A2A Adenosine Receptor Protects Tumors from Antitumor T Cells
The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 103; no. 35; pp. 13132 - 13137 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.08.2006
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in ≈60% of A2ARdeficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia→adenosine→A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage. |
---|---|
AbstractList | The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in ≈60% of A2ARdeficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia→adenosine→A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage. The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in ≈60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the “Hellstrom paradox”). We propose to target the hypoxia→adenosine→A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage. The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in approximately 60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia-->adenosine-->A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia-->adenosine-->A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage. The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in [asymptotically =]6O% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neo-vascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia[arrow right]adenosine[arrow right]A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia[arrow right]adenosine[arrow right]A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage. [PUBLICATION ABSTRACT] The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in approximately 60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia-->adenosine-->A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia-->adenosine-->A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage. The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in approximately 60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia arrow right adenosine arrow right A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia arrow right adenosine arrow right A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage. The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in ≈60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the “Hellstrom paradox”). We propose to target the hypoxia→adenosine→A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage. autoimmunity cancer therapy hypoxia inflammation |
Author | Gorelik, Elieser Jackson, Edwin K. Apasov, Sergey Liu, Kebin Wong, Michael K. K. Huang, Xiaojun Sitkovsky, Michail Lukashev, Dmitriy Smith, Patrick Ronchese, Franca Prasad, Simon J. Ohta, Akio Caldwell, Sheila Abrams, Scott Chen, Jiang-Fan |
Author_xml | – sequence: 1 givenname: Akio surname: Ohta fullname: Ohta, Akio – sequence: 2 givenname: Elieser surname: Gorelik fullname: Gorelik, Elieser – sequence: 3 givenname: Simon J. surname: Prasad fullname: Prasad, Simon J. – sequence: 4 givenname: Franca surname: Ronchese fullname: Ronchese, Franca – sequence: 5 givenname: Dmitriy surname: Lukashev fullname: Lukashev, Dmitriy – sequence: 6 givenname: Michael K. K. surname: Wong fullname: Wong, Michael K. K. – sequence: 7 givenname: Xiaojun surname: Huang fullname: Huang, Xiaojun – sequence: 8 givenname: Sheila surname: Caldwell fullname: Caldwell, Sheila – sequence: 9 givenname: Kebin surname: Liu fullname: Liu, Kebin – sequence: 10 givenname: Patrick surname: Smith fullname: Smith, Patrick – sequence: 11 givenname: Jiang-Fan surname: Chen fullname: Chen, Jiang-Fan – sequence: 12 givenname: Edwin K. surname: Jackson fullname: Jackson, Edwin K. – sequence: 13 givenname: Sergey surname: Apasov fullname: Apasov, Sergey – sequence: 14 givenname: Scott surname: Abrams fullname: Abrams, Scott – sequence: 15 givenname: Michail surname: Sitkovsky fullname: Sitkovsky, Michail |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16916931$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UGL1DAUB_AgK-7s6tmTUjwIe-juS9K0yUGhDLoKC4qM55BJX7VDm4xJKvrtTZlhR70sBELIL-8l-V-QM-cdEvKcwjWFht_snYnXUINgglLgj8iKgqJlXSk4IysA1pSyYtU5uYhxBwBKSHhCzmmt8uB0Rd60rC3aDp2Pg8PiC1rcJx-Kz8EntCkWm3nyIRZ98FPRujSkZV1sijWOY3xKHvdmjPjsOF-Sr-_fbdYfyrtPtx_X7V1pBYdUYgNKouqrpS9aqLq-ptZsGRfWMNN3qKhqZG-EpTWzNXbN1hhlrRFcgeH8krw91N3P2wk7iy4FM-p9GCYTfmtvBv3vjhu-62_-p6ZCqKYWucDrY4Hgf8wYk56GaPMTjEM_R11LSRmX_EHIQPL88zTDV__BnZ-Dy7-QDeVSKskyujkgG3yMAfv7K1PQS4B6CVCfAswnXv790pM_JpZBcQTLyVM5rrnQNIOl69UDRPfzOCb8lbJ9cbC7mGO_xxxAQMNq_gfPKLpn |
CitedBy_id | crossref_primary_10_1093_annonc_mdw217 crossref_primary_10_1016_j_xcrm_2023_101188 crossref_primary_10_1002_jcp_28187 crossref_primary_10_1080_21688370_2016_1224963 crossref_primary_10_1172_JCI148549 crossref_primary_10_3390_cancers12082030 crossref_primary_10_1189_jlb_0609388 crossref_primary_10_1172_JCI152924 crossref_primary_10_1200_EDBK_158712 crossref_primary_10_1016_S1672_0229_10_60025_3 crossref_primary_10_1158_2326_6066_CIR_15_0050 crossref_primary_10_1002_advs_202104182 crossref_primary_10_1007_s11302_018_9641_4 crossref_primary_10_1053_j_gastro_2010_05_007 crossref_primary_10_1016_j_imlet_2018_05_001 crossref_primary_10_1038_ncb3330 crossref_primary_10_1016_j_phrs_2013_04_006 crossref_primary_10_2174_1381612825666190716102037 crossref_primary_10_1155_2022_3051907 crossref_primary_10_3390_cancers13133230 crossref_primary_10_1158_2326_6066_CIR_14_0211 crossref_primary_10_3390_cancers11101578 crossref_primary_10_1016_j_intimp_2020_107055 crossref_primary_10_18632_oncotarget_14434 crossref_primary_10_1002_prot_24283 crossref_primary_10_1007_s10330_022_0573_3 crossref_primary_10_3390_cancers13133236 crossref_primary_10_1016_j_molonc_2015_10_012 crossref_primary_10_1158_0008_5472_CAN_18_3726 crossref_primary_10_3390_cancers14174209 crossref_primary_10_1002_ijc_23090 crossref_primary_10_1016_j_cellsig_2014_01_024 crossref_primary_10_1038_s41598_023_29210_x crossref_primary_10_1126_sciadv_ade5111 crossref_primary_10_1038_mi_2014_108 crossref_primary_10_1080_07388551_2021_1988509 crossref_primary_10_1080_2162402X_2021_2012961 crossref_primary_10_4161_onci_25961 crossref_primary_10_1016_j_athoracsur_2009_06_032 crossref_primary_10_4049_jimmunol_1200744 crossref_primary_10_4161_onci_1_1_18068 crossref_primary_10_1038_s41568_023_00557_7 crossref_primary_10_1172_jci_insight_122204 crossref_primary_10_1186_s12916_015_0431_3 crossref_primary_10_3389_fimmu_2019_00507 crossref_primary_10_1124_pharmrev_121_000445 crossref_primary_10_1007_s00109_012_0991_z crossref_primary_10_1158_2326_6066_CIR_17_0502 crossref_primary_10_1007_s11302_009_9156_0 crossref_primary_10_3389_fcell_2022_876510 crossref_primary_10_1210_en_2007_1223 crossref_primary_10_4049_jimmunol_0901247 crossref_primary_10_1593_neo_08478 crossref_primary_10_1038_s42003_021_02972_8 crossref_primary_10_1093_intimm_dxt045 crossref_primary_10_1172_JCI137554 crossref_primary_10_1002_prp2_1223 crossref_primary_10_4161_onci_26705 crossref_primary_10_3389_fimmu_2020_00508 crossref_primary_10_3390_ijms19123837 crossref_primary_10_3390_molecules28145419 crossref_primary_10_3390_cancers14010183 crossref_primary_10_4049_jimmunol_0903421 crossref_primary_10_1158_1078_0432_CCR_15_1849 crossref_primary_10_1016_j_nantod_2011_04_001 crossref_primary_10_3109_08830185_2014_956358 crossref_primary_10_4110_in_2022_22_e6 crossref_primary_10_1155_2017_4852537 crossref_primary_10_1016_j_yexcr_2021_112886 crossref_primary_10_1038_jid_2011_50 crossref_primary_10_1007_s00432_022_04124_9 crossref_primary_10_1038_jcbfm_2008_57 crossref_primary_10_1007_s11302_023_09931_4 crossref_primary_10_1016_j_biochi_2020_06_001 crossref_primary_10_3389_fimmu_2021_717850 crossref_primary_10_1016_j_bbcan_2018_07_002 crossref_primary_10_1186_s12943_017_0665_0 crossref_primary_10_1038_s41389_017_0011_9 crossref_primary_10_1080_2162402X_2014_1003015 crossref_primary_10_1002_adfm_202102234 crossref_primary_10_1136_jitc_2019_000417 crossref_primary_10_3390_ijms22189675 crossref_primary_10_1186_s40425_018_0360_8 crossref_primary_10_1007_s10142_023_01281_z crossref_primary_10_1016_j_coph_2020_10_012 crossref_primary_10_1074_jbc_C116_764043 crossref_primary_10_1146_annurev_cancerbio_030518_055552 crossref_primary_10_3389_fimmu_2017_01526 crossref_primary_10_3390_ijms24108871 crossref_primary_10_1111_bcp_14316 crossref_primary_10_1186_s13045_020_00978_z crossref_primary_10_2217_imt_2017_0168 crossref_primary_10_3389_fimmu_2022_873217 crossref_primary_10_1161_HYPERTENSIONAHA_123_20582 crossref_primary_10_3389_fimmu_2020_601272 crossref_primary_10_1016_j_bioactmat_2023_11_002 crossref_primary_10_3390_cells13100844 crossref_primary_10_3390_genes14051008 crossref_primary_10_3390_biology12020218 crossref_primary_10_1002_cam4_4190 crossref_primary_10_4049_jimmunol_1003884 crossref_primary_10_1096_fj_11_193672 crossref_primary_10_1007_s10555_012_9388_2 crossref_primary_10_1038_cddis_2013_156 crossref_primary_10_3389_fimmu_2023_1149986 crossref_primary_10_3389_fimmu_2024_1362996 crossref_primary_10_1002_ijc_28456 crossref_primary_10_1016_j_imlet_2009_03_011 crossref_primary_10_1097_EDE_0000000000000360 crossref_primary_10_1371_journal_pcbi_1005943 crossref_primary_10_1111_imm_12917 crossref_primary_10_1002_ijc_30659 crossref_primary_10_3390_biomedicines9060607 crossref_primary_10_3892_ol_2017_7569 crossref_primary_10_1371_journal_pone_0150078 crossref_primary_10_1002_ctm2_1141 crossref_primary_10_1016_j_semcancer_2022_06_012 crossref_primary_10_1016_j_semcancer_2022_06_013 crossref_primary_10_1007_s11302_020_09701_6 crossref_primary_10_1016_j_clcc_2018_09_003 crossref_primary_10_3390_ijms21228781 crossref_primary_10_1111_jth_12361 crossref_primary_10_3390_cells9061518 crossref_primary_10_1016_j_bbih_2022_100544 crossref_primary_10_1186_s12906_023_04212_4 crossref_primary_10_1007_s00262_014_1553_8 crossref_primary_10_4049_jimmunol_1701414 crossref_primary_10_1146_annurev_cancerbio_061421_042605 crossref_primary_10_3389_fcell_2022_1032360 crossref_primary_10_1080_2162402X_2016_1208875 crossref_primary_10_1111_imr_12528 crossref_primary_10_1186_s13073_014_0052_z crossref_primary_10_3389_fphar_2022_908882 crossref_primary_10_1038_s42003_024_06128_2 crossref_primary_10_1111_j_1476_5381_2008_00019_x crossref_primary_10_1016_j_lungcan_2024_107502 crossref_primary_10_1016_j_mam_2019_02_002 crossref_primary_10_1021_acsptsci_4c00051 crossref_primary_10_3389_fonc_2021_772145 crossref_primary_10_1002_smsc_202300242 crossref_primary_10_1002_advs_202302498 crossref_primary_10_1007_s12026_009_8147_0 crossref_primary_10_1016_j_ccell_2019_10_007 crossref_primary_10_1021_acs_jmedchem_1c01155 crossref_primary_10_1038_icb_2013_12 crossref_primary_10_1096_fj_08_124941 crossref_primary_10_3389_fimmu_2022_940052 crossref_primary_10_1007_s10555_007_9054_2 crossref_primary_10_1371_journal_pone_0301223 crossref_primary_10_3390_ijms22052550 crossref_primary_10_3389_fimmu_2022_837230 crossref_primary_10_4049_jimmunol_1000108 crossref_primary_10_1038_nrc3380 crossref_primary_10_1186_s12935_020_01195_x crossref_primary_10_1158_0008_5472_CAN_14_0957 crossref_primary_10_3390_ijms21186521 crossref_primary_10_3389_fonc_2023_1270991 crossref_primary_10_1038_s42004_023_00894_6 crossref_primary_10_1038_s41391_021_00340_5 crossref_primary_10_1007_s00109_018_1679_9 crossref_primary_10_1007_s12020_010_9384_7 crossref_primary_10_1177_1010428317695021 crossref_primary_10_1016_j_canlet_2023_216076 crossref_primary_10_1002_adfm_202200801 crossref_primary_10_1016_j_clim_2017_12_006 crossref_primary_10_1039_C4TB01844C crossref_primary_10_1016_j_drudis_2021_02_020 crossref_primary_10_1186_s12885_021_08601_1 crossref_primary_10_1021_acs_jmedchem_4c00250 crossref_primary_10_1053_j_seminoncol_2015_02_009 crossref_primary_10_1038_onc_2012_269 crossref_primary_10_1016_j_smim_2015_11_003 crossref_primary_10_4236_jct_2012_34039 crossref_primary_10_1002_eji_201343866 crossref_primary_10_1038_s41571_024_00870_6 crossref_primary_10_1186_s43042_020_00059_3 crossref_primary_10_1136_jitc_2020_001467 crossref_primary_10_3390_ph13090237 crossref_primary_10_3389_fimmu_2014_00304 crossref_primary_10_1073_pnas_0908801107 crossref_primary_10_1016_j_bmcl_2018_12_062 crossref_primary_10_1080_2162402X_2016_1268308 crossref_primary_10_2174_1381612825666190716141851 crossref_primary_10_3390_ijms24108956 crossref_primary_10_3389_fimmu_2024_1403533 crossref_primary_10_1016_j_biopha_2023_114824 crossref_primary_10_1016_j_trecan_2021_04_008 crossref_primary_10_1016_j_ijbiomac_2019_09_078 crossref_primary_10_1016_j_intimp_2021_107645 crossref_primary_10_1016_j_ejphar_2012_09_001 crossref_primary_10_1111_j_1349_7006_2012_02376_x crossref_primary_10_1161_HYPERTENSIONAHA_117_10765 crossref_primary_10_1182_blood_2007_03_081646 crossref_primary_10_1126_scisignal_abj4220 crossref_primary_10_1158_2159_8290_CD_14_0341 crossref_primary_10_1371_journal_pone_0002599 crossref_primary_10_1007_s11302_018_9622_7 crossref_primary_10_1016_j_biopha_2018_05_144 crossref_primary_10_1002_ange_202115545 crossref_primary_10_3390_ph13080161 crossref_primary_10_1016_j_lfs_2016_10_008 crossref_primary_10_1016_j_jconrel_2016_12_012 crossref_primary_10_1016_j_cellsig_2024_111281 crossref_primary_10_1111_j_1600_065X_2007_00566_x crossref_primary_10_1038_s41467_019_09656_2 crossref_primary_10_1161_ATVBAHA_111_226878 crossref_primary_10_1080_20013078_2017_1368823 crossref_primary_10_1158_1078_0432_CCR_10_2443 crossref_primary_10_1182_blood_2013_09_402560 crossref_primary_10_1186_s12943_018_0759_3 crossref_primary_10_1016_j_ejmech_2020_113040 crossref_primary_10_3389_fimmu_2021_777073 crossref_primary_10_1051_medsci_20143004017 crossref_primary_10_1038_s41577_024_01026_4 crossref_primary_10_1016_j_humimm_2024_110774 crossref_primary_10_1186_s12885_017_3250_4 crossref_primary_10_1007_s11302_011_9280_5 crossref_primary_10_1016_j_jhepr_2023_100959 crossref_primary_10_1182_blood_2008_02_136325 crossref_primary_10_1152_physiol_00010_2021 crossref_primary_10_3389_fcell_2021_647058 crossref_primary_10_1111_imr_12577 crossref_primary_10_3389_fnins_2021_648476 crossref_primary_10_3390_biom12030418 crossref_primary_10_1093_nar_gkac200 crossref_primary_10_1111_imr_12571 crossref_primary_10_1016_j_intimp_2018_07_023 crossref_primary_10_1158_0008_5472_CAN_10_1544 crossref_primary_10_1038_s41571_018_0142_8 crossref_primary_10_3389_fimmu_2024_1434118 crossref_primary_10_1111_cbdd_13053 crossref_primary_10_3109_07357907_2011_636113 crossref_primary_10_1016_j_critrevonc_2021_103403 crossref_primary_10_1158_1535_7163_MCT_21_0107 crossref_primary_10_1007_s00262_011_1040_4 crossref_primary_10_1016_j_coph_2016_06_009 crossref_primary_10_1038_bjp_2008_361 crossref_primary_10_3390_cancers13092225 crossref_primary_10_1038_s41467_021_23331_5 crossref_primary_10_1016_j_ajpath_2012_08_041 crossref_primary_10_1016_j_biomaterials_2021_121184 crossref_primary_10_1016_j_pneurobio_2007_07_005 crossref_primary_10_2174_1568026619666190628115644 crossref_primary_10_1038_s41388_022_02312_y crossref_primary_10_1158_1541_7786_MCR_16_0427 crossref_primary_10_1007_s00210_019_01803_2 crossref_primary_10_1084_jem_20062512 crossref_primary_10_1038_sj_cdd_4402132 crossref_primary_10_1002_ptr_8000 crossref_primary_10_1016_j_canlet_2024_216871 crossref_primary_10_3389_fimmu_2023_1163585 crossref_primary_10_3390_molecules27154676 crossref_primary_10_3390_cancers15235706 crossref_primary_10_3390_cells10051006 crossref_primary_10_1186_s40364_020_00197_1 crossref_primary_10_1038_s41467_022_28086_1 crossref_primary_10_1172_JCI157431 crossref_primary_10_1016_j_semcancer_2015_03_004 crossref_primary_10_1007_s00262_010_0967_1 crossref_primary_10_20517_cdr_2023_60 crossref_primary_10_3390_cancers13153716 crossref_primary_10_1172_JCI96582 crossref_primary_10_3389_fimmu_2022_821816 crossref_primary_10_1007_s12026_011_8207_0 crossref_primary_10_2353_ajpath_2007_070190 crossref_primary_10_1158_0008_5472_CAN_17_2826 crossref_primary_10_1016_j_febslet_2015_07_027 crossref_primary_10_1016_j_bbamem_2010_12_018 crossref_primary_10_1111_jcmm_15500 crossref_primary_10_3390_jpm11080754 crossref_primary_10_1002_jcb_26551 crossref_primary_10_1038_onc_2016_206 crossref_primary_10_1186_s12885_015_1530_4 crossref_primary_10_3389_fimmu_2019_02309 crossref_primary_10_3389_fimmu_2020_612202 crossref_primary_10_1097_PPO_0000000000000241 crossref_primary_10_2217_imt_15_16 crossref_primary_10_1007_s00109_013_0999_z crossref_primary_10_1016_j_pharmthera_2023_108545 crossref_primary_10_1038_s41586_019_1593_5 crossref_primary_10_1007_s11302_013_9372_5 crossref_primary_10_1016_j_bulcan_2017_03_004 crossref_primary_10_1111_ajt_12398 crossref_primary_10_1021_acs_jmedchem_2c01860 crossref_primary_10_1016_j_bcp_2015_08_092 crossref_primary_10_1016_j_cclet_2022_107747 crossref_primary_10_3389_fimmu_2018_02517 crossref_primary_10_1021_acs_jmedchem_0c00237 crossref_primary_10_1158_2326_6066_CIR_20_0791 crossref_primary_10_3390_ijms18122759 crossref_primary_10_4049_jimmunol_1700850 crossref_primary_10_1016_j_cellsig_2021_109954 crossref_primary_10_1146_annurev_med_060619_023155 crossref_primary_10_1073_pnas_1222085110 crossref_primary_10_1073_pnas_1222251110 crossref_primary_10_1002_cbic_201600337 crossref_primary_10_1038_s41577_021_00541_y crossref_primary_10_1080_08830185_2022_2101647 crossref_primary_10_1016_j_cytogfr_2009_11_006 crossref_primary_10_1016_j_prp_2023_154616 crossref_primary_10_1157_13127925 crossref_primary_10_4049_jimmunol_1101225 crossref_primary_10_1007_s00262_020_02843_x crossref_primary_10_1002_adfm_202400114 crossref_primary_10_1128_jvi_00225_23 crossref_primary_10_1016_j_semradonc_2021_02_001 crossref_primary_10_1080_08923973_2021_1988102 crossref_primary_10_1186_s13046_020_01546_6 crossref_primary_10_1016_j_canlet_2021_04_001 crossref_primary_10_1186_s13045_024_01524_x crossref_primary_10_1016_j_isci_2024_109738 crossref_primary_10_3389_fimmu_2020_00275 crossref_primary_10_3390_vaccines10111850 crossref_primary_10_3390_molecules25204831 crossref_primary_10_3389_fendo_2022_1007801 crossref_primary_10_1038_cddis_2014_109 crossref_primary_10_1007_s00106_018_0494_5 crossref_primary_10_1016_j_crimmu_2021_07_001 crossref_primary_10_1089_ars_2022_0040 crossref_primary_10_3389_fimmu_2022_1012534 crossref_primary_10_3389_fimmu_2022_978377 crossref_primary_10_1038_s41401_021_00776_4 crossref_primary_10_1186_s12943_023_01733_x crossref_primary_10_3390_cancers14235963 crossref_primary_10_1158_1078_0432_CCR_21_3145 crossref_primary_10_1007_s11302_024_10002_5 crossref_primary_10_1111_1759_7714_13346 crossref_primary_10_3109_08923970903078450 crossref_primary_10_1038_onc_2010_292 crossref_primary_10_1016_j_medj_2024_03_001 crossref_primary_10_2217_imt_12_83 crossref_primary_10_1016_j_tranon_2019_09_003 crossref_primary_10_1016_j_semcancer_2017_05_004 crossref_primary_10_1155_2012_473712 crossref_primary_10_1158_2326_6066_CIR_18_0056 crossref_primary_10_3390_ijms25094742 crossref_primary_10_1016_j_bmc_2018_05_048 crossref_primary_10_1021_acs_jmedchem_9b00071 crossref_primary_10_1189_jlb_0908577 crossref_primary_10_1080_14728222_2019_1559829 crossref_primary_10_1177_1753466618794133 crossref_primary_10_1146_annurev_bioeng_062117_121147 crossref_primary_10_2217_imt_15_106 crossref_primary_10_1016_j_chembiol_2017_08_019 crossref_primary_10_1016_j_it_2009_04_001 crossref_primary_10_3389_fgene_2021_682503 crossref_primary_10_3389_fimmu_2022_1090429 crossref_primary_10_1007_s11033_022_07685_7 crossref_primary_10_1080_2162402X_2015_1052934 crossref_primary_10_1158_2159_8290_CD_19_1280 crossref_primary_10_3389_fimmu_2018_02533 crossref_primary_10_3390_cancers15041093 crossref_primary_10_1007_s00405_019_05363_2 crossref_primary_10_1111_imm_12053 crossref_primary_10_3389_fnins_2021_702817 crossref_primary_10_1016_j_trecan_2023_11_007 crossref_primary_10_3390_cells9071612 crossref_primary_10_1002_cam4_6619 crossref_primary_10_1038_nrc_2017_86 crossref_primary_10_3389_fimmu_2022_987298 crossref_primary_10_1007_s00262_020_02535_6 crossref_primary_10_3390_ijms241411759 crossref_primary_10_4161_cbt_25643 crossref_primary_10_1007_s11302_023_09919_0 crossref_primary_10_1186_1471_2407_14_898 crossref_primary_10_1002_eji_200939897 crossref_primary_10_1080_2162402X_2017_1283468 crossref_primary_10_1111_j_1365_2249_2012_04623_x crossref_primary_10_1016_j_bbagen_2009_10_008 crossref_primary_10_1073_pnas_1308209110 crossref_primary_10_1091_mbc_e14_01_0042 crossref_primary_10_1038_cgt_2008_10 crossref_primary_10_1158_2326_6066_CIR_19_0833 crossref_primary_10_1007_s11302_016_9531_6 crossref_primary_10_3390_ijms20225698 crossref_primary_10_1016_j_semcancer_2020_01_009 crossref_primary_10_1016_j_celrep_2023_113643 crossref_primary_10_1002_jcp_21579 crossref_primary_10_1136_jitc_2021_004167 crossref_primary_10_1002_med_21432 crossref_primary_10_1007_s13237_017_0194_7 crossref_primary_10_1016_j_bcp_2018_09_018 crossref_primary_10_1016_j_prp_2023_154423 crossref_primary_10_1038_nri2938 crossref_primary_10_3390_ijms231911835 crossref_primary_10_1074_jbc_M109_098293 crossref_primary_10_1136_jitc_2021_004043 crossref_primary_10_1039_C6MB00203J crossref_primary_10_1593_neo_101628 crossref_primary_10_1158_1541_7786_MCR_14_0302_T crossref_primary_10_1016_j_cmet_2021_12_009 crossref_primary_10_3390_cells10071715 crossref_primary_10_1007_s12032_013_0698_1 crossref_primary_10_1016_j_molcel_2017_12_008 crossref_primary_10_1080_2162402X_2015_1108515 crossref_primary_10_1126_scisignal_aaq1616 crossref_primary_10_1016_j_jconrel_2024_01_064 crossref_primary_10_1007_s00277_012_1425_2 crossref_primary_10_3389_fphar_2023_1079924 crossref_primary_10_1016_j_biomaterials_2022_121510 crossref_primary_10_1007_s00262_018_2186_0 crossref_primary_10_7717_peerj_11306 crossref_primary_10_1038_s41392_021_00553_z crossref_primary_10_18097_PBMC20166203302 crossref_primary_10_3390_cancers14112740 crossref_primary_10_1016_j_coph_2009_05_005 crossref_primary_10_1136_jitc_2019_000186 crossref_primary_10_1021_acs_jmedchem_6b01068 crossref_primary_10_1111_j_1349_7006_2009_01469_x crossref_primary_10_1136_jitc_2022_004554 crossref_primary_10_1158_0008_5472_CAN_12_1600 crossref_primary_10_1007_s00018_011_0705_7 crossref_primary_10_1016_j_it_2020_04_004 crossref_primary_10_1021_acs_jmedchem_2c00101 crossref_primary_10_1097_MPH_0000000000000802 crossref_primary_10_1152_ajpendo_00207_2022 crossref_primary_10_18632_oncotarget_28029 crossref_primary_10_1002_iid3_826 crossref_primary_10_1007_s12223_009_0051_4 crossref_primary_10_1038_onc_2014_436 crossref_primary_10_1158_0008_5472_CAN_09_3109 crossref_primary_10_4049_jimmunol_179_11_7431 crossref_primary_10_1007_s11302_016_9510_y crossref_primary_10_1038_nature10673 crossref_primary_10_1038_s41467_022_31044_6 crossref_primary_10_1002_med_20108 crossref_primary_10_1161_ATVBAHA_118_311579 crossref_primary_10_1002_adma_202106967 crossref_primary_10_1158_0008_5472_CAN_17_0393 crossref_primary_10_3389_fimmu_2016_00109 crossref_primary_10_1016_j_smim_2017_09_001 crossref_primary_10_3389_fimmu_2016_00332 crossref_primary_10_3389_fimmu_2023_1212209 crossref_primary_10_1158_0008_5472_CAN_06_4249 crossref_primary_10_1007_s11302_012_9349_9 crossref_primary_10_1007_s11302_006_9044_9 crossref_primary_10_1146_annurev_pathmechdis_012418_013058 crossref_primary_10_1177_03008916241249366 crossref_primary_10_1186_2051_1426_1_12 crossref_primary_10_1371_journal_pone_0199601 crossref_primary_10_1073_pnas_1809695115 crossref_primary_10_1016_j_mam_2020_100936 crossref_primary_10_1038_s41568_020_0273_y crossref_primary_10_3390_molecules25092209 crossref_primary_10_1042_BCJ20210233 crossref_primary_10_1038_nrc3613 crossref_primary_10_1172_JCI158800 crossref_primary_10_1016_j_bbcan_2023_189005 crossref_primary_10_1038_s41467_018_08123_8 crossref_primary_10_1007_s11684_023_1015_9 crossref_primary_10_3390_ijms22010247 crossref_primary_10_1007_s00106_019_00803_1 crossref_primary_10_3390_ijms222413521 crossref_primary_10_1097_SHK_0b013e3182085f12 crossref_primary_10_1038_bjp_2008_23 crossref_primary_10_18632_oncotarget_11729 crossref_primary_10_1093_carcin_bgt209 crossref_primary_10_3389_fimmu_2023_1258637 crossref_primary_10_1016_j_coph_2016_04_001 crossref_primary_10_1158_1078_0432_CCR_11_1591 crossref_primary_10_1182_bloodadvances_2016000984 crossref_primary_10_1080_17460441_2018_1534825 crossref_primary_10_1007_s00109_014_1189_3 crossref_primary_10_1016_j_iotech_2023_100394 crossref_primary_10_3389_fphar_2022_868695 crossref_primary_10_3390_ijms23094585 crossref_primary_10_1038_s41467_023_42734_0 crossref_primary_10_1002_ijc_32144 crossref_primary_10_1038_s41568_018_0037_0 crossref_primary_10_1186_s40425_016_0154_9 crossref_primary_10_1016_j_ijbiomac_2019_03_223 crossref_primary_10_1146_annurev_immunol_032414_112043 crossref_primary_10_3389_fimmu_2016_00315 crossref_primary_10_2217_imt_13_154 crossref_primary_10_3390_ijms23052782 crossref_primary_10_4049_jimmunol_1300702 crossref_primary_10_3389_fphar_2018_00052 crossref_primary_10_1371_journal_pone_0252424 crossref_primary_10_1172_JCI89455 crossref_primary_10_18632_oncotarget_4393 crossref_primary_10_3389_fphar_2017_00888 crossref_primary_10_1111_sji_12917 crossref_primary_10_1158_2326_6066_CIR_19_0449 crossref_primary_10_3390_cancers13061229 crossref_primary_10_3390_ijms18030642 crossref_primary_10_3390_biom13101432 crossref_primary_10_1016_j_omtm_2021_03_001 crossref_primary_10_4161_onci_1_2_18101 crossref_primary_10_3389_fimmu_2016_00559 crossref_primary_10_1038_nri_2016_4 crossref_primary_10_1080_2162402X_2018_1452579 crossref_primary_10_3389_fimmu_2019_01114 crossref_primary_10_1111_j_1365_2567_2009_03075_x crossref_primary_10_2217_imt_2018_0200 crossref_primary_10_3389_fimmu_2020_570041 crossref_primary_10_3390_molecules27092994 crossref_primary_10_3389_fonc_2022_953098 crossref_primary_10_1016_S0213_9626_07_70080_X crossref_primary_10_1158_0008_5472_CAN_13_3581 crossref_primary_10_1016_j_it_2012_02_009 crossref_primary_10_1038_icb_2017_8 crossref_primary_10_1016_j_molcel_2013_03_016 crossref_primary_10_1136_jitc_2022_004660 crossref_primary_10_1016_j_phrs_2013_07_002 crossref_primary_10_1016_j_ctrv_2021_102227 crossref_primary_10_3389_fcell_2022_893709 crossref_primary_10_1007_s11302_022_09884_0 crossref_primary_10_1007_s10549_021_06405_2 crossref_primary_10_1158_0008_5472_CAN_13_3583 crossref_primary_10_1371_journal_pone_0092009 crossref_primary_10_1158_0008_5472_CAN_17_2405 crossref_primary_10_1158_2326_6066_CIR_14_0075 crossref_primary_10_1159_000518799 crossref_primary_10_1155_2012_959848 crossref_primary_10_3390_ijms22158068 crossref_primary_10_1016_j_bbmt_2019_01_016 crossref_primary_10_3390_ijms23095126 crossref_primary_10_1038_nrrheum_2016_178 crossref_primary_10_1080_2162402X_2016_1178025 crossref_primary_10_3389_fonc_2020_00268 crossref_primary_10_15252_embj_2021108130 crossref_primary_10_3389_fimmu_2022_1048758 crossref_primary_10_1186_s12920_016_0212_7 crossref_primary_10_3390_biomedicines11072049 crossref_primary_10_3390_cells10010014 crossref_primary_10_1038_s41571_020_0382_2 crossref_primary_10_1002_ijc_34368 crossref_primary_10_1016_j_jab_2014_09_001 crossref_primary_10_1038_nrd3955 crossref_primary_10_3389_fphys_2022_849258 crossref_primary_10_1186_s13048_022_01022_z crossref_primary_10_1038_s41598_022_14788_5 crossref_primary_10_1007_s00262_010_0924_z crossref_primary_10_3390_ijms21072286 crossref_primary_10_1126_scitranslmed_aaa1260 crossref_primary_10_1172_JCI45559 crossref_primary_10_1242_jcs_241463 crossref_primary_10_3389_fimmu_2022_1061959 crossref_primary_10_1080_2162402X_2016_1184802 crossref_primary_10_1155_2014_509027 crossref_primary_10_1016_j_jtbi_2020_110185 crossref_primary_10_1158_0008_5472_CAN_12_0420 crossref_primary_10_1172_JCI155101 crossref_primary_10_1155_2019_4093214 crossref_primary_10_1016_j_neo_2017_02_004 crossref_primary_10_1158_1535_7163_MCT_21_0802 crossref_primary_10_1021_acsmedchemlett_1c00599 crossref_primary_10_1016_j_bmc_2013_09_043 crossref_primary_10_1016_j_coph_2020_08_012 crossref_primary_10_1016_j_critrevonc_2016_05_005 crossref_primary_10_1080_2162402X_2020_1824643 crossref_primary_10_1002_bmc_4909 crossref_primary_10_1016_j_neuroscience_2007_11_020 crossref_primary_10_1007_s00109_013_1001_9 crossref_primary_10_1586_ecp_09_57 crossref_primary_10_1007_s11302_011_9276_1 crossref_primary_10_3389_fimmu_2022_844142 crossref_primary_10_1172_JCI170071 crossref_primary_10_15252_emmm_201403918 crossref_primary_10_4132_jptm_2024_01_31 crossref_primary_10_1038_s41581_020_0304_7 crossref_primary_10_1074_jbc_M109_047423 crossref_primary_10_1002_pros_22955 crossref_primary_10_1016_j_ceb_2017_05_006 crossref_primary_10_1038_nature10169 crossref_primary_10_1038_s41577_020_0376_4 crossref_primary_10_1111_omi_12045 crossref_primary_10_1007_s00018_020_03581_0 crossref_primary_10_1158_2326_6066_CIR_22_0113 crossref_primary_10_3390_ijms15022024 crossref_primary_10_18632_oncotarget_23533 crossref_primary_10_1096_fj_08_107458 crossref_primary_10_1016_j_biopha_2022_113066 crossref_primary_10_1093_intimm_dxad035 crossref_primary_10_1080_14728222_2019_1630380 crossref_primary_10_1136_jitc_2020_001689 crossref_primary_10_1002_cmdc_201100369 crossref_primary_10_1016_j_critrevonc_2022_103592 crossref_primary_10_1097_JBR_0000000000000080 crossref_primary_10_3389_fonc_2021_696402 crossref_primary_10_1021_acs_jmedchem_9b01856 crossref_primary_10_3389_fonc_2019_01554 crossref_primary_10_1155_2012_485156 crossref_primary_10_3390_ijms19020340 crossref_primary_10_1158_2326_6066_CIR_14_0187 crossref_primary_10_3389_fonc_2023_1058371 crossref_primary_10_1371_journal_pone_0000853 crossref_primary_10_1063_5_0145364 crossref_primary_10_1038_nrd4591 crossref_primary_10_3389_fcell_2023_1060000 crossref_primary_10_1016_j_jconrel_2020_06_017 crossref_primary_10_1016_j_lfs_2021_120166 crossref_primary_10_1158_1078_0432_CCR_09_1143 crossref_primary_10_1007_s11010_021_04199_x crossref_primary_10_1073_pnas_0901326106 crossref_primary_10_1002_eji_201444719 crossref_primary_10_1371_journal_pone_0197151 crossref_primary_10_1002_jcp_30643 crossref_primary_10_1007_s11302_024_09997_8 crossref_primary_10_1016_j_cyto_2019_03_005 crossref_primary_10_1038_nrc2250 crossref_primary_10_1016_j_semcancer_2023_09_002 crossref_primary_10_1002_wnan_1717 crossref_primary_10_1038_s42255_024_00976_2 crossref_primary_10_1089_hum_2021_050 crossref_primary_10_3390_cells12060862 crossref_primary_10_1517_14728222_2014_925883 crossref_primary_10_1007_s40291_023_00652_3 crossref_primary_10_1021_acsnano_3c04785 crossref_primary_10_1152_physiol_00034_2020 crossref_primary_10_1038_s41423_021_00727_3 crossref_primary_10_1016_j_apsb_2023_12_004 crossref_primary_10_3390_cells10112960 crossref_primary_10_4049_jimmunol_1101845 crossref_primary_10_1186_s12943_022_01672_z crossref_primary_10_2174_1871520622666220411110528 crossref_primary_10_3389_fimmu_2022_975847 crossref_primary_10_18632_oncotarget_1397 crossref_primary_10_1007_s12015_019_09901_7 crossref_primary_10_1158_0008_5472_CAN_10_4246 crossref_primary_10_1016_j_jaci_2009_03_022 crossref_primary_10_1111_jphp_12720 crossref_primary_10_4049_jimmunol_1800725 crossref_primary_10_1016_j_semcancer_2019_12_011 crossref_primary_10_1158_0008_5472_CAN_19_3954 crossref_primary_10_1007_s11302_016_9549_9 crossref_primary_10_1016_j_coph_2020_08_003 crossref_primary_10_1126_sciimmunol_abq3015 crossref_primary_10_3390_ijms19041167 crossref_primary_10_1038_nrclinonc_2009_91 crossref_primary_10_1111_imm_12777 crossref_primary_10_3389_fimmu_2019_00925 crossref_primary_10_1016_j_addr_2018_06_010 crossref_primary_10_1080_19768354_2024_2336249 crossref_primary_10_1038_s41577_021_00537_8 crossref_primary_10_1002_wcms_1397 crossref_primary_10_1093_intimm_dxy038 crossref_primary_10_1111_cei_13157 crossref_primary_10_1016_j_bcp_2019_06_002 crossref_primary_10_1016_j_canlet_2018_03_010 crossref_primary_10_3390_cancers14164032 crossref_primary_10_3390_ijms24076688 crossref_primary_10_4049_jimmunol_0903647 crossref_primary_10_3390_cancers11040461 crossref_primary_10_1016_j_jcyt_2022_07_006 crossref_primary_10_1136_jitc_2021_004089 crossref_primary_10_3389_fimmu_2019_02294 crossref_primary_10_1158_1078_0432_CCR_19_2183 crossref_primary_10_1016_j_cellimm_2018_09_004 crossref_primary_10_1016_j_cellimm_2017_09_002 crossref_primary_10_1002_ctm2_37 crossref_primary_10_1016_j_bcmd_2007_06_025 crossref_primary_10_2139_ssrn_3925253 crossref_primary_10_4161_21624011_2014_958952 crossref_primary_10_1016_j_fbio_2021_101347 crossref_primary_10_1016_j_coph_2020_07_011 crossref_primary_10_1016_j_pharmthera_2021_107840 crossref_primary_10_1158_1078_0432_CCR_08_0229 crossref_primary_10_1177_10738584241236773 crossref_primary_10_3389_fimmu_2023_1111369 crossref_primary_10_1124_pharmrev_121_000528 crossref_primary_10_1158_2326_6066_CIR_14_0018 crossref_primary_10_1517_14728222_2014_915315 crossref_primary_10_1002_anie_202115545 crossref_primary_10_1007_s11864_022_01007_6 crossref_primary_10_3390_cancers14030644 crossref_primary_10_1016_j_it_2008_12_002 crossref_primary_10_3389_fimmu_2022_813218 crossref_primary_10_1002_eji_201141512 crossref_primary_10_1016_j_cmet_2018_09_020 crossref_primary_10_1007_s00262_008_0494_5 crossref_primary_10_1161_ATVBAHA_109_202572 crossref_primary_10_1016_j_crimmu_2022_04_001 crossref_primary_10_1126_science_abc3421 crossref_primary_10_2174_0929867325666181106114421 crossref_primary_10_1007_s00262_011_1155_7 crossref_primary_10_1038_onc_2014_113 crossref_primary_10_1016_j_ccell_2016_06_025 crossref_primary_10_1136_jitc_2022_004592 crossref_primary_10_1042_BJ20130950 crossref_primary_10_1016_j_ejmech_2022_114326 crossref_primary_10_3389_fimmu_2024_1362904 crossref_primary_10_1089_mab_2023_0016 crossref_primary_10_1158_0008_5472_CAN_11_1947 crossref_primary_10_3389_fddev_2022_838458 crossref_primary_10_1089_mab_2023_0018 crossref_primary_10_1007_s11302_014_9435_2 crossref_primary_10_4110_in_2019_19_e23 crossref_primary_10_1126_scitranslmed_abh1261 crossref_primary_10_1038_s41416_022_02013_z crossref_primary_10_18632_oncotarget_4693 crossref_primary_10_1016_j_ejphar_2019_172538 crossref_primary_10_4049_jimmunol_0900475 crossref_primary_10_1134_S1990519X22040071 crossref_primary_10_3389_froh_2023_1180869 crossref_primary_10_1038_s41467_022_32066_w crossref_primary_10_1111_j_1471_4159_2009_06538_x crossref_primary_10_1016_j_bbamem_2010_09_020 crossref_primary_10_1016_j_humimm_2020_12_005 crossref_primary_10_1038_s41392_023_01332_8 crossref_primary_10_1593_neo_131748 crossref_primary_10_1586_1744666X_2014_915739 crossref_primary_10_3390_cancers11101472 crossref_primary_10_1002_mc_23161 crossref_primary_10_2174_1570180818666210604113849 crossref_primary_10_1007_s11302_013_9368_1 crossref_primary_10_1186_s40364_021_00264_1 crossref_primary_10_1186_s13046_022_02430_1 crossref_primary_10_1016_j_csbj_2015_03_008 crossref_primary_10_1172_JCI79380 crossref_primary_10_1186_s12967_016_1057_8 crossref_primary_10_1016_j_immuni_2019_01_010 crossref_primary_10_1016_j_cclet_2023_108136 crossref_primary_10_1158_2159_8290_CD_19_0980 crossref_primary_10_1182_blood_2011_08_374728 crossref_primary_10_1111_imcb_12025 crossref_primary_10_1093_jnci_djad091 crossref_primary_10_1155_2019_8014627 crossref_primary_10_1016_j_coph_2020_07_003 crossref_primary_10_7554_eLife_73699 crossref_primary_10_1016_j_coph_2020_07_005 crossref_primary_10_1056_NEJMra1205750 crossref_primary_10_1016_j_coph_2020_07_001 crossref_primary_10_1038_nrgastro_2017_101 crossref_primary_10_1016_j_coph_2020_07_002 crossref_primary_10_1016_j_humimm_2010_08_010 crossref_primary_10_3389_fonc_2021_627549 |
Cites_doi | 10.1038/nm0904-887 10.1016/S1074-7613(00)80218-6 10.1182/blood.V90.4.1600 10.1074/jbc.272.41.25881 10.1152/ajprenal.2001.281.4.F597 10.1016/S0021-9258(18)69210-5 10.1126/science.274.5291.1363 10.1097/00008390-200310000-00008 10.4049/jimmunol.161.5.2187 10.1016/S0006-2952(02)01548-4 10.1016/S0898-6568(01)00214-5 10.1038/35074122 10.1038/369031a0 10.1126/science.1076514 10.4049/jimmunol.165.2.869 10.1084/jem.194.6.823 10.1073/pnas.1533209100 10.4049/jimmunol.167.11.6497 10.1042/bj3540123 10.1038/414916a 10.1038/sj.bjp.0703532 10.1161/01.RES.81.2.154 10.1073/pnas.96.6.2982 10.1016/S1074-7613(00)00026-1 10.4049/jimmunol.167.8.4286 10.1046/j.1365-2796.2001.00911.x 10.1002/ijc.1305 10.1038/nrc704 10.1038/nm1310 10.1146/annurev.pharmtox.41.1.775 10.4049/jimmunol.153.3.1202 10.1002/ijc.10325 10.1128/mcb.8.4.1857-1861.1988 10.1002/ijc.2910030408 10.1111/j.1600-0773.1995.tb00111.x 10.1016/S1044-579X(02)00133-5 10.1073/pnas.262669499 10.1146/annurev.immunol.22.012703.104731 10.1073/pnas.0501050102 10.1016/0165-6147(96)10002-X 10.1038/342559a0 |
ContentType | Journal Article |
Copyright | Copyright 2006 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Aug 29, 2006 2006 by The National Academy of Sciences of the USA 2006 |
Copyright_xml | – notice: Copyright 2006 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Aug 29, 2006 – notice: 2006 by The National Academy of Sciences of the USA 2006 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.0605251103 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Virology and AIDS Abstracts MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 13137 |
ExternalDocumentID | 1151392911 10_1073_pnas_0605251103 16916931 103_35_13132 30050726 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, N.I.H., Intramural Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Intramural NIH HHS – fundername: NCI NIH HHS grantid: R01 CA112561 – fundername: NCI NIH HHS grantid: 1 R01 CA112561 1-NIH |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DWIUU DZ F20 GJ KM PQEST X XFK XHC ZA5 CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c530t-e7098e9f41691ec04df61cab235ca2afde91978fa5c162c6ed7baa9cca5390a33 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 20:58:20 EDT 2024 Fri Oct 25 09:24:30 EDT 2024 Fri Oct 25 07:06:41 EDT 2024 Thu Oct 10 22:14:18 EDT 2024 Fri Dec 06 02:52:40 EST 2024 Sat Sep 28 07:42:01 EDT 2024 Thu May 30 08:49:40 EDT 2019 Wed Nov 11 00:29:52 EST 2020 Tue Dec 10 23:05:31 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c530t-e7098e9f41691ec04df61cab235ca2afde91978fa5c162c6ed7baa9cca5390a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Communicated by William E. Paul, National Institutes of Health, Bethesda, MD, June 22, 2006 Author contributions: M.S. designed research; A.O., E.G., S.J.P., F.R., D.L., M.K.K.W., X.H., S.C., K.L., P.S., E.K.J., S. Apasov, and S. Abrams performed research; E.G., F.R., J.-F.C., E.K.J., and S. Abrams contributed new reagents/analytic tools; A.O., E.G., F.R., D.L., S. Abrams, and M.S. analyzed data; and A.O. and M.S. wrote the paper. A.O., E.G., F.R., S. Apasov, and S. Abrams contributed equally to this work. |
OpenAccessLink | https://europepmc.org/articles/pmc1559765?pdf=render |
PMID | 16916931 |
PQID | 201388982 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_103_35_13132 pubmed_primary_16916931 pnas_primary_103_35_13132_fulltext pubmedcentral_primary_oai_pubmedcentral_nih_gov_1559765 proquest_miscellaneous_20831071 proquest_miscellaneous_68812383 proquest_journals_201388982 crossref_primary_10_1073_pnas_0605251103 jstor_primary_30050726 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2006-08-29 |
PublicationDateYYYYMMDD | 2006-08-29 |
PublicationDate_xml | – month: 08 year: 2006 text: 2006-08-29 day: 29 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2006 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Acad Sciences – name: National Academy of Sciences |
References | 11323675 - Nature. 2001 Apr 26;410(6832):1107-11 3380102 - Mol Cell Biol. 1988 Apr;8(4):1857-61 9269779 - Blood. 1997 Aug 15;90(4):1600-10 11734617 - Pharmacol Rev. 2001 Dec;53(4):527-52 10077623 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2982-7 8936347 - Trends Pharmacol Sci. 1996 Mar;17(3):108-13 15340404 - Nat Med. 2004 Sep;10(9):887-92 12566076 - Biochem Pharmacol. 2003 Feb 15;65(4):493-501 12384531 - Cancer Res. 2002 Oct 15;62(20):5727-35 10624567 - Drug Des Discov. 1999 Nov;16(3):217-26 10960067 - Br J Pharmacol. 2000 Sep;131(1):43-50 10981969 - Immunity. 2000 Aug;13(2):265-76 12461164 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15840-2 11902584 - Nat Rev Cancer. 2002 Jan;2(1):38-47 2448308 - J Biol Chem. 1988 Feb 15;263(5):2330-6 11171087 - Biochem J. 2001 Feb 15;354(Pt 1):123-30 11591751 - J Immunol. 2001 Oct 15;167(8):4286-92 11992407 - Int J Cancer. 2002 May 20;99(3):386-95 11391613 - Int J Cancer. 2001 Jul 1;93(1):1-5 10878361 - J Immunol. 2000 Jul 15;165(2):869-77 11553506 - Am J Physiol Renal Physiol. 2001 Oct;281(4):F597-612 12654259 - Semin Cancer Biol. 2003 Apr;13(2):159-67 7517974 - J Immunol. 1994 Aug 1;153(3):1202-15 9325320 - J Biol Chem. 1997 Oct 10;272(41):25881-9 16227990 - Nat Med. 2005 Nov;11(11):1230-7 11560997 - J Exp Med. 2001 Sep 17;194(6):823-32 11714817 - J Immunol. 2001 Dec 1;167(11):6497-502 2573841 - Nature. 1989 Nov 30;342(6249):559-61 14512791 - Melanoma Res. 2003 Oct;13(5):493-501 9725210 - J Immunol. 1998 Sep 1;161(5):2187-94 10894167 - Immunity. 2000 Jun;12(6):677-86 8164737 - Nature. 1994 May 5;369(6475):31-7 10049999 - Pharmacol Rev. 1999 Mar;51(1):83-133 11780065 - Nature. 2001 Dec 20-27;414(6866):916-20 9242176 - Circ Res. 1997 Aug;81(2):154-64 12826605 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8372-7 7746802 - Pharmacol Toxicol. 1995 Feb;76(2):93-101 8910274 - Science. 1996 Nov 22;274(5291):1363-6 15983379 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9583-8 9205063 - Cancer Res. 1997 Jul 1;57(13):2602-5 11902815 - J Intern Med. 2001 Dec;250(6):462-75 11747983 - Cell Signal. 2002 Jan;14(1):1-9 11264476 - Annu Rev Pharmacol Toxicol. 2001;41:775-87 12242449 - Science. 2002 Oct 25;298(5594):850-4 15032592 - Annu Rev Immunol. 2004;22:657-82 5682442 - Int J Cancer. 1968 Jul 15;3(4):467-82 e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 Blay J. (e_1_3_4_27_2) 1997; 57 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_44_2 e_1_3_4_20_2 Ji X.-D. (e_1_3_4_34_2) 1999; 16 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 Fredholm B. B. (e_1_3_4_23_2) 2001; 53 e_1_3_4_24_2 e_1_3_4_25_2 Fredholm B. B. (e_1_3_4_35_2) 1999; 51 e_1_3_4_46_2 e_1_3_4_28_2 e_1_3_4_29_2 Huang X. (e_1_3_4_31_2) 2002; 62 e_1_3_4_11_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_36_2 Prevost-Blondel A. (e_1_3_4_37_2) 1998; 161 e_1_3_4_14_2 Itoh T. (e_1_3_4_30_2) 1994; 153 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_4_2 doi: 10.1038/nm0904-887 – ident: e_1_3_4_8_2 doi: 10.1016/S1074-7613(00)80218-6 – ident: e_1_3_4_16_2 doi: 10.1182/blood.V90.4.1600 – ident: e_1_3_4_24_2 doi: 10.1074/jbc.272.41.25881 – ident: e_1_3_4_29_2 doi: 10.1152/ajprenal.2001.281.4.F597 – ident: e_1_3_4_15_2 doi: 10.1016/S0021-9258(18)69210-5 – ident: e_1_3_4_7_2 doi: 10.1126/science.274.5291.1363 – ident: e_1_3_4_20_2 doi: 10.1097/00008390-200310000-00008 – volume: 161 start-page: 2187 year: 1998 ident: e_1_3_4_37_2 publication-title: J. Immunol. doi: 10.4049/jimmunol.161.5.2187 contributor: fullname: Prevost-Blondel A. – ident: e_1_3_4_44_2 doi: 10.1016/S0006-2952(02)01548-4 – ident: e_1_3_4_22_2 doi: 10.1016/S0898-6568(01)00214-5 – ident: e_1_3_4_5_2 doi: 10.1038/35074122 – ident: e_1_3_4_43_2 doi: 10.1038/369031a0 – ident: e_1_3_4_11_2 doi: 10.1126/science.1076514 – volume: 62 start-page: 5727 year: 2002 ident: e_1_3_4_31_2 publication-title: Cancer Res. contributor: fullname: Huang X. – ident: e_1_3_4_32_2 doi: 10.4049/jimmunol.165.2.869 – ident: e_1_3_4_10_2 doi: 10.1084/jem.194.6.823 – ident: e_1_3_4_14_2 doi: 10.1073/pnas.1533209100 – ident: e_1_3_4_39_2 doi: 10.4049/jimmunol.167.11.6497 – volume: 51 start-page: 83 year: 1999 ident: e_1_3_4_35_2 publication-title: Pharmacol. Rev. contributor: fullname: Fredholm B. B. – ident: e_1_3_4_25_2 doi: 10.1042/bj3540123 – ident: e_1_3_4_18_2 doi: 10.1038/414916a – ident: e_1_3_4_26_2 doi: 10.1038/sj.bjp.0703532 – ident: e_1_3_4_21_2 doi: 10.1161/01.RES.81.2.154 – ident: e_1_3_4_13_2 doi: 10.1073/pnas.96.6.2982 – ident: e_1_3_4_2_2 doi: 10.1016/S1074-7613(00)00026-1 – volume: 16 start-page: 217 year: 1999 ident: e_1_3_4_34_2 publication-title: Drug Des. Discovery contributor: fullname: Ji X.-D. – ident: e_1_3_4_38_2 doi: 10.4049/jimmunol.167.8.4286 – ident: e_1_3_4_3_2 doi: 10.1046/j.1365-2796.2001.00911.x – ident: e_1_3_4_9_2 doi: 10.1002/ijc.1305 – ident: e_1_3_4_19_2 doi: 10.1038/nrc704 – ident: e_1_3_4_6_2 doi: 10.1038/nm1310 – ident: e_1_3_4_33_2 doi: 10.1146/annurev.pharmtox.41.1.775 – volume: 57 start-page: 2602 year: 1997 ident: e_1_3_4_27_2 publication-title: Cancer Res. contributor: fullname: Blay J. – volume: 153 start-page: 1202 year: 1994 ident: e_1_3_4_30_2 publication-title: J. Immunol. doi: 10.4049/jimmunol.153.3.1202 contributor: fullname: Itoh T. – ident: e_1_3_4_28_2 doi: 10.1002/ijc.10325 – volume: 53 start-page: 527 year: 2001 ident: e_1_3_4_23_2 publication-title: Pharmacol. Rev. contributor: fullname: Fredholm B. B. – ident: e_1_3_4_41_2 doi: 10.1128/mcb.8.4.1857-1861.1988 – ident: e_1_3_4_1_2 doi: 10.1002/ijc.2910030408 – ident: e_1_3_4_40_2 doi: 10.1111/j.1600-0773.1995.tb00111.x – ident: e_1_3_4_45_2 doi: 10.1016/S1044-579X(02)00133-5 – ident: e_1_3_4_12_2 doi: 10.1073/pnas.262669499 – ident: e_1_3_4_17_2 doi: 10.1146/annurev.immunol.22.012703.104731 – ident: e_1_3_4_42_2 doi: 10.1073/pnas.0501050102 – ident: e_1_3_4_46_2 doi: 10.1016/0165-6147(96)10002-X – ident: e_1_3_4_36_2 doi: 10.1038/342559a0 |
SSID | ssj0009580 |
Score | 2.5051286 |
Snippet | The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13132 |
SubjectTerms | Adenosine Adenosine - metabolism Adenosine A2 Receptor Antagonists Animals Biological Sciences Cancer CD8-Positive T-Lymphocytes - immunology Cell growth Cell- and Tissue-Based Therapy Humans Hypoxia Immunity (Disease) Immunotherapy, Adoptive Inoculation Interferon-gamma - biosynthesis Lungs Melanoma Melanoma - immunology Melanoma - metabolism Melanoma - pathology Mice Mice, Inbred BALB C Mice, Inbred C57BL Mutation - genetics Purinergic P1 receptors Receptor, Adenosine A2A - deficiency Receptor, Adenosine A2A - metabolism Rodents T cell receptors T lymphocytes Tissues Tumors |
Title | A2A Adenosine Receptor Protects Tumors from Antitumor T Cells |
URI | https://www.jstor.org/stable/30050726 http://www.pnas.org/content/103/35/13132.abstract https://www.ncbi.nlm.nih.gov/pubmed/16916931 https://www.proquest.com/docview/201388982 https://search.proquest.com/docview/20831071 https://search.proquest.com/docview/68812383 https://pubmed.ncbi.nlm.nih.gov/PMC1559765 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4Bp16qUkobaMGqeqCH7CZ-xT70sEIghETVA0jcIscPFambXZHd_19P4ux2q3LpMfI4ccYznhl75jPAl-gJUaWcyoPjPo-rpMiN1i4PKmgbuOG2wUDx7ru8eeC3j-JxD8RYC9Mn7dvmadL-mk_ap599buVybqdjntj0x90lHqVVUkz3YT-a3zFE3yDtqqHuhMbll1M-4vlUbLpsTTcpJF7dFq1ef4WO1IhGUu5YpSExEdFOI_2_PM-_Eyj_sEjXb-B1ciXJbBjyIez59i0cJmXtyEVClP56BN9mdEaMQ1zw6FSSuMj5Zfw2SSANHVmt54vnjmCtCTFYuIvP5J7gtn73Dh6ur-4vb_J0b0JuBStWua8KrbwOHP_O24K7IEtrGsqENdQE53UZg8dghC0ltdK7qjFGx7kUTBeGsWM4aBet_wCkoKFUgVKnVTRjvGgYD1whartrjOQug4uRb_VygMeo-2PtitXIvXrL7QyOe75u6BAov6iozCDrSbf9Wc1EXSKoZAafX2yrQ0qPyeB0nKI6aWBXUzyCVVrFV5xvWqPqIONM6xdrJMFb1qryZQqpov8TY_gM3g8Tvh1IEpwMqh1R2BAgbPduS5TmHr47Se_Jf_c8hVfDRhDWz3yEg9Xz2n-KrtGqOUPDJM56hfgNYzIM1g |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALokAhFKiFOJRDdhPbcewDh1VFtUC34rCVerMcP9RKbHbV7P5_PHnssoheOEYeJ854xjNjz3wG-BQ9ISqlk2lw3KdxlSxSo5RLgwzKBm64rTBQnF2J6TX_flPcHEAx1MK0Sfu2uhvVvxaj-u62za1cLex4yBMb_5yd41FaKYrxI3hcsFLlQ5C-xdqVXeUJjQswp3xA9CnZeFWbZpQJvLwt2r32Eh2hEI8k37NLXWoi4p1G-n_5nn-nUP5hky6ew7PemSSTbtBHcODrF3DUq2tDznpM6c8v4cuETohxiAwe3UoSlzm_it8mPUxDQ9abxfK-IVhtQgyW7uIzmRPc2G9ewfXF1_n5NO1vTkhtwbJ16stMSa8Cx7_zNuMuiNyairLCGmqC8yqP4WMwhc0FtcK7sjJGxdksmMoMY8dwWC9r_wZIRkMuA6VOyWjIeFYxHrhE3HZXGcFdAmcD3_SqA8jQ7cF2yTRyT--4ncBxy9ctHULlZyUVCSQt6a4_06zQOcJKJvDxwTYd-gSZBE6GKdK9Djaa4iGsVDK-4nTbGpUHGWdqv9wgCd6zVuYPUwgZPaAYxSfwupvw3UB6wUmg3BOFLQECd--3RHluAbx7-X373z1P4cl0PrvUl9-ufpzA025bCKtp3sHh-n7j30dHaV19aNXiN1ZND0U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXRIFCKFALcSiH7Ca249gHDqvCqjxa9dBKvVmOH6ISm42a3f-PJ4_dLqIXjpHHiTOesWfsmW8APkZLiErpZBoc92lcJYvUKOXSIIOygRtuK3QUz87F6RX_fl1c3yn11QXt2-pmUv9eTOqbX11sZbOw0zFObHpxdoJXaaUopo0L04fwqGBRyEZHfYO3K_vsExoXYU75iOpTsmlTm3aSCSzgFve-rpCOUIhJku_sTX14ImKeRvp_2Z9_h1He2Zfmz-DpYFCSWT_wfXjg6-ewP6hsS44HXOlPL-DzjM6IcYgOHk1LEpc638RvkwGqoSWr9WJ52xLMOCEG03fxmVwSPNxvX8LV_OvlyWk6VE9IbcGyVerLTEmvAse_8zbjLojcmoqywhpqgvMqjy5kMIXNBbXCu7IyRsUZLZjKDGMHsFcva_8aSEZDLgOlTsm4mfGsYjxwidjtrjKCuwSOR77ppgfJ0N3ldsk0ck9vuZ3AQcfXDR3C5WclFQkkHem2P9Os0DlCSybw4d42HYYgmQQOxynSgx62muJFrFQyvuJo0xoVCBlnar9cIwnWWivz-ymEjFZQ9OQTeNVP-HYgg-AkUO6IwoYAwbt3W6JMdyDegwy_-e-eR_D44stc__x2_uMQnvQnQ5hQ8xb2Vrdr_y7aSqvqfacVfwBD0xBY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A2A+adenosine+receptor+protects+tumors+from+antitumor+T+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Akio+Ohta&rft.au=Elieser+Gorelik&rft.au=Simon+J.+Prasad&rft.au=Franca+Ronchese&rft.date=2006-08-29&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=35&rft.spage=13132&rft_id=info:doi/10.1073%2Fpnas.0605251103&rft_id=info%3Apmid%2F16916931&rft.externalDBID=n%2Fa&rft.externalDocID=103_35_13132 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F35.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F35.cover.gif |