AROKYsF74gjFZVXA0straRFZF5nMDOIG9JDt1U7vXhDqAcUWJd7JMgrUkZWEtINeKi8TmmfMR2V9Nipr1rBuq51fOFOhDaRX0EZEPYcLWMno-xUC1XKgfo69KjL8djYbZsTqPyN7GjK4bAHjDVAYZkferKVbgX3hpomvXLFqFKeYp3m6mW2QkpgtzxpJtMnlephwO3BF51dvQbS9wVZUMxvMxWMK2MavTo7Pw8uZfhHfJgyzU8cBIzbdkp5sv3DtAU53ZC07zGxX3Gag
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_B9gA88A0LH8NIEw9I6ZI4n09oG5Qy1j6MTfTNsh1bdN2Sqk0lxF_PndN2K0KVIE-Rcpbi8539s333O4C92BqllS59K1XiUz0kH-0m8ctAxyaPtFUJZSP3B2nvPD4eJsPFgRvlwrT8EKsDN_IMN1-Tg9OB9P41a-iFuurIDo_xuQ3b6PCcKhh8PF3RRxFUd7eduAfyeVSki_w8_LJ_o_HairRNyv1JEZJyhkqybXWLv8HPdTTrlqPuAxDLjrRRKOPOvFEd_esPjsf_7-lDuL9AquygNa1HcMtUj-HeDf7CJ_DhgE1Gl3XDHEktqy27klQS7AdOUmzaRt-aGWtqNhtdjpnFv6hHFZsso_Gewnn309lRz19UZPA1-mrs21SGpgikinBptUZL7vjsQl3GRqFEYHiibWJzztOyxN2RlloHaZlHNlMIFfgz2KrqyuwAM4jk8oKuZXmKBhMUudYIXss4CXQWGevB3nJUxKQl3hAtxXIkUB9CCqcPD965EVvJyOmYYtWyRHwffBbJ8NvhoBsdiVMPdteGdNUA8RtlM6QevF2OsUAXo3sTWZl6PhOUZR7SBWe4QSaljOGY82CTTJYVYYx7bg-et0Z0_Rc0saYc-_PemcKmPovjw757efEvwm_gTu-sfyJOvgy-voS7kSvrQYGbr2Crmc7NawRXjdp1HvQbmTQdwg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgkxA88P0RPoaRJh6Q0iWx4yRPaB-UMViFBhN9s2zH1rpuSdWkEuKv585puxWhSpCnSDlL9vnO_jm--x0h29xZbbQpQ6d0GmI9pBDsJg3LyHCbJ8bpFLORjwfi8JQfDdPhPDYHc2E6fojlDzf0DL9eo4NPSrdzRRp6ri97qsc4PDfJJhcswoiug5MlexQidX_ZCUegkCWFmKfnwZeda41XNqRN1O1PDJBUDejIdcUt_oY-V8Gs343697qSq40nMcQglHFv1uqe-fUHxeN_D_Q-uTvHqXS3M6wH5IatHpI719gLH5H3u3Qyuqhb6ilqae3opcKCYGewRNFpF3trG9rWtBldjKmDTtSjik4WsXiPyWn_w_f9w3BejyE04Kk8dELFtoiUTmBjddYo5tnsYlNyq0Eisiw1LnU5Y6Is4WxklDGRKPPEZRqAAntCNqq6ss8ItYDj8gIvZZkAc4mK3BiAriVPI5Ml1gVkezEpctLRbsiOYDmRoA-ppNdHQN76CVvKqOkYI9WyVP4YfJTp8NveoJ_sy5OAbK3M6LIBoDfMZRABebOYYgkOhrcmqrL1rJGYYx7j9Wa8RkZgvjBnLFonk2VFzOHEHZCnnQ1d9QKXVcFgPO-8JawbszzaO_Yvz_9F-DW59fWgL798Gnx-QW4nvqYHRm2-JBvtdGZfAbJq9Zb3n98rHhxx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pilot+study+of+macrophage+responses+to+silk+fibroin+particles&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Cui%2C+Xidong&rft.au=Wen%2C+Jianchuan&rft.au=Zhao%2C+Xia&rft.au=Chen%2C+Xin&rft.date=2013-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=101A&rft.issue=5&rft.spage=1511&rft.epage=1517&rft_id=info:doi/10.1002%2Fjbm.a.34444&rft.externalDBID=10.1002%252Fjbm.a.34444&rft.externalDocID=JBM34444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon