Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil

► Effect of biochar on the leaching of nutrients in soils is not uniform. ► Sorption of nutrients on biochar varies by biochar and nutrient type. ► Nutrient sorption characteristics should be studied prior to biochar application. When applied to soils, it is unclear whether and how biochar can affec...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 89; no. 11; pp. 1467 - 1471
Main Authors Yao, Ying, Gao, Bin, Zhang, Ming, Inyang, Mandu, Zimmerman, Andrew R.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Effect of biochar on the leaching of nutrients in soils is not uniform. ► Sorption of nutrients on biochar varies by biochar and nutrient type. ► Nutrient sorption characteristics should be studied prior to biochar application. When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600°C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.
AbstractList When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600°C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.
When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600°C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600°C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.
► Effect of biochar on the leaching of nutrients in soils is not uniform. ► Sorption of nutrients on biochar varies by biochar and nutrient type. ► Nutrient sorption characteristics should be studied prior to biochar application. When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600°C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.
Author Zimmerman, Andrew R.
Gao, Bin
Yao, Ying
Inyang, Mandu
Zhang, Ming
Author_xml – sequence: 1
  givenname: Ying
  surname: Yao
  fullname: Yao, Ying
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 2
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
  email: bg55@ufl.edu
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 3
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 4
  givenname: Mandu
  surname: Inyang
  fullname: Inyang, Mandu
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 5
  givenname: Andrew R.
  surname: Zimmerman
  fullname: Zimmerman, Andrew R.
  organization: Department of Geological Sciences, University of Florida, Gainesville, FL 32611, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26429290$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22763330$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFvwBhgcSiE66fiVcIjcpDqsQCurYcx248SuxgZ5D673GYqUBs6MKydf3dc61zfIHOQgwWodcYagxYvNvXZrBTzPNgk60JYFKDqAHIE7TBbSO3mMj2DG0AGN8KTvk5ush5D1CauXyGzglpBKUUNmi4ds6apYqu6nw0g06VnmzoyyrFUOWY5sWXgw59NVptBh_uVjr4JenFXhV8isEfpqvfyDyszyoXlS89VS61-yLix-foqdNjti9O-yW6_Xj9ffd5e_P105fdh5ut4RSWbS9xw_uOGuc60YLute45B8zBOU4tWCE7TQRtJdOOONFQjIEJ4TCXnRSYXqK3R905xR8Hmxc1-WzsOOpg4yErLATlTBIi_49CixllDRMFfXlCD91kezUnP-l0rx6MLMCbE6Cz0aNLOhif_3CCEUnkyr0_cibFnJN1yvhFrw4XO_1YZqo1YrVXf0Ws1ogVCFUiLgryH4WHIY_pfXXsdToqfZfKC2-_kdVdAEEYsELsjoQtGf30NqlsvA3G9j6Vf6L66B8x5xfpQdBe
CODEN CMSHAF
CitedBy_id crossref_primary_10_1016_j_jclepro_2017_07_042
crossref_primary_10_1016_j_scitotenv_2017_01_115
crossref_primary_10_3390_agronomy3020275
crossref_primary_10_1016_j_biombioe_2018_07_004
crossref_primary_10_3390_agronomy9110747
crossref_primary_10_17221_276_2020_PSE
crossref_primary_10_3390_su14137622
crossref_primary_10_1007_s11356_018_1368_9
crossref_primary_10_1016_j_envpol_2023_123203
crossref_primary_10_2134_jeq2014_05_0213
crossref_primary_10_1016_j_biortech_2014_10_104
crossref_primary_10_1016_j_chemosphere_2019_125558
crossref_primary_10_2965_jwet_19_077
crossref_primary_10_2134_agronj2018_02_0074
crossref_primary_10_3390_agronomy10091241
crossref_primary_10_1007_s11270_018_3925_8
crossref_primary_10_1002_agg2_20236
crossref_primary_10_1016_j_scitotenv_2022_157262
crossref_primary_10_1007_s11104_013_1938_z
crossref_primary_10_1007_s11356_015_5520_5
crossref_primary_10_1590_1413_70542016404023016
crossref_primary_10_1007_s11368_019_02369_5
crossref_primary_10_1111_sum_12782
crossref_primary_10_2175_106143015X14362865227391
crossref_primary_10_1021_es403711y
crossref_primary_10_1016_j_jes_2017_08_004
crossref_primary_10_1007_s11356_019_04580_w
crossref_primary_10_1186_2251_6832_4_41
crossref_primary_10_1007_s11270_021_05366_y
crossref_primary_10_3390_agronomy10050705
crossref_primary_10_3390_agronomy9110758
crossref_primary_10_1016_j_chemosphere_2017_01_016
crossref_primary_10_1002_jeq2_20468
crossref_primary_10_1016_j_chemosphere_2024_142368
crossref_primary_10_1080_03650340_2020_1786537
crossref_primary_10_1016_j_agee_2014_03_008
crossref_primary_10_1016_j_renene_2021_05_007
crossref_primary_10_1016_j_ecoleng_2017_11_002
crossref_primary_10_3934_agrfood_2018_4_1020
crossref_primary_10_1016_j_ecoenv_2021_112819
crossref_primary_10_1080_02571862_2021_1962421
crossref_primary_10_1016_j_cej_2016_09_122
crossref_primary_10_1016_j_chemosphere_2013_02_050
crossref_primary_10_1016_j_scienta_2018_08_048
crossref_primary_10_4236_ojss_2015_52004
crossref_primary_10_1016_j_jenvman_2019_06_008
crossref_primary_10_1016_j_jiec_2017_08_026
crossref_primary_10_1016_j_scitotenv_2020_142430
crossref_primary_10_1016_j_scitotenv_2017_09_016
crossref_primary_10_1007_s11270_020_4393_5
crossref_primary_10_1017_S0014479715000204
crossref_primary_10_1080_00103624_2020_1869758
crossref_primary_10_7717_peerj_17513
crossref_primary_10_1016_j_apsoil_2023_105065
crossref_primary_10_1002_jeq2_20139
crossref_primary_10_1016_j_chemosphere_2015_05_062
crossref_primary_10_3390_w16101347
crossref_primary_10_1016_j_agwat_2018_07_043
crossref_primary_10_1007_s42773_020_00072_0
crossref_primary_10_1016_j_cscee_2024_100986
crossref_primary_10_4236_ojss_2021_116017
crossref_primary_10_1016_j_eti_2023_103435
crossref_primary_10_1002_ldr_5574
crossref_primary_10_1016_j_geoderma_2018_04_025
crossref_primary_10_1016_j_jenvman_2021_113325
crossref_primary_10_3390_w11081559
crossref_primary_10_1016_j_catena_2018_07_018
crossref_primary_10_1080_01904167_2023_2220740
crossref_primary_10_3390_su132111808
crossref_primary_10_5194_soil_1_475_2015
crossref_primary_10_1016_j_cej_2013_12_062
crossref_primary_10_1080_00103624_2013_867046
crossref_primary_10_3390_nitrogen3010007
crossref_primary_10_1016_j_scienta_2015_10_021
crossref_primary_10_1007_s11356_017_8551_2
crossref_primary_10_1016_j_jclepro_2019_04_282
crossref_primary_10_1007_s11356_020_10928_4
crossref_primary_10_1016_j_chemosphere_2021_130978
crossref_primary_10_1016_j_envpol_2017_10_048
crossref_primary_10_1016_j_watres_2022_118058
crossref_primary_10_1016_j_cej_2017_11_145
crossref_primary_10_1007_s42729_024_02020_4
crossref_primary_10_3390_plants11020153
crossref_primary_10_1016_j_scitotenv_2020_143657
crossref_primary_10_1016_j_chemosphere_2019_05_056
crossref_primary_10_1016_j_apsoil_2018_11_002
crossref_primary_10_1080_09593330_2017_1349839
crossref_primary_10_1080_00103624_2023_2289992
crossref_primary_10_1097_SS_0000000000000217
crossref_primary_10_1016_j_atmosenv_2017_09_050
crossref_primary_10_1186_s40538_016_0062_8
crossref_primary_10_1002_ldr_3383
crossref_primary_10_1016_j_geoderma_2018_03_004
crossref_primary_10_1016_j_cej_2019_06_007
crossref_primary_10_1002_agg2_20430
crossref_primary_10_1038_s41598_020_66300_6
crossref_primary_10_1007_s44378_025_00041_8
crossref_primary_10_1016_j_cej_2013_04_077
crossref_primary_10_1007_s13593_016_0372_z
crossref_primary_10_4236_ajps_2017_89135
crossref_primary_10_1016_j_jece_2022_107744
crossref_primary_10_1016_j_chemosphere_2019_125471
crossref_primary_10_1016_j_chemosphere_2020_128084
crossref_primary_10_1016_j_scitotenv_2017_02_110
crossref_primary_10_1016_j_watres_2020_116303
crossref_primary_10_2134_jeq2017_06_0246
crossref_primary_10_5004_dwt_2017_21263
crossref_primary_10_1080_00380768_2022_2129443
crossref_primary_10_1155_2021_6699873
crossref_primary_10_56109_aup_sna_v12i2_106
crossref_primary_10_2166_wst_2019_310
crossref_primary_10_3390_molecules27217191
crossref_primary_10_1080_00103624_2018_1499767
crossref_primary_10_1007_s12665_017_6703_9
crossref_primary_10_1080_00103624_2020_1822375
crossref_primary_10_1007_s10532_025_10116_6
crossref_primary_10_1007_s11356_016_7236_6
crossref_primary_10_2134_age2019_03_0014
crossref_primary_10_1088_1755_1315_424_1_012015
crossref_primary_10_1007_s11270_014_2228_y
crossref_primary_10_1016_j_jenvman_2017_12_041
crossref_primary_10_3390_su11247136
crossref_primary_10_3390_su15107934
crossref_primary_10_1016_j_biortech_2013_03_057
crossref_primary_10_1016_j_catena_2021_105284
crossref_primary_10_1080_01448765_2015_1093545
crossref_primary_10_1016_j_colsurfa_2025_136313
crossref_primary_10_1016_j_envpol_2018_04_050
crossref_primary_10_1016_j_scitotenv_2021_150428
crossref_primary_10_3390_agronomy11040617
crossref_primary_10_1080_00288233_2014_983614
crossref_primary_10_1071_SR18022
crossref_primary_10_1016_j_geoderma_2017_01_011
crossref_primary_10_1016_j_agee_2013_10_009
crossref_primary_10_3390_agronomy10070979
crossref_primary_10_3390_separations8030032
crossref_primary_10_1016_j_agee_2014_02_030
crossref_primary_10_1016_j_anres_2016_01_003
crossref_primary_10_1007_s12517_019_4694_4
crossref_primary_10_1080_09542299_2015_1087162
crossref_primary_10_1016_j_jclepro_2021_125943
crossref_primary_10_2478_johr_2022_0018
crossref_primary_10_1016_j_biortech_2021_125231
crossref_primary_10_5004_dwt_2023_30180
crossref_primary_10_1016_j_agee_2016_05_004
crossref_primary_10_1002_jeq2_20331
crossref_primary_10_1016_j_jece_2024_114735
crossref_primary_10_1016_j_agee_2020_107109
crossref_primary_10_1016_j_still_2018_06_006
crossref_primary_10_1007_s11368_021_03077_9
crossref_primary_10_1007_s42773_019_00005_6
crossref_primary_10_17660_ActaHortic_2017_1164_32
crossref_primary_10_1007_s10098_024_02970_4
crossref_primary_10_1002_jeq2_20447
crossref_primary_10_1007_s11368_015_1347_4
crossref_primary_10_1016_j_biortech_2017_08_122
crossref_primary_10_1016_j_envpol_2023_123132
crossref_primary_10_1016_S1002_0160_15_30001_1
crossref_primary_10_3389_fenrg_2021_710766
crossref_primary_10_1016_j_chemosphere_2015_04_062
crossref_primary_10_1080_09064710_2017_1302504
crossref_primary_10_3390_w12072012
crossref_primary_10_1016_j_biortech_2022_126869
crossref_primary_10_3390_soilsystems8030069
crossref_primary_10_1002_jpln_201400109
crossref_primary_10_1002_agg2_20408
crossref_primary_10_1016_j_scitotenv_2019_136337
crossref_primary_10_1007_s12205_015_0449_2
crossref_primary_10_1016_j_jssas_2023_06_002
crossref_primary_10_3389_fpls_2017_02051
crossref_primary_10_4028_www_scientific_net_AMR_726_731_1679
crossref_primary_10_1016_j_hazadv_2022_100226
crossref_primary_10_1016_j_scitotenv_2021_149580
crossref_primary_10_1007_s11270_021_05103_5
crossref_primary_10_3390_app14178028
crossref_primary_10_1088_1757_899X_823_1_012043
crossref_primary_10_1016_j_soilbio_2015_01_006
crossref_primary_10_3390_plants13020166
crossref_primary_10_1007_s11368_015_1339_4
crossref_primary_10_1007_s11368_020_02753_6
crossref_primary_10_1016_j_biortech_2018_10_064
crossref_primary_10_1080_00103624_2021_1956523
crossref_primary_10_1016_j_agee_2021_107454
crossref_primary_10_1016_j_jhazmat_2016_04_046
crossref_primary_10_1016_j_psep_2016_03_001
crossref_primary_10_1080_09542299_2018_1544035
crossref_primary_10_1016_S1002_0160_15_30060_6
crossref_primary_10_1021_acs_est_7b06487
crossref_primary_10_1080_03650340_2020_1802012
crossref_primary_10_1080_26395940_2024_2387680
crossref_primary_10_3390_agronomy13092440
crossref_primary_10_1007_s11356_023_30097_4
crossref_primary_10_1111_gcbb_12314
crossref_primary_10_1016_j_cej_2014_03_105
crossref_primary_10_1080_01904167_2021_1881542
crossref_primary_10_1007_s42773_019_00002_9
crossref_primary_10_1016_j_jenvman_2015_01_021
crossref_primary_10_1002_slct_202200504
crossref_primary_10_1016_j_biortech_2013_11_021
crossref_primary_10_1039_D0EW00027B
crossref_primary_10_1007_s11356_018_2198_5
crossref_primary_10_15446_agron_colomb_v35n1_58671
crossref_primary_10_1039_C5RA22142K
crossref_primary_10_1007_s11676_017_0516_2
crossref_primary_10_24425_aep_2024_151687
crossref_primary_10_1016_j_jenvman_2018_10_117
crossref_primary_10_1002_jpln_201500497
crossref_primary_10_1590_1678_4499_20210313
crossref_primary_10_1016_j_envpol_2022_118788
crossref_primary_10_1021_acsomega_1c02998
crossref_primary_10_1111_gcbb_12789
crossref_primary_10_1007_s13399_023_03927_1
crossref_primary_10_1016_j_chemosphere_2019_03_170
crossref_primary_10_1007_s42729_023_01223_5
crossref_primary_10_1016_j_jclepro_2017_08_122
crossref_primary_10_1016_S1002_0160_17_60375_8
crossref_primary_10_1002_ael2_20097
crossref_primary_10_3390_agronomy4010052
crossref_primary_10_1007_s11270_018_3896_9
crossref_primary_10_1166_sam_2023_4479
crossref_primary_10_1016_j_reffit_2015_12_001
crossref_primary_10_3390_cleantechnol4030042
crossref_primary_10_3390_toxics10110703
crossref_primary_10_1016_j_ejbas_2017_06_006
crossref_primary_10_1039_C7RA13151H
crossref_primary_10_1007_s10653_022_01462_y
crossref_primary_10_1016_j_apsoil_2024_105749
crossref_primary_10_3390_ma14092466
crossref_primary_10_1016_j_jclepro_2024_143772
crossref_primary_10_1016_j_ufug_2023_128082
crossref_primary_10_1002_jpln_201300281
crossref_primary_10_3390_ma13102270
crossref_primary_10_1016_j_scitotenv_2020_137399
crossref_primary_10_2134_jeq2015_06_0298
crossref_primary_10_1007_s40093_017_0185_3
crossref_primary_10_1080_09593330_2019_1612953
crossref_primary_10_3390_ma13040816
crossref_primary_10_1007_s42773_023_00272_4
crossref_primary_10_1016_j_cej_2022_141003
crossref_primary_10_1017_S0014479722000254
crossref_primary_10_1002_jpln_201400552
crossref_primary_10_1007_s00374_019_01369_4
crossref_primary_10_1016_j_rsci_2021_05_004
crossref_primary_10_1016_j_scitotenv_2021_150513
crossref_primary_10_1016_j_watres_2018_03_021
crossref_primary_10_1016_j_jclepro_2024_141345
crossref_primary_10_1016_j_scitotenv_2016_09_137
crossref_primary_10_1039_D4EW00390J
crossref_primary_10_2139_ssrn_4125466
crossref_primary_10_1016_j_scitotenv_2020_143817
crossref_primary_10_3390_su13031212
crossref_primary_10_1021_acsami_8b15049
crossref_primary_10_3390_agriculture14122165
crossref_primary_10_1007_s13399_021_02257_4
crossref_primary_10_1016_j_jhazmat_2020_122507
crossref_primary_10_1080_09593330_2016_1170888
crossref_primary_10_1371_journal_pone_0191296
crossref_primary_10_1007_s11270_013_1820_x
crossref_primary_10_1016_j_chemosphere_2014_05_039
crossref_primary_10_1007_s11356_015_5451_1
crossref_primary_10_1016_j_jaap_2018_04_010
crossref_primary_10_1111_sum_12953
crossref_primary_10_3390_agronomy9090531
crossref_primary_10_1007_s13399_020_00836_5
crossref_primary_10_3390_agriculture5041076
crossref_primary_10_1080_09593330_2020_1804466
crossref_primary_10_5194_soil_7_811_2021
crossref_primary_10_1016_j_geoderma_2018_11_006
crossref_primary_10_1016_j_envpol_2017_10_037
crossref_primary_10_4236_ajps_2019_1012156
crossref_primary_10_1016_j_fuel_2017_01_052
crossref_primary_10_3390_su14137824
crossref_primary_10_1007_s00374_015_1011_6
crossref_primary_10_1021_acs_est_4c02015
crossref_primary_10_3390_applmicrobiol2030051
crossref_primary_10_1007_s13399_021_01788_0
crossref_primary_10_1007_s10098_024_02863_6
crossref_primary_10_3390_agronomy11102081
crossref_primary_10_3390_molecules26185584
crossref_primary_10_3390_agriculture11111132
crossref_primary_10_3390_separations9110337
crossref_primary_10_3390_agronomy11102082
crossref_primary_10_1007_s11356_017_0668_9
crossref_primary_10_1016_j_scitotenv_2022_159806
crossref_primary_10_3390_earth5040055
crossref_primary_10_3390_horticulturae6030037
crossref_primary_10_1007_s11356_022_20088_2
crossref_primary_10_1016_j_biombioe_2019_04_004
crossref_primary_10_1016_j_scitotenv_2021_148756
crossref_primary_10_1016_j_jenvman_2020_111133
crossref_primary_10_1016_j_ecoenv_2017_06_063
crossref_primary_10_3390_su15042893
crossref_primary_10_1016_j_watres_2016_02_038
crossref_primary_10_3390_su15064861
crossref_primary_10_3390_w15101902
crossref_primary_10_1016_j_agwat_2021_107129
crossref_primary_10_1007_s00374_018_01338_3
crossref_primary_10_1007_s11368_018_2197_7
crossref_primary_10_1007_s41204_020_00090_0
crossref_primary_10_1016_j_cis_2016_12_002
crossref_primary_10_1080_00103624_2021_1900225
crossref_primary_10_1016_j_scitotenv_2018_03_140
crossref_primary_10_1080_19443994_2013_822337
crossref_primary_10_1007_s11356_019_06942_w
crossref_primary_10_1021_acs_est_7b00647
crossref_primary_10_1002_slct_202103079
crossref_primary_10_1007_s11356_020_12180_2
crossref_primary_10_1016_j_jclepro_2020_125221
crossref_primary_10_1016_j_scitotenv_2021_146346
crossref_primary_10_1007_s13399_021_01337_9
crossref_primary_10_1007_s42773_020_00049_z
crossref_primary_10_17221_393_2021_PSE
crossref_primary_10_1016_j_scitotenv_2018_10_060
crossref_primary_10_1021_acsestwater_2c00301
crossref_primary_10_4081_ija_2020_1581
crossref_primary_10_1002_pc_24126
crossref_primary_10_1016_j_jwpe_2022_102908
crossref_primary_10_3390_agronomy10121950
crossref_primary_10_1007_s11157_020_09523_3
crossref_primary_10_1007_s40098_024_00875_z
crossref_primary_10_1061__ASCE_EE_1943_7870_0001946
crossref_primary_10_3390_su10124692
crossref_primary_10_1016_j_chemosphere_2020_129428
crossref_primary_10_1016_j_geoderma_2019_06_006
crossref_primary_10_3390_w16162348
crossref_primary_10_1016_j_rechem_2021_100119
crossref_primary_10_1002_agj2_20101
crossref_primary_10_1016_j_indcrop_2017_10_053
crossref_primary_10_3390_app10030790
crossref_primary_10_47115_bsagriculture_1483357
crossref_primary_10_1007_s10533_021_00755_1
crossref_primary_10_1007_s42729_021_00440_0
crossref_primary_10_1038_s41598_018_35534_w
crossref_primary_10_1080_00380768_2015_1136553
crossref_primary_10_1080_24749508_2022_2163608
crossref_primary_10_3389_fenvs_2022_914766
crossref_primary_10_2134_jeq2015_10_0529
crossref_primary_10_1016_j_scitotenv_2022_158620
crossref_primary_10_1061_JSWBAY_0000999
crossref_primary_10_1021_acssuschemeng_8b04382
crossref_primary_10_1016_j_jclepro_2019_118638
crossref_primary_10_1016_j_chemosphere_2018_02_058
crossref_primary_10_3389_fmicb_2017_00589
crossref_primary_10_1016_j_scitotenv_2016_01_091
crossref_primary_10_3390_agriculture12122157
crossref_primary_10_1016_j_biteb_2022_101225
crossref_primary_10_1016_j_scitotenv_2022_153576
crossref_primary_10_1007_s11356_017_0941_y
crossref_primary_10_1016_j_geoderma_2022_116236
crossref_primary_10_1016_j_apsoil_2024_105801
crossref_primary_10_7745_KJSSF_2015_48_5_413
crossref_primary_10_1016_j_geoderma_2018_08_025
crossref_primary_10_1016_j_scitotenv_2016_12_169
crossref_primary_10_3390_su14127266
crossref_primary_10_3390_plants14030455
crossref_primary_10_1016_j_jece_2023_111638
crossref_primary_10_1080_01904167_2020_1792491
crossref_primary_10_1002_tqem_70032
crossref_primary_10_1016_j_chemosphere_2020_126539
crossref_primary_10_1016_j_biortech_2013_04_117
crossref_primary_10_1016_j_catena_2021_105754
crossref_primary_10_1007_s42773_023_00252_8
crossref_primary_10_1016_j_ecoleng_2020_106054
crossref_primary_10_1016_j_geoderma_2024_116917
crossref_primary_10_1080_21683565_2015_1118001
crossref_primary_10_1016_j_cej_2013_01_054
crossref_primary_10_1016_j_scitotenv_2024_174965
crossref_primary_10_1039_C9EN00890J
crossref_primary_10_1016_j_chemosphere_2016_11_044
crossref_primary_10_3389_fenvs_2023_1114728
crossref_primary_10_1016_j_jclepro_2021_126645
crossref_primary_10_1016_j_jenvman_2018_02_088
crossref_primary_10_1016_j_resenv_2021_100034
crossref_primary_10_1016_j_colsurfa_2020_125736
crossref_primary_10_1016_j_ufug_2018_09_001
crossref_primary_10_1016_j_scitotenv_2022_161099
crossref_primary_10_1007_s10668_024_04760_w
crossref_primary_10_24266_0738_2898_36_4_126
crossref_primary_10_1016_j_envpol_2020_114223
crossref_primary_10_1515_opag_2020_0021
crossref_primary_10_1007_s42729_024_02029_9
crossref_primary_10_1016_j_chemosphere_2021_131176
crossref_primary_10_1007_s11356_018_1383_x
crossref_primary_10_1016_j_scitotenv_2020_139946
crossref_primary_10_3390_agronomy12092089
crossref_primary_10_1371_journal_pone_0189924
crossref_primary_10_1016_j_jcis_2021_08_078
crossref_primary_10_1080_03650340_2020_1869215
crossref_primary_10_3390_agronomy11091794
crossref_primary_10_3390_en15062110
crossref_primary_10_1016_j_chemosphere_2020_126403
crossref_primary_10_1016_j_jhazmat_2018_08_009
crossref_primary_10_1016_j_jtice_2016_03_021
crossref_primary_10_18178_joaat_6_2_83_90
crossref_primary_10_3390_su12062458
crossref_primary_10_1016_j_jclepro_2020_124052
crossref_primary_10_1038_s41598_017_03282_y
crossref_primary_10_1080_02757540_2019_1702977
crossref_primary_10_1080_03650340_2017_1384545
crossref_primary_10_3390_molecules27185811
crossref_primary_10_1007_s11802_020_4150_9
crossref_primary_10_1016_j_geoderma_2018_09_043
crossref_primary_10_1016_j_catena_2021_105534
crossref_primary_10_1007_s42768_022_00114_2
crossref_primary_10_1016_j_envpol_2020_115684
crossref_primary_10_1021_es4012977
crossref_primary_10_1016_j_geoderma_2018_08_019
crossref_primary_10_1007_s12517_022_09539_9
crossref_primary_10_1016_j_jece_2014_11_012
crossref_primary_10_3390_en16010410
crossref_primary_10_3390_w14213563
crossref_primary_10_1051_matecconf_201712005004
crossref_primary_10_3390_plants13131736
crossref_primary_10_1016_j_foreco_2017_04_010
crossref_primary_10_1016_j_jcis_2020_06_054
crossref_primary_10_1007_s00374_020_01534_0
crossref_primary_10_3390_plants13081143
crossref_primary_10_1007_s10668_020_00970_0
crossref_primary_10_1371_journal_pone_0252262
crossref_primary_10_1007_s42773_022_00138_1
crossref_primary_10_1016_j_scitotenv_2018_07_224
crossref_primary_10_17660_ActaHortic_2017_1168_24
crossref_primary_10_55544_jrasb_2_4_2
crossref_primary_10_1016_j_jhazmat_2018_01_011
crossref_primary_10_1016_j_scitotenv_2022_156886
crossref_primary_10_1111_gcbb_12363
crossref_primary_10_3390_su11010277
crossref_primary_10_1017_S0014479719000218
crossref_primary_10_1016_j_jece_2024_115291
crossref_primary_10_3390_separations10100533
crossref_primary_10_1016_j_bej_2024_109560
crossref_primary_10_3390_c9010034
crossref_primary_10_1016_j_envres_2023_116258
crossref_primary_10_1080_10643389_2020_1716654
crossref_primary_10_3390_agronomy12061412
crossref_primary_10_1016_j_agee_2023_108744
crossref_primary_10_1007_s11368_020_02713_0
crossref_primary_10_3390_agronomy14123050
crossref_primary_10_3390_su13105612
crossref_primary_10_1038_srep11080
crossref_primary_10_1186_s40643_023_00670_3
crossref_primary_10_4081_ija_2016_780
crossref_primary_10_1016_j_scitotenv_2018_01_037
crossref_primary_10_1016_j_scitotenv_2018_12_400
crossref_primary_10_1016_j_jenvman_2017_01_061
crossref_primary_10_1007_s42773_024_00360_z
crossref_primary_10_1016_j_jece_2020_104073
crossref_primary_10_3390_agriculture11060489
crossref_primary_10_1016_j_chemosphere_2014_07_084
crossref_primary_10_1016_j_indcrop_2022_115837
crossref_primary_10_1371_journal_pone_0171214
crossref_primary_10_1177_0263617418768944
crossref_primary_10_1016_j_scitotenv_2020_137852
crossref_primary_10_1016_j_chemosphere_2015_11_063
crossref_primary_10_1021_ez400165g
crossref_primary_10_3390_app10217810
crossref_primary_10_3390_w15152701
crossref_primary_10_1007_s11270_014_1900_6
crossref_primary_10_1080_00103624_2019_1632343
crossref_primary_10_4081_ija_2019_1107
crossref_primary_10_1016_j_chemosphere_2024_143932
crossref_primary_10_1016_j_still_2025_106556
crossref_primary_10_1080_00387010_2017_1287091
crossref_primary_10_1016_j_scitotenv_2018_01_022
crossref_primary_10_1016_j_scitotenv_2021_152171
crossref_primary_10_1016_j_biortech_2019_121600
crossref_primary_10_1016_j_chemosphere_2019_03_085
crossref_primary_10_1016_j_chemosphere_2020_128991
crossref_primary_10_1016_j_jclepro_2018_05_246
crossref_primary_10_1016_j_cej_2019_04_097
crossref_primary_10_1016_j_still_2016_07_009
crossref_primary_10_5004_dwt_2020_25640
crossref_primary_10_1007_s12517_020_05532_2
crossref_primary_10_1016_j_agee_2016_12_019
crossref_primary_10_2134_jeq2017_11_0432
crossref_primary_10_1186_s12870_023_04397_3
crossref_primary_10_1111_gcbb_12582
crossref_primary_10_3389_fenvs_2024_1381781
crossref_primary_10_1080_10643389_2020_1713030
crossref_primary_10_1002_ldr_2829
crossref_primary_10_47836_pjtas_47_3_01
crossref_primary_10_1016_j_jclepro_2017_04_050
crossref_primary_10_1080_09542299_2016_1165080
crossref_primary_10_3390_su10051574
crossref_primary_10_1016_j_scitotenv_2021_146983
crossref_primary_10_1016_j_jwpe_2021_102355
crossref_primary_10_1016_j_watres_2014_10_009
crossref_primary_10_1080_00103624_2018_1563101
crossref_primary_10_1007_s00374_018_1273_x
crossref_primary_10_1111_rec_12573
crossref_primary_10_1016_j_jaap_2025_107020
crossref_primary_10_3390_app14062280
crossref_primary_10_1016_j_scitotenv_2023_165861
crossref_primary_10_1016_j_chemosphere_2017_06_021
crossref_primary_10_1016_j_scitotenv_2019_134828
crossref_primary_10_1016_j_jenvman_2019_109730
crossref_primary_10_3389_fenvs_2022_942263
crossref_primary_10_1007_s10343_022_00730_2
crossref_primary_10_1016_S1002_0160_20_60094_7
crossref_primary_10_1139_cjss_2022_0086
crossref_primary_10_3390_agronomy10050685
crossref_primary_10_3390_agronomy9020058
crossref_primary_10_3389_fenvs_2022_1053843
crossref_primary_10_1007_s42729_021_00593_y
crossref_primary_10_1016_j_wasman_2019_02_049
crossref_primary_10_1016_j_ecoleng_2018_10_005
crossref_primary_10_1007_s12517_023_11320_5
crossref_primary_10_1016_j_scitotenv_2023_165968
crossref_primary_10_1007_s11270_021_05044_z
crossref_primary_10_19047_0136_1694_2022_113_110_137
crossref_primary_10_3390_su151813366
crossref_primary_10_1016_j_ecoleng_2022_106844
crossref_primary_10_1080_10643389_2017_1418580
crossref_primary_10_1016_j_jenvman_2014_09_033
crossref_primary_10_1016_j_jece_2023_109874
crossref_primary_10_1016_j_scitotenv_2019_03_061
crossref_primary_10_1080_26395940_2023_2287237
crossref_primary_10_1007_s11356_016_7829_0
crossref_primary_10_1016_j_jenvman_2019_05_072
crossref_primary_10_7745_KJSSF_2020_53_4_528
crossref_primary_10_13080_z_a_2022_109_002
crossref_primary_10_2134_jeq2015_04_0196
crossref_primary_10_1016_S1002_0160_18_60039_6
crossref_primary_10_1016_j_envres_2022_113341
crossref_primary_10_1016_j_geoderma_2016_06_018
crossref_primary_10_1016_j_jenvman_2016_11_030
crossref_primary_10_4028_www_scientific_net_AMR_750_752_1389
crossref_primary_10_1007_s11368_020_02584_5
crossref_primary_10_1016_j_cej_2012_08_052
crossref_primary_10_1061_JOEEDU_EEENG_7487
crossref_primary_10_1007_s11356_017_9049_7
crossref_primary_10_5604_01_3001_0010_4361
crossref_primary_10_1016_j_biortech_2020_123428
crossref_primary_10_1080_26395940_2019_1710259
crossref_primary_10_1016_j_ecoenv_2018_09_112
crossref_primary_10_1111_ejss_12082
crossref_primary_10_3390_ma13153391
crossref_primary_10_1007_s13580_024_00667_7
crossref_primary_10_1080_26395940_2024_2322491
crossref_primary_10_1186_s40068_024_00379_y
crossref_primary_10_1371_journal_pone_0113888
crossref_primary_10_1016_j_chemosphere_2018_05_175
crossref_primary_10_2166_wst_2017_568
crossref_primary_10_1016_j_geoderma_2015_12_016
crossref_primary_10_1002_jeq2_20504
crossref_primary_10_3389_fpls_2023_1172425
crossref_primary_10_1016_j_biortech_2022_127467
crossref_primary_10_1007_s12517_019_4538_2
crossref_primary_10_1016_j_jenvman_2023_118191
crossref_primary_10_1111_plb_13088
crossref_primary_10_3390_agriculture13101954
crossref_primary_10_1016_j_chemosphere_2019_124872
crossref_primary_10_1080_09593330_2021_1996468
crossref_primary_10_1139_cjss_2020_0113
crossref_primary_10_1111_sum_70008
crossref_primary_10_1080_03601234_2020_1807264
crossref_primary_10_1016_j_jenvman_2019_109746
crossref_primary_10_4081_ija_2018_1136
crossref_primary_10_1007_s42452_020_03730_x
crossref_primary_10_1016_j_jwpe_2024_105091
crossref_primary_10_1016_j_chemosphere_2021_130362
crossref_primary_10_2134_jeq2015_02_0068
crossref_primary_10_1016_j_geoderma_2015_12_020
crossref_primary_10_3389_feart_2022_855599
crossref_primary_10_1016_j_cej_2018_07_012
crossref_primary_10_1016_j_jtice_2022_104540
crossref_primary_10_1080_00103624_2020_1862163
crossref_primary_10_1016_j_cej_2019_03_179
crossref_primary_10_1016_j_psep_2024_04_126
crossref_primary_10_3390_su13137230
crossref_primary_10_1016_j_biortech_2022_128226
crossref_primary_10_15377_2409_983X_2017_04_3
crossref_primary_10_1016_j_ecoleng_2018_12_028
crossref_primary_10_1016_j_jenvman_2018_09_006
crossref_primary_10_1016_j_scitotenv_2016_10_182
crossref_primary_10_2134_jeq2016_04_0140
crossref_primary_10_1080_00103624_2017_1414830
crossref_primary_10_1016_j_rser_2014_07_107
crossref_primary_10_1007_s11368_016_1411_8
crossref_primary_10_1016_S1002_0160_15_30045_X
crossref_primary_10_1007_s10333_020_00815_6
crossref_primary_10_1016_j_chemosphere_2017_02_123
crossref_primary_10_1080_09542299_2016_1142833
crossref_primary_10_1515_psr_2021_0137
crossref_primary_10_1007_s42452_024_06354_7
crossref_primary_10_1007_s42729_023_01370_9
crossref_primary_10_1007_s11368_014_0984_3
crossref_primary_10_1007_s42773_020_00065_z
crossref_primary_10_1021_acssuschemeng_0c06108
crossref_primary_10_1016_j_chemosphere_2025_144067
crossref_primary_10_3389_fsoil_2022_1023743
crossref_primary_10_1016_j_jtice_2025_106015
crossref_primary_10_1002_jpln_201900171
crossref_primary_10_1016_j_apsoil_2023_104926
crossref_primary_10_1016_j_geoderma_2019_114091
crossref_primary_10_1080_10643389_2016_1239975
crossref_primary_10_1016_j_jenvman_2021_114368
crossref_primary_10_1016_j_envint_2015_10_018
crossref_primary_10_1016_j_jenvman_2020_111632
crossref_primary_10_1016_S1002_0160_14_60057_6
crossref_primary_10_3390_ijerph20010326
crossref_primary_10_1080_1065657X_2016_1202795
crossref_primary_10_3390_soilsystems3010016
crossref_primary_10_1039_C6RA15532D
crossref_primary_10_1016_S1002_0160_21_60025_5
crossref_primary_10_1039_C8EW00447A
crossref_primary_10_22207_JPAM_18_1_58
crossref_primary_10_1016_j_scitotenv_2016_02_129
crossref_primary_10_1007_s11356_019_07053_2
crossref_primary_10_1080_00103624_2023_2211623
crossref_primary_10_1007_s11356_021_12722_2
crossref_primary_10_1016_j_foreco_2016_06_030
crossref_primary_10_1021_acsami_5b03131
crossref_primary_10_1016_j_ecoleng_2015_04_082
crossref_primary_10_1016_j_jclepro_2017_11_224
crossref_primary_10_1186_s40538_020_00205_4
crossref_primary_10_1016_j_chemosphere_2017_07_097
crossref_primary_10_1016_j_scitotenv_2016_06_096
crossref_primary_10_1080_01904167_2020_1806307
crossref_primary_10_1080_15324982_2022_2104183
crossref_primary_10_1016_j_scitotenv_2016_10_230
crossref_primary_10_3390_su15054081
crossref_primary_10_1007_s44279_024_00033_2
crossref_primary_10_1007_s42729_021_00514_z
crossref_primary_10_1080_03650340_2016_1151976
crossref_primary_10_1007_s12517_020_05586_2
crossref_primary_10_1007_s10653_025_02446_4
crossref_primary_10_1016_j_scitotenv_2022_161203
crossref_primary_10_3390_agronomy10030444
crossref_primary_10_1016_j_scitotenv_2018_11_316
crossref_primary_10_1016_j_soilbio_2019_04_018
crossref_primary_10_1016_j_cej_2019_01_036
crossref_primary_10_1016_j_scitotenv_2020_140065
crossref_primary_10_1016_S1002_0160_20_60014_5
crossref_primary_10_1016_j_geoderma_2016_05_006
crossref_primary_10_1371_journal_pone_0098523
crossref_primary_10_1016_S2095_3119_13_60705_4
crossref_primary_10_1111_ejss_13088
crossref_primary_10_3390_su13137063
crossref_primary_10_1007_s13399_020_01013_4
crossref_primary_10_1016_j_biombioe_2018_08_019
crossref_primary_10_1111_wej_12684
crossref_primary_10_1016_j_jece_2023_110003
crossref_primary_10_1016_j_geoderma_2021_115572
crossref_primary_10_1007_s10661_020_08561_2
crossref_primary_10_2166_h2oj_2019_011
crossref_primary_10_1007_s42773_022_00135_4
crossref_primary_10_1007_s10653_019_00474_5
crossref_primary_10_4236_msce_2024_121005
crossref_primary_10_3389_fenvs_2021_609621
crossref_primary_10_1016_j_chemosphere_2023_139417
crossref_primary_10_1016_j_apsoil_2017_06_008
crossref_primary_10_1016_j_cej_2019_123305
crossref_primary_10_1016_j_scitotenv_2015_03_060
crossref_primary_10_1016_j_chemosphere_2012_12_057
crossref_primary_10_3390_environments11010017
crossref_primary_10_21930_rcta_vol22_num3_art_1919
crossref_primary_10_1016_j_jaap_2018_01_011
crossref_primary_10_1016_j_jaridenv_2023_105011
crossref_primary_10_1155_2024_6697604
crossref_primary_10_3390_soilsystems3040069
crossref_primary_10_1007_s11356_017_0355_x
crossref_primary_10_1016_j_envres_2025_120935
crossref_primary_10_1016_j_eti_2020_100885
crossref_primary_10_1016_j_soilbio_2020_107825
crossref_primary_10_1016_j_chemosphere_2016_02_004
crossref_primary_10_1007_s42729_021_00558_1
crossref_primary_10_1007_s10342_019_01217_y
crossref_primary_10_1007_s11368_019_02366_8
crossref_primary_10_1007_s11270_022_05883_4
crossref_primary_10_1016_j_carbon_2020_02_065
crossref_primary_10_1080_00103624_2025_2457341
crossref_primary_10_1007_s11356_018_3815_z
crossref_primary_10_1007_s11356_018_3550_5
crossref_primary_10_1016_j_agee_2016_08_028
crossref_primary_10_1007_s11356_020_12319_1
crossref_primary_10_1111_gcbb_13131
crossref_primary_10_1007_s11356_014_4067_1
crossref_primary_10_1007_s11270_016_3066_x
crossref_primary_10_1007_s11783_014_0682_9
crossref_primary_10_1021_ez5002209
crossref_primary_10_1088_1757_899X_980_1_012065
crossref_primary_10_1016_j_ejsobi_2017_11_003
crossref_primary_10_1371_journal_pone_0121006
crossref_primary_10_1016_j_jenvman_2019_02_045
crossref_primary_10_3390_agriculture15010045
crossref_primary_10_1016_j_chemosphere_2016_10_083
crossref_primary_10_3934_agrfood_2019_4_1020
crossref_primary_10_3390_environments4040070
crossref_primary_10_1007_s44169_023_00028_y
crossref_primary_10_1016_j_ecoleng_2022_106689
crossref_primary_10_1007_s00267_022_01775_9
crossref_primary_10_1007_s10163_020_00978_8
crossref_primary_10_1007_s11814_016_0308_y
crossref_primary_10_1016_j_chemosphere_2022_133830
crossref_primary_10_1021_acsagscitech_3c00459
crossref_primary_10_3390_en16020771
crossref_primary_10_1007_s40003_019_00425_7
crossref_primary_10_1016_j_chemosphere_2021_131594
Cites_doi 10.1016/j.geoderma.2011.04.021
10.1016/S0045-6535(02)00847-0
10.1016/j.biortech.2010.06.088
10.1016/j.jcis.2004.04.042
10.1016/j.jhazmat.2011.03.063
10.1016/j.soilbio.2011.04.022
10.1007/s11104-010-0464-5
10.1016/j.envpol.2011.07.023
10.1007/s11104-010-0327-0
10.1016/j.jhazmat.2010.09.087
10.2136/sssaj2005.0383
10.1016/j.biortech.2011.03.006
10.1016/j.orggeochem.2005.10.008
10.1023/A:1022833116184
10.1007/s11027-005-9006-5
10.1002/jpln.200625199
10.1016/j.soilbio.2011.02.005
10.1016/j.geoderma.2010.05.012
10.1007/s11270-010-0366-4
10.1007/s11104-009-0050-x
10.1007/s00374-002-0466-4
10.1021/ie0207919
10.1016/0043-1354(93)90090-5
10.1080/01496395.2011.584604
10.1016/j.biortech.2004.02.015
10.1007/s11051-010-9912-7
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2012 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2012.06.002
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 1471
ExternalDocumentID 22763330
26429290
10_1016_j_chemosphere_2012_06_002
US201500062404
S0045653512007709
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c530t-d9175db3cffb680adaad550150ff53e0e69ba263894af2f673110466f159b9613
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Sun Aug 24 04:12:52 EDT 2025
Thu Jul 10 22:00:13 EDT 2025
Mon Jul 21 06:03:24 EDT 2025
Wed Apr 02 07:14:02 EDT 2025
Tue Jul 01 00:44:55 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Wed Dec 27 19:18:14 EST 2023
Fri Feb 23 02:27:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Soils
Nutrients
Adsorption
Biochar
Black carbon
Leaching
Ammonium phosphate
Soot
Nitrates
Sandy soil
Carbonization
Sorption
Amendment
Nutrient
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-d9175db3cffb680adaad550150ff53e0e69ba263894af2f673110466f159b9613
Notes http://dx.doi.org/10.1016/j.chemosphere.2012.06.002
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22763330
PQID 1081434746
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1663549229
proquest_miscellaneous_1081434746
pubmed_primary_22763330
pascalfrancis_primary_26429290
crossref_citationtrail_10_1016_j_chemosphere_2012_06_002
crossref_primary_10_1016_j_chemosphere_2012_06_002
fao_agris_US201500062404
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2012_06_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zimmerman, Gao, Ahn (b0165) 2011; 43
Glaser, Lehmann, Zech (b0040) 2002; 35
Brown, Kercher, Nguyen, Nagle, Ball (b0030) 2006; 37
Antal, Gronli (b0005) 2003; 42
Lehmann, Pereira da Silva, Steiner, Nehls, Zech, Glaser (b0075) 2003; 249
Verheijen, F., Jeffery, S., Bastos, A.C., Velde, M.v.d., Diafas, I., 2009. Biochar Application to Soils – A Critical Scientific Review of Effects on Soil Properties, processes and functions. EUR 24099 EN. Office for the Official Publications of the European Communities, Luxemburg, pp. 149.
Major, Rondon, Molina, Riha, Lehmann (b0095) 2010; 333
Novak, Lima, Xing, Gaskin, Steiner, Das, Ahmedna, Rehrah, Watts, Busscher (b0110) 2009; 3
Lehmann, Joseph (b0070) 2009
Liang, Lehmann, Solomon, Kinyangi, Grossman, O’Neill, Skjemstad, Thies, Luizao, Petersen, Neves (b0090) 2006; 70
Mizuta, Matsumoto, Hatate, Nishihara, Nakanishi (b0100) 2004; 95
Ding, Liu, Wu, Shi, Yang, Zhong (b0035) 2010; 213
APHA, AWWA, WEF (b0010) 1992
Karaca, Gurses, Ejder, Acikyildiz (b0055) 2004; 277
Sposito (b0120) 1989
Mukherjee, Zimmerman, Harris (b0105) 2011; 163
Bhargava, Sheldarkar (b0025) 1993; 27
Lehmann, Gaunt, Rondon (b0065) 2006; 11
Li, Katsumi, Inui (b0085) 2011; 185
USEPA, 1992. ESS method 310.1: Ortho-phosphorus, dissolved automated, ascorbic acid. Environmental Sciences Section Inorganic Chemistry Unit. Wisconsin State Lab of Hygiene.
Inyang, Gao, Pullammanappallil, Ding, Zimmerman (b0050) 2010; 101
Steiner, Glaser, Teixeira, Lehmann, Blum, Zech (b0130) 2008; 171
Uchimiya, Chang, Klasson (b0140) 2011; 190
Beesley, Moreno-Jimenez, Gomez-Eyles, Harris, Robinson, Sizmur (b0020) 2011; 159
Laird, Fleming, Wang, Horton, Karlen (b0060) 2010; 158
Tian, Gao, Silvera-Batista, Ziegler (b0135) 2010; 12
Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (b0080) 2011; 43
Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0160) 2011; 102
Ozacar (b0115) 2003; 51
Atkinson, Fitzgerald, Hipps (b0015) 2010; 337
Inyang, Gao, Ding, Pullammanappallil, Zimmerman, Cao (b0045) 2011; 46
Steiner, Garcia, Zech (b0125) 2009
Van Zwieten, Kimber, Morris, Chan, Downie, Rust, Joseph, Cowie (b0150) 2010; 327
Novak (10.1016/j.chemosphere.2012.06.002_b0110) 2009; 3
Sposito (10.1016/j.chemosphere.2012.06.002_b0120) 1989
Mizuta (10.1016/j.chemosphere.2012.06.002_b0100) 2004; 95
Ozacar (10.1016/j.chemosphere.2012.06.002_b0115) 2003; 51
Brown (10.1016/j.chemosphere.2012.06.002_b0030) 2006; 37
Yao (10.1016/j.chemosphere.2012.06.002_b0160) 2011; 102
Beesley (10.1016/j.chemosphere.2012.06.002_b0020) 2011; 159
Atkinson (10.1016/j.chemosphere.2012.06.002_b0015) 2010; 337
Karaca (10.1016/j.chemosphere.2012.06.002_b0055) 2004; 277
Li (10.1016/j.chemosphere.2012.06.002_b0085) 2011; 185
Lehmann (10.1016/j.chemosphere.2012.06.002_b0080) 2011; 43
Mukherjee (10.1016/j.chemosphere.2012.06.002_b0105) 2011; 163
Major (10.1016/j.chemosphere.2012.06.002_b0095) 2010; 333
APHA, AWWA, WEF (10.1016/j.chemosphere.2012.06.002_b0010) 1992
Lehmann (10.1016/j.chemosphere.2012.06.002_b0070) 2009
Uchimiya (10.1016/j.chemosphere.2012.06.002_b0140) 2011; 190
10.1016/j.chemosphere.2012.06.002_b0145
Steiner (10.1016/j.chemosphere.2012.06.002_b0125) 2009
Ding (10.1016/j.chemosphere.2012.06.002_b0035) 2010; 213
Lehmann (10.1016/j.chemosphere.2012.06.002_b0075) 2003; 249
Glaser (10.1016/j.chemosphere.2012.06.002_b0040) 2002; 35
Tian (10.1016/j.chemosphere.2012.06.002_b0135) 2010; 12
Zimmerman (10.1016/j.chemosphere.2012.06.002_b0165) 2011; 43
Bhargava (10.1016/j.chemosphere.2012.06.002_b0025) 1993; 27
Antal (10.1016/j.chemosphere.2012.06.002_b0005) 2003; 42
Liang (10.1016/j.chemosphere.2012.06.002_b0090) 2006; 70
Lehmann (10.1016/j.chemosphere.2012.06.002_b0065) 2006; 11
Inyang (10.1016/j.chemosphere.2012.06.002_b0045) 2011; 46
Inyang (10.1016/j.chemosphere.2012.06.002_b0050) 2010; 101
Laird (10.1016/j.chemosphere.2012.06.002_b0060) 2010; 158
Steiner (10.1016/j.chemosphere.2012.06.002_b0130) 2008; 171
10.1016/j.chemosphere.2012.06.002_b0155
Van Zwieten (10.1016/j.chemosphere.2012.06.002_b0150) 2010; 327
References_xml – volume: 213
  start-page: 47
  year: 2010
  end-page: 55
  ident: b0035
  article-title: Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns
  publication-title: Water Air Soil Poll.
– volume: 95
  start-page: 255
  year: 2004
  end-page: 257
  ident: b0100
  article-title: Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal
  publication-title: Bioresour. Technol.
– volume: 42
  start-page: 1619
  year: 2003
  end-page: 1640
  ident: b0005
  article-title: The art, science, and technology of charcoal production
  publication-title: Ind. Eng. Chem. Res.
– volume: 159
  start-page: 3269
  year: 2011
  end-page: 3282
  ident: b0020
  article-title: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
– volume: 185
  start-page: 768
  year: 2011
  end-page: 775
  ident: b0085
  article-title: Application of grass char for Cd (II) treatment in column leaching test
  publication-title: J. Hazard Mater.
– year: 1989
  ident: b0120
  article-title: The Chemistry of Soils
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  ident: b0080
  article-title: Biochar effects on soil biota – a review
  publication-title: Soil Biol. Biochem.
– volume: 46
  start-page: 1950
  year: 2011
  end-page: 1956
  ident: b0045
  article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse
  publication-title: Separ. Sci. Technol.
– volume: 333
  start-page: 117
  year: 2010
  end-page: 128
  ident: b0095
  article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol
  publication-title: Plant Soil
– volume: 249
  start-page: 343
  year: 2003
  end-page: 357
  ident: b0075
  article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments
  publication-title: Plant Soil
– volume: 11
  start-page: 403
  year: 2006
  end-page: 427
  ident: b0065
  article-title: Bio-char sequestration in terrestrial ecosystems - a review
  publication-title: Mitigat. Adaptat. Strateg. Global Change
– volume: 102
  start-page: 6273
  year: 2011
  end-page: 6278
  ident: b0160
  article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential
  publication-title: Bioresour. Technol.
– volume: 27
  start-page: 303
  year: 1993
  end-page: 312
  ident: b0025
  article-title: Use of tnsac in phosphate adsorption studies and relationships – literature, experimental methodology, justification and effects of process variables
  publication-title: Water Res.
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  ident: b0090
  article-title: Black Carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 190
  start-page: 432
  year: 2011
  end-page: 441
  ident: b0140
  article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups
  publication-title: J. Hazard Mater.
– start-page: 325
  year: 2009
  ident: b0125
  article-title: Effects of charcoal as slow release nutrient carrier on N–P–K dynamics and soil microbial population: pot experiments with Ferralsol substrate
  publication-title: Amazonian Dark Earths: Wim Sombroek’s Vision
– volume: 3
  start-page: 2
  year: 2009
  ident: b0110
  article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand
  publication-title: Annal. Environ. Sci.
– volume: 171
  start-page: 893
  year: 2008
  end-page: 899
  ident: b0130
  article-title: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal
  publication-title: Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde
– volume: 337
  start-page: 1
  year: 2010
  end-page: 18
  ident: b0015
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
  publication-title: Plant Soil
– year: 2009
  ident: b0070
  article-title: Biochar for Environmental Management: Science and Technology
– volume: 163
  start-page: 247
  year: 2011
  end-page: 255
  ident: b0105
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
– volume: 12
  start-page: 2371
  year: 2010
  end-page: 2380
  ident: b0135
  article-title: Transport of engineered nanoparticles in saturated porous media
  publication-title: J. Nanopart Res.
– volume: 51
  start-page: 321
  year: 2003
  end-page: 327
  ident: b0115
  article-title: Adsorption of phosphate from aqueous solution onto alunite
  publication-title: Chemosphere
– volume: 327
  start-page: 235
  year: 2010
  end-page: 246
  ident: b0150
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
– volume: 101
  start-page: 8868
  year: 2010
  end-page: 8872
  ident: b0050
  article-title: Biochar from anaerobically digested sugarcane bagasse
  publication-title: Bioresour. Technol.
– reference: USEPA, 1992. ESS method 310.1: Ortho-phosphorus, dissolved automated, ascorbic acid. Environmental Sciences Section Inorganic Chemistry Unit. Wisconsin State Lab of Hygiene.
– reference: Verheijen, F., Jeffery, S., Bastos, A.C., Velde, M.v.d., Diafas, I., 2009. Biochar Application to Soils – A Critical Scientific Review of Effects on Soil Properties, processes and functions. EUR 24099 EN. Office for the Official Publications of the European Communities, Luxemburg, pp. 149.
– volume: 277
  start-page: 257
  year: 2004
  end-page: 263
  ident: b0055
  article-title: Kinetic modeling of liquid-phase adsorption of phosphate on dolomite
  publication-title: J. Colloid. Interf. Sci.
– volume: 158
  start-page: 436
  year: 2010
  end-page: 442
  ident: b0060
  article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil
  publication-title: Geoderma
– year: 1992
  ident: b0010
  article-title: Standard Methods for the Examination of Water and Wastewater
– volume: 37
  start-page: 321
  year: 2006
  end-page: 333
  ident: b0030
  article-title: Production and characterization of synthetic wood chars for use as surrogates for natural sorbents
  publication-title: Org. Geochem.
– volume: 35
  start-page: 219
  year: 2002
  end-page: 230
  ident: b0040
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review
  publication-title: Biol. Fert. Soils
– volume: 43
  start-page: 1169
  year: 2011
  end-page: 1179
  ident: b0165
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol. Biochem.
– volume: 163
  start-page: 247
  year: 2011
  ident: 10.1016/j.chemosphere.2012.06.002_b0105
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.04.021
– volume: 51
  start-page: 321
  year: 2003
  ident: 10.1016/j.chemosphere.2012.06.002_b0115
  article-title: Adsorption of phosphate from aqueous solution onto alunite
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00847-0
– ident: 10.1016/j.chemosphere.2012.06.002_b0145
– volume: 101
  start-page: 8868
  year: 2010
  ident: 10.1016/j.chemosphere.2012.06.002_b0050
  article-title: Biochar from anaerobically digested sugarcane bagasse
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.088
– volume: 277
  start-page: 257
  year: 2004
  ident: 10.1016/j.chemosphere.2012.06.002_b0055
  article-title: Kinetic modeling of liquid-phase adsorption of phosphate on dolomite
  publication-title: J. Colloid. Interf. Sci.
  doi: 10.1016/j.jcis.2004.04.042
– year: 1992
  ident: 10.1016/j.chemosphere.2012.06.002_b0010
– volume: 190
  start-page: 432
  year: 2011
  ident: 10.1016/j.chemosphere.2012.06.002_b0140
  article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2011.03.063
– volume: 43
  start-page: 1812
  year: 2011
  ident: 10.1016/j.chemosphere.2012.06.002_b0080
  article-title: Biochar effects on soil biota – a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 337
  start-page: 1
  year: 2010
  ident: 10.1016/j.chemosphere.2012.06.002_b0015
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0464-5
– volume: 159
  start-page: 3269
  year: 2011
  ident: 10.1016/j.chemosphere.2012.06.002_b0020
  article-title: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.07.023
– volume: 333
  start-page: 117
  year: 2010
  ident: 10.1016/j.chemosphere.2012.06.002_b0095
  article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0327-0
– volume: 185
  start-page: 768
  year: 2011
  ident: 10.1016/j.chemosphere.2012.06.002_b0085
  article-title: Application of grass char for Cd (II) treatment in column leaching test
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.09.087
– start-page: 325
  year: 2009
  ident: 10.1016/j.chemosphere.2012.06.002_b0125
  article-title: Effects of charcoal as slow release nutrient carrier on N–P–K dynamics and soil microbial population: pot experiments with Ferralsol substrate
– volume: 70
  start-page: 1719
  year: 2006
  ident: 10.1016/j.chemosphere.2012.06.002_b0090
  article-title: Black Carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0383
– volume: 102
  start-page: 6273
  year: 2011
  ident: 10.1016/j.chemosphere.2012.06.002_b0160
  article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.03.006
– volume: 37
  start-page: 321
  year: 2006
  ident: 10.1016/j.chemosphere.2012.06.002_b0030
  article-title: Production and characterization of synthetic wood chars for use as surrogates for natural sorbents
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2005.10.008
– year: 2009
  ident: 10.1016/j.chemosphere.2012.06.002_b0070
– volume: 249
  start-page: 343
  year: 2003
  ident: 10.1016/j.chemosphere.2012.06.002_b0075
  article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments
  publication-title: Plant Soil
  doi: 10.1023/A:1022833116184
– volume: 11
  start-page: 403
  year: 2006
  ident: 10.1016/j.chemosphere.2012.06.002_b0065
  article-title: Bio-char sequestration in terrestrial ecosystems - a review
  publication-title: Mitigat. Adaptat. Strateg. Global Change
  doi: 10.1007/s11027-005-9006-5
– volume: 171
  start-page: 893
  year: 2008
  ident: 10.1016/j.chemosphere.2012.06.002_b0130
  article-title: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal
  publication-title: Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde
  doi: 10.1002/jpln.200625199
– volume: 43
  start-page: 1169
  year: 2011
  ident: 10.1016/j.chemosphere.2012.06.002_b0165
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.02.005
– volume: 158
  start-page: 436
  year: 2010
  ident: 10.1016/j.chemosphere.2012.06.002_b0060
  article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.012
– volume: 213
  start-page: 47
  year: 2010
  ident: 10.1016/j.chemosphere.2012.06.002_b0035
  article-title: Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns
  publication-title: Water Air Soil Poll.
  doi: 10.1007/s11270-010-0366-4
– volume: 327
  start-page: 235
  year: 2010
  ident: 10.1016/j.chemosphere.2012.06.002_b0150
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0050-x
– year: 1989
  ident: 10.1016/j.chemosphere.2012.06.002_b0120
– volume: 35
  start-page: 219
  year: 2002
  ident: 10.1016/j.chemosphere.2012.06.002_b0040
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review
  publication-title: Biol. Fert. Soils
  doi: 10.1007/s00374-002-0466-4
– volume: 3
  start-page: 2
  year: 2009
  ident: 10.1016/j.chemosphere.2012.06.002_b0110
  article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand
  publication-title: Annal. Environ. Sci.
– ident: 10.1016/j.chemosphere.2012.06.002_b0155
– volume: 42
  start-page: 1619
  year: 2003
  ident: 10.1016/j.chemosphere.2012.06.002_b0005
  article-title: The art, science, and technology of charcoal production
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0207919
– volume: 27
  start-page: 303
  year: 1993
  ident: 10.1016/j.chemosphere.2012.06.002_b0025
  article-title: Use of tnsac in phosphate adsorption studies and relationships – literature, experimental methodology, justification and effects of process variables
  publication-title: Water Res.
  doi: 10.1016/0043-1354(93)90090-5
– volume: 46
  start-page: 1950
  year: 2011
  ident: 10.1016/j.chemosphere.2012.06.002_b0045
  article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse
  publication-title: Separ. Sci. Technol.
  doi: 10.1080/01496395.2011.584604
– volume: 95
  start-page: 255
  year: 2004
  ident: 10.1016/j.chemosphere.2012.06.002_b0100
  article-title: Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2004.02.015
– volume: 12
  start-page: 2371
  year: 2010
  ident: 10.1016/j.chemosphere.2012.06.002_b0135
  article-title: Transport of engineered nanoparticles in saturated porous media
  publication-title: J. Nanopart Res.
  doi: 10.1007/s11051-010-9912-7
SSID ssj0001659
Score 2.5989704
Snippet ► Effect of biochar on the leaching of nutrients in soils is not uniform. ► Sorption of nutrients on biochar varies by biochar and nutrient type. ► Nutrient...
When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1467
SubjectTerms Adsorption
Agronomy. Soil science and plant productions
analysis
Biochar
Biological and medical sciences
Black carbon
Charcoal
Charcoal - chemistry
chemistry
Environmental Restoration and Remediation
Environmental Restoration and Remediation - methods
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
hulls
laboratory experimentation
leachates
Leaching
methods
microorganisms
Nitrates
Nitrates - analysis
Nitrates - chemistry
Nutrients
Other nutrients. Amendments. Solid and liquid wastes. Sludges and slurries
peanuts
Phosphates
Phosphates - analysis
Phosphates - chemistry
Quaternary Ammonium Compounds
Quaternary Ammonium Compounds - analysis
Quaternary Ammonium Compounds - chemistry
sandy soils
Soil
Soil - chemistry
soil amendments
soil nutrients
Soil Pollutants
Soil Pollutants - analysis
Soil Pollutants - chemistry
Soil-plant relationships. Soil fertility. Fertilization. Amendments
Soils
sorption
Title Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil
URI https://dx.doi.org/10.1016/j.chemosphere.2012.06.002
https://www.ncbi.nlm.nih.gov/pubmed/22763330
https://www.proquest.com/docview/1081434746
https://www.proquest.com/docview/1663549229
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa6Dntchq17NHsEKrBjvdqSrDjALkXQItuwXrYAvQmSLbUeEjuok0Mv_e0lZTtZgW0osKNtyrZImvwk8wHwMUMQqqTjUZx7GclcpJFJTBKFjiiJcNKHrYHvZ2o6k1_P0_MdmPS5MBRW2dn-1qYHa92dOeq4ebQsS8rxJTQi0GNRTZqQxCfliLT80802zCNRaQuBZRoR9WM42MZ4IV8WdUP5-1Qxk7YF1WaH5Q8-6oE3NQVPmgb559vGF39HpsFDnT6HZx20ZMft27-AHVftwZNJ39FtDx6dhBLV1y_hsi1azGrPbFlT5hUzC1cVtFXI6oo19VUwJcxUBZt3AZdEjQaAakscIjnqb7leHAaS5SXNDy-wEsewBs9d403K-SuYnZ78nEyjrudClKciXkUFLt_Sworce6uy2BTGFLiIQdjofSpc7NTYGk4wRxrPvRqJhP4SK4-wyI4RG7yG3aqu3D6wLM-Up-I4jrSh8DYRMldeGmtxkVTIAWQ9l3XeFSSnvhhz3Uee_dK_CUiTgHSIwuMD4Juhy7Yqx30Gfe5Fqe-omEbvcZ_h-yh-bS7Q-OrZD048oQxUGeNMhnd0YvNOiDY54s94AAe9kmiUOf2TMZWr1w3VZ0XEKkdS_YOGUKEccz4ewJtWw7ZP4OgghIjf_t_k3sFTOmqTLN_D7upq7T4g2lrZYfichvDw-Mu36dktuqkngQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RdBeEJRHl0dxJbg1bWI7biLBAZVWW_q40JV6M05i06DdZNXsqtoLf4o_yEweu1QCVAn1mthJ7BnPfHZmvgF4GyEIVdJyz0-d9GQqQs8EJvDqiiiBsNLVRwOnZ6o_kJ8vwosl-NnlwlBYZWv7G5teW-v2ym47m7vjPKccX0IjAj0WcdL4cRtZeWxn17hvqz4cfUIhv-P88OB8v--1pQW8NBT-xMtwlxJmiUidS1Tkm8yYDLE6oiPnQmF9q-LEcPLm0jju1J4I6Geocuj9kxhdID53Ge5JNBdUNmHnxyKuJFBhg7ll6NHnPYCtRVAZCmJUVkQYQBSddA6p5kc6f3CKy86UFK1pKhSYaypt_B0K1y7x8BE8bLEs-9hM12NYssU6rO53JeTW4f5BzYk9ewKXDUsyKx1L8pJSvZgZ2SKjs0lWFqwqr2rbxUyRsWEb4Umt0eIQmcU2NscFk09H23WT8SWND2-wHPuwCq_N8CH58CkM7kQSz2ClKAu7ASxKI-WIjceS-mUuCYRMlZMmSXBXlskeRN0s67RlQKdCHEPdhbp9178JSJOAdB32x3vA513HDQ3IbTq970Spb-i0Rnd1m-4bKH5tvqG114MvnOaEUl6ljyPZvKET829CeMsR8Po92OqURKPM6SeQKWw5rYgQFiGy3JPqH20IhsqY87gHzxsNW7yBo0cSwn_xf4N7A6v989MTfXJ0dvwS1uhOk-H5ClYmV1P7GqHeJNmslxaDr3e9ln8BxrZifw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+biochar+amendment+on+sorption+and+leaching+of+nitrate%2C+ammonium%2C+and+phosphate+in+a+sandy+soil&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Yao%2C+Ying&rft.au=Gao%2C+Bin&rft.au=Zhang%2C+Ming&rft.au=Inyang%2C+Mandu&rft.date=2012-11-01&rft.eissn=1879-1298&rft.volume=89&rft.issue=11&rft.spage=1467&rft_id=info:doi/10.1016%2Fj.chemosphere.2012.06.002&rft_id=info%3Apmid%2F22763330&rft.externalDocID=22763330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon