Comparison of methane production potential, biodegradability, and kinetics of different organic substrates

•Methane production potential, BD, and kinetics of various substrates were compared.•Both of elemental and organic analysis could be used to calculate the TMY and BD.•15% VS of lignin was a critical point in AD of lignocellulosic and manure wastes. The methane production potential, biodegradability,...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 149; pp. 565 - 569
Main Authors Li, Yeqing, Zhang, Ruihong, Liu, Guangqing, Chen, Chang, He, Yanfeng, Liu, Xiaoying
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Methane production potential, BD, and kinetics of various substrates were compared.•Both of elemental and organic analysis could be used to calculate the TMY and BD.•15% VS of lignin was a critical point in AD of lignocellulosic and manure wastes. The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (⩾15%, on a TS basis) had low first-order rate constant (0.05–0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future.
AbstractList The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (≥ 15%, on a TS basis) had low first-order rate constant (0.05-0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future.
The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (>=15%, on a TS basis) had low first-order rate constant (0.05-0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future.
•Methane production potential, BD, and kinetics of various substrates were compared.•Both of elemental and organic analysis could be used to calculate the TMY and BD.•15% VS of lignin was a critical point in AD of lignocellulosic and manure wastes. The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (⩾15%, on a TS basis) had low first-order rate constant (0.05–0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future.
The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (≥ 15%, on a TS basis) had low first-order rate constant (0.05-0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future.The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (≥ 15%, on a TS basis) had low first-order rate constant (0.05-0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future.
The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (⩾15%, on a TS basis) had low first-order rate constant (0.05–0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future.
Author Liu, Guangqing
Liu, Xiaoying
Li, Yeqing
Chen, Chang
Zhang, Ruihong
He, Yanfeng
Author_xml – sequence: 1
  givenname: Yeqing
  surname: Li
  fullname: Li, Yeqing
  organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 2
  givenname: Ruihong
  surname: Zhang
  fullname: Zhang, Ruihong
  organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 3
  givenname: Guangqing
  surname: Liu
  fullname: Liu, Guangqing
  email: gqliu@mail.buct.edu.cn
  organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 4
  givenname: Chang
  surname: Chen
  fullname: Chen, Chang
  email: chenchang@mail.buct.edu.cn
  organization: College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 5
  givenname: Yanfeng
  surname: He
  fullname: He, Yanfeng
  organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 6
  givenname: Xiaoying
  surname: Liu
  fullname: Liu, Xiaoying
  organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27960087$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24140354$$D View this record in MEDLINE/PubMed
BookMark eNqNkktrGzEUhUVJaRy3fyHMptBFxtV7RtBFi-kLAt20a6GRrhK5MyNX0gTy7ytjm0I3yUogvnMv555zhS7mOANC1wRvCCby_W4zhJgK2PsNxYRtsNpgyV6gFek71lLVyQu0wkritheUX6KrnHcYY0Y6-gpdUk44ZoKv0G4bp71JIce5ib6ZoNybGZp9im6xJdTffSwwl2DGm6audHCXjDNDGEN5vGnM7JrfYYYSbD7oXfAeUuWbmO7MHGyTlyGXZArk1-ilN2OGN6d3jX59-fxz-629_fH1-_bTbWsFw6X1BvxggUrVeWZ4b3rhPPVKESCd9JJK3zvqRc8UYd4OsrqihDqmrBgEp2yN3h3nVhN_FshFTyFbGMdqLC5ZE0FkxyXvnoFyhQXmiqlnoLynBPdCVPT6hC7DBE7vU5hMetTnq1fg7Qkw2ZrRJzPbkP9xXc0N1xzX6MORsynmnMBrG4o5pFIvGkZNsD6UQe_0uQz6UAaNla5lqHL5n_y84Unhx6MQakwPAZLONsBswYUEtmgXw1Mj_gLKKtLb
CitedBy_id crossref_primary_10_1016_j_jbiosc_2019_05_013
crossref_primary_10_1007_s13399_022_03129_1
crossref_primary_10_1016_j_jece_2017_11_064
crossref_primary_10_1016_j_wasman_2014_06_025
crossref_primary_10_1007_s12155_023_10691_7
crossref_primary_10_3390_fermentation6010034
crossref_primary_10_1007_s13399_021_02146_w
crossref_primary_10_1016_j_wasman_2024_07_004
crossref_primary_10_1016_j_biortech_2014_06_009
crossref_primary_10_1016_j_rser_2019_109503
crossref_primary_10_1016_j_biortech_2019_122296
crossref_primary_10_1016_j_chemosphere_2021_132933
crossref_primary_10_1038_s41396_023_01505_x
crossref_primary_10_1016_j_jwpe_2025_107493
crossref_primary_10_1016_j_seta_2015_06_002
crossref_primary_10_1016_j_biortech_2018_04_062
crossref_primary_10_3390_en16103971
crossref_primary_10_1016_j_eti_2024_103870
crossref_primary_10_1016_j_jclepro_2022_132389
crossref_primary_10_1016_j_jclepro_2016_04_008
crossref_primary_10_1016_j_jclepro_2021_128390
crossref_primary_10_1016_j_wasman_2016_10_027
crossref_primary_10_1016_j_rser_2015_05_021
crossref_primary_10_1016_j_rser_2019_05_028
crossref_primary_10_1016_j_wasman_2022_03_014
crossref_primary_10_3390_pr8101224
crossref_primary_10_1016_j_fuel_2023_128053
crossref_primary_10_1016_j_rser_2022_112123
crossref_primary_10_1016_j_ijhydene_2015_10_061
crossref_primary_10_1016_j_scitotenv_2020_141920
crossref_primary_10_1002_ghg_1506
crossref_primary_10_1016_j_biortech_2015_03_086
crossref_primary_10_1016_j_biortech_2017_11_083
crossref_primary_10_1007_s12649_019_00664_3
crossref_primary_10_1016_j_biortech_2015_02_036
crossref_primary_10_1016_j_jclepro_2020_120389
crossref_primary_10_1016_j_jclepro_2020_122449
crossref_primary_10_1021_acs_energyfuels_6b01883
crossref_primary_10_1007_s11356_024_35864_5
crossref_primary_10_1016_j_jhazmat_2020_124886
crossref_primary_10_1016_j_biombioe_2016_03_018
crossref_primary_10_1016_j_apenergy_2018_01_033
crossref_primary_10_1016_j_proenv_2015_10_031
crossref_primary_10_1016_j_biombioe_2020_105943
crossref_primary_10_1016_j_wasman_2016_09_031
crossref_primary_10_1007_s10668_024_04992_w
crossref_primary_10_1016_j_seta_2021_101218
crossref_primary_10_1007_s42452_020_2781_5
crossref_primary_10_1016_j_biombioe_2020_105831
crossref_primary_10_3390_en16155742
crossref_primary_10_1021_acs_energyfuels_9b00522
crossref_primary_10_1088_1755_1315_307_1_012019
crossref_primary_10_1016_j_indcrop_2017_11_048
crossref_primary_10_1016_j_jenvman_2018_07_016
crossref_primary_10_1111_gfs_12155
crossref_primary_10_1016_j_biombioe_2019_105262
crossref_primary_10_1016_j_wasman_2018_05_016
crossref_primary_10_1016_j_cej_2020_127103
crossref_primary_10_1007_s12010_017_2460_1
crossref_primary_10_3390_su15021336
crossref_primary_10_3390_su16167130
crossref_primary_10_3390_su16052150
crossref_primary_10_1016_j_biortech_2014_10_019
crossref_primary_10_1016_j_wasman_2014_07_018
crossref_primary_10_1080_09593330_2016_1167963
crossref_primary_10_3390_agriculture11050467
crossref_primary_10_3390_agronomy12122996
crossref_primary_10_1021_ef5005495
crossref_primary_10_2139_ssrn_4167270
crossref_primary_10_3390_pr11030865
crossref_primary_10_1002_lno_12653
crossref_primary_10_1016_j_biortech_2019_122262
crossref_primary_10_1007_s11783_018_1037_8
crossref_primary_10_1080_15567036_2019_1587084
crossref_primary_10_1016_j_algal_2019_101689
crossref_primary_10_1007_s10163_020_01040_3
crossref_primary_10_1016_j_wasman_2022_06_025
crossref_primary_10_1016_j_biortech_2021_126203
crossref_primary_10_1016_j_coal_2017_11_020
crossref_primary_10_2139_ssrn_4120428
crossref_primary_10_1007_s12155_020_10167_y
crossref_primary_10_1016_j_geoderma_2020_114230
crossref_primary_10_1016_j_biombioe_2022_106479
crossref_primary_10_1016_j_jclepro_2022_133848
crossref_primary_10_1007_s13399_021_02188_0
crossref_primary_10_1016_j_cej_2015_11_003
crossref_primary_10_1007_s11814_015_0039_5
crossref_primary_10_1016_j_bcab_2018_08_007
crossref_primary_10_1016_j_scitotenv_2020_143193
crossref_primary_10_1016_j_jece_2021_105901
crossref_primary_10_1007_s13399_020_00884_x
crossref_primary_10_3390_ijerph16111889
crossref_primary_10_1007_s12010_020_03445_0
crossref_primary_10_7717_peerj_10590
crossref_primary_10_1016_j_rser_2019_109287
crossref_primary_10_2166_wst_2017_026
crossref_primary_10_1007_s12649_017_9834_z
crossref_primary_10_1080_09593330_2022_2145241
crossref_primary_10_1111_1751_7915_12179
crossref_primary_10_1007_s13399_020_00740_y
crossref_primary_10_1007_s13399_023_03902_w
crossref_primary_10_1080_09593330_2016_1234001
crossref_primary_10_1016_j_bej_2021_108135
crossref_primary_10_1016_j_wasman_2020_03_036
crossref_primary_10_1016_j_egyr_2020_10_008
crossref_primary_10_1016_j_biombioe_2019_105395
crossref_primary_10_1016_j_jclepro_2019_118479
crossref_primary_10_36263_nijest_2020_02_0226
crossref_primary_10_1016_j_renene_2017_09_018
crossref_primary_10_1007_s11356_020_12262_1
crossref_primary_10_1016_j_jclepro_2020_121646
crossref_primary_10_3390_en18030730
crossref_primary_10_1007_s12155_021_10350_9
crossref_primary_10_3390_fermentation5030076
crossref_primary_10_3390_plants12091823
crossref_primary_10_1016_j_resconrec_2014_03_015
crossref_primary_10_1016_j_enconman_2018_06_099
crossref_primary_10_1016_j_scitotenv_2018_09_141
crossref_primary_10_3390_en8010645
crossref_primary_10_3390_su17020586
crossref_primary_10_1016_j_egyr_2023_03_097
crossref_primary_10_1007_s13399_022_02604_z
crossref_primary_10_1016_j_crcon_2024_100262
crossref_primary_10_1016_j_rser_2020_110007
crossref_primary_10_1016_j_biortech_2023_129939
crossref_primary_10_1007_s10163_021_01248_x
crossref_primary_10_1016_j_biortech_2015_11_033
crossref_primary_10_1016_j_bej_2016_11_002
crossref_primary_10_1016_j_biosystemseng_2019_02_005
crossref_primary_10_1016_j_biteb_2024_101882
crossref_primary_10_3390_fermentation7040284
crossref_primary_10_1016_j_fuel_2023_128452
crossref_primary_10_1016_j_biombioe_2021_106306
crossref_primary_10_1016_j_biortech_2023_129953
crossref_primary_10_1016_j_rser_2023_113697
crossref_primary_10_1016_j_rser_2020_110138
crossref_primary_10_1007_s12649_015_9444_6
crossref_primary_10_3390_waste1010014
crossref_primary_10_1016_j_jclepro_2023_135867
crossref_primary_10_1016_j_esd_2022_12_007
crossref_primary_10_1016_j_jenvman_2019_01_046
crossref_primary_10_1007_s42108_023_00239_y
crossref_primary_10_1016_j_chemosphere_2022_136856
crossref_primary_10_1016_j_wasman_2017_10_038
crossref_primary_10_1016_j_energy_2021_122326
crossref_primary_10_1016_j_cjche_2015_12_025
crossref_primary_10_1002_bbb_2208
crossref_primary_10_1080_16583655_2022_2035928
crossref_primary_10_1016_j_biteb_2023_101333
crossref_primary_10_1080_03601234_2015_982432
crossref_primary_10_1021_acs_est_1c02894
crossref_primary_10_1039_D1EE00642H
crossref_primary_10_15446_rev_colomb_biote_v17n1_39971
crossref_primary_10_1021_acs_energyfuels_6b00715
crossref_primary_10_1016_j_indcrop_2015_12_044
crossref_primary_10_1016_j_enconman_2023_117978
crossref_primary_10_1088_1748_9326_ad1e81
crossref_primary_10_1186_s40643_020_00327_5
crossref_primary_10_1016_j_energy_2019_01_150
crossref_primary_10_1016_j_energy_2019_01_152
crossref_primary_10_1016_j_jes_2019_10_016
crossref_primary_10_1515_opag_2019_0065
crossref_primary_10_1016_j_psep_2020_09_005
crossref_primary_10_3390_app11020742
crossref_primary_10_1007_s11157_017_9436_z
crossref_primary_10_1016_j_fuel_2024_131409
crossref_primary_10_1016_j_wasman_2017_09_038
crossref_primary_10_1007_s11356_023_30099_2
crossref_primary_10_1007_s13399_022_03173_x
crossref_primary_10_31692_2764_3425_v4i2_424
crossref_primary_10_1080_10962247_2021_1969296
crossref_primary_10_1016_j_biortech_2014_01_054
crossref_primary_10_1016_j_scitotenv_2025_178688
crossref_primary_10_1177_0734242X16644681
crossref_primary_10_1016_j_wasman_2018_03_025
crossref_primary_10_1371_journal_pone_0182361
crossref_primary_10_1016_j_wasman_2016_03_028
crossref_primary_10_3390_su14116457
crossref_primary_10_1007_s13399_018_0321_y
crossref_primary_10_1016_j_psep_2024_03_055
crossref_primary_10_1093_ijfood_vvae022
crossref_primary_10_1016_j_rser_2018_09_008
crossref_primary_10_1039_D4RA00794H
crossref_primary_10_1186_s13568_017_0325_1
crossref_primary_10_1016_j_wasman_2019_10_046
crossref_primary_10_1016_j_jclepro_2023_137214
crossref_primary_10_1007_s00449_022_02829_2
crossref_primary_10_1007_s10163_018_0799_1
crossref_primary_10_1063_1_4966160
crossref_primary_10_1016_j_biombioe_2020_105735
crossref_primary_10_1016_j_biortech_2022_127577
crossref_primary_10_3390_en12030365
crossref_primary_10_1016_j_biortech_2018_10_040
crossref_primary_10_1016_j_biortech_2014_12_015
crossref_primary_10_1016_j_biortech_2019_122425
crossref_primary_10_1016_j_biortech_2015_08_151
crossref_primary_10_1016_j_fuel_2019_03_001
crossref_primary_10_3390_fermentation9010060
crossref_primary_10_3390_su14159278
crossref_primary_10_4491_KSEE_2024_46_8_438
crossref_primary_10_1007_s11356_021_15798_y
crossref_primary_10_1002_bmb_21399
crossref_primary_10_1016_j_biortech_2016_06_074
crossref_primary_10_3390_su16156433
crossref_primary_10_1007_s13399_020_00864_1
crossref_primary_10_3390_su12093527
crossref_primary_10_1016_j_biortech_2017_08_087
crossref_primary_10_1177_0734242X19833161
crossref_primary_10_1016_j_rechem_2024_101549
crossref_primary_10_1177_0734242X19871999
crossref_primary_10_1016_j_envres_2023_115558
crossref_primary_10_1007_s11164_020_04250_4
crossref_primary_10_1016_j_bcab_2021_101936
Cites_doi 10.1021/ef400117f
10.1021/ie50507a033
10.1016/j.biortech.2010.10.035
10.1007/s11157-004-2502-3
10.1016/j.biortech.2012.08.051
10.1007/s12010-013-0335-7
10.1016/j.biortech.2008.11.011
10.1016/j.biortech.2012.01.025
10.1016/j.biombioe.2003.08.006
10.1016/j.biortech.2011.07.026
10.1016/j.biortech.2010.03.048
10.2166/wst.2009.040
10.1016/j.biortech.2010.01.027
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7SU
7TB
8FD
C1K
FR3
KR7
DOI 10.1016/j.biortech.2013.09.063
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE
Civil Engineering Abstracts

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 569
ExternalDocumentID 24140354
27960087
10_1016_j_biortech_2013_09_063
S0960852413014958
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
7SU
7TB
8FD
C1K
FR3
KR7
ID FETCH-LOGICAL-c530t-faefbce2697f3a48a85df2f991e176f626f8d2f583913fcb6003212d39c5b5423
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Thu Jul 10 20:51:45 EDT 2025
Wed Jul 30 11:02:44 EDT 2025
Fri Jul 11 08:05:11 EDT 2025
Mon Jul 21 06:02:38 EDT 2025
Wed Apr 02 07:24:03 EDT 2025
Tue Jul 01 02:06:19 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Fri Feb 23 02:34:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lignin
Biomethane potential
Kinetics
Organic substrates
Biodegradability
Methane
Substrate
Organic material
Biogas
Language English
License CC BY 4.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-faefbce2697f3a48a85df2f991e176f626f8d2f583913fcb6003212d39c5b5423
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 24140354
PQID 1448210855
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1516746472
proquest_miscellaneous_1490504939
proquest_miscellaneous_1448210855
pubmed_primary_24140354
pascalfrancis_primary_27960087
crossref_citationtrail_10_1016_j_biortech_2013_09_063
crossref_primary_10_1016_j_biortech_2013_09_063
elsevier_sciencedirect_doi_10_1016_j_biortech_2013_09_063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Labatut, R.A., 2012. Anaerobic biodegradability of complex substrates: performance and stability at mesophilic and thermophilic conditions. Doctoral Dissertation of Cornell University, USA.
Kaparaju, Serrano, Thomsen, Kongjan, Angelidaki (b0040) 2009; 100
Angelidaki, Alves, Bolzonella, Borzacconi, Campos, Guwy, Kalyuzhnyi, Jenicek, Van Lier (b0005) 2009; 59
Elbeshbishy, Nakhla, Hafez (b0025) 2012; 110
Brown, Shi, Li (b0015) 2012; 124
.
El-Mashad, Zhang (b0030) 2010; 101
Li, Zhang, Liu, Chen, Xiao, Feng, He, Liu (b0060) 2013; 27
Labatut, Angenent, Scott (b0045) 2011; 102
Li, Feng, Zhang, He, Liu, Xiao, Ma, Chen, Liu (b0080) 2013; 171
Lo, Kurniawan, Sillanpää, Pai, Chiang, Chao, Liu, Chuang, Banks, Wang (b0065) 2010; 101
Gunaseelan (b0035) 2004; 26
Triolo, Sommer, Moller, Weisbjerg, Jiang (b0070) 2011; 102
Buswell, Mueller (b0020) 1952; 44
Angelidaki, Sanders (b0010) 2004; 3
Li (10.1016/j.biortech.2013.09.063_b0080) 2013; 171
Buswell (10.1016/j.biortech.2013.09.063_b0020) 1952; 44
Angelidaki (10.1016/j.biortech.2013.09.063_b0005) 2009; 59
El-Mashad (10.1016/j.biortech.2013.09.063_b0030) 2010; 101
Gunaseelan (10.1016/j.biortech.2013.09.063_b0035) 2004; 26
Brown (10.1016/j.biortech.2013.09.063_b0015) 2012; 124
Labatut (10.1016/j.biortech.2013.09.063_b0045) 2011; 102
Li (10.1016/j.biortech.2013.09.063_b0060) 2013; 27
Lo (10.1016/j.biortech.2013.09.063_b0065) 2010; 101
Kaparaju (10.1016/j.biortech.2013.09.063_b0040) 2009; 100
Elbeshbishy (10.1016/j.biortech.2013.09.063_b0025) 2012; 110
10.1016/j.biortech.2013.09.063_b0050
Triolo (10.1016/j.biortech.2013.09.063_b0070) 2011; 102
Angelidaki (10.1016/j.biortech.2013.09.063_b0010) 2004; 3
References_xml – volume: 101
  start-page: 6329
  year: 2010
  end-page: 6335
  ident: b0065
  article-title: Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors
  publication-title: Bioresour. Technol.
– volume: 26
  start-page: 389
  year: 2004
  end-page: 399
  ident: b0035
  article-title: Biochemical methane potential of fruits and vegetable solid waste feedstocks
  publication-title: Biomass Bioenergy
– volume: 102
  start-page: 9395
  year: 2011
  end-page: 9402
  ident: b0070
  article-title: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential
  publication-title: Bioresour. Technol.
– volume: 27
  start-page: 2085
  year: 2013
  end-page: 2091
  ident: b0060
  article-title: Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure
  publication-title: Energy Fuels
– reference: >.
– volume: 171
  start-page: 117
  year: 2013
  end-page: 127
  ident: b0080
  article-title: Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover
  publication-title: Appl. Biochem. Biotechnol.
– volume: 59
  start-page: 927
  year: 2009
  end-page: 934
  ident: b0005
  article-title: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays
  publication-title: Water Sci. Technol.
– volume: 124
  start-page: 379
  year: 2012
  end-page: 386
  ident: b0015
  article-title: Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 2255
  year: 2011
  end-page: 2264
  ident: b0045
  article-title: Biochemical methane potential and biodegradability of complex organic substrates
  publication-title: Bioresour. Technol.
– volume: 101
  start-page: 4021
  year: 2010
  end-page: 4028
  ident: b0030
  article-title: Biogas production from co-digestion of dairy manure and food waste
  publication-title: Bioresour. Technol.
– volume: 3
  start-page: 117
  year: 2004
  end-page: 129
  ident: b0010
  article-title: Assessment of the anaerobic biodegradability of macropollutants
  publication-title: Rev. Environ. Sci. Biotechnol.
– reference: Labatut, R.A., 2012. Anaerobic biodegradability of complex substrates: performance and stability at mesophilic and thermophilic conditions. Doctoral Dissertation of Cornell University, USA. <
– volume: 110
  start-page: 18
  year: 2012
  end-page: 25
  ident: b0025
  article-title: Biochemical methane potential (BMP) of food waste and primary sludge: influence of inoculum pre-incubation and inoculum source
  publication-title: Bioresour. Technol.
– volume: 100
  start-page: 2562
  year: 2009
  end-page: 2568
  ident: b0040
  article-title: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept
  publication-title: Bioresour. Technol.
– volume: 44
  start-page: 550
  year: 1952
  end-page: 552
  ident: b0020
  article-title: Mechanism of methane fermentation
  publication-title: Ind. Eng. Chem.
– ident: 10.1016/j.biortech.2013.09.063_b0050
– volume: 27
  start-page: 2085
  year: 2013
  ident: 10.1016/j.biortech.2013.09.063_b0060
  article-title: Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure
  publication-title: Energy Fuels
  doi: 10.1021/ef400117f
– volume: 44
  start-page: 550
  year: 1952
  ident: 10.1016/j.biortech.2013.09.063_b0020
  article-title: Mechanism of methane fermentation
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50507a033
– volume: 102
  start-page: 2255
  year: 2011
  ident: 10.1016/j.biortech.2013.09.063_b0045
  article-title: Biochemical methane potential and biodegradability of complex organic substrates
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.10.035
– volume: 3
  start-page: 117
  year: 2004
  ident: 10.1016/j.biortech.2013.09.063_b0010
  article-title: Assessment of the anaerobic biodegradability of macropollutants
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-004-2502-3
– volume: 124
  start-page: 379
  year: 2012
  ident: 10.1016/j.biortech.2013.09.063_b0015
  article-title: Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.08.051
– volume: 171
  start-page: 117
  year: 2013
  ident: 10.1016/j.biortech.2013.09.063_b0080
  article-title: Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-013-0335-7
– volume: 100
  start-page: 2562
  year: 2009
  ident: 10.1016/j.biortech.2013.09.063_b0040
  article-title: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.11.011
– volume: 110
  start-page: 18
  year: 2012
  ident: 10.1016/j.biortech.2013.09.063_b0025
  article-title: Biochemical methane potential (BMP) of food waste and primary sludge: influence of inoculum pre-incubation and inoculum source
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.025
– volume: 26
  start-page: 389
  year: 2004
  ident: 10.1016/j.biortech.2013.09.063_b0035
  article-title: Biochemical methane potential of fruits and vegetable solid waste feedstocks
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2003.08.006
– volume: 102
  start-page: 9395
  year: 2011
  ident: 10.1016/j.biortech.2013.09.063_b0070
  article-title: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.07.026
– volume: 101
  start-page: 6329
  year: 2010
  ident: 10.1016/j.biortech.2013.09.063_b0065
  article-title: Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.03.048
– volume: 59
  start-page: 927
  year: 2009
  ident: 10.1016/j.biortech.2013.09.063_b0005
  article-title: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2009.040
– volume: 101
  start-page: 4021
  year: 2010
  ident: 10.1016/j.biortech.2013.09.063_b0030
  article-title: Biogas production from co-digestion of dairy manure and food waste
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.01.027
SSID ssj0003172
Score 2.5497606
Snippet •Methane production potential, BD, and kinetics of various substrates were compared.•Both of elemental and organic analysis could be used to calculate the TMY...
The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method....
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 565
SubjectTerms anaerobic digestion
Biodegradability
Biodegradation, Environmental
Biofuel production
Biofuels
Biological and medical sciences
biomass
Biomethane potential
biosynthesis
Biotechnology
Conversion
Energy
energy density
Feedstock
feedstocks
Fundamental and applied biological sciences. Psychology
Industrial applications and implications. Economical aspects
Kinetics
Lignin
Lignin - metabolism
Lignocellulose
metabolism
Methane
Methane - biosynthesis
methane production
Organic Chemicals
Organic Chemicals - metabolism
Organic substrates
Rate constants
Substrate Specificity
Wastes
Title Comparison of methane production potential, biodegradability, and kinetics of different organic substrates
URI https://dx.doi.org/10.1016/j.biortech.2013.09.063
https://www.ncbi.nlm.nih.gov/pubmed/24140354
https://www.proquest.com/docview/1448210855
https://www.proquest.com/docview/1490504939
https://www.proquest.com/docview/1516746472
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgCEEJTX8lgZiWPTTfyIneNqRbWA6AUq9WY5fqBdqmzUTQ9c-O3MxMm2PbQ9cExiJ45n4vmcmfmGkE_R6zxyazNelS4ThVL4o0llzOvgyjJoJTB3-PtJuTwVX8_k2R5ZjLkwGFY5rP1pTe9X6-HMbJjNWbtazX4g-Nay9wshzMeEXyEUavnR36swD7CPvScBGmfY-lqW8PqoXmFEa--UKHjPd1ry2wzUk9ZuYdpiqndxOyDtDdPxM_J0QJR0ngb9nOyF5oA8nv-6GFg1wgF5uBjLusGVawyEL8h6satDSDeRYj1p2wTaJh5YkBltNx0GFNnzQwrv4ZFbwidu7z-H1Dae_oa7Idcz9h_LrXQ0VYtydAsLU0-Au31JTo8__1wss6H8QuYkz7ss2hBrF1hZKZCm0FZLH1kEQBkKVUbYCUXtWZQAsQoeXQ3QiYMh9LxyspYA016R_WbThDeE1q5mGqAOQ-qgUMQqMBUKZ1UJiLJ2fkLkOOfGDdzkWCLj3IxBaGszysqgrExeGZDVhMx2_drEznFvj2oUqbmhZwZMyL19pzd0YPdIpkC7cq0m5OOoFAakiq4XkNnmcgsbLKEZJnrIu9pUuYQNG6_uaCMxawQp_yfkddK6q1EI5F6U4u1_vOI78giPUrzOe7LfXVyGD4C6unraf1ZT8mD-5dvy5B9FlS5H
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1ReqBVhVr6taVQV-qRsIkdx84RrYq2LXApSNysxLHRblE2YsOhl_72zsTJAgfgwDWx8-GZeJ7jmfcAvvlKx14URSTyzEZpohT9aFIRr7SzWea0Sql2-Pgkm56lP8_l-RpMhloYSqvs5_4wp3ezdX9k3I_muJnNxr8JfGvZ7QsRzNfP4HmKny_JGOz_u8nzwADZbSVg64ia3yoTnu-XM0pp7XYlEtERnmbivgj1qimWOG4-CF7cj0i7yHT4GjZ7SMkOwlO_gTVXb8HLg4urnlbDbcHGZNB1wzO3KAjfwnyyEiJkC89IULqoHWsCESwajTWLljKKiss9hu9REblEFci9_-6xoq7YH7wakT1T_0FvpWVBLsqyJc5MHQPu8h2cHX4_nUyjXn8hslLEbeQL50vreJYrNGeqCy0rzz0iSpeozONSyOuKe4kYKxHeloidBEbCSuRWlhJx2ntYrxe1-wistCXXiHU4cQe5xOeOK5fYQmUIKUtbjUAOY25sT05OGhmXZshCm5vBVoZsZeLcoK1GMF71awI9x6M98sGk5o6jGYwhj_bdveMDq1tyhd4VazWCr4NTGLQq7b2gzRbXS1xhpZpTpYd8qE0eS1yxifyBNpLKRojzfwQfgtfdPEVK5Isy_fSEV_wCG9PT4yNz9OPk1za8oDMheeczrLdX124HIVhb7naf2H_jAC_V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+methane+production+potential%2C+biodegradability%2C+and+kinetics+of+different+organic+substrates&rft.jtitle=Bioresource+technology&rft.au=Li%2C+Yeqing&rft.au=Zhang%2C+Ruihong&rft.au=Liu%2C+Guangqing&rft.au=Chen%2C+Chang&rft.date=2013-12-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=149&rft.spage=565&rft_id=info:doi/10.1016%2Fj.biortech.2013.09.063&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon