A2A Adenosine Receptor Protects Tumors from Antitumor T Cells

The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 103; no. 35; pp. 13132 - 13137
Main Authors Ohta, Akio, Gorelik, Elieser, Prasad, Simon J., Ronchese, Franca, Lukashev, Dmitriy, Wong, Michael K. K., Huang, Xiaojun, Caldwell, Sheila, Liu, Kebin, Smith, Patrick, Chen, Jiang-Fan, Jackson, Edwin K., Apasov, Sergey, Abrams, Scott, Sitkovsky, Michail
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.08.2006
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in ≈60% of A2ARdeficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia→adenosine→A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.
AbstractList The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in ≈60% of A2ARdeficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia→adenosine→A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.
The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in ≈60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the “Hellstrom paradox”). We propose to target the hypoxia→adenosine→A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.
The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in approximately 60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia-->adenosine-->A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia-->adenosine-->A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.
The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in [asymptotically =]6O% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neo-vascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia[arrow right]adenosine[arrow right]A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia[arrow right]adenosine[arrow right]A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage. [PUBLICATION ABSTRACT]
The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in approximately 60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia-->adenosine-->A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia-->adenosine-->A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.
The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in approximately 60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the "Hellstrom paradox"). We propose to target the hypoxia arrow right adenosine arrow right A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia arrow right adenosine arrow right A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.
The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in ≈60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the “Hellstrom paradox”). We propose to target the hypoxia→adenosine→A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage. autoimmunity cancer therapy hypoxia inflammation
Author Gorelik, Elieser
Jackson, Edwin K.
Apasov, Sergey
Liu, Kebin
Wong, Michael K. K.
Huang, Xiaojun
Sitkovsky, Michail
Lukashev, Dmitriy
Smith, Patrick
Ronchese, Franca
Prasad, Simon J.
Ohta, Akio
Caldwell, Sheila
Abrams, Scott
Chen, Jiang-Fan
Author_xml – sequence: 1
  givenname: Akio
  surname: Ohta
  fullname: Ohta, Akio
– sequence: 2
  givenname: Elieser
  surname: Gorelik
  fullname: Gorelik, Elieser
– sequence: 3
  givenname: Simon J.
  surname: Prasad
  fullname: Prasad, Simon J.
– sequence: 4
  givenname: Franca
  surname: Ronchese
  fullname: Ronchese, Franca
– sequence: 5
  givenname: Dmitriy
  surname: Lukashev
  fullname: Lukashev, Dmitriy
– sequence: 6
  givenname: Michael K. K.
  surname: Wong
  fullname: Wong, Michael K. K.
– sequence: 7
  givenname: Xiaojun
  surname: Huang
  fullname: Huang, Xiaojun
– sequence: 8
  givenname: Sheila
  surname: Caldwell
  fullname: Caldwell, Sheila
– sequence: 9
  givenname: Kebin
  surname: Liu
  fullname: Liu, Kebin
– sequence: 10
  givenname: Patrick
  surname: Smith
  fullname: Smith, Patrick
– sequence: 11
  givenname: Jiang-Fan
  surname: Chen
  fullname: Chen, Jiang-Fan
– sequence: 12
  givenname: Edwin K.
  surname: Jackson
  fullname: Jackson, Edwin K.
– sequence: 13
  givenname: Sergey
  surname: Apasov
  fullname: Apasov, Sergey
– sequence: 14
  givenname: Scott
  surname: Abrams
  fullname: Abrams, Scott
– sequence: 15
  givenname: Michail
  surname: Sitkovsky
  fullname: Sitkovsky, Michail
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16916931$$D View this record in MEDLINE/PubMed
BookMark eNqF0UGL1DAUB_AgK-7s6tmTUjwIe-juS9K0yUGhDLoKC4qM55BJX7VDm4xJKvrtTZlhR70sBELIL-8l-V-QM-cdEvKcwjWFht_snYnXUINgglLgj8iKgqJlXSk4IysA1pSyYtU5uYhxBwBKSHhCzmmt8uB0Rd60rC3aDp2Pg8PiC1rcJx-Kz8EntCkWm3nyIRZ98FPRujSkZV1sijWOY3xKHvdmjPjsOF-Sr-_fbdYfyrtPtx_X7V1pBYdUYgNKouqrpS9aqLq-ptZsGRfWMNN3qKhqZG-EpTWzNXbN1hhlrRFcgeH8krw91N3P2wk7iy4FM-p9GCYTfmtvBv3vjhu-62_-p6ZCqKYWucDrY4Hgf8wYk56GaPMTjEM_R11LSRmX_EHIQPL88zTDV__BnZ-Dy7-QDeVSKskyujkgG3yMAfv7K1PQS4B6CVCfAswnXv790pM_JpZBcQTLyVM5rrnQNIOl69UDRPfzOCb8lbJ9cbC7mGO_xxxAQMNq_gfPKLpn
CitedBy_id crossref_primary_10_1093_annonc_mdw217
crossref_primary_10_1016_j_xcrm_2023_101188
crossref_primary_10_1002_jcp_28187
crossref_primary_10_1080_21688370_2016_1224963
crossref_primary_10_1172_JCI148549
crossref_primary_10_3390_cancers12082030
crossref_primary_10_1189_jlb_0609388
crossref_primary_10_1172_JCI152924
crossref_primary_10_1200_EDBK_158712
crossref_primary_10_1016_S1672_0229_10_60025_3
crossref_primary_10_1158_2326_6066_CIR_15_0050
crossref_primary_10_1002_advs_202104182
crossref_primary_10_1007_s11302_018_9641_4
crossref_primary_10_1053_j_gastro_2010_05_007
crossref_primary_10_1016_j_imlet_2018_05_001
crossref_primary_10_1038_ncb3330
crossref_primary_10_1016_j_phrs_2013_04_006
crossref_primary_10_2174_1381612825666190716102037
crossref_primary_10_1155_2022_3051907
crossref_primary_10_3390_cancers13133230
crossref_primary_10_1158_2326_6066_CIR_14_0211
crossref_primary_10_3390_cancers11101578
crossref_primary_10_1016_j_intimp_2020_107055
crossref_primary_10_18632_oncotarget_14434
crossref_primary_10_1002_prot_24283
crossref_primary_10_1007_s10330_022_0573_3
crossref_primary_10_3390_cancers13133236
crossref_primary_10_1016_j_molonc_2015_10_012
crossref_primary_10_1158_0008_5472_CAN_18_3726
crossref_primary_10_3390_cancers14174209
crossref_primary_10_1002_ijc_23090
crossref_primary_10_1016_j_cellsig_2014_01_024
crossref_primary_10_1038_s41598_023_29210_x
crossref_primary_10_1126_sciadv_ade5111
crossref_primary_10_1038_mi_2014_108
crossref_primary_10_1080_07388551_2021_1988509
crossref_primary_10_1080_2162402X_2021_2012961
crossref_primary_10_4161_onci_25961
crossref_primary_10_1016_j_athoracsur_2009_06_032
crossref_primary_10_4049_jimmunol_1200744
crossref_primary_10_4161_onci_1_1_18068
crossref_primary_10_1038_s41568_023_00557_7
crossref_primary_10_1172_jci_insight_122204
crossref_primary_10_1186_s12916_015_0431_3
crossref_primary_10_3389_fimmu_2019_00507
crossref_primary_10_1124_pharmrev_121_000445
crossref_primary_10_1007_s00109_012_0991_z
crossref_primary_10_1158_2326_6066_CIR_17_0502
crossref_primary_10_1007_s11302_009_9156_0
crossref_primary_10_3389_fcell_2022_876510
crossref_primary_10_1210_en_2007_1223
crossref_primary_10_4049_jimmunol_0901247
crossref_primary_10_1593_neo_08478
crossref_primary_10_1038_s42003_021_02972_8
crossref_primary_10_1093_intimm_dxt045
crossref_primary_10_1172_JCI137554
crossref_primary_10_1002_prp2_1223
crossref_primary_10_4161_onci_26705
crossref_primary_10_3389_fimmu_2020_00508
crossref_primary_10_3390_ijms19123837
crossref_primary_10_3390_molecules28145419
crossref_primary_10_3390_cancers14010183
crossref_primary_10_4049_jimmunol_0903421
crossref_primary_10_1158_1078_0432_CCR_15_1849
crossref_primary_10_1016_j_nantod_2011_04_001
crossref_primary_10_3109_08830185_2014_956358
crossref_primary_10_4110_in_2022_22_e6
crossref_primary_10_1155_2017_4852537
crossref_primary_10_1016_j_yexcr_2021_112886
crossref_primary_10_1038_jid_2011_50
crossref_primary_10_1007_s00432_022_04124_9
crossref_primary_10_1038_jcbfm_2008_57
crossref_primary_10_1007_s11302_023_09931_4
crossref_primary_10_1016_j_biochi_2020_06_001
crossref_primary_10_3389_fimmu_2021_717850
crossref_primary_10_1016_j_bbcan_2018_07_002
crossref_primary_10_1186_s12943_017_0665_0
crossref_primary_10_1038_s41389_017_0011_9
crossref_primary_10_1080_2162402X_2014_1003015
crossref_primary_10_1002_adfm_202102234
crossref_primary_10_1136_jitc_2019_000417
crossref_primary_10_3390_ijms22189675
crossref_primary_10_1186_s40425_018_0360_8
crossref_primary_10_1007_s10142_023_01281_z
crossref_primary_10_1016_j_coph_2020_10_012
crossref_primary_10_1074_jbc_C116_764043
crossref_primary_10_1146_annurev_cancerbio_030518_055552
crossref_primary_10_3389_fimmu_2017_01526
crossref_primary_10_3390_ijms24108871
crossref_primary_10_1111_bcp_14316
crossref_primary_10_1186_s13045_020_00978_z
crossref_primary_10_2217_imt_2017_0168
crossref_primary_10_3389_fimmu_2022_873217
crossref_primary_10_1161_HYPERTENSIONAHA_123_20582
crossref_primary_10_3389_fimmu_2020_601272
crossref_primary_10_1016_j_bioactmat_2023_11_002
crossref_primary_10_3390_cells13100844
crossref_primary_10_3390_genes14051008
crossref_primary_10_3390_biology12020218
crossref_primary_10_1002_cam4_4190
crossref_primary_10_4049_jimmunol_1003884
crossref_primary_10_1096_fj_11_193672
crossref_primary_10_1007_s10555_012_9388_2
crossref_primary_10_1038_cddis_2013_156
crossref_primary_10_3389_fimmu_2023_1149986
crossref_primary_10_3389_fimmu_2024_1362996
crossref_primary_10_1002_ijc_28456
crossref_primary_10_1016_j_imlet_2009_03_011
crossref_primary_10_1097_EDE_0000000000000360
crossref_primary_10_1371_journal_pcbi_1005943
crossref_primary_10_1111_imm_12917
crossref_primary_10_1002_ijc_30659
crossref_primary_10_3390_biomedicines9060607
crossref_primary_10_3892_ol_2017_7569
crossref_primary_10_1371_journal_pone_0150078
crossref_primary_10_1002_ctm2_1141
crossref_primary_10_1016_j_semcancer_2022_06_012
crossref_primary_10_1016_j_semcancer_2022_06_013
crossref_primary_10_1007_s11302_020_09701_6
crossref_primary_10_1016_j_clcc_2018_09_003
crossref_primary_10_3390_ijms21228781
crossref_primary_10_1111_jth_12361
crossref_primary_10_3390_cells9061518
crossref_primary_10_1016_j_bbih_2022_100544
crossref_primary_10_1186_s12906_023_04212_4
crossref_primary_10_1007_s00262_014_1553_8
crossref_primary_10_4049_jimmunol_1701414
crossref_primary_10_1146_annurev_cancerbio_061421_042605
crossref_primary_10_3389_fcell_2022_1032360
crossref_primary_10_1080_2162402X_2016_1208875
crossref_primary_10_1111_imr_12528
crossref_primary_10_1186_s13073_014_0052_z
crossref_primary_10_3389_fphar_2022_908882
crossref_primary_10_1038_s42003_024_06128_2
crossref_primary_10_1111_j_1476_5381_2008_00019_x
crossref_primary_10_1016_j_lungcan_2024_107502
crossref_primary_10_1016_j_mam_2019_02_002
crossref_primary_10_1021_acsptsci_4c00051
crossref_primary_10_3389_fonc_2021_772145
crossref_primary_10_1002_smsc_202300242
crossref_primary_10_1002_advs_202302498
crossref_primary_10_1007_s12026_009_8147_0
crossref_primary_10_1016_j_ccell_2019_10_007
crossref_primary_10_1021_acs_jmedchem_1c01155
crossref_primary_10_1038_icb_2013_12
crossref_primary_10_1096_fj_08_124941
crossref_primary_10_3389_fimmu_2022_940052
crossref_primary_10_1007_s10555_007_9054_2
crossref_primary_10_1371_journal_pone_0301223
crossref_primary_10_3390_ijms22052550
crossref_primary_10_3389_fimmu_2022_837230
crossref_primary_10_4049_jimmunol_1000108
crossref_primary_10_1038_nrc3380
crossref_primary_10_1186_s12935_020_01195_x
crossref_primary_10_1158_0008_5472_CAN_14_0957
crossref_primary_10_3390_ijms21186521
crossref_primary_10_3389_fonc_2023_1270991
crossref_primary_10_1038_s42004_023_00894_6
crossref_primary_10_1038_s41391_021_00340_5
crossref_primary_10_1007_s00109_018_1679_9
crossref_primary_10_1007_s12020_010_9384_7
crossref_primary_10_1177_1010428317695021
crossref_primary_10_1016_j_canlet_2023_216076
crossref_primary_10_1002_adfm_202200801
crossref_primary_10_1016_j_clim_2017_12_006
crossref_primary_10_1039_C4TB01844C
crossref_primary_10_1016_j_drudis_2021_02_020
crossref_primary_10_1186_s12885_021_08601_1
crossref_primary_10_1021_acs_jmedchem_4c00250
crossref_primary_10_1053_j_seminoncol_2015_02_009
crossref_primary_10_1038_onc_2012_269
crossref_primary_10_1016_j_smim_2015_11_003
crossref_primary_10_4236_jct_2012_34039
crossref_primary_10_1002_eji_201343866
crossref_primary_10_1038_s41571_024_00870_6
crossref_primary_10_1186_s43042_020_00059_3
crossref_primary_10_1136_jitc_2020_001467
crossref_primary_10_3390_ph13090237
crossref_primary_10_3389_fimmu_2014_00304
crossref_primary_10_1073_pnas_0908801107
crossref_primary_10_1016_j_bmcl_2018_12_062
crossref_primary_10_1080_2162402X_2016_1268308
crossref_primary_10_2174_1381612825666190716141851
crossref_primary_10_3390_ijms24108956
crossref_primary_10_3389_fimmu_2024_1403533
crossref_primary_10_1016_j_biopha_2023_114824
crossref_primary_10_1016_j_trecan_2021_04_008
crossref_primary_10_1016_j_ijbiomac_2019_09_078
crossref_primary_10_1016_j_intimp_2021_107645
crossref_primary_10_1016_j_ejphar_2012_09_001
crossref_primary_10_1111_j_1349_7006_2012_02376_x
crossref_primary_10_1161_HYPERTENSIONAHA_117_10765
crossref_primary_10_1182_blood_2007_03_081646
crossref_primary_10_1126_scisignal_abj4220
crossref_primary_10_1158_2159_8290_CD_14_0341
crossref_primary_10_1371_journal_pone_0002599
crossref_primary_10_1007_s11302_018_9622_7
crossref_primary_10_1016_j_biopha_2018_05_144
crossref_primary_10_1002_ange_202115545
crossref_primary_10_3390_ph13080161
crossref_primary_10_1016_j_lfs_2016_10_008
crossref_primary_10_1016_j_jconrel_2016_12_012
crossref_primary_10_1016_j_cellsig_2024_111281
crossref_primary_10_1111_j_1600_065X_2007_00566_x
crossref_primary_10_1038_s41467_019_09656_2
crossref_primary_10_1161_ATVBAHA_111_226878
crossref_primary_10_1080_20013078_2017_1368823
crossref_primary_10_1158_1078_0432_CCR_10_2443
crossref_primary_10_1182_blood_2013_09_402560
crossref_primary_10_1186_s12943_018_0759_3
crossref_primary_10_1016_j_ejmech_2020_113040
crossref_primary_10_3389_fimmu_2021_777073
crossref_primary_10_1051_medsci_20143004017
crossref_primary_10_1038_s41577_024_01026_4
crossref_primary_10_1016_j_humimm_2024_110774
crossref_primary_10_1186_s12885_017_3250_4
crossref_primary_10_1007_s11302_011_9280_5
crossref_primary_10_1016_j_jhepr_2023_100959
crossref_primary_10_1182_blood_2008_02_136325
crossref_primary_10_1152_physiol_00010_2021
crossref_primary_10_3389_fcell_2021_647058
crossref_primary_10_1111_imr_12577
crossref_primary_10_3389_fnins_2021_648476
crossref_primary_10_3390_biom12030418
crossref_primary_10_1093_nar_gkac200
crossref_primary_10_1111_imr_12571
crossref_primary_10_1016_j_intimp_2018_07_023
crossref_primary_10_1158_0008_5472_CAN_10_1544
crossref_primary_10_1038_s41571_018_0142_8
crossref_primary_10_3389_fimmu_2024_1434118
crossref_primary_10_1111_cbdd_13053
crossref_primary_10_3109_07357907_2011_636113
crossref_primary_10_1016_j_critrevonc_2021_103403
crossref_primary_10_1158_1535_7163_MCT_21_0107
crossref_primary_10_1007_s00262_011_1040_4
crossref_primary_10_1016_j_coph_2016_06_009
crossref_primary_10_1038_bjp_2008_361
crossref_primary_10_3390_cancers13092225
crossref_primary_10_1038_s41467_021_23331_5
crossref_primary_10_1016_j_ajpath_2012_08_041
crossref_primary_10_1016_j_biomaterials_2021_121184
crossref_primary_10_1016_j_pneurobio_2007_07_005
crossref_primary_10_2174_1568026619666190628115644
crossref_primary_10_1038_s41388_022_02312_y
crossref_primary_10_1158_1541_7786_MCR_16_0427
crossref_primary_10_1007_s00210_019_01803_2
crossref_primary_10_1084_jem_20062512
crossref_primary_10_1038_sj_cdd_4402132
crossref_primary_10_1002_ptr_8000
crossref_primary_10_1016_j_canlet_2024_216871
crossref_primary_10_3389_fimmu_2023_1163585
crossref_primary_10_3390_molecules27154676
crossref_primary_10_3390_cancers15235706
crossref_primary_10_3390_cells10051006
crossref_primary_10_1186_s40364_020_00197_1
crossref_primary_10_1038_s41467_022_28086_1
crossref_primary_10_1172_JCI157431
crossref_primary_10_1016_j_semcancer_2015_03_004
crossref_primary_10_1007_s00262_010_0967_1
crossref_primary_10_20517_cdr_2023_60
crossref_primary_10_3390_cancers13153716
crossref_primary_10_1172_JCI96582
crossref_primary_10_3389_fimmu_2022_821816
crossref_primary_10_1007_s12026_011_8207_0
crossref_primary_10_2353_ajpath_2007_070190
crossref_primary_10_1158_0008_5472_CAN_17_2826
crossref_primary_10_1016_j_febslet_2015_07_027
crossref_primary_10_1016_j_bbamem_2010_12_018
crossref_primary_10_1111_jcmm_15500
crossref_primary_10_3390_jpm11080754
crossref_primary_10_1002_jcb_26551
crossref_primary_10_1038_onc_2016_206
crossref_primary_10_1186_s12885_015_1530_4
crossref_primary_10_3389_fimmu_2019_02309
crossref_primary_10_3389_fimmu_2020_612202
crossref_primary_10_1097_PPO_0000000000000241
crossref_primary_10_2217_imt_15_16
crossref_primary_10_1007_s00109_013_0999_z
crossref_primary_10_1016_j_pharmthera_2023_108545
crossref_primary_10_1038_s41586_019_1593_5
crossref_primary_10_1007_s11302_013_9372_5
crossref_primary_10_1016_j_bulcan_2017_03_004
crossref_primary_10_1111_ajt_12398
crossref_primary_10_1021_acs_jmedchem_2c01860
crossref_primary_10_1016_j_bcp_2015_08_092
crossref_primary_10_1016_j_cclet_2022_107747
crossref_primary_10_3389_fimmu_2018_02517
crossref_primary_10_1021_acs_jmedchem_0c00237
crossref_primary_10_1158_2326_6066_CIR_20_0791
crossref_primary_10_3390_ijms18122759
crossref_primary_10_4049_jimmunol_1700850
crossref_primary_10_1016_j_cellsig_2021_109954
crossref_primary_10_1146_annurev_med_060619_023155
crossref_primary_10_1073_pnas_1222085110
crossref_primary_10_1073_pnas_1222251110
crossref_primary_10_1002_cbic_201600337
crossref_primary_10_1038_s41577_021_00541_y
crossref_primary_10_1080_08830185_2022_2101647
crossref_primary_10_1016_j_cytogfr_2009_11_006
crossref_primary_10_1016_j_prp_2023_154616
crossref_primary_10_1157_13127925
crossref_primary_10_4049_jimmunol_1101225
crossref_primary_10_1007_s00262_020_02843_x
crossref_primary_10_1002_adfm_202400114
crossref_primary_10_1128_jvi_00225_23
crossref_primary_10_1016_j_semradonc_2021_02_001
crossref_primary_10_1080_08923973_2021_1988102
crossref_primary_10_1186_s13046_020_01546_6
crossref_primary_10_1016_j_canlet_2021_04_001
crossref_primary_10_1186_s13045_024_01524_x
crossref_primary_10_1016_j_isci_2024_109738
crossref_primary_10_3389_fimmu_2020_00275
crossref_primary_10_3390_vaccines10111850
crossref_primary_10_3390_molecules25204831
crossref_primary_10_3389_fendo_2022_1007801
crossref_primary_10_1038_cddis_2014_109
crossref_primary_10_1007_s00106_018_0494_5
crossref_primary_10_1016_j_crimmu_2021_07_001
crossref_primary_10_1089_ars_2022_0040
crossref_primary_10_3389_fimmu_2022_1012534
crossref_primary_10_3389_fimmu_2022_978377
crossref_primary_10_1038_s41401_021_00776_4
crossref_primary_10_1186_s12943_023_01733_x
crossref_primary_10_3390_cancers14235963
crossref_primary_10_1158_1078_0432_CCR_21_3145
crossref_primary_10_1007_s11302_024_10002_5
crossref_primary_10_1111_1759_7714_13346
crossref_primary_10_3109_08923970903078450
crossref_primary_10_1038_onc_2010_292
crossref_primary_10_1016_j_medj_2024_03_001
crossref_primary_10_2217_imt_12_83
crossref_primary_10_1016_j_tranon_2019_09_003
crossref_primary_10_1016_j_semcancer_2017_05_004
crossref_primary_10_1155_2012_473712
crossref_primary_10_1158_2326_6066_CIR_18_0056
crossref_primary_10_3390_ijms25094742
crossref_primary_10_1016_j_bmc_2018_05_048
crossref_primary_10_1021_acs_jmedchem_9b00071
crossref_primary_10_1189_jlb_0908577
crossref_primary_10_1080_14728222_2019_1559829
crossref_primary_10_1177_1753466618794133
crossref_primary_10_1146_annurev_bioeng_062117_121147
crossref_primary_10_2217_imt_15_106
crossref_primary_10_1016_j_chembiol_2017_08_019
crossref_primary_10_1016_j_it_2009_04_001
crossref_primary_10_3389_fgene_2021_682503
crossref_primary_10_3389_fimmu_2022_1090429
crossref_primary_10_1007_s11033_022_07685_7
crossref_primary_10_1080_2162402X_2015_1052934
crossref_primary_10_1158_2159_8290_CD_19_1280
crossref_primary_10_3389_fimmu_2018_02533
crossref_primary_10_3390_cancers15041093
crossref_primary_10_1007_s00405_019_05363_2
crossref_primary_10_1111_imm_12053
crossref_primary_10_3389_fnins_2021_702817
crossref_primary_10_1016_j_trecan_2023_11_007
crossref_primary_10_3390_cells9071612
crossref_primary_10_1002_cam4_6619
crossref_primary_10_1038_nrc_2017_86
crossref_primary_10_3389_fimmu_2022_987298
crossref_primary_10_1007_s00262_020_02535_6
crossref_primary_10_3390_ijms241411759
crossref_primary_10_4161_cbt_25643
crossref_primary_10_1007_s11302_023_09919_0
crossref_primary_10_1186_1471_2407_14_898
crossref_primary_10_1002_eji_200939897
crossref_primary_10_1080_2162402X_2017_1283468
crossref_primary_10_1111_j_1365_2249_2012_04623_x
crossref_primary_10_1016_j_bbagen_2009_10_008
crossref_primary_10_1073_pnas_1308209110
crossref_primary_10_1091_mbc_e14_01_0042
crossref_primary_10_1038_cgt_2008_10
crossref_primary_10_1158_2326_6066_CIR_19_0833
crossref_primary_10_1007_s11302_016_9531_6
crossref_primary_10_3390_ijms20225698
crossref_primary_10_1016_j_semcancer_2020_01_009
crossref_primary_10_1016_j_celrep_2023_113643
crossref_primary_10_1002_jcp_21579
crossref_primary_10_1136_jitc_2021_004167
crossref_primary_10_1002_med_21432
crossref_primary_10_1007_s13237_017_0194_7
crossref_primary_10_1016_j_bcp_2018_09_018
crossref_primary_10_1016_j_prp_2023_154423
crossref_primary_10_1038_nri2938
crossref_primary_10_3390_ijms231911835
crossref_primary_10_1074_jbc_M109_098293
crossref_primary_10_1136_jitc_2021_004043
crossref_primary_10_1039_C6MB00203J
crossref_primary_10_1593_neo_101628
crossref_primary_10_1158_1541_7786_MCR_14_0302_T
crossref_primary_10_1016_j_cmet_2021_12_009
crossref_primary_10_3390_cells10071715
crossref_primary_10_1007_s12032_013_0698_1
crossref_primary_10_1016_j_molcel_2017_12_008
crossref_primary_10_1080_2162402X_2015_1108515
crossref_primary_10_1126_scisignal_aaq1616
crossref_primary_10_1016_j_jconrel_2024_01_064
crossref_primary_10_1007_s00277_012_1425_2
crossref_primary_10_3389_fphar_2023_1079924
crossref_primary_10_1016_j_biomaterials_2022_121510
crossref_primary_10_1007_s00262_018_2186_0
crossref_primary_10_7717_peerj_11306
crossref_primary_10_1038_s41392_021_00553_z
crossref_primary_10_18097_PBMC20166203302
crossref_primary_10_3390_cancers14112740
crossref_primary_10_1016_j_coph_2009_05_005
crossref_primary_10_1136_jitc_2019_000186
crossref_primary_10_1021_acs_jmedchem_6b01068
crossref_primary_10_1111_j_1349_7006_2009_01469_x
crossref_primary_10_1136_jitc_2022_004554
crossref_primary_10_1158_0008_5472_CAN_12_1600
crossref_primary_10_1007_s00018_011_0705_7
crossref_primary_10_1016_j_it_2020_04_004
crossref_primary_10_1021_acs_jmedchem_2c00101
crossref_primary_10_1097_MPH_0000000000000802
crossref_primary_10_1152_ajpendo_00207_2022
crossref_primary_10_18632_oncotarget_28029
crossref_primary_10_1002_iid3_826
crossref_primary_10_1007_s12223_009_0051_4
crossref_primary_10_1038_onc_2014_436
crossref_primary_10_1158_0008_5472_CAN_09_3109
crossref_primary_10_4049_jimmunol_179_11_7431
crossref_primary_10_1007_s11302_016_9510_y
crossref_primary_10_1038_nature10673
crossref_primary_10_1038_s41467_022_31044_6
crossref_primary_10_1002_med_20108
crossref_primary_10_1161_ATVBAHA_118_311579
crossref_primary_10_1002_adma_202106967
crossref_primary_10_1158_0008_5472_CAN_17_0393
crossref_primary_10_3389_fimmu_2016_00109
crossref_primary_10_1016_j_smim_2017_09_001
crossref_primary_10_3389_fimmu_2016_00332
crossref_primary_10_3389_fimmu_2023_1212209
crossref_primary_10_1158_0008_5472_CAN_06_4249
crossref_primary_10_1007_s11302_012_9349_9
crossref_primary_10_1007_s11302_006_9044_9
crossref_primary_10_1146_annurev_pathmechdis_012418_013058
crossref_primary_10_1177_03008916241249366
crossref_primary_10_1186_2051_1426_1_12
crossref_primary_10_1371_journal_pone_0199601
crossref_primary_10_1073_pnas_1809695115
crossref_primary_10_1016_j_mam_2020_100936
crossref_primary_10_1038_s41568_020_0273_y
crossref_primary_10_3390_molecules25092209
crossref_primary_10_1042_BCJ20210233
crossref_primary_10_1038_nrc3613
crossref_primary_10_1172_JCI158800
crossref_primary_10_1016_j_bbcan_2023_189005
crossref_primary_10_1038_s41467_018_08123_8
crossref_primary_10_1007_s11684_023_1015_9
crossref_primary_10_3390_ijms22010247
crossref_primary_10_1007_s00106_019_00803_1
crossref_primary_10_3390_ijms222413521
crossref_primary_10_1097_SHK_0b013e3182085f12
crossref_primary_10_1038_bjp_2008_23
crossref_primary_10_18632_oncotarget_11729
crossref_primary_10_1093_carcin_bgt209
crossref_primary_10_3389_fimmu_2023_1258637
crossref_primary_10_1016_j_coph_2016_04_001
crossref_primary_10_1158_1078_0432_CCR_11_1591
crossref_primary_10_1182_bloodadvances_2016000984
crossref_primary_10_1080_17460441_2018_1534825
crossref_primary_10_1007_s00109_014_1189_3
crossref_primary_10_1016_j_iotech_2023_100394
crossref_primary_10_3389_fphar_2022_868695
crossref_primary_10_3390_ijms23094585
crossref_primary_10_1038_s41467_023_42734_0
crossref_primary_10_1002_ijc_32144
crossref_primary_10_1038_s41568_018_0037_0
crossref_primary_10_1186_s40425_016_0154_9
crossref_primary_10_1016_j_ijbiomac_2019_03_223
crossref_primary_10_1146_annurev_immunol_032414_112043
crossref_primary_10_3389_fimmu_2016_00315
crossref_primary_10_2217_imt_13_154
crossref_primary_10_3390_ijms23052782
crossref_primary_10_4049_jimmunol_1300702
crossref_primary_10_3389_fphar_2018_00052
crossref_primary_10_1371_journal_pone_0252424
crossref_primary_10_1172_JCI89455
crossref_primary_10_18632_oncotarget_4393
crossref_primary_10_3389_fphar_2017_00888
crossref_primary_10_1111_sji_12917
crossref_primary_10_1158_2326_6066_CIR_19_0449
crossref_primary_10_3390_cancers13061229
crossref_primary_10_3390_ijms18030642
crossref_primary_10_3390_biom13101432
crossref_primary_10_1016_j_omtm_2021_03_001
crossref_primary_10_4161_onci_1_2_18101
crossref_primary_10_3389_fimmu_2016_00559
crossref_primary_10_1038_nri_2016_4
crossref_primary_10_1080_2162402X_2018_1452579
crossref_primary_10_3389_fimmu_2019_01114
crossref_primary_10_1111_j_1365_2567_2009_03075_x
crossref_primary_10_2217_imt_2018_0200
crossref_primary_10_3389_fimmu_2020_570041
crossref_primary_10_3390_molecules27092994
crossref_primary_10_3389_fonc_2022_953098
crossref_primary_10_1016_S0213_9626_07_70080_X
crossref_primary_10_1158_0008_5472_CAN_13_3581
crossref_primary_10_1016_j_it_2012_02_009
crossref_primary_10_1038_icb_2017_8
crossref_primary_10_1016_j_molcel_2013_03_016
crossref_primary_10_1136_jitc_2022_004660
crossref_primary_10_1016_j_phrs_2013_07_002
crossref_primary_10_1016_j_ctrv_2021_102227
crossref_primary_10_3389_fcell_2022_893709
crossref_primary_10_1007_s11302_022_09884_0
crossref_primary_10_1007_s10549_021_06405_2
crossref_primary_10_1158_0008_5472_CAN_13_3583
crossref_primary_10_1371_journal_pone_0092009
crossref_primary_10_1158_0008_5472_CAN_17_2405
crossref_primary_10_1158_2326_6066_CIR_14_0075
crossref_primary_10_1159_000518799
crossref_primary_10_1155_2012_959848
crossref_primary_10_3390_ijms22158068
crossref_primary_10_1016_j_bbmt_2019_01_016
crossref_primary_10_3390_ijms23095126
crossref_primary_10_1038_nrrheum_2016_178
crossref_primary_10_1080_2162402X_2016_1178025
crossref_primary_10_3389_fonc_2020_00268
crossref_primary_10_15252_embj_2021108130
crossref_primary_10_3389_fimmu_2022_1048758
crossref_primary_10_1186_s12920_016_0212_7
crossref_primary_10_3390_biomedicines11072049
crossref_primary_10_3390_cells10010014
crossref_primary_10_1038_s41571_020_0382_2
crossref_primary_10_1002_ijc_34368
crossref_primary_10_1016_j_jab_2014_09_001
crossref_primary_10_1038_nrd3955
crossref_primary_10_3389_fphys_2022_849258
crossref_primary_10_1186_s13048_022_01022_z
crossref_primary_10_1038_s41598_022_14788_5
crossref_primary_10_1007_s00262_010_0924_z
crossref_primary_10_3390_ijms21072286
crossref_primary_10_1126_scitranslmed_aaa1260
crossref_primary_10_1172_JCI45559
crossref_primary_10_1242_jcs_241463
crossref_primary_10_3389_fimmu_2022_1061959
crossref_primary_10_1080_2162402X_2016_1184802
crossref_primary_10_1155_2014_509027
crossref_primary_10_1016_j_jtbi_2020_110185
crossref_primary_10_1158_0008_5472_CAN_12_0420
crossref_primary_10_1172_JCI155101
crossref_primary_10_1155_2019_4093214
crossref_primary_10_1016_j_neo_2017_02_004
crossref_primary_10_1158_1535_7163_MCT_21_0802
crossref_primary_10_1021_acsmedchemlett_1c00599
crossref_primary_10_1016_j_bmc_2013_09_043
crossref_primary_10_1016_j_coph_2020_08_012
crossref_primary_10_1016_j_critrevonc_2016_05_005
crossref_primary_10_1080_2162402X_2020_1824643
crossref_primary_10_1002_bmc_4909
crossref_primary_10_1016_j_neuroscience_2007_11_020
crossref_primary_10_1007_s00109_013_1001_9
crossref_primary_10_1586_ecp_09_57
crossref_primary_10_1007_s11302_011_9276_1
crossref_primary_10_3389_fimmu_2022_844142
crossref_primary_10_1172_JCI170071
crossref_primary_10_15252_emmm_201403918
crossref_primary_10_4132_jptm_2024_01_31
crossref_primary_10_1038_s41581_020_0304_7
crossref_primary_10_1074_jbc_M109_047423
crossref_primary_10_1002_pros_22955
crossref_primary_10_1016_j_ceb_2017_05_006
crossref_primary_10_1038_nature10169
crossref_primary_10_1038_s41577_020_0376_4
crossref_primary_10_1111_omi_12045
crossref_primary_10_1007_s00018_020_03581_0
crossref_primary_10_1158_2326_6066_CIR_22_0113
crossref_primary_10_3390_ijms15022024
crossref_primary_10_18632_oncotarget_23533
crossref_primary_10_1096_fj_08_107458
crossref_primary_10_1016_j_biopha_2022_113066
crossref_primary_10_1093_intimm_dxad035
crossref_primary_10_1080_14728222_2019_1630380
crossref_primary_10_1136_jitc_2020_001689
crossref_primary_10_1002_cmdc_201100369
crossref_primary_10_1016_j_critrevonc_2022_103592
crossref_primary_10_1097_JBR_0000000000000080
crossref_primary_10_3389_fonc_2021_696402
crossref_primary_10_1021_acs_jmedchem_9b01856
crossref_primary_10_3389_fonc_2019_01554
crossref_primary_10_1155_2012_485156
crossref_primary_10_3390_ijms19020340
crossref_primary_10_1158_2326_6066_CIR_14_0187
crossref_primary_10_3389_fonc_2023_1058371
crossref_primary_10_1371_journal_pone_0000853
crossref_primary_10_1063_5_0145364
crossref_primary_10_1038_nrd4591
crossref_primary_10_3389_fcell_2023_1060000
crossref_primary_10_1016_j_jconrel_2020_06_017
crossref_primary_10_1016_j_lfs_2021_120166
crossref_primary_10_1158_1078_0432_CCR_09_1143
crossref_primary_10_1007_s11010_021_04199_x
crossref_primary_10_1073_pnas_0901326106
crossref_primary_10_1002_eji_201444719
crossref_primary_10_1371_journal_pone_0197151
crossref_primary_10_1002_jcp_30643
crossref_primary_10_1007_s11302_024_09997_8
crossref_primary_10_1016_j_cyto_2019_03_005
crossref_primary_10_1038_nrc2250
crossref_primary_10_1016_j_semcancer_2023_09_002
crossref_primary_10_1002_wnan_1717
crossref_primary_10_1038_s42255_024_00976_2
crossref_primary_10_1089_hum_2021_050
crossref_primary_10_3390_cells12060862
crossref_primary_10_1517_14728222_2014_925883
crossref_primary_10_1007_s40291_023_00652_3
crossref_primary_10_1021_acsnano_3c04785
crossref_primary_10_1152_physiol_00034_2020
crossref_primary_10_1038_s41423_021_00727_3
crossref_primary_10_1016_j_apsb_2023_12_004
crossref_primary_10_3390_cells10112960
crossref_primary_10_4049_jimmunol_1101845
crossref_primary_10_1186_s12943_022_01672_z
crossref_primary_10_2174_1871520622666220411110528
crossref_primary_10_3389_fimmu_2022_975847
crossref_primary_10_18632_oncotarget_1397
crossref_primary_10_1007_s12015_019_09901_7
crossref_primary_10_1158_0008_5472_CAN_10_4246
crossref_primary_10_1016_j_jaci_2009_03_022
crossref_primary_10_1111_jphp_12720
crossref_primary_10_4049_jimmunol_1800725
crossref_primary_10_1016_j_semcancer_2019_12_011
crossref_primary_10_1158_0008_5472_CAN_19_3954
crossref_primary_10_1007_s11302_016_9549_9
crossref_primary_10_1016_j_coph_2020_08_003
crossref_primary_10_1126_sciimmunol_abq3015
crossref_primary_10_3390_ijms19041167
crossref_primary_10_1038_nrclinonc_2009_91
crossref_primary_10_1111_imm_12777
crossref_primary_10_3389_fimmu_2019_00925
crossref_primary_10_1016_j_addr_2018_06_010
crossref_primary_10_1080_19768354_2024_2336249
crossref_primary_10_1038_s41577_021_00537_8
crossref_primary_10_1002_wcms_1397
crossref_primary_10_1093_intimm_dxy038
crossref_primary_10_1111_cei_13157
crossref_primary_10_1016_j_bcp_2019_06_002
crossref_primary_10_1016_j_canlet_2018_03_010
crossref_primary_10_3390_cancers14164032
crossref_primary_10_3390_ijms24076688
crossref_primary_10_4049_jimmunol_0903647
crossref_primary_10_3390_cancers11040461
crossref_primary_10_1016_j_jcyt_2022_07_006
crossref_primary_10_1136_jitc_2021_004089
crossref_primary_10_3389_fimmu_2019_02294
crossref_primary_10_1158_1078_0432_CCR_19_2183
crossref_primary_10_1016_j_cellimm_2018_09_004
crossref_primary_10_1016_j_cellimm_2017_09_002
crossref_primary_10_1002_ctm2_37
crossref_primary_10_1016_j_bcmd_2007_06_025
crossref_primary_10_2139_ssrn_3925253
crossref_primary_10_4161_21624011_2014_958952
crossref_primary_10_1016_j_fbio_2021_101347
crossref_primary_10_1016_j_coph_2020_07_011
crossref_primary_10_1016_j_pharmthera_2021_107840
crossref_primary_10_1158_1078_0432_CCR_08_0229
crossref_primary_10_1177_10738584241236773
crossref_primary_10_3389_fimmu_2023_1111369
crossref_primary_10_1124_pharmrev_121_000528
crossref_primary_10_1158_2326_6066_CIR_14_0018
crossref_primary_10_1517_14728222_2014_915315
crossref_primary_10_1002_anie_202115545
crossref_primary_10_1007_s11864_022_01007_6
crossref_primary_10_3390_cancers14030644
crossref_primary_10_1016_j_it_2008_12_002
crossref_primary_10_3389_fimmu_2022_813218
crossref_primary_10_1002_eji_201141512
crossref_primary_10_1016_j_cmet_2018_09_020
crossref_primary_10_1007_s00262_008_0494_5
crossref_primary_10_1161_ATVBAHA_109_202572
crossref_primary_10_1016_j_crimmu_2022_04_001
crossref_primary_10_1126_science_abc3421
crossref_primary_10_2174_0929867325666181106114421
crossref_primary_10_1007_s00262_011_1155_7
crossref_primary_10_1038_onc_2014_113
crossref_primary_10_1016_j_ccell_2016_06_025
crossref_primary_10_1136_jitc_2022_004592
crossref_primary_10_1042_BJ20130950
crossref_primary_10_1016_j_ejmech_2022_114326
crossref_primary_10_3389_fimmu_2024_1362904
crossref_primary_10_1089_mab_2023_0016
crossref_primary_10_1158_0008_5472_CAN_11_1947
crossref_primary_10_3389_fddev_2022_838458
crossref_primary_10_1089_mab_2023_0018
crossref_primary_10_1007_s11302_014_9435_2
crossref_primary_10_4110_in_2019_19_e23
crossref_primary_10_1126_scitranslmed_abh1261
crossref_primary_10_1038_s41416_022_02013_z
crossref_primary_10_18632_oncotarget_4693
crossref_primary_10_1016_j_ejphar_2019_172538
crossref_primary_10_4049_jimmunol_0900475
crossref_primary_10_1134_S1990519X22040071
crossref_primary_10_3389_froh_2023_1180869
crossref_primary_10_1038_s41467_022_32066_w
crossref_primary_10_1111_j_1471_4159_2009_06538_x
crossref_primary_10_1016_j_bbamem_2010_09_020
crossref_primary_10_1016_j_humimm_2020_12_005
crossref_primary_10_1038_s41392_023_01332_8
crossref_primary_10_1593_neo_131748
crossref_primary_10_1586_1744666X_2014_915739
crossref_primary_10_3390_cancers11101472
crossref_primary_10_1002_mc_23161
crossref_primary_10_2174_1570180818666210604113849
crossref_primary_10_1007_s11302_013_9368_1
crossref_primary_10_1186_s40364_021_00264_1
crossref_primary_10_1186_s13046_022_02430_1
crossref_primary_10_1016_j_csbj_2015_03_008
crossref_primary_10_1172_JCI79380
crossref_primary_10_1186_s12967_016_1057_8
crossref_primary_10_1016_j_immuni_2019_01_010
crossref_primary_10_1016_j_cclet_2023_108136
crossref_primary_10_1158_2159_8290_CD_19_0980
crossref_primary_10_1182_blood_2011_08_374728
crossref_primary_10_1111_imcb_12025
crossref_primary_10_1093_jnci_djad091
crossref_primary_10_1155_2019_8014627
crossref_primary_10_1016_j_coph_2020_07_003
crossref_primary_10_7554_eLife_73699
crossref_primary_10_1016_j_coph_2020_07_005
crossref_primary_10_1056_NEJMra1205750
crossref_primary_10_1016_j_coph_2020_07_001
crossref_primary_10_1038_nrgastro_2017_101
crossref_primary_10_1016_j_coph_2020_07_002
crossref_primary_10_1016_j_humimm_2010_08_010
crossref_primary_10_3389_fonc_2021_627549
Cites_doi 10.1038/nm0904-887
10.1016/S1074-7613(00)80218-6
10.1182/blood.V90.4.1600
10.1074/jbc.272.41.25881
10.1152/ajprenal.2001.281.4.F597
10.1016/S0021-9258(18)69210-5
10.1126/science.274.5291.1363
10.1097/00008390-200310000-00008
10.4049/jimmunol.161.5.2187
10.1016/S0006-2952(02)01548-4
10.1016/S0898-6568(01)00214-5
10.1038/35074122
10.1038/369031a0
10.1126/science.1076514
10.4049/jimmunol.165.2.869
10.1084/jem.194.6.823
10.1073/pnas.1533209100
10.4049/jimmunol.167.11.6497
10.1042/bj3540123
10.1038/414916a
10.1038/sj.bjp.0703532
10.1161/01.RES.81.2.154
10.1073/pnas.96.6.2982
10.1016/S1074-7613(00)00026-1
10.4049/jimmunol.167.8.4286
10.1046/j.1365-2796.2001.00911.x
10.1002/ijc.1305
10.1038/nrc704
10.1038/nm1310
10.1146/annurev.pharmtox.41.1.775
10.4049/jimmunol.153.3.1202
10.1002/ijc.10325
10.1128/mcb.8.4.1857-1861.1988
10.1002/ijc.2910030408
10.1111/j.1600-0773.1995.tb00111.x
10.1016/S1044-579X(02)00133-5
10.1073/pnas.262669499
10.1146/annurev.immunol.22.012703.104731
10.1073/pnas.0501050102
10.1016/0165-6147(96)10002-X
10.1038/342559a0
ContentType Journal Article
Copyright Copyright 2006 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Aug 29, 2006
2006 by The National Academy of Sciences of the USA 2006
Copyright_xml – notice: Copyright 2006 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Aug 29, 2006
– notice: 2006 by The National Academy of Sciences of the USA 2006
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0605251103
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

Virology and AIDS Abstracts
MEDLINE
AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 13137
ExternalDocumentID 1151392911
10_1073_pnas_0605251103
16916931
103_35_13132
30050726
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, N.I.H., Intramural
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Intramural NIH HHS
– fundername: NCI NIH HHS
  grantid: R01 CA112561
– fundername: NCI NIH HHS
  grantid: 1 R01 CA112561 1-NIH
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DWIUU
DZ
F20
GJ
KM
PQEST
X
XFK
XHC
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c530t-e7098e9f41691ec04df61cab235ca2afde91978fa5c162c6ed7baa9cca5390a33
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 20:58:20 EDT 2024
Fri Oct 25 09:24:30 EDT 2024
Fri Oct 25 07:06:41 EDT 2024
Thu Oct 10 22:14:18 EDT 2024
Fri Dec 06 02:52:40 EST 2024
Sat Sep 28 07:42:01 EDT 2024
Thu May 30 08:49:40 EDT 2019
Wed Nov 11 00:29:52 EST 2020
Tue Dec 10 23:05:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-e7098e9f41691ec04df61cab235ca2afde91978fa5c162c6ed7baa9cca5390a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Communicated by William E. Paul, National Institutes of Health, Bethesda, MD, June 22, 2006
Author contributions: M.S. designed research; A.O., E.G., S.J.P., F.R., D.L., M.K.K.W., X.H., S.C., K.L., P.S., E.K.J., S. Apasov, and S. Abrams performed research; E.G., F.R., J.-F.C., E.K.J., and S. Abrams contributed new reagents/analytic tools; A.O., E.G., F.R., D.L., S. Abrams, and M.S. analyzed data; and A.O. and M.S. wrote the paper.
A.O., E.G., F.R., S. Apasov, and S. Abrams contributed equally to this work.
OpenAccessLink https://europepmc.org/articles/pmc1559765?pdf=render
PMID 16916931
PQID 201388982
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_103_35_13132
pubmed_primary_16916931
pnas_primary_103_35_13132_fulltext
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1559765
proquest_miscellaneous_20831071
proquest_miscellaneous_68812383
proquest_journals_201388982
crossref_primary_10_1073_pnas_0605251103
jstor_primary_30050726
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2006-08-29
PublicationDateYYYYMMDD 2006-08-29
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-29
  day: 29
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2006
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Acad Sciences
– name: National Academy of Sciences
References 11323675 - Nature. 2001 Apr 26;410(6832):1107-11
3380102 - Mol Cell Biol. 1988 Apr;8(4):1857-61
9269779 - Blood. 1997 Aug 15;90(4):1600-10
11734617 - Pharmacol Rev. 2001 Dec;53(4):527-52
10077623 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2982-7
8936347 - Trends Pharmacol Sci. 1996 Mar;17(3):108-13
15340404 - Nat Med. 2004 Sep;10(9):887-92
12566076 - Biochem Pharmacol. 2003 Feb 15;65(4):493-501
12384531 - Cancer Res. 2002 Oct 15;62(20):5727-35
10624567 - Drug Des Discov. 1999 Nov;16(3):217-26
10960067 - Br J Pharmacol. 2000 Sep;131(1):43-50
10981969 - Immunity. 2000 Aug;13(2):265-76
12461164 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15840-2
11902584 - Nat Rev Cancer. 2002 Jan;2(1):38-47
2448308 - J Biol Chem. 1988 Feb 15;263(5):2330-6
11171087 - Biochem J. 2001 Feb 15;354(Pt 1):123-30
11591751 - J Immunol. 2001 Oct 15;167(8):4286-92
11992407 - Int J Cancer. 2002 May 20;99(3):386-95
11391613 - Int J Cancer. 2001 Jul 1;93(1):1-5
10878361 - J Immunol. 2000 Jul 15;165(2):869-77
11553506 - Am J Physiol Renal Physiol. 2001 Oct;281(4):F597-612
12654259 - Semin Cancer Biol. 2003 Apr;13(2):159-67
7517974 - J Immunol. 1994 Aug 1;153(3):1202-15
9325320 - J Biol Chem. 1997 Oct 10;272(41):25881-9
16227990 - Nat Med. 2005 Nov;11(11):1230-7
11560997 - J Exp Med. 2001 Sep 17;194(6):823-32
11714817 - J Immunol. 2001 Dec 1;167(11):6497-502
2573841 - Nature. 1989 Nov 30;342(6249):559-61
14512791 - Melanoma Res. 2003 Oct;13(5):493-501
9725210 - J Immunol. 1998 Sep 1;161(5):2187-94
10894167 - Immunity. 2000 Jun;12(6):677-86
8164737 - Nature. 1994 May 5;369(6475):31-7
10049999 - Pharmacol Rev. 1999 Mar;51(1):83-133
11780065 - Nature. 2001 Dec 20-27;414(6866):916-20
9242176 - Circ Res. 1997 Aug;81(2):154-64
12826605 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8372-7
7746802 - Pharmacol Toxicol. 1995 Feb;76(2):93-101
8910274 - Science. 1996 Nov 22;274(5291):1363-6
15983379 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9583-8
9205063 - Cancer Res. 1997 Jul 1;57(13):2602-5
11902815 - J Intern Med. 2001 Dec;250(6):462-75
11747983 - Cell Signal. 2002 Jan;14(1):1-9
11264476 - Annu Rev Pharmacol Toxicol. 2001;41:775-87
12242449 - Science. 2002 Oct 25;298(5594):850-4
15032592 - Annu Rev Immunol. 2004;22:657-82
5682442 - Int J Cancer. 1968 Jul 15;3(4):467-82
e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
Blay J. (e_1_3_4_27_2) 1997; 57
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_44_2
e_1_3_4_20_2
Ji X.-D. (e_1_3_4_34_2) 1999; 16
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
Fredholm B. B. (e_1_3_4_23_2) 2001; 53
e_1_3_4_24_2
e_1_3_4_25_2
Fredholm B. B. (e_1_3_4_35_2) 1999; 51
e_1_3_4_46_2
e_1_3_4_28_2
e_1_3_4_29_2
Huang X. (e_1_3_4_31_2) 2002; 62
e_1_3_4_11_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_13_2
e_1_3_4_36_2
Prevost-Blondel A. (e_1_3_4_37_2) 1998; 161
e_1_3_4_14_2
Itoh T. (e_1_3_4_30_2) 1994; 153
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_4_2
  doi: 10.1038/nm0904-887
– ident: e_1_3_4_8_2
  doi: 10.1016/S1074-7613(00)80218-6
– ident: e_1_3_4_16_2
  doi: 10.1182/blood.V90.4.1600
– ident: e_1_3_4_24_2
  doi: 10.1074/jbc.272.41.25881
– ident: e_1_3_4_29_2
  doi: 10.1152/ajprenal.2001.281.4.F597
– ident: e_1_3_4_15_2
  doi: 10.1016/S0021-9258(18)69210-5
– ident: e_1_3_4_7_2
  doi: 10.1126/science.274.5291.1363
– ident: e_1_3_4_20_2
  doi: 10.1097/00008390-200310000-00008
– volume: 161
  start-page: 2187
  year: 1998
  ident: e_1_3_4_37_2
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.161.5.2187
  contributor:
    fullname: Prevost-Blondel A.
– ident: e_1_3_4_44_2
  doi: 10.1016/S0006-2952(02)01548-4
– ident: e_1_3_4_22_2
  doi: 10.1016/S0898-6568(01)00214-5
– ident: e_1_3_4_5_2
  doi: 10.1038/35074122
– ident: e_1_3_4_43_2
  doi: 10.1038/369031a0
– ident: e_1_3_4_11_2
  doi: 10.1126/science.1076514
– volume: 62
  start-page: 5727
  year: 2002
  ident: e_1_3_4_31_2
  publication-title: Cancer Res.
  contributor:
    fullname: Huang X.
– ident: e_1_3_4_32_2
  doi: 10.4049/jimmunol.165.2.869
– ident: e_1_3_4_10_2
  doi: 10.1084/jem.194.6.823
– ident: e_1_3_4_14_2
  doi: 10.1073/pnas.1533209100
– ident: e_1_3_4_39_2
  doi: 10.4049/jimmunol.167.11.6497
– volume: 51
  start-page: 83
  year: 1999
  ident: e_1_3_4_35_2
  publication-title: Pharmacol. Rev.
  contributor:
    fullname: Fredholm B. B.
– ident: e_1_3_4_25_2
  doi: 10.1042/bj3540123
– ident: e_1_3_4_18_2
  doi: 10.1038/414916a
– ident: e_1_3_4_26_2
  doi: 10.1038/sj.bjp.0703532
– ident: e_1_3_4_21_2
  doi: 10.1161/01.RES.81.2.154
– ident: e_1_3_4_13_2
  doi: 10.1073/pnas.96.6.2982
– ident: e_1_3_4_2_2
  doi: 10.1016/S1074-7613(00)00026-1
– volume: 16
  start-page: 217
  year: 1999
  ident: e_1_3_4_34_2
  publication-title: Drug Des. Discovery
  contributor:
    fullname: Ji X.-D.
– ident: e_1_3_4_38_2
  doi: 10.4049/jimmunol.167.8.4286
– ident: e_1_3_4_3_2
  doi: 10.1046/j.1365-2796.2001.00911.x
– ident: e_1_3_4_9_2
  doi: 10.1002/ijc.1305
– ident: e_1_3_4_19_2
  doi: 10.1038/nrc704
– ident: e_1_3_4_6_2
  doi: 10.1038/nm1310
– ident: e_1_3_4_33_2
  doi: 10.1146/annurev.pharmtox.41.1.775
– volume: 57
  start-page: 2602
  year: 1997
  ident: e_1_3_4_27_2
  publication-title: Cancer Res.
  contributor:
    fullname: Blay J.
– volume: 153
  start-page: 1202
  year: 1994
  ident: e_1_3_4_30_2
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.153.3.1202
  contributor:
    fullname: Itoh T.
– ident: e_1_3_4_28_2
  doi: 10.1002/ijc.10325
– volume: 53
  start-page: 527
  year: 2001
  ident: e_1_3_4_23_2
  publication-title: Pharmacol. Rev.
  contributor:
    fullname: Fredholm B. B.
– ident: e_1_3_4_41_2
  doi: 10.1128/mcb.8.4.1857-1861.1988
– ident: e_1_3_4_1_2
  doi: 10.1002/ijc.2910030408
– ident: e_1_3_4_40_2
  doi: 10.1111/j.1600-0773.1995.tb00111.x
– ident: e_1_3_4_45_2
  doi: 10.1016/S1044-579X(02)00133-5
– ident: e_1_3_4_12_2
  doi: 10.1073/pnas.262669499
– ident: e_1_3_4_17_2
  doi: 10.1146/annurev.immunol.22.012703.104731
– ident: e_1_3_4_42_2
  doi: 10.1073/pnas.0501050102
– ident: e_1_3_4_46_2
  doi: 10.1016/0165-6147(96)10002-X
– ident: e_1_3_4_36_2
  doi: 10.1038/342559a0
SSID ssj0009580
Score 2.5051286
Snippet The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13132
SubjectTerms Adenosine
Adenosine - metabolism
Adenosine A2 Receptor Antagonists
Animals
Biological Sciences
Cancer
CD8-Positive T-Lymphocytes - immunology
Cell growth
Cell- and Tissue-Based Therapy
Humans
Hypoxia
Immunity (Disease)
Immunotherapy, Adoptive
Inoculation
Interferon-gamma - biosynthesis
Lungs
Melanoma
Melanoma - immunology
Melanoma - metabolism
Melanoma - pathology
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Mutation - genetics
Purinergic P1 receptors
Receptor, Adenosine A2A - deficiency
Receptor, Adenosine A2A - metabolism
Rodents
T cell receptors
T lymphocytes
Tissues
Tumors
Title A2A Adenosine Receptor Protects Tumors from Antitumor T Cells
URI https://www.jstor.org/stable/30050726
http://www.pnas.org/content/103/35/13132.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16916931
https://www.proquest.com/docview/201388982
https://search.proquest.com/docview/20831071
https://search.proquest.com/docview/68812383
https://pubmed.ncbi.nlm.nih.gov/PMC1559765
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4Bp16qUkobaMGqeqCH7CZ-xT70sEIghETVA0jcIscPFambXZHd_19P4ux2q3LpMfI4ccYznhl75jPAl-gJUaWcyoPjPo-rpMiN1i4PKmgbuOG2wUDx7ru8eeC3j-JxD8RYC9Mn7dvmadL-mk_ap599buVybqdjntj0x90lHqVVUkz3YT-a3zFE3yDtqqHuhMbll1M-4vlUbLpsTTcpJF7dFq1ef4WO1IhGUu5YpSExEdFOI_2_PM-_Eyj_sEjXb-B1ciXJbBjyIez59i0cJmXtyEVClP56BN9mdEaMQ1zw6FSSuMj5Zfw2SSANHVmt54vnjmCtCTFYuIvP5J7gtn73Dh6ur-4vb_J0b0JuBStWua8KrbwOHP_O24K7IEtrGsqENdQE53UZg8dghC0ltdK7qjFGx7kUTBeGsWM4aBet_wCkoKFUgVKnVTRjvGgYD1whartrjOQug4uRb_VygMeo-2PtitXIvXrL7QyOe75u6BAov6iozCDrSbf9Wc1EXSKoZAafX2yrQ0qPyeB0nKI6aWBXUzyCVVrFV5xvWqPqIONM6xdrJMFb1qryZQqpov8TY_gM3g8Tvh1IEpwMqh1R2BAgbPduS5TmHr47Se_Jf_c8hVfDRhDWz3yEg9Xz2n-KrtGqOUPDJM56hfgNYzIM1g
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALokAhFKiFOJRDdhPbcewDh1VFtUC34rCVerMcP9RKbHbV7P5_PHnssoheOEYeJ854xjNjz3wG-BQ9ISqlk2lw3KdxlSxSo5RLgwzKBm64rTBQnF2J6TX_flPcHEAx1MK0Sfu2uhvVvxaj-u62za1cLex4yBMb_5yd41FaKYrxI3hcsFLlQ5C-xdqVXeUJjQswp3xA9CnZeFWbZpQJvLwt2r32Eh2hEI8k37NLXWoi4p1G-n_5nn-nUP5hky6ew7PemSSTbtBHcODrF3DUq2tDznpM6c8v4cuETohxiAwe3UoSlzm_it8mPUxDQ9abxfK-IVhtQgyW7uIzmRPc2G9ewfXF1_n5NO1vTkhtwbJ16stMSa8Cx7_zNuMuiNyairLCGmqC8yqP4WMwhc0FtcK7sjJGxdksmMoMY8dwWC9r_wZIRkMuA6VOyWjIeFYxHrhE3HZXGcFdAmcD3_SqA8jQ7cF2yTRyT--4ncBxy9ctHULlZyUVCSQt6a4_06zQOcJKJvDxwTYd-gSZBE6GKdK9Djaa4iGsVDK-4nTbGpUHGWdqv9wgCd6zVuYPUwgZPaAYxSfwupvw3UB6wUmg3BOFLQECd--3RHluAbx7-X373z1P4cl0PrvUl9-ufpzA025bCKtp3sHh-n7j30dHaV19aNXiN1ZND0U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXRIFCKFALcSiH7Ca249gHDqvCqjxa9dBKvVmOH6ISm42a3f-PJ4_dLqIXjpHHiTOesWfsmW8APkZLiErpZBoc92lcJYvUKOXSIIOygRtuK3QUz87F6RX_fl1c3yn11QXt2-pmUv9eTOqbX11sZbOw0zFObHpxdoJXaaUopo0L04fwqGBRyEZHfYO3K_vsExoXYU75iOpTsmlTm3aSCSzgFve-rpCOUIhJku_sTX14ImKeRvp_2Z9_h1He2Zfmz-DpYFCSWT_wfXjg6-ewP6hsS44HXOlPL-DzjM6IcYgOHk1LEpc638RvkwGqoSWr9WJ52xLMOCEG03fxmVwSPNxvX8LV_OvlyWk6VE9IbcGyVerLTEmvAse_8zbjLojcmoqywhpqgvMqjy5kMIXNBbXCu7IyRsUZLZjKDGMHsFcva_8aSEZDLgOlTsm4mfGsYjxwidjtrjKCuwSOR77ppgfJ0N3ldsk0ck9vuZ3AQcfXDR3C5WclFQkkHem2P9Os0DlCSybw4d42HYYgmQQOxynSgx62muJFrFQyvuJo0xoVCBlnar9cIwnWWivz-ymEjFZQ9OQTeNVP-HYgg-AkUO6IwoYAwbt3W6JMdyDegwy_-e-eR_D44stc__x2_uMQnvQnQ5hQ8xb2Vrdr_y7aSqvqfacVfwBD0xBY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A2A+adenosine+receptor+protects+tumors+from+antitumor+T+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Akio+Ohta&rft.au=Elieser+Gorelik&rft.au=Simon+J.+Prasad&rft.au=Franca+Ronchese&rft.date=2006-08-29&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=35&rft.spage=13132&rft_id=info:doi/10.1073%2Fpnas.0605251103&rft_id=info%3Apmid%2F16916931&rft.externalDBID=n%2Fa&rft.externalDocID=103_35_13132
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F35.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F35.cover.gif