Comparison of methane production potential, biodegradability, and kinetics of different organic substrates
•Methane production potential, BD, and kinetics of various substrates were compared.•Both of elemental and organic analysis could be used to calculate the TMY and BD.•15% VS of lignin was a critical point in AD of lignocellulosic and manure wastes. The methane production potential, biodegradability,...
Saved in:
Published in | Bioresource technology Vol. 149; pp. 565 - 569 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Methane production potential, BD, and kinetics of various substrates were compared.•Both of elemental and organic analysis could be used to calculate the TMY and BD.•15% VS of lignin was a critical point in AD of lignocellulosic and manure wastes.
The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (⩾15%, on a TS basis) had low first-order rate constant (0.05–0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future. |
---|---|
AbstractList | The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (≥ 15%, on a TS basis) had low first-order rate constant (0.05-0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future. The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (>=15%, on a TS basis) had low first-order rate constant (0.05-0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future. •Methane production potential, BD, and kinetics of various substrates were compared.•Both of elemental and organic analysis could be used to calculate the TMY and BD.•15% VS of lignin was a critical point in AD of lignocellulosic and manure wastes. The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (⩾15%, on a TS basis) had low first-order rate constant (0.05–0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future. The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (≥ 15%, on a TS basis) had low first-order rate constant (0.05-0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future.The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (≥ 15%, on a TS basis) had low first-order rate constant (0.05-0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future. The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (⩾15%, on a TS basis) had low first-order rate constant (0.05–0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future. |
Author | Liu, Guangqing Liu, Xiaoying Li, Yeqing Chen, Chang Zhang, Ruihong He, Yanfeng |
Author_xml | – sequence: 1 givenname: Yeqing surname: Li fullname: Li, Yeqing organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 2 givenname: Ruihong surname: Zhang fullname: Zhang, Ruihong organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 3 givenname: Guangqing surname: Liu fullname: Liu, Guangqing email: gqliu@mail.buct.edu.cn organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 4 givenname: Chang surname: Chen fullname: Chen, Chang email: chenchang@mail.buct.edu.cn organization: College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 5 givenname: Yanfeng surname: He fullname: He, Yanfeng organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 6 givenname: Xiaoying surname: Liu fullname: Liu, Xiaoying organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27960087$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24140354$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktrGzEUhUVJaRy3fyHMptBFxtV7RtBFi-kLAt20a6GRrhK5MyNX0gTy7ytjm0I3yUogvnMv555zhS7mOANC1wRvCCby_W4zhJgK2PsNxYRtsNpgyV6gFek71lLVyQu0wkritheUX6KrnHcYY0Y6-gpdUk44ZoKv0G4bp71JIce5ib6ZoNybGZp9im6xJdTffSwwl2DGm6audHCXjDNDGEN5vGnM7JrfYYYSbD7oXfAeUuWbmO7MHGyTlyGXZArk1-ilN2OGN6d3jX59-fxz-629_fH1-_bTbWsFw6X1BvxggUrVeWZ4b3rhPPVKESCd9JJK3zvqRc8UYd4OsrqihDqmrBgEp2yN3h3nVhN_FshFTyFbGMdqLC5ZE0FkxyXvnoFyhQXmiqlnoLynBPdCVPT6hC7DBE7vU5hMetTnq1fg7Qkw2ZrRJzPbkP9xXc0N1xzX6MORsynmnMBrG4o5pFIvGkZNsD6UQe_0uQz6UAaNla5lqHL5n_y84Unhx6MQakwPAZLONsBswYUEtmgXw1Mj_gLKKtLb |
CitedBy_id | crossref_primary_10_1016_j_jbiosc_2019_05_013 crossref_primary_10_1007_s13399_022_03129_1 crossref_primary_10_1016_j_jece_2017_11_064 crossref_primary_10_1016_j_wasman_2014_06_025 crossref_primary_10_1007_s12155_023_10691_7 crossref_primary_10_3390_fermentation6010034 crossref_primary_10_1007_s13399_021_02146_w crossref_primary_10_1016_j_wasman_2024_07_004 crossref_primary_10_1016_j_biortech_2014_06_009 crossref_primary_10_1016_j_rser_2019_109503 crossref_primary_10_1016_j_biortech_2019_122296 crossref_primary_10_1016_j_chemosphere_2021_132933 crossref_primary_10_1038_s41396_023_01505_x crossref_primary_10_1016_j_jwpe_2025_107493 crossref_primary_10_1016_j_seta_2015_06_002 crossref_primary_10_1016_j_biortech_2018_04_062 crossref_primary_10_3390_en16103971 crossref_primary_10_1016_j_eti_2024_103870 crossref_primary_10_1016_j_jclepro_2022_132389 crossref_primary_10_1016_j_jclepro_2016_04_008 crossref_primary_10_1016_j_jclepro_2021_128390 crossref_primary_10_1016_j_wasman_2016_10_027 crossref_primary_10_1016_j_rser_2015_05_021 crossref_primary_10_1016_j_rser_2019_05_028 crossref_primary_10_1016_j_wasman_2022_03_014 crossref_primary_10_3390_pr8101224 crossref_primary_10_1016_j_fuel_2023_128053 crossref_primary_10_1016_j_rser_2022_112123 crossref_primary_10_1016_j_ijhydene_2015_10_061 crossref_primary_10_1016_j_scitotenv_2020_141920 crossref_primary_10_1002_ghg_1506 crossref_primary_10_1016_j_biortech_2015_03_086 crossref_primary_10_1016_j_biortech_2017_11_083 crossref_primary_10_1007_s12649_019_00664_3 crossref_primary_10_1016_j_biortech_2015_02_036 crossref_primary_10_1016_j_jclepro_2020_120389 crossref_primary_10_1016_j_jclepro_2020_122449 crossref_primary_10_1021_acs_energyfuels_6b01883 crossref_primary_10_1007_s11356_024_35864_5 crossref_primary_10_1016_j_jhazmat_2020_124886 crossref_primary_10_1016_j_biombioe_2016_03_018 crossref_primary_10_1016_j_apenergy_2018_01_033 crossref_primary_10_1016_j_proenv_2015_10_031 crossref_primary_10_1016_j_biombioe_2020_105943 crossref_primary_10_1016_j_wasman_2016_09_031 crossref_primary_10_1007_s10668_024_04992_w crossref_primary_10_1016_j_seta_2021_101218 crossref_primary_10_1007_s42452_020_2781_5 crossref_primary_10_1016_j_biombioe_2020_105831 crossref_primary_10_3390_en16155742 crossref_primary_10_1021_acs_energyfuels_9b00522 crossref_primary_10_1088_1755_1315_307_1_012019 crossref_primary_10_1016_j_indcrop_2017_11_048 crossref_primary_10_1016_j_jenvman_2018_07_016 crossref_primary_10_1111_gfs_12155 crossref_primary_10_1016_j_biombioe_2019_105262 crossref_primary_10_1016_j_wasman_2018_05_016 crossref_primary_10_1016_j_cej_2020_127103 crossref_primary_10_1007_s12010_017_2460_1 crossref_primary_10_3390_su15021336 crossref_primary_10_3390_su16167130 crossref_primary_10_3390_su16052150 crossref_primary_10_1016_j_biortech_2014_10_019 crossref_primary_10_1016_j_wasman_2014_07_018 crossref_primary_10_1080_09593330_2016_1167963 crossref_primary_10_3390_agriculture11050467 crossref_primary_10_3390_agronomy12122996 crossref_primary_10_1021_ef5005495 crossref_primary_10_2139_ssrn_4167270 crossref_primary_10_3390_pr11030865 crossref_primary_10_1002_lno_12653 crossref_primary_10_1016_j_biortech_2019_122262 crossref_primary_10_1007_s11783_018_1037_8 crossref_primary_10_1080_15567036_2019_1587084 crossref_primary_10_1016_j_algal_2019_101689 crossref_primary_10_1007_s10163_020_01040_3 crossref_primary_10_1016_j_wasman_2022_06_025 crossref_primary_10_1016_j_biortech_2021_126203 crossref_primary_10_1016_j_coal_2017_11_020 crossref_primary_10_2139_ssrn_4120428 crossref_primary_10_1007_s12155_020_10167_y crossref_primary_10_1016_j_geoderma_2020_114230 crossref_primary_10_1016_j_biombioe_2022_106479 crossref_primary_10_1016_j_jclepro_2022_133848 crossref_primary_10_1007_s13399_021_02188_0 crossref_primary_10_1016_j_cej_2015_11_003 crossref_primary_10_1007_s11814_015_0039_5 crossref_primary_10_1016_j_bcab_2018_08_007 crossref_primary_10_1016_j_scitotenv_2020_143193 crossref_primary_10_1016_j_jece_2021_105901 crossref_primary_10_1007_s13399_020_00884_x crossref_primary_10_3390_ijerph16111889 crossref_primary_10_1007_s12010_020_03445_0 crossref_primary_10_7717_peerj_10590 crossref_primary_10_1016_j_rser_2019_109287 crossref_primary_10_2166_wst_2017_026 crossref_primary_10_1007_s12649_017_9834_z crossref_primary_10_1080_09593330_2022_2145241 crossref_primary_10_1111_1751_7915_12179 crossref_primary_10_1007_s13399_020_00740_y crossref_primary_10_1007_s13399_023_03902_w crossref_primary_10_1080_09593330_2016_1234001 crossref_primary_10_1016_j_bej_2021_108135 crossref_primary_10_1016_j_wasman_2020_03_036 crossref_primary_10_1016_j_egyr_2020_10_008 crossref_primary_10_1016_j_biombioe_2019_105395 crossref_primary_10_1016_j_jclepro_2019_118479 crossref_primary_10_36263_nijest_2020_02_0226 crossref_primary_10_1016_j_renene_2017_09_018 crossref_primary_10_1007_s11356_020_12262_1 crossref_primary_10_1016_j_jclepro_2020_121646 crossref_primary_10_3390_en18030730 crossref_primary_10_1007_s12155_021_10350_9 crossref_primary_10_3390_fermentation5030076 crossref_primary_10_3390_plants12091823 crossref_primary_10_1016_j_resconrec_2014_03_015 crossref_primary_10_1016_j_enconman_2018_06_099 crossref_primary_10_1016_j_scitotenv_2018_09_141 crossref_primary_10_3390_en8010645 crossref_primary_10_3390_su17020586 crossref_primary_10_1016_j_egyr_2023_03_097 crossref_primary_10_1007_s13399_022_02604_z crossref_primary_10_1016_j_crcon_2024_100262 crossref_primary_10_1016_j_rser_2020_110007 crossref_primary_10_1016_j_biortech_2023_129939 crossref_primary_10_1007_s10163_021_01248_x crossref_primary_10_1016_j_biortech_2015_11_033 crossref_primary_10_1016_j_bej_2016_11_002 crossref_primary_10_1016_j_biosystemseng_2019_02_005 crossref_primary_10_1016_j_biteb_2024_101882 crossref_primary_10_3390_fermentation7040284 crossref_primary_10_1016_j_fuel_2023_128452 crossref_primary_10_1016_j_biombioe_2021_106306 crossref_primary_10_1016_j_biortech_2023_129953 crossref_primary_10_1016_j_rser_2023_113697 crossref_primary_10_1016_j_rser_2020_110138 crossref_primary_10_1007_s12649_015_9444_6 crossref_primary_10_3390_waste1010014 crossref_primary_10_1016_j_jclepro_2023_135867 crossref_primary_10_1016_j_esd_2022_12_007 crossref_primary_10_1016_j_jenvman_2019_01_046 crossref_primary_10_1007_s42108_023_00239_y crossref_primary_10_1016_j_chemosphere_2022_136856 crossref_primary_10_1016_j_wasman_2017_10_038 crossref_primary_10_1016_j_energy_2021_122326 crossref_primary_10_1016_j_cjche_2015_12_025 crossref_primary_10_1002_bbb_2208 crossref_primary_10_1080_16583655_2022_2035928 crossref_primary_10_1016_j_biteb_2023_101333 crossref_primary_10_1080_03601234_2015_982432 crossref_primary_10_1021_acs_est_1c02894 crossref_primary_10_1039_D1EE00642H crossref_primary_10_15446_rev_colomb_biote_v17n1_39971 crossref_primary_10_1021_acs_energyfuels_6b00715 crossref_primary_10_1016_j_indcrop_2015_12_044 crossref_primary_10_1016_j_enconman_2023_117978 crossref_primary_10_1088_1748_9326_ad1e81 crossref_primary_10_1186_s40643_020_00327_5 crossref_primary_10_1016_j_energy_2019_01_150 crossref_primary_10_1016_j_energy_2019_01_152 crossref_primary_10_1016_j_jes_2019_10_016 crossref_primary_10_1515_opag_2019_0065 crossref_primary_10_1016_j_psep_2020_09_005 crossref_primary_10_3390_app11020742 crossref_primary_10_1007_s11157_017_9436_z crossref_primary_10_1016_j_fuel_2024_131409 crossref_primary_10_1016_j_wasman_2017_09_038 crossref_primary_10_1007_s11356_023_30099_2 crossref_primary_10_1007_s13399_022_03173_x crossref_primary_10_31692_2764_3425_v4i2_424 crossref_primary_10_1080_10962247_2021_1969296 crossref_primary_10_1016_j_biortech_2014_01_054 crossref_primary_10_1016_j_scitotenv_2025_178688 crossref_primary_10_1177_0734242X16644681 crossref_primary_10_1016_j_wasman_2018_03_025 crossref_primary_10_1371_journal_pone_0182361 crossref_primary_10_1016_j_wasman_2016_03_028 crossref_primary_10_3390_su14116457 crossref_primary_10_1007_s13399_018_0321_y crossref_primary_10_1016_j_psep_2024_03_055 crossref_primary_10_1093_ijfood_vvae022 crossref_primary_10_1016_j_rser_2018_09_008 crossref_primary_10_1039_D4RA00794H crossref_primary_10_1186_s13568_017_0325_1 crossref_primary_10_1016_j_wasman_2019_10_046 crossref_primary_10_1016_j_jclepro_2023_137214 crossref_primary_10_1007_s00449_022_02829_2 crossref_primary_10_1007_s10163_018_0799_1 crossref_primary_10_1063_1_4966160 crossref_primary_10_1016_j_biombioe_2020_105735 crossref_primary_10_1016_j_biortech_2022_127577 crossref_primary_10_3390_en12030365 crossref_primary_10_1016_j_biortech_2018_10_040 crossref_primary_10_1016_j_biortech_2014_12_015 crossref_primary_10_1016_j_biortech_2019_122425 crossref_primary_10_1016_j_biortech_2015_08_151 crossref_primary_10_1016_j_fuel_2019_03_001 crossref_primary_10_3390_fermentation9010060 crossref_primary_10_3390_su14159278 crossref_primary_10_4491_KSEE_2024_46_8_438 crossref_primary_10_1007_s11356_021_15798_y crossref_primary_10_1002_bmb_21399 crossref_primary_10_1016_j_biortech_2016_06_074 crossref_primary_10_3390_su16156433 crossref_primary_10_1007_s13399_020_00864_1 crossref_primary_10_3390_su12093527 crossref_primary_10_1016_j_biortech_2017_08_087 crossref_primary_10_1177_0734242X19833161 crossref_primary_10_1016_j_rechem_2024_101549 crossref_primary_10_1177_0734242X19871999 crossref_primary_10_1016_j_envres_2023_115558 crossref_primary_10_1007_s11164_020_04250_4 crossref_primary_10_1016_j_bcab_2021_101936 |
Cites_doi | 10.1021/ef400117f 10.1021/ie50507a033 10.1016/j.biortech.2010.10.035 10.1007/s11157-004-2502-3 10.1016/j.biortech.2012.08.051 10.1007/s12010-013-0335-7 10.1016/j.biortech.2008.11.011 10.1016/j.biortech.2012.01.025 10.1016/j.biombioe.2003.08.006 10.1016/j.biortech.2011.07.026 10.1016/j.biortech.2010.03.048 10.2166/wst.2009.040 10.1016/j.biortech.2010.01.027 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 |
DOI | 10.1016/j.biortech.2013.09.063 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE Civil Engineering Abstracts MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 569 |
ExternalDocumentID | 24140354 27960087 10_1016_j_biortech_2013_09_063 S0960852413014958 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 |
ID | FETCH-LOGICAL-c530t-faefbce2697f3a48a85df2f991e176f626f8d2f583913fcb6003212d39c5b5423 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Thu Jul 10 20:51:45 EDT 2025 Wed Jul 30 11:02:44 EDT 2025 Fri Jul 11 08:05:11 EDT 2025 Mon Jul 21 06:02:38 EDT 2025 Wed Apr 02 07:24:03 EDT 2025 Tue Jul 01 02:06:19 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Fri Feb 23 02:34:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lignin Biomethane potential Kinetics Organic substrates Biodegradability Methane Substrate Organic material Biogas |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c530t-faefbce2697f3a48a85df2f991e176f626f8d2f583913fcb6003212d39c5b5423 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 24140354 |
PQID | 1448210855 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1516746472 proquest_miscellaneous_1490504939 proquest_miscellaneous_1448210855 pubmed_primary_24140354 pascalfrancis_primary_27960087 crossref_citationtrail_10_1016_j_biortech_2013_09_063 crossref_primary_10_1016_j_biortech_2013_09_063 elsevier_sciencedirect_doi_10_1016_j_biortech_2013_09_063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Labatut, R.A., 2012. Anaerobic biodegradability of complex substrates: performance and stability at mesophilic and thermophilic conditions. Doctoral Dissertation of Cornell University, USA. Kaparaju, Serrano, Thomsen, Kongjan, Angelidaki (b0040) 2009; 100 Angelidaki, Alves, Bolzonella, Borzacconi, Campos, Guwy, Kalyuzhnyi, Jenicek, Van Lier (b0005) 2009; 59 Elbeshbishy, Nakhla, Hafez (b0025) 2012; 110 Brown, Shi, Li (b0015) 2012; 124 . El-Mashad, Zhang (b0030) 2010; 101 Li, Zhang, Liu, Chen, Xiao, Feng, He, Liu (b0060) 2013; 27 Labatut, Angenent, Scott (b0045) 2011; 102 Li, Feng, Zhang, He, Liu, Xiao, Ma, Chen, Liu (b0080) 2013; 171 Lo, Kurniawan, Sillanpää, Pai, Chiang, Chao, Liu, Chuang, Banks, Wang (b0065) 2010; 101 Gunaseelan (b0035) 2004; 26 Triolo, Sommer, Moller, Weisbjerg, Jiang (b0070) 2011; 102 Buswell, Mueller (b0020) 1952; 44 Angelidaki, Sanders (b0010) 2004; 3 Li (10.1016/j.biortech.2013.09.063_b0080) 2013; 171 Buswell (10.1016/j.biortech.2013.09.063_b0020) 1952; 44 Angelidaki (10.1016/j.biortech.2013.09.063_b0005) 2009; 59 El-Mashad (10.1016/j.biortech.2013.09.063_b0030) 2010; 101 Gunaseelan (10.1016/j.biortech.2013.09.063_b0035) 2004; 26 Brown (10.1016/j.biortech.2013.09.063_b0015) 2012; 124 Labatut (10.1016/j.biortech.2013.09.063_b0045) 2011; 102 Li (10.1016/j.biortech.2013.09.063_b0060) 2013; 27 Lo (10.1016/j.biortech.2013.09.063_b0065) 2010; 101 Kaparaju (10.1016/j.biortech.2013.09.063_b0040) 2009; 100 Elbeshbishy (10.1016/j.biortech.2013.09.063_b0025) 2012; 110 10.1016/j.biortech.2013.09.063_b0050 Triolo (10.1016/j.biortech.2013.09.063_b0070) 2011; 102 Angelidaki (10.1016/j.biortech.2013.09.063_b0010) 2004; 3 |
References_xml | – volume: 101 start-page: 6329 year: 2010 end-page: 6335 ident: b0065 article-title: Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors publication-title: Bioresour. Technol. – volume: 26 start-page: 389 year: 2004 end-page: 399 ident: b0035 article-title: Biochemical methane potential of fruits and vegetable solid waste feedstocks publication-title: Biomass Bioenergy – volume: 102 start-page: 9395 year: 2011 end-page: 9402 ident: b0070 article-title: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential publication-title: Bioresour. Technol. – volume: 27 start-page: 2085 year: 2013 end-page: 2091 ident: b0060 article-title: Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure publication-title: Energy Fuels – reference: >. – volume: 171 start-page: 117 year: 2013 end-page: 127 ident: b0080 article-title: Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover publication-title: Appl. Biochem. Biotechnol. – volume: 59 start-page: 927 year: 2009 end-page: 934 ident: b0005 article-title: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays publication-title: Water Sci. Technol. – volume: 124 start-page: 379 year: 2012 end-page: 386 ident: b0015 article-title: Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production publication-title: Bioresour. Technol. – volume: 102 start-page: 2255 year: 2011 end-page: 2264 ident: b0045 article-title: Biochemical methane potential and biodegradability of complex organic substrates publication-title: Bioresour. Technol. – volume: 101 start-page: 4021 year: 2010 end-page: 4028 ident: b0030 article-title: Biogas production from co-digestion of dairy manure and food waste publication-title: Bioresour. Technol. – volume: 3 start-page: 117 year: 2004 end-page: 129 ident: b0010 article-title: Assessment of the anaerobic biodegradability of macropollutants publication-title: Rev. Environ. Sci. Biotechnol. – reference: Labatut, R.A., 2012. Anaerobic biodegradability of complex substrates: performance and stability at mesophilic and thermophilic conditions. Doctoral Dissertation of Cornell University, USA. < – volume: 110 start-page: 18 year: 2012 end-page: 25 ident: b0025 article-title: Biochemical methane potential (BMP) of food waste and primary sludge: influence of inoculum pre-incubation and inoculum source publication-title: Bioresour. Technol. – volume: 100 start-page: 2562 year: 2009 end-page: 2568 ident: b0040 article-title: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept publication-title: Bioresour. Technol. – volume: 44 start-page: 550 year: 1952 end-page: 552 ident: b0020 article-title: Mechanism of methane fermentation publication-title: Ind. Eng. Chem. – ident: 10.1016/j.biortech.2013.09.063_b0050 – volume: 27 start-page: 2085 year: 2013 ident: 10.1016/j.biortech.2013.09.063_b0060 article-title: Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure publication-title: Energy Fuels doi: 10.1021/ef400117f – volume: 44 start-page: 550 year: 1952 ident: 10.1016/j.biortech.2013.09.063_b0020 article-title: Mechanism of methane fermentation publication-title: Ind. Eng. Chem. doi: 10.1021/ie50507a033 – volume: 102 start-page: 2255 year: 2011 ident: 10.1016/j.biortech.2013.09.063_b0045 article-title: Biochemical methane potential and biodegradability of complex organic substrates publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.10.035 – volume: 3 start-page: 117 year: 2004 ident: 10.1016/j.biortech.2013.09.063_b0010 article-title: Assessment of the anaerobic biodegradability of macropollutants publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-004-2502-3 – volume: 124 start-page: 379 year: 2012 ident: 10.1016/j.biortech.2013.09.063_b0015 article-title: Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.08.051 – volume: 171 start-page: 117 year: 2013 ident: 10.1016/j.biortech.2013.09.063_b0080 article-title: Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-013-0335-7 – volume: 100 start-page: 2562 year: 2009 ident: 10.1016/j.biortech.2013.09.063_b0040 article-title: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.11.011 – volume: 110 start-page: 18 year: 2012 ident: 10.1016/j.biortech.2013.09.063_b0025 article-title: Biochemical methane potential (BMP) of food waste and primary sludge: influence of inoculum pre-incubation and inoculum source publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.025 – volume: 26 start-page: 389 year: 2004 ident: 10.1016/j.biortech.2013.09.063_b0035 article-title: Biochemical methane potential of fruits and vegetable solid waste feedstocks publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2003.08.006 – volume: 102 start-page: 9395 year: 2011 ident: 10.1016/j.biortech.2013.09.063_b0070 article-title: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.07.026 – volume: 101 start-page: 6329 year: 2010 ident: 10.1016/j.biortech.2013.09.063_b0065 article-title: Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.03.048 – volume: 59 start-page: 927 year: 2009 ident: 10.1016/j.biortech.2013.09.063_b0005 article-title: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays publication-title: Water Sci. Technol. doi: 10.2166/wst.2009.040 – volume: 101 start-page: 4021 year: 2010 ident: 10.1016/j.biortech.2013.09.063_b0030 article-title: Biogas production from co-digestion of dairy manure and food waste publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.01.027 |
SSID | ssj0003172 |
Score | 2.5497606 |
Snippet | •Methane production potential, BD, and kinetics of various substrates were compared.•Both of elemental and organic analysis could be used to calculate the TMY... The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method.... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 565 |
SubjectTerms | anaerobic digestion Biodegradability Biodegradation, Environmental Biofuel production Biofuels Biological and medical sciences biomass Biomethane potential biosynthesis Biotechnology Conversion Energy energy density Feedstock feedstocks Fundamental and applied biological sciences. Psychology Industrial applications and implications. Economical aspects Kinetics Lignin Lignin - metabolism Lignocellulose metabolism Methane Methane - biosynthesis methane production Organic Chemicals Organic Chemicals - metabolism Organic substrates Rate constants Substrate Specificity Wastes |
Title | Comparison of methane production potential, biodegradability, and kinetics of different organic substrates |
URI | https://dx.doi.org/10.1016/j.biortech.2013.09.063 https://www.ncbi.nlm.nih.gov/pubmed/24140354 https://www.proquest.com/docview/1448210855 https://www.proquest.com/docview/1490504939 https://www.proquest.com/docview/1516746472 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgCEEJTX8lgZiWPTTfyIneNqRbWA6AUq9WY5fqBdqmzUTQ9c-O3MxMm2PbQ9cExiJ45n4vmcmfmGkE_R6zxyazNelS4ThVL4o0llzOvgyjJoJTB3-PtJuTwVX8_k2R5ZjLkwGFY5rP1pTe9X6-HMbJjNWbtazX4g-Nay9wshzMeEXyEUavnR36swD7CPvScBGmfY-lqW8PqoXmFEa--UKHjPd1ry2wzUk9ZuYdpiqndxOyDtDdPxM_J0QJR0ngb9nOyF5oA8nv-6GFg1wgF5uBjLusGVawyEL8h6satDSDeRYj1p2wTaJh5YkBltNx0GFNnzQwrv4ZFbwidu7z-H1Dae_oa7Idcz9h_LrXQ0VYtydAsLU0-Au31JTo8__1wss6H8QuYkz7ss2hBrF1hZKZCm0FZLH1kEQBkKVUbYCUXtWZQAsQoeXQ3QiYMh9LxyspYA016R_WbThDeE1q5mGqAOQ-qgUMQqMBUKZ1UJiLJ2fkLkOOfGDdzkWCLj3IxBaGszysqgrExeGZDVhMx2_drEznFvj2oUqbmhZwZMyL19pzd0YPdIpkC7cq0m5OOoFAakiq4XkNnmcgsbLKEZJnrIu9pUuYQNG6_uaCMxawQp_yfkddK6q1EI5F6U4u1_vOI78giPUrzOe7LfXVyGD4C6unraf1ZT8mD-5dvy5B9FlS5H |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1ReqBVhVr6taVQV-qRsIkdx84RrYq2LXApSNysxLHRblE2YsOhl_72zsTJAgfgwDWx8-GZeJ7jmfcAvvlKx14URSTyzEZpohT9aFIRr7SzWea0Sql2-Pgkm56lP8_l-RpMhloYSqvs5_4wp3ezdX9k3I_muJnNxr8JfGvZ7QsRzNfP4HmKny_JGOz_u8nzwADZbSVg64ia3yoTnu-XM0pp7XYlEtERnmbivgj1qimWOG4-CF7cj0i7yHT4GjZ7SMkOwlO_gTVXb8HLg4urnlbDbcHGZNB1wzO3KAjfwnyyEiJkC89IULqoHWsCESwajTWLljKKiss9hu9REblEFci9_-6xoq7YH7wakT1T_0FvpWVBLsqyJc5MHQPu8h2cHX4_nUyjXn8hslLEbeQL50vreJYrNGeqCy0rzz0iSpeozONSyOuKe4kYKxHeloidBEbCSuRWlhJx2ntYrxe1-wistCXXiHU4cQe5xOeOK5fYQmUIKUtbjUAOY25sT05OGhmXZshCm5vBVoZsZeLcoK1GMF71awI9x6M98sGk5o6jGYwhj_bdveMDq1tyhd4VazWCr4NTGLQq7b2gzRbXS1xhpZpTpYd8qE0eS1yxifyBNpLKRojzfwQfgtfdPEVK5Isy_fSEV_wCG9PT4yNz9OPk1za8oDMheeczrLdX124HIVhb7naf2H_jAC_V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+methane+production+potential%2C+biodegradability%2C+and+kinetics+of+different+organic+substrates&rft.jtitle=Bioresource+technology&rft.au=Li%2C+Yeqing&rft.au=Zhang%2C+Ruihong&rft.au=Liu%2C+Guangqing&rft.au=Chen%2C+Chang&rft.date=2013-12-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=149&rft.spage=565&rft_id=info:doi/10.1016%2Fj.biortech.2013.09.063&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |