Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil
► Effect of biochar on the leaching of nutrients in soils is not uniform. ► Sorption of nutrients on biochar varies by biochar and nutrient type. ► Nutrient sorption characteristics should be studied prior to biochar application. When applied to soils, it is unclear whether and how biochar can affec...
Saved in:
Published in | Chemosphere (Oxford) Vol. 89; no. 11; pp. 1467 - 1471 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.11.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Effect of biochar on the leaching of nutrients in soils is not uniform. ► Sorption of nutrients on biochar varies by biochar and nutrient type. ► Nutrient sorption characteristics should be studied prior to biochar application.
When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600°C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project. |
---|---|
AbstractList | When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600°C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project. When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600°C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600°C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project. ► Effect of biochar on the leaching of nutrients in soils is not uniform. ► Sorption of nutrients on biochar varies by biochar and nutrient type. ► Nutrient sorption characteristics should be studied prior to biochar application. When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600°C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project. |
Author | Zimmerman, Andrew R. Gao, Bin Yao, Ying Inyang, Mandu Zhang, Ming |
Author_xml | – sequence: 1 givenname: Ying surname: Yao fullname: Yao, Ying organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 2 givenname: Bin surname: Gao fullname: Gao, Bin email: bg55@ufl.edu organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 3 givenname: Ming surname: Zhang fullname: Zhang, Ming organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 4 givenname: Mandu surname: Inyang fullname: Inyang, Mandu organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 5 givenname: Andrew R. surname: Zimmerman fullname: Zimmerman, Andrew R. organization: Department of Geological Sciences, University of Florida, Gainesville, FL 32611, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26429290$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22763330$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFvwBhgcSiE66fiVcIjcpDqsQCurYcx248SuxgZ5D673GYqUBs6MKydf3dc61zfIHOQgwWodcYagxYvNvXZrBTzPNgk60JYFKDqAHIE7TBbSO3mMj2DG0AGN8KTvk5ush5D1CauXyGzglpBKUUNmi4ds6apYqu6nw0g06VnmzoyyrFUOWY5sWXgw59NVptBh_uVjr4JenFXhV8isEfpqvfyDyszyoXlS89VS61-yLix-foqdNjti9O-yW6_Xj9ffd5e_P105fdh5ut4RSWbS9xw_uOGuc60YLute45B8zBOU4tWCE7TQRtJdOOONFQjIEJ4TCXnRSYXqK3R905xR8Hmxc1-WzsOOpg4yErLATlTBIi_49CixllDRMFfXlCD91kezUnP-l0rx6MLMCbE6Cz0aNLOhif_3CCEUnkyr0_cibFnJN1yvhFrw4XO_1YZqo1YrVXf0Ws1ogVCFUiLgryH4WHIY_pfXXsdToqfZfKC2-_kdVdAEEYsELsjoQtGf30NqlsvA3G9j6Vf6L66B8x5xfpQdBe |
CODEN | CMSHAF |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2017_07_042 crossref_primary_10_1016_j_scitotenv_2017_01_115 crossref_primary_10_3390_agronomy3020275 crossref_primary_10_1016_j_biombioe_2018_07_004 crossref_primary_10_3390_agronomy9110747 crossref_primary_10_17221_276_2020_PSE crossref_primary_10_3390_su14137622 crossref_primary_10_1007_s11356_018_1368_9 crossref_primary_10_1016_j_envpol_2023_123203 crossref_primary_10_2134_jeq2014_05_0213 crossref_primary_10_1016_j_biortech_2014_10_104 crossref_primary_10_1016_j_chemosphere_2019_125558 crossref_primary_10_2965_jwet_19_077 crossref_primary_10_2134_agronj2018_02_0074 crossref_primary_10_3390_agronomy10091241 crossref_primary_10_1007_s11270_018_3925_8 crossref_primary_10_1002_agg2_20236 crossref_primary_10_1016_j_scitotenv_2022_157262 crossref_primary_10_1007_s11104_013_1938_z crossref_primary_10_1007_s11356_015_5520_5 crossref_primary_10_1590_1413_70542016404023016 crossref_primary_10_1007_s11368_019_02369_5 crossref_primary_10_1111_sum_12782 crossref_primary_10_2175_106143015X14362865227391 crossref_primary_10_1021_es403711y crossref_primary_10_1016_j_jes_2017_08_004 crossref_primary_10_1007_s11356_019_04580_w crossref_primary_10_1186_2251_6832_4_41 crossref_primary_10_1007_s11270_021_05366_y crossref_primary_10_3390_agronomy10050705 crossref_primary_10_3390_agronomy9110758 crossref_primary_10_1016_j_chemosphere_2017_01_016 crossref_primary_10_1002_jeq2_20468 crossref_primary_10_1016_j_chemosphere_2024_142368 crossref_primary_10_1080_03650340_2020_1786537 crossref_primary_10_1016_j_agee_2014_03_008 crossref_primary_10_1016_j_renene_2021_05_007 crossref_primary_10_1016_j_ecoleng_2017_11_002 crossref_primary_10_3934_agrfood_2018_4_1020 crossref_primary_10_1016_j_ecoenv_2021_112819 crossref_primary_10_1080_02571862_2021_1962421 crossref_primary_10_1016_j_cej_2016_09_122 crossref_primary_10_1016_j_chemosphere_2013_02_050 crossref_primary_10_1016_j_scienta_2018_08_048 crossref_primary_10_4236_ojss_2015_52004 crossref_primary_10_1016_j_jenvman_2019_06_008 crossref_primary_10_1016_j_jiec_2017_08_026 crossref_primary_10_1016_j_scitotenv_2020_142430 crossref_primary_10_1016_j_scitotenv_2017_09_016 crossref_primary_10_1007_s11270_020_4393_5 crossref_primary_10_1017_S0014479715000204 crossref_primary_10_1080_00103624_2020_1869758 crossref_primary_10_7717_peerj_17513 crossref_primary_10_1016_j_apsoil_2023_105065 crossref_primary_10_1002_jeq2_20139 crossref_primary_10_1016_j_chemosphere_2015_05_062 crossref_primary_10_3390_w16101347 crossref_primary_10_1016_j_agwat_2018_07_043 crossref_primary_10_1007_s42773_020_00072_0 crossref_primary_10_1016_j_cscee_2024_100986 crossref_primary_10_4236_ojss_2021_116017 crossref_primary_10_1016_j_eti_2023_103435 crossref_primary_10_1002_ldr_5574 crossref_primary_10_1016_j_geoderma_2018_04_025 crossref_primary_10_1016_j_jenvman_2021_113325 crossref_primary_10_3390_w11081559 crossref_primary_10_1016_j_catena_2018_07_018 crossref_primary_10_1080_01904167_2023_2220740 crossref_primary_10_3390_su132111808 crossref_primary_10_5194_soil_1_475_2015 crossref_primary_10_1016_j_cej_2013_12_062 crossref_primary_10_1080_00103624_2013_867046 crossref_primary_10_3390_nitrogen3010007 crossref_primary_10_1016_j_scienta_2015_10_021 crossref_primary_10_1007_s11356_017_8551_2 crossref_primary_10_1016_j_jclepro_2019_04_282 crossref_primary_10_1007_s11356_020_10928_4 crossref_primary_10_1016_j_chemosphere_2021_130978 crossref_primary_10_1016_j_envpol_2017_10_048 crossref_primary_10_1016_j_watres_2022_118058 crossref_primary_10_1016_j_cej_2017_11_145 crossref_primary_10_1007_s42729_024_02020_4 crossref_primary_10_3390_plants11020153 crossref_primary_10_1016_j_scitotenv_2020_143657 crossref_primary_10_1016_j_chemosphere_2019_05_056 crossref_primary_10_1016_j_apsoil_2018_11_002 crossref_primary_10_1080_09593330_2017_1349839 crossref_primary_10_1080_00103624_2023_2289992 crossref_primary_10_1097_SS_0000000000000217 crossref_primary_10_1016_j_atmosenv_2017_09_050 crossref_primary_10_1186_s40538_016_0062_8 crossref_primary_10_1002_ldr_3383 crossref_primary_10_1016_j_geoderma_2018_03_004 crossref_primary_10_1016_j_cej_2019_06_007 crossref_primary_10_1002_agg2_20430 crossref_primary_10_1038_s41598_020_66300_6 crossref_primary_10_1007_s44378_025_00041_8 crossref_primary_10_1016_j_cej_2013_04_077 crossref_primary_10_1007_s13593_016_0372_z crossref_primary_10_4236_ajps_2017_89135 crossref_primary_10_1016_j_jece_2022_107744 crossref_primary_10_1016_j_chemosphere_2019_125471 crossref_primary_10_1016_j_chemosphere_2020_128084 crossref_primary_10_1016_j_scitotenv_2017_02_110 crossref_primary_10_1016_j_watres_2020_116303 crossref_primary_10_2134_jeq2017_06_0246 crossref_primary_10_5004_dwt_2017_21263 crossref_primary_10_1080_00380768_2022_2129443 crossref_primary_10_1155_2021_6699873 crossref_primary_10_56109_aup_sna_v12i2_106 crossref_primary_10_2166_wst_2019_310 crossref_primary_10_3390_molecules27217191 crossref_primary_10_1080_00103624_2018_1499767 crossref_primary_10_1007_s12665_017_6703_9 crossref_primary_10_1080_00103624_2020_1822375 crossref_primary_10_1007_s10532_025_10116_6 crossref_primary_10_1007_s11356_016_7236_6 crossref_primary_10_2134_age2019_03_0014 crossref_primary_10_1088_1755_1315_424_1_012015 crossref_primary_10_1007_s11270_014_2228_y crossref_primary_10_1016_j_jenvman_2017_12_041 crossref_primary_10_3390_su11247136 crossref_primary_10_3390_su15107934 crossref_primary_10_1016_j_biortech_2013_03_057 crossref_primary_10_1016_j_catena_2021_105284 crossref_primary_10_1080_01448765_2015_1093545 crossref_primary_10_1016_j_colsurfa_2025_136313 crossref_primary_10_1016_j_envpol_2018_04_050 crossref_primary_10_1016_j_scitotenv_2021_150428 crossref_primary_10_3390_agronomy11040617 crossref_primary_10_1080_00288233_2014_983614 crossref_primary_10_1071_SR18022 crossref_primary_10_1016_j_geoderma_2017_01_011 crossref_primary_10_1016_j_agee_2013_10_009 crossref_primary_10_3390_agronomy10070979 crossref_primary_10_3390_separations8030032 crossref_primary_10_1016_j_agee_2014_02_030 crossref_primary_10_1016_j_anres_2016_01_003 crossref_primary_10_1007_s12517_019_4694_4 crossref_primary_10_1080_09542299_2015_1087162 crossref_primary_10_1016_j_jclepro_2021_125943 crossref_primary_10_2478_johr_2022_0018 crossref_primary_10_1016_j_biortech_2021_125231 crossref_primary_10_5004_dwt_2023_30180 crossref_primary_10_1016_j_agee_2016_05_004 crossref_primary_10_1002_jeq2_20331 crossref_primary_10_1016_j_jece_2024_114735 crossref_primary_10_1016_j_agee_2020_107109 crossref_primary_10_1016_j_still_2018_06_006 crossref_primary_10_1007_s11368_021_03077_9 crossref_primary_10_1007_s42773_019_00005_6 crossref_primary_10_17660_ActaHortic_2017_1164_32 crossref_primary_10_1007_s10098_024_02970_4 crossref_primary_10_1002_jeq2_20447 crossref_primary_10_1007_s11368_015_1347_4 crossref_primary_10_1016_j_biortech_2017_08_122 crossref_primary_10_1016_j_envpol_2023_123132 crossref_primary_10_1016_S1002_0160_15_30001_1 crossref_primary_10_3389_fenrg_2021_710766 crossref_primary_10_1016_j_chemosphere_2015_04_062 crossref_primary_10_1080_09064710_2017_1302504 crossref_primary_10_3390_w12072012 crossref_primary_10_1016_j_biortech_2022_126869 crossref_primary_10_3390_soilsystems8030069 crossref_primary_10_1002_jpln_201400109 crossref_primary_10_1002_agg2_20408 crossref_primary_10_1016_j_scitotenv_2019_136337 crossref_primary_10_1007_s12205_015_0449_2 crossref_primary_10_1016_j_jssas_2023_06_002 crossref_primary_10_3389_fpls_2017_02051 crossref_primary_10_4028_www_scientific_net_AMR_726_731_1679 crossref_primary_10_1016_j_hazadv_2022_100226 crossref_primary_10_1016_j_scitotenv_2021_149580 crossref_primary_10_1007_s11270_021_05103_5 crossref_primary_10_3390_app14178028 crossref_primary_10_1088_1757_899X_823_1_012043 crossref_primary_10_1016_j_soilbio_2015_01_006 crossref_primary_10_3390_plants13020166 crossref_primary_10_1007_s11368_015_1339_4 crossref_primary_10_1007_s11368_020_02753_6 crossref_primary_10_1016_j_biortech_2018_10_064 crossref_primary_10_1080_00103624_2021_1956523 crossref_primary_10_1016_j_agee_2021_107454 crossref_primary_10_1016_j_jhazmat_2016_04_046 crossref_primary_10_1016_j_psep_2016_03_001 crossref_primary_10_1080_09542299_2018_1544035 crossref_primary_10_1016_S1002_0160_15_30060_6 crossref_primary_10_1021_acs_est_7b06487 crossref_primary_10_1080_03650340_2020_1802012 crossref_primary_10_1080_26395940_2024_2387680 crossref_primary_10_3390_agronomy13092440 crossref_primary_10_1007_s11356_023_30097_4 crossref_primary_10_1111_gcbb_12314 crossref_primary_10_1016_j_cej_2014_03_105 crossref_primary_10_1080_01904167_2021_1881542 crossref_primary_10_1007_s42773_019_00002_9 crossref_primary_10_1016_j_jenvman_2015_01_021 crossref_primary_10_1002_slct_202200504 crossref_primary_10_1016_j_biortech_2013_11_021 crossref_primary_10_1039_D0EW00027B crossref_primary_10_1007_s11356_018_2198_5 crossref_primary_10_15446_agron_colomb_v35n1_58671 crossref_primary_10_1039_C5RA22142K crossref_primary_10_1007_s11676_017_0516_2 crossref_primary_10_24425_aep_2024_151687 crossref_primary_10_1016_j_jenvman_2018_10_117 crossref_primary_10_1002_jpln_201500497 crossref_primary_10_1590_1678_4499_20210313 crossref_primary_10_1016_j_envpol_2022_118788 crossref_primary_10_1021_acsomega_1c02998 crossref_primary_10_1111_gcbb_12789 crossref_primary_10_1007_s13399_023_03927_1 crossref_primary_10_1016_j_chemosphere_2019_03_170 crossref_primary_10_1007_s42729_023_01223_5 crossref_primary_10_1016_j_jclepro_2017_08_122 crossref_primary_10_1016_S1002_0160_17_60375_8 crossref_primary_10_1002_ael2_20097 crossref_primary_10_3390_agronomy4010052 crossref_primary_10_1007_s11270_018_3896_9 crossref_primary_10_1166_sam_2023_4479 crossref_primary_10_1016_j_reffit_2015_12_001 crossref_primary_10_3390_cleantechnol4030042 crossref_primary_10_3390_toxics10110703 crossref_primary_10_1016_j_ejbas_2017_06_006 crossref_primary_10_1039_C7RA13151H crossref_primary_10_1007_s10653_022_01462_y crossref_primary_10_1016_j_apsoil_2024_105749 crossref_primary_10_3390_ma14092466 crossref_primary_10_1016_j_jclepro_2024_143772 crossref_primary_10_1016_j_ufug_2023_128082 crossref_primary_10_1002_jpln_201300281 crossref_primary_10_3390_ma13102270 crossref_primary_10_1016_j_scitotenv_2020_137399 crossref_primary_10_2134_jeq2015_06_0298 crossref_primary_10_1007_s40093_017_0185_3 crossref_primary_10_1080_09593330_2019_1612953 crossref_primary_10_3390_ma13040816 crossref_primary_10_1007_s42773_023_00272_4 crossref_primary_10_1016_j_cej_2022_141003 crossref_primary_10_1017_S0014479722000254 crossref_primary_10_1002_jpln_201400552 crossref_primary_10_1007_s00374_019_01369_4 crossref_primary_10_1016_j_rsci_2021_05_004 crossref_primary_10_1016_j_scitotenv_2021_150513 crossref_primary_10_1016_j_watres_2018_03_021 crossref_primary_10_1016_j_jclepro_2024_141345 crossref_primary_10_1016_j_scitotenv_2016_09_137 crossref_primary_10_1039_D4EW00390J crossref_primary_10_2139_ssrn_4125466 crossref_primary_10_1016_j_scitotenv_2020_143817 crossref_primary_10_3390_su13031212 crossref_primary_10_1021_acsami_8b15049 crossref_primary_10_3390_agriculture14122165 crossref_primary_10_1007_s13399_021_02257_4 crossref_primary_10_1016_j_jhazmat_2020_122507 crossref_primary_10_1080_09593330_2016_1170888 crossref_primary_10_1371_journal_pone_0191296 crossref_primary_10_1007_s11270_013_1820_x crossref_primary_10_1016_j_chemosphere_2014_05_039 crossref_primary_10_1007_s11356_015_5451_1 crossref_primary_10_1016_j_jaap_2018_04_010 crossref_primary_10_1111_sum_12953 crossref_primary_10_3390_agronomy9090531 crossref_primary_10_1007_s13399_020_00836_5 crossref_primary_10_3390_agriculture5041076 crossref_primary_10_1080_09593330_2020_1804466 crossref_primary_10_5194_soil_7_811_2021 crossref_primary_10_1016_j_geoderma_2018_11_006 crossref_primary_10_1016_j_envpol_2017_10_037 crossref_primary_10_4236_ajps_2019_1012156 crossref_primary_10_1016_j_fuel_2017_01_052 crossref_primary_10_3390_su14137824 crossref_primary_10_1007_s00374_015_1011_6 crossref_primary_10_1021_acs_est_4c02015 crossref_primary_10_3390_applmicrobiol2030051 crossref_primary_10_1007_s13399_021_01788_0 crossref_primary_10_1007_s10098_024_02863_6 crossref_primary_10_3390_agronomy11102081 crossref_primary_10_3390_molecules26185584 crossref_primary_10_3390_agriculture11111132 crossref_primary_10_3390_separations9110337 crossref_primary_10_3390_agronomy11102082 crossref_primary_10_1007_s11356_017_0668_9 crossref_primary_10_1016_j_scitotenv_2022_159806 crossref_primary_10_3390_earth5040055 crossref_primary_10_3390_horticulturae6030037 crossref_primary_10_1007_s11356_022_20088_2 crossref_primary_10_1016_j_biombioe_2019_04_004 crossref_primary_10_1016_j_scitotenv_2021_148756 crossref_primary_10_1016_j_jenvman_2020_111133 crossref_primary_10_1016_j_ecoenv_2017_06_063 crossref_primary_10_3390_su15042893 crossref_primary_10_1016_j_watres_2016_02_038 crossref_primary_10_3390_su15064861 crossref_primary_10_3390_w15101902 crossref_primary_10_1016_j_agwat_2021_107129 crossref_primary_10_1007_s00374_018_01338_3 crossref_primary_10_1007_s11368_018_2197_7 crossref_primary_10_1007_s41204_020_00090_0 crossref_primary_10_1016_j_cis_2016_12_002 crossref_primary_10_1080_00103624_2021_1900225 crossref_primary_10_1016_j_scitotenv_2018_03_140 crossref_primary_10_1080_19443994_2013_822337 crossref_primary_10_1007_s11356_019_06942_w crossref_primary_10_1021_acs_est_7b00647 crossref_primary_10_1002_slct_202103079 crossref_primary_10_1007_s11356_020_12180_2 crossref_primary_10_1016_j_jclepro_2020_125221 crossref_primary_10_1016_j_scitotenv_2021_146346 crossref_primary_10_1007_s13399_021_01337_9 crossref_primary_10_1007_s42773_020_00049_z crossref_primary_10_17221_393_2021_PSE crossref_primary_10_1016_j_scitotenv_2018_10_060 crossref_primary_10_1021_acsestwater_2c00301 crossref_primary_10_4081_ija_2020_1581 crossref_primary_10_1002_pc_24126 crossref_primary_10_1016_j_jwpe_2022_102908 crossref_primary_10_3390_agronomy10121950 crossref_primary_10_1007_s11157_020_09523_3 crossref_primary_10_1007_s40098_024_00875_z crossref_primary_10_1061__ASCE_EE_1943_7870_0001946 crossref_primary_10_3390_su10124692 crossref_primary_10_1016_j_chemosphere_2020_129428 crossref_primary_10_1016_j_geoderma_2019_06_006 crossref_primary_10_3390_w16162348 crossref_primary_10_1016_j_rechem_2021_100119 crossref_primary_10_1002_agj2_20101 crossref_primary_10_1016_j_indcrop_2017_10_053 crossref_primary_10_3390_app10030790 crossref_primary_10_47115_bsagriculture_1483357 crossref_primary_10_1007_s10533_021_00755_1 crossref_primary_10_1007_s42729_021_00440_0 crossref_primary_10_1038_s41598_018_35534_w crossref_primary_10_1080_00380768_2015_1136553 crossref_primary_10_1080_24749508_2022_2163608 crossref_primary_10_3389_fenvs_2022_914766 crossref_primary_10_2134_jeq2015_10_0529 crossref_primary_10_1016_j_scitotenv_2022_158620 crossref_primary_10_1061_JSWBAY_0000999 crossref_primary_10_1021_acssuschemeng_8b04382 crossref_primary_10_1016_j_jclepro_2019_118638 crossref_primary_10_1016_j_chemosphere_2018_02_058 crossref_primary_10_3389_fmicb_2017_00589 crossref_primary_10_1016_j_scitotenv_2016_01_091 crossref_primary_10_3390_agriculture12122157 crossref_primary_10_1016_j_biteb_2022_101225 crossref_primary_10_1016_j_scitotenv_2022_153576 crossref_primary_10_1007_s11356_017_0941_y crossref_primary_10_1016_j_geoderma_2022_116236 crossref_primary_10_1016_j_apsoil_2024_105801 crossref_primary_10_7745_KJSSF_2015_48_5_413 crossref_primary_10_1016_j_geoderma_2018_08_025 crossref_primary_10_1016_j_scitotenv_2016_12_169 crossref_primary_10_3390_su14127266 crossref_primary_10_3390_plants14030455 crossref_primary_10_1016_j_jece_2023_111638 crossref_primary_10_1080_01904167_2020_1792491 crossref_primary_10_1002_tqem_70032 crossref_primary_10_1016_j_chemosphere_2020_126539 crossref_primary_10_1016_j_biortech_2013_04_117 crossref_primary_10_1016_j_catena_2021_105754 crossref_primary_10_1007_s42773_023_00252_8 crossref_primary_10_1016_j_ecoleng_2020_106054 crossref_primary_10_1016_j_geoderma_2024_116917 crossref_primary_10_1080_21683565_2015_1118001 crossref_primary_10_1016_j_cej_2013_01_054 crossref_primary_10_1016_j_scitotenv_2024_174965 crossref_primary_10_1039_C9EN00890J crossref_primary_10_1016_j_chemosphere_2016_11_044 crossref_primary_10_3389_fenvs_2023_1114728 crossref_primary_10_1016_j_jclepro_2021_126645 crossref_primary_10_1016_j_jenvman_2018_02_088 crossref_primary_10_1016_j_resenv_2021_100034 crossref_primary_10_1016_j_colsurfa_2020_125736 crossref_primary_10_1016_j_ufug_2018_09_001 crossref_primary_10_1016_j_scitotenv_2022_161099 crossref_primary_10_1007_s10668_024_04760_w crossref_primary_10_24266_0738_2898_36_4_126 crossref_primary_10_1016_j_envpol_2020_114223 crossref_primary_10_1515_opag_2020_0021 crossref_primary_10_1007_s42729_024_02029_9 crossref_primary_10_1016_j_chemosphere_2021_131176 crossref_primary_10_1007_s11356_018_1383_x crossref_primary_10_1016_j_scitotenv_2020_139946 crossref_primary_10_3390_agronomy12092089 crossref_primary_10_1371_journal_pone_0189924 crossref_primary_10_1016_j_jcis_2021_08_078 crossref_primary_10_1080_03650340_2020_1869215 crossref_primary_10_3390_agronomy11091794 crossref_primary_10_3390_en15062110 crossref_primary_10_1016_j_chemosphere_2020_126403 crossref_primary_10_1016_j_jhazmat_2018_08_009 crossref_primary_10_1016_j_jtice_2016_03_021 crossref_primary_10_18178_joaat_6_2_83_90 crossref_primary_10_3390_su12062458 crossref_primary_10_1016_j_jclepro_2020_124052 crossref_primary_10_1038_s41598_017_03282_y crossref_primary_10_1080_02757540_2019_1702977 crossref_primary_10_1080_03650340_2017_1384545 crossref_primary_10_3390_molecules27185811 crossref_primary_10_1007_s11802_020_4150_9 crossref_primary_10_1016_j_geoderma_2018_09_043 crossref_primary_10_1016_j_catena_2021_105534 crossref_primary_10_1007_s42768_022_00114_2 crossref_primary_10_1016_j_envpol_2020_115684 crossref_primary_10_1021_es4012977 crossref_primary_10_1016_j_geoderma_2018_08_019 crossref_primary_10_1007_s12517_022_09539_9 crossref_primary_10_1016_j_jece_2014_11_012 crossref_primary_10_3390_en16010410 crossref_primary_10_3390_w14213563 crossref_primary_10_1051_matecconf_201712005004 crossref_primary_10_3390_plants13131736 crossref_primary_10_1016_j_foreco_2017_04_010 crossref_primary_10_1016_j_jcis_2020_06_054 crossref_primary_10_1007_s00374_020_01534_0 crossref_primary_10_3390_plants13081143 crossref_primary_10_1007_s10668_020_00970_0 crossref_primary_10_1371_journal_pone_0252262 crossref_primary_10_1007_s42773_022_00138_1 crossref_primary_10_1016_j_scitotenv_2018_07_224 crossref_primary_10_17660_ActaHortic_2017_1168_24 crossref_primary_10_55544_jrasb_2_4_2 crossref_primary_10_1016_j_jhazmat_2018_01_011 crossref_primary_10_1016_j_scitotenv_2022_156886 crossref_primary_10_1111_gcbb_12363 crossref_primary_10_3390_su11010277 crossref_primary_10_1017_S0014479719000218 crossref_primary_10_1016_j_jece_2024_115291 crossref_primary_10_3390_separations10100533 crossref_primary_10_1016_j_bej_2024_109560 crossref_primary_10_3390_c9010034 crossref_primary_10_1016_j_envres_2023_116258 crossref_primary_10_1080_10643389_2020_1716654 crossref_primary_10_3390_agronomy12061412 crossref_primary_10_1016_j_agee_2023_108744 crossref_primary_10_1007_s11368_020_02713_0 crossref_primary_10_3390_agronomy14123050 crossref_primary_10_3390_su13105612 crossref_primary_10_1038_srep11080 crossref_primary_10_1186_s40643_023_00670_3 crossref_primary_10_4081_ija_2016_780 crossref_primary_10_1016_j_scitotenv_2018_01_037 crossref_primary_10_1016_j_scitotenv_2018_12_400 crossref_primary_10_1016_j_jenvman_2017_01_061 crossref_primary_10_1007_s42773_024_00360_z crossref_primary_10_1016_j_jece_2020_104073 crossref_primary_10_3390_agriculture11060489 crossref_primary_10_1016_j_chemosphere_2014_07_084 crossref_primary_10_1016_j_indcrop_2022_115837 crossref_primary_10_1371_journal_pone_0171214 crossref_primary_10_1177_0263617418768944 crossref_primary_10_1016_j_scitotenv_2020_137852 crossref_primary_10_1016_j_chemosphere_2015_11_063 crossref_primary_10_1021_ez400165g crossref_primary_10_3390_app10217810 crossref_primary_10_3390_w15152701 crossref_primary_10_1007_s11270_014_1900_6 crossref_primary_10_1080_00103624_2019_1632343 crossref_primary_10_4081_ija_2019_1107 crossref_primary_10_1016_j_chemosphere_2024_143932 crossref_primary_10_1016_j_still_2025_106556 crossref_primary_10_1080_00387010_2017_1287091 crossref_primary_10_1016_j_scitotenv_2018_01_022 crossref_primary_10_1016_j_scitotenv_2021_152171 crossref_primary_10_1016_j_biortech_2019_121600 crossref_primary_10_1016_j_chemosphere_2019_03_085 crossref_primary_10_1016_j_chemosphere_2020_128991 crossref_primary_10_1016_j_jclepro_2018_05_246 crossref_primary_10_1016_j_cej_2019_04_097 crossref_primary_10_1016_j_still_2016_07_009 crossref_primary_10_5004_dwt_2020_25640 crossref_primary_10_1007_s12517_020_05532_2 crossref_primary_10_1016_j_agee_2016_12_019 crossref_primary_10_2134_jeq2017_11_0432 crossref_primary_10_1186_s12870_023_04397_3 crossref_primary_10_1111_gcbb_12582 crossref_primary_10_3389_fenvs_2024_1381781 crossref_primary_10_1080_10643389_2020_1713030 crossref_primary_10_1002_ldr_2829 crossref_primary_10_47836_pjtas_47_3_01 crossref_primary_10_1016_j_jclepro_2017_04_050 crossref_primary_10_1080_09542299_2016_1165080 crossref_primary_10_3390_su10051574 crossref_primary_10_1016_j_scitotenv_2021_146983 crossref_primary_10_1016_j_jwpe_2021_102355 crossref_primary_10_1016_j_watres_2014_10_009 crossref_primary_10_1080_00103624_2018_1563101 crossref_primary_10_1007_s00374_018_1273_x crossref_primary_10_1111_rec_12573 crossref_primary_10_1016_j_jaap_2025_107020 crossref_primary_10_3390_app14062280 crossref_primary_10_1016_j_scitotenv_2023_165861 crossref_primary_10_1016_j_chemosphere_2017_06_021 crossref_primary_10_1016_j_scitotenv_2019_134828 crossref_primary_10_1016_j_jenvman_2019_109730 crossref_primary_10_3389_fenvs_2022_942263 crossref_primary_10_1007_s10343_022_00730_2 crossref_primary_10_1016_S1002_0160_20_60094_7 crossref_primary_10_1139_cjss_2022_0086 crossref_primary_10_3390_agronomy10050685 crossref_primary_10_3390_agronomy9020058 crossref_primary_10_3389_fenvs_2022_1053843 crossref_primary_10_1007_s42729_021_00593_y crossref_primary_10_1016_j_wasman_2019_02_049 crossref_primary_10_1016_j_ecoleng_2018_10_005 crossref_primary_10_1007_s12517_023_11320_5 crossref_primary_10_1016_j_scitotenv_2023_165968 crossref_primary_10_1007_s11270_021_05044_z crossref_primary_10_19047_0136_1694_2022_113_110_137 crossref_primary_10_3390_su151813366 crossref_primary_10_1016_j_ecoleng_2022_106844 crossref_primary_10_1080_10643389_2017_1418580 crossref_primary_10_1016_j_jenvman_2014_09_033 crossref_primary_10_1016_j_jece_2023_109874 crossref_primary_10_1016_j_scitotenv_2019_03_061 crossref_primary_10_1080_26395940_2023_2287237 crossref_primary_10_1007_s11356_016_7829_0 crossref_primary_10_1016_j_jenvman_2019_05_072 crossref_primary_10_7745_KJSSF_2020_53_4_528 crossref_primary_10_13080_z_a_2022_109_002 crossref_primary_10_2134_jeq2015_04_0196 crossref_primary_10_1016_S1002_0160_18_60039_6 crossref_primary_10_1016_j_envres_2022_113341 crossref_primary_10_1016_j_geoderma_2016_06_018 crossref_primary_10_1016_j_jenvman_2016_11_030 crossref_primary_10_4028_www_scientific_net_AMR_750_752_1389 crossref_primary_10_1007_s11368_020_02584_5 crossref_primary_10_1016_j_cej_2012_08_052 crossref_primary_10_1061_JOEEDU_EEENG_7487 crossref_primary_10_1007_s11356_017_9049_7 crossref_primary_10_5604_01_3001_0010_4361 crossref_primary_10_1016_j_biortech_2020_123428 crossref_primary_10_1080_26395940_2019_1710259 crossref_primary_10_1016_j_ecoenv_2018_09_112 crossref_primary_10_1111_ejss_12082 crossref_primary_10_3390_ma13153391 crossref_primary_10_1007_s13580_024_00667_7 crossref_primary_10_1080_26395940_2024_2322491 crossref_primary_10_1186_s40068_024_00379_y crossref_primary_10_1371_journal_pone_0113888 crossref_primary_10_1016_j_chemosphere_2018_05_175 crossref_primary_10_2166_wst_2017_568 crossref_primary_10_1016_j_geoderma_2015_12_016 crossref_primary_10_1002_jeq2_20504 crossref_primary_10_3389_fpls_2023_1172425 crossref_primary_10_1016_j_biortech_2022_127467 crossref_primary_10_1007_s12517_019_4538_2 crossref_primary_10_1016_j_jenvman_2023_118191 crossref_primary_10_1111_plb_13088 crossref_primary_10_3390_agriculture13101954 crossref_primary_10_1016_j_chemosphere_2019_124872 crossref_primary_10_1080_09593330_2021_1996468 crossref_primary_10_1139_cjss_2020_0113 crossref_primary_10_1111_sum_70008 crossref_primary_10_1080_03601234_2020_1807264 crossref_primary_10_1016_j_jenvman_2019_109746 crossref_primary_10_4081_ija_2018_1136 crossref_primary_10_1007_s42452_020_03730_x crossref_primary_10_1016_j_jwpe_2024_105091 crossref_primary_10_1016_j_chemosphere_2021_130362 crossref_primary_10_2134_jeq2015_02_0068 crossref_primary_10_1016_j_geoderma_2015_12_020 crossref_primary_10_3389_feart_2022_855599 crossref_primary_10_1016_j_cej_2018_07_012 crossref_primary_10_1016_j_jtice_2022_104540 crossref_primary_10_1080_00103624_2020_1862163 crossref_primary_10_1016_j_cej_2019_03_179 crossref_primary_10_1016_j_psep_2024_04_126 crossref_primary_10_3390_su13137230 crossref_primary_10_1016_j_biortech_2022_128226 crossref_primary_10_15377_2409_983X_2017_04_3 crossref_primary_10_1016_j_ecoleng_2018_12_028 crossref_primary_10_1016_j_jenvman_2018_09_006 crossref_primary_10_1016_j_scitotenv_2016_10_182 crossref_primary_10_2134_jeq2016_04_0140 crossref_primary_10_1080_00103624_2017_1414830 crossref_primary_10_1016_j_rser_2014_07_107 crossref_primary_10_1007_s11368_016_1411_8 crossref_primary_10_1016_S1002_0160_15_30045_X crossref_primary_10_1007_s10333_020_00815_6 crossref_primary_10_1016_j_chemosphere_2017_02_123 crossref_primary_10_1080_09542299_2016_1142833 crossref_primary_10_1515_psr_2021_0137 crossref_primary_10_1007_s42452_024_06354_7 crossref_primary_10_1007_s42729_023_01370_9 crossref_primary_10_1007_s11368_014_0984_3 crossref_primary_10_1007_s42773_020_00065_z crossref_primary_10_1021_acssuschemeng_0c06108 crossref_primary_10_1016_j_chemosphere_2025_144067 crossref_primary_10_3389_fsoil_2022_1023743 crossref_primary_10_1016_j_jtice_2025_106015 crossref_primary_10_1002_jpln_201900171 crossref_primary_10_1016_j_apsoil_2023_104926 crossref_primary_10_1016_j_geoderma_2019_114091 crossref_primary_10_1080_10643389_2016_1239975 crossref_primary_10_1016_j_jenvman_2021_114368 crossref_primary_10_1016_j_envint_2015_10_018 crossref_primary_10_1016_j_jenvman_2020_111632 crossref_primary_10_1016_S1002_0160_14_60057_6 crossref_primary_10_3390_ijerph20010326 crossref_primary_10_1080_1065657X_2016_1202795 crossref_primary_10_3390_soilsystems3010016 crossref_primary_10_1039_C6RA15532D crossref_primary_10_1016_S1002_0160_21_60025_5 crossref_primary_10_1039_C8EW00447A crossref_primary_10_22207_JPAM_18_1_58 crossref_primary_10_1016_j_scitotenv_2016_02_129 crossref_primary_10_1007_s11356_019_07053_2 crossref_primary_10_1080_00103624_2023_2211623 crossref_primary_10_1007_s11356_021_12722_2 crossref_primary_10_1016_j_foreco_2016_06_030 crossref_primary_10_1021_acsami_5b03131 crossref_primary_10_1016_j_ecoleng_2015_04_082 crossref_primary_10_1016_j_jclepro_2017_11_224 crossref_primary_10_1186_s40538_020_00205_4 crossref_primary_10_1016_j_chemosphere_2017_07_097 crossref_primary_10_1016_j_scitotenv_2016_06_096 crossref_primary_10_1080_01904167_2020_1806307 crossref_primary_10_1080_15324982_2022_2104183 crossref_primary_10_1016_j_scitotenv_2016_10_230 crossref_primary_10_3390_su15054081 crossref_primary_10_1007_s44279_024_00033_2 crossref_primary_10_1007_s42729_021_00514_z crossref_primary_10_1080_03650340_2016_1151976 crossref_primary_10_1007_s12517_020_05586_2 crossref_primary_10_1007_s10653_025_02446_4 crossref_primary_10_1016_j_scitotenv_2022_161203 crossref_primary_10_3390_agronomy10030444 crossref_primary_10_1016_j_scitotenv_2018_11_316 crossref_primary_10_1016_j_soilbio_2019_04_018 crossref_primary_10_1016_j_cej_2019_01_036 crossref_primary_10_1016_j_scitotenv_2020_140065 crossref_primary_10_1016_S1002_0160_20_60014_5 crossref_primary_10_1016_j_geoderma_2016_05_006 crossref_primary_10_1371_journal_pone_0098523 crossref_primary_10_1016_S2095_3119_13_60705_4 crossref_primary_10_1111_ejss_13088 crossref_primary_10_3390_su13137063 crossref_primary_10_1007_s13399_020_01013_4 crossref_primary_10_1016_j_biombioe_2018_08_019 crossref_primary_10_1111_wej_12684 crossref_primary_10_1016_j_jece_2023_110003 crossref_primary_10_1016_j_geoderma_2021_115572 crossref_primary_10_1007_s10661_020_08561_2 crossref_primary_10_2166_h2oj_2019_011 crossref_primary_10_1007_s42773_022_00135_4 crossref_primary_10_1007_s10653_019_00474_5 crossref_primary_10_4236_msce_2024_121005 crossref_primary_10_3389_fenvs_2021_609621 crossref_primary_10_1016_j_chemosphere_2023_139417 crossref_primary_10_1016_j_apsoil_2017_06_008 crossref_primary_10_1016_j_cej_2019_123305 crossref_primary_10_1016_j_scitotenv_2015_03_060 crossref_primary_10_1016_j_chemosphere_2012_12_057 crossref_primary_10_3390_environments11010017 crossref_primary_10_21930_rcta_vol22_num3_art_1919 crossref_primary_10_1016_j_jaap_2018_01_011 crossref_primary_10_1016_j_jaridenv_2023_105011 crossref_primary_10_1155_2024_6697604 crossref_primary_10_3390_soilsystems3040069 crossref_primary_10_1007_s11356_017_0355_x crossref_primary_10_1016_j_envres_2025_120935 crossref_primary_10_1016_j_eti_2020_100885 crossref_primary_10_1016_j_soilbio_2020_107825 crossref_primary_10_1016_j_chemosphere_2016_02_004 crossref_primary_10_1007_s42729_021_00558_1 crossref_primary_10_1007_s10342_019_01217_y crossref_primary_10_1007_s11368_019_02366_8 crossref_primary_10_1007_s11270_022_05883_4 crossref_primary_10_1016_j_carbon_2020_02_065 crossref_primary_10_1080_00103624_2025_2457341 crossref_primary_10_1007_s11356_018_3815_z crossref_primary_10_1007_s11356_018_3550_5 crossref_primary_10_1016_j_agee_2016_08_028 crossref_primary_10_1007_s11356_020_12319_1 crossref_primary_10_1111_gcbb_13131 crossref_primary_10_1007_s11356_014_4067_1 crossref_primary_10_1007_s11270_016_3066_x crossref_primary_10_1007_s11783_014_0682_9 crossref_primary_10_1021_ez5002209 crossref_primary_10_1088_1757_899X_980_1_012065 crossref_primary_10_1016_j_ejsobi_2017_11_003 crossref_primary_10_1371_journal_pone_0121006 crossref_primary_10_1016_j_jenvman_2019_02_045 crossref_primary_10_3390_agriculture15010045 crossref_primary_10_1016_j_chemosphere_2016_10_083 crossref_primary_10_3934_agrfood_2019_4_1020 crossref_primary_10_3390_environments4040070 crossref_primary_10_1007_s44169_023_00028_y crossref_primary_10_1016_j_ecoleng_2022_106689 crossref_primary_10_1007_s00267_022_01775_9 crossref_primary_10_1007_s10163_020_00978_8 crossref_primary_10_1007_s11814_016_0308_y crossref_primary_10_1016_j_chemosphere_2022_133830 crossref_primary_10_1021_acsagscitech_3c00459 crossref_primary_10_3390_en16020771 crossref_primary_10_1007_s40003_019_00425_7 crossref_primary_10_1016_j_chemosphere_2021_131594 |
Cites_doi | 10.1016/j.geoderma.2011.04.021 10.1016/S0045-6535(02)00847-0 10.1016/j.biortech.2010.06.088 10.1016/j.jcis.2004.04.042 10.1016/j.jhazmat.2011.03.063 10.1016/j.soilbio.2011.04.022 10.1007/s11104-010-0464-5 10.1016/j.envpol.2011.07.023 10.1007/s11104-010-0327-0 10.1016/j.jhazmat.2010.09.087 10.2136/sssaj2005.0383 10.1016/j.biortech.2011.03.006 10.1016/j.orggeochem.2005.10.008 10.1023/A:1022833116184 10.1007/s11027-005-9006-5 10.1002/jpln.200625199 10.1016/j.soilbio.2011.02.005 10.1016/j.geoderma.2010.05.012 10.1007/s11270-010-0366-4 10.1007/s11104-009-0050-x 10.1007/s00374-002-0466-4 10.1021/ie0207919 10.1016/0043-1354(93)90090-5 10.1080/01496395.2011.584604 10.1016/j.biortech.2004.02.015 10.1007/s11051-010-9912-7 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2015 INIST-CNRS Copyright © 2012 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2012.06.002 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 1471 |
ExternalDocumentID | 22763330 26429290 10_1016_j_chemosphere_2012_06_002 US201500062404 S0045653512007709 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c530t-d9175db3cffb680adaad550150ff53e0e69ba263894af2f673110466f159b9613 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Sun Aug 24 04:12:52 EDT 2025 Thu Jul 10 22:00:13 EDT 2025 Mon Jul 21 06:03:24 EDT 2025 Wed Apr 02 07:14:02 EDT 2025 Tue Jul 01 00:44:55 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Wed Dec 27 19:18:14 EST 2023 Fri Feb 23 02:27:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Soils Nutrients Adsorption Biochar Black carbon Leaching Ammonium phosphate Soot Nitrates Sandy soil Carbonization Sorption Amendment Nutrient |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2012 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c530t-d9175db3cffb680adaad550150ff53e0e69ba263894af2f673110466f159b9613 |
Notes | http://dx.doi.org/10.1016/j.chemosphere.2012.06.002 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22763330 |
PQID | 1081434746 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1663549229 proquest_miscellaneous_1081434746 pubmed_primary_22763330 pascalfrancis_primary_26429290 crossref_citationtrail_10_1016_j_chemosphere_2012_06_002 crossref_primary_10_1016_j_chemosphere_2012_06_002 fao_agris_US201500062404 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2012_06_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-01 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zimmerman, Gao, Ahn (b0165) 2011; 43 Glaser, Lehmann, Zech (b0040) 2002; 35 Brown, Kercher, Nguyen, Nagle, Ball (b0030) 2006; 37 Antal, Gronli (b0005) 2003; 42 Lehmann, Pereira da Silva, Steiner, Nehls, Zech, Glaser (b0075) 2003; 249 Verheijen, F., Jeffery, S., Bastos, A.C., Velde, M.v.d., Diafas, I., 2009. Biochar Application to Soils – A Critical Scientific Review of Effects on Soil Properties, processes and functions. EUR 24099 EN. Office for the Official Publications of the European Communities, Luxemburg, pp. 149. Major, Rondon, Molina, Riha, Lehmann (b0095) 2010; 333 Novak, Lima, Xing, Gaskin, Steiner, Das, Ahmedna, Rehrah, Watts, Busscher (b0110) 2009; 3 Lehmann, Joseph (b0070) 2009 Liang, Lehmann, Solomon, Kinyangi, Grossman, O’Neill, Skjemstad, Thies, Luizao, Petersen, Neves (b0090) 2006; 70 Mizuta, Matsumoto, Hatate, Nishihara, Nakanishi (b0100) 2004; 95 Ding, Liu, Wu, Shi, Yang, Zhong (b0035) 2010; 213 APHA, AWWA, WEF (b0010) 1992 Karaca, Gurses, Ejder, Acikyildiz (b0055) 2004; 277 Sposito (b0120) 1989 Mukherjee, Zimmerman, Harris (b0105) 2011; 163 Bhargava, Sheldarkar (b0025) 1993; 27 Lehmann, Gaunt, Rondon (b0065) 2006; 11 Li, Katsumi, Inui (b0085) 2011; 185 USEPA, 1992. ESS method 310.1: Ortho-phosphorus, dissolved automated, ascorbic acid. Environmental Sciences Section Inorganic Chemistry Unit. Wisconsin State Lab of Hygiene. Inyang, Gao, Pullammanappallil, Ding, Zimmerman (b0050) 2010; 101 Steiner, Glaser, Teixeira, Lehmann, Blum, Zech (b0130) 2008; 171 Uchimiya, Chang, Klasson (b0140) 2011; 190 Beesley, Moreno-Jimenez, Gomez-Eyles, Harris, Robinson, Sizmur (b0020) 2011; 159 Laird, Fleming, Wang, Horton, Karlen (b0060) 2010; 158 Tian, Gao, Silvera-Batista, Ziegler (b0135) 2010; 12 Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (b0080) 2011; 43 Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0160) 2011; 102 Ozacar (b0115) 2003; 51 Atkinson, Fitzgerald, Hipps (b0015) 2010; 337 Inyang, Gao, Ding, Pullammanappallil, Zimmerman, Cao (b0045) 2011; 46 Steiner, Garcia, Zech (b0125) 2009 Van Zwieten, Kimber, Morris, Chan, Downie, Rust, Joseph, Cowie (b0150) 2010; 327 Novak (10.1016/j.chemosphere.2012.06.002_b0110) 2009; 3 Sposito (10.1016/j.chemosphere.2012.06.002_b0120) 1989 Mizuta (10.1016/j.chemosphere.2012.06.002_b0100) 2004; 95 Ozacar (10.1016/j.chemosphere.2012.06.002_b0115) 2003; 51 Brown (10.1016/j.chemosphere.2012.06.002_b0030) 2006; 37 Yao (10.1016/j.chemosphere.2012.06.002_b0160) 2011; 102 Beesley (10.1016/j.chemosphere.2012.06.002_b0020) 2011; 159 Atkinson (10.1016/j.chemosphere.2012.06.002_b0015) 2010; 337 Karaca (10.1016/j.chemosphere.2012.06.002_b0055) 2004; 277 Li (10.1016/j.chemosphere.2012.06.002_b0085) 2011; 185 Lehmann (10.1016/j.chemosphere.2012.06.002_b0080) 2011; 43 Mukherjee (10.1016/j.chemosphere.2012.06.002_b0105) 2011; 163 Major (10.1016/j.chemosphere.2012.06.002_b0095) 2010; 333 APHA, AWWA, WEF (10.1016/j.chemosphere.2012.06.002_b0010) 1992 Lehmann (10.1016/j.chemosphere.2012.06.002_b0070) 2009 Uchimiya (10.1016/j.chemosphere.2012.06.002_b0140) 2011; 190 10.1016/j.chemosphere.2012.06.002_b0145 Steiner (10.1016/j.chemosphere.2012.06.002_b0125) 2009 Ding (10.1016/j.chemosphere.2012.06.002_b0035) 2010; 213 Lehmann (10.1016/j.chemosphere.2012.06.002_b0075) 2003; 249 Glaser (10.1016/j.chemosphere.2012.06.002_b0040) 2002; 35 Tian (10.1016/j.chemosphere.2012.06.002_b0135) 2010; 12 Zimmerman (10.1016/j.chemosphere.2012.06.002_b0165) 2011; 43 Bhargava (10.1016/j.chemosphere.2012.06.002_b0025) 1993; 27 Antal (10.1016/j.chemosphere.2012.06.002_b0005) 2003; 42 Liang (10.1016/j.chemosphere.2012.06.002_b0090) 2006; 70 Lehmann (10.1016/j.chemosphere.2012.06.002_b0065) 2006; 11 Inyang (10.1016/j.chemosphere.2012.06.002_b0045) 2011; 46 Inyang (10.1016/j.chemosphere.2012.06.002_b0050) 2010; 101 Laird (10.1016/j.chemosphere.2012.06.002_b0060) 2010; 158 Steiner (10.1016/j.chemosphere.2012.06.002_b0130) 2008; 171 10.1016/j.chemosphere.2012.06.002_b0155 Van Zwieten (10.1016/j.chemosphere.2012.06.002_b0150) 2010; 327 |
References_xml | – volume: 213 start-page: 47 year: 2010 end-page: 55 ident: b0035 article-title: Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns publication-title: Water Air Soil Poll. – volume: 95 start-page: 255 year: 2004 end-page: 257 ident: b0100 article-title: Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal publication-title: Bioresour. Technol. – volume: 42 start-page: 1619 year: 2003 end-page: 1640 ident: b0005 article-title: The art, science, and technology of charcoal production publication-title: Ind. Eng. Chem. Res. – volume: 159 start-page: 3269 year: 2011 end-page: 3282 ident: b0020 article-title: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. – volume: 185 start-page: 768 year: 2011 end-page: 775 ident: b0085 article-title: Application of grass char for Cd (II) treatment in column leaching test publication-title: J. Hazard Mater. – year: 1989 ident: b0120 article-title: The Chemistry of Soils – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: b0080 article-title: Biochar effects on soil biota – a review publication-title: Soil Biol. Biochem. – volume: 46 start-page: 1950 year: 2011 end-page: 1956 ident: b0045 article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse publication-title: Separ. Sci. Technol. – volume: 333 start-page: 117 year: 2010 end-page: 128 ident: b0095 article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol publication-title: Plant Soil – volume: 249 start-page: 343 year: 2003 end-page: 357 ident: b0075 article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments publication-title: Plant Soil – volume: 11 start-page: 403 year: 2006 end-page: 427 ident: b0065 article-title: Bio-char sequestration in terrestrial ecosystems - a review publication-title: Mitigat. Adaptat. Strateg. Global Change – volume: 102 start-page: 6273 year: 2011 end-page: 6278 ident: b0160 article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential publication-title: Bioresour. Technol. – volume: 27 start-page: 303 year: 1993 end-page: 312 ident: b0025 article-title: Use of tnsac in phosphate adsorption studies and relationships – literature, experimental methodology, justification and effects of process variables publication-title: Water Res. – volume: 70 start-page: 1719 year: 2006 end-page: 1730 ident: b0090 article-title: Black Carbon increases cation exchange capacity in soils publication-title: Soil Sci. Soc. Am. J. – volume: 190 start-page: 432 year: 2011 end-page: 441 ident: b0140 article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups publication-title: J. Hazard Mater. – start-page: 325 year: 2009 ident: b0125 article-title: Effects of charcoal as slow release nutrient carrier on N–P–K dynamics and soil microbial population: pot experiments with Ferralsol substrate publication-title: Amazonian Dark Earths: Wim Sombroek’s Vision – volume: 3 start-page: 2 year: 2009 ident: b0110 article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand publication-title: Annal. Environ. Sci. – volume: 171 start-page: 893 year: 2008 end-page: 899 ident: b0130 article-title: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal publication-title: Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde – volume: 337 start-page: 1 year: 2010 end-page: 18 ident: b0015 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil – year: 2009 ident: b0070 article-title: Biochar for Environmental Management: Science and Technology – volume: 163 start-page: 247 year: 2011 end-page: 255 ident: b0105 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma – volume: 12 start-page: 2371 year: 2010 end-page: 2380 ident: b0135 article-title: Transport of engineered nanoparticles in saturated porous media publication-title: J. Nanopart Res. – volume: 51 start-page: 321 year: 2003 end-page: 327 ident: b0115 article-title: Adsorption of phosphate from aqueous solution onto alunite publication-title: Chemosphere – volume: 327 start-page: 235 year: 2010 end-page: 246 ident: b0150 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility publication-title: Plant Soil – volume: 101 start-page: 8868 year: 2010 end-page: 8872 ident: b0050 article-title: Biochar from anaerobically digested sugarcane bagasse publication-title: Bioresour. Technol. – reference: USEPA, 1992. ESS method 310.1: Ortho-phosphorus, dissolved automated, ascorbic acid. Environmental Sciences Section Inorganic Chemistry Unit. Wisconsin State Lab of Hygiene. – reference: Verheijen, F., Jeffery, S., Bastos, A.C., Velde, M.v.d., Diafas, I., 2009. Biochar Application to Soils – A Critical Scientific Review of Effects on Soil Properties, processes and functions. EUR 24099 EN. Office for the Official Publications of the European Communities, Luxemburg, pp. 149. – volume: 277 start-page: 257 year: 2004 end-page: 263 ident: b0055 article-title: Kinetic modeling of liquid-phase adsorption of phosphate on dolomite publication-title: J. Colloid. Interf. Sci. – volume: 158 start-page: 436 year: 2010 end-page: 442 ident: b0060 article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil publication-title: Geoderma – year: 1992 ident: b0010 article-title: Standard Methods for the Examination of Water and Wastewater – volume: 37 start-page: 321 year: 2006 end-page: 333 ident: b0030 article-title: Production and characterization of synthetic wood chars for use as surrogates for natural sorbents publication-title: Org. Geochem. – volume: 35 start-page: 219 year: 2002 end-page: 230 ident: b0040 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review publication-title: Biol. Fert. Soils – volume: 43 start-page: 1169 year: 2011 end-page: 1179 ident: b0165 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. – volume: 163 start-page: 247 year: 2011 ident: 10.1016/j.chemosphere.2012.06.002_b0105 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma doi: 10.1016/j.geoderma.2011.04.021 – volume: 51 start-page: 321 year: 2003 ident: 10.1016/j.chemosphere.2012.06.002_b0115 article-title: Adsorption of phosphate from aqueous solution onto alunite publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00847-0 – ident: 10.1016/j.chemosphere.2012.06.002_b0145 – volume: 101 start-page: 8868 year: 2010 ident: 10.1016/j.chemosphere.2012.06.002_b0050 article-title: Biochar from anaerobically digested sugarcane bagasse publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.088 – volume: 277 start-page: 257 year: 2004 ident: 10.1016/j.chemosphere.2012.06.002_b0055 article-title: Kinetic modeling of liquid-phase adsorption of phosphate on dolomite publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2004.04.042 – year: 1992 ident: 10.1016/j.chemosphere.2012.06.002_b0010 – volume: 190 start-page: 432 year: 2011 ident: 10.1016/j.chemosphere.2012.06.002_b0140 article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2011.03.063 – volume: 43 start-page: 1812 year: 2011 ident: 10.1016/j.chemosphere.2012.06.002_b0080 article-title: Biochar effects on soil biota – a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.022 – volume: 337 start-page: 1 year: 2010 ident: 10.1016/j.chemosphere.2012.06.002_b0015 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil doi: 10.1007/s11104-010-0464-5 – volume: 159 start-page: 3269 year: 2011 ident: 10.1016/j.chemosphere.2012.06.002_b0020 article-title: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.07.023 – volume: 333 start-page: 117 year: 2010 ident: 10.1016/j.chemosphere.2012.06.002_b0095 article-title: Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol publication-title: Plant Soil doi: 10.1007/s11104-010-0327-0 – volume: 185 start-page: 768 year: 2011 ident: 10.1016/j.chemosphere.2012.06.002_b0085 article-title: Application of grass char for Cd (II) treatment in column leaching test publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.09.087 – start-page: 325 year: 2009 ident: 10.1016/j.chemosphere.2012.06.002_b0125 article-title: Effects of charcoal as slow release nutrient carrier on N–P–K dynamics and soil microbial population: pot experiments with Ferralsol substrate – volume: 70 start-page: 1719 year: 2006 ident: 10.1016/j.chemosphere.2012.06.002_b0090 article-title: Black Carbon increases cation exchange capacity in soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0383 – volume: 102 start-page: 6273 year: 2011 ident: 10.1016/j.chemosphere.2012.06.002_b0160 article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.006 – volume: 37 start-page: 321 year: 2006 ident: 10.1016/j.chemosphere.2012.06.002_b0030 article-title: Production and characterization of synthetic wood chars for use as surrogates for natural sorbents publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2005.10.008 – year: 2009 ident: 10.1016/j.chemosphere.2012.06.002_b0070 – volume: 249 start-page: 343 year: 2003 ident: 10.1016/j.chemosphere.2012.06.002_b0075 article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments publication-title: Plant Soil doi: 10.1023/A:1022833116184 – volume: 11 start-page: 403 year: 2006 ident: 10.1016/j.chemosphere.2012.06.002_b0065 article-title: Bio-char sequestration in terrestrial ecosystems - a review publication-title: Mitigat. Adaptat. Strateg. Global Change doi: 10.1007/s11027-005-9006-5 – volume: 171 start-page: 893 year: 2008 ident: 10.1016/j.chemosphere.2012.06.002_b0130 article-title: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal publication-title: Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde doi: 10.1002/jpln.200625199 – volume: 43 start-page: 1169 year: 2011 ident: 10.1016/j.chemosphere.2012.06.002_b0165 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.005 – volume: 158 start-page: 436 year: 2010 ident: 10.1016/j.chemosphere.2012.06.002_b0060 article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.012 – volume: 213 start-page: 47 year: 2010 ident: 10.1016/j.chemosphere.2012.06.002_b0035 article-title: Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns publication-title: Water Air Soil Poll. doi: 10.1007/s11270-010-0366-4 – volume: 327 start-page: 235 year: 2010 ident: 10.1016/j.chemosphere.2012.06.002_b0150 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility publication-title: Plant Soil doi: 10.1007/s11104-009-0050-x – year: 1989 ident: 10.1016/j.chemosphere.2012.06.002_b0120 – volume: 35 start-page: 219 year: 2002 ident: 10.1016/j.chemosphere.2012.06.002_b0040 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review publication-title: Biol. Fert. Soils doi: 10.1007/s00374-002-0466-4 – volume: 3 start-page: 2 year: 2009 ident: 10.1016/j.chemosphere.2012.06.002_b0110 article-title: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand publication-title: Annal. Environ. Sci. – ident: 10.1016/j.chemosphere.2012.06.002_b0155 – volume: 42 start-page: 1619 year: 2003 ident: 10.1016/j.chemosphere.2012.06.002_b0005 article-title: The art, science, and technology of charcoal production publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0207919 – volume: 27 start-page: 303 year: 1993 ident: 10.1016/j.chemosphere.2012.06.002_b0025 article-title: Use of tnsac in phosphate adsorption studies and relationships – literature, experimental methodology, justification and effects of process variables publication-title: Water Res. doi: 10.1016/0043-1354(93)90090-5 – volume: 46 start-page: 1950 year: 2011 ident: 10.1016/j.chemosphere.2012.06.002_b0045 article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse publication-title: Separ. Sci. Technol. doi: 10.1080/01496395.2011.584604 – volume: 95 start-page: 255 year: 2004 ident: 10.1016/j.chemosphere.2012.06.002_b0100 article-title: Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2004.02.015 – volume: 12 start-page: 2371 year: 2010 ident: 10.1016/j.chemosphere.2012.06.002_b0135 article-title: Transport of engineered nanoparticles in saturated porous media publication-title: J. Nanopart Res. doi: 10.1007/s11051-010-9912-7 |
SSID | ssj0001659 |
Score | 2.5989704 |
Snippet | ► Effect of biochar on the leaching of nutrients in soils is not uniform. ► Sorption of nutrients on biochar varies by biochar and nutrient type. ► Nutrient... When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1467 |
SubjectTerms | Adsorption Agronomy. Soil science and plant productions analysis Biochar Biological and medical sciences Black carbon Charcoal Charcoal - chemistry chemistry Environmental Restoration and Remediation Environmental Restoration and Remediation - methods Fundamental and applied biological sciences. Psychology General agronomy. Plant production hulls laboratory experimentation leachates Leaching methods microorganisms Nitrates Nitrates - analysis Nitrates - chemistry Nutrients Other nutrients. Amendments. Solid and liquid wastes. Sludges and slurries peanuts Phosphates Phosphates - analysis Phosphates - chemistry Quaternary Ammonium Compounds Quaternary Ammonium Compounds - analysis Quaternary Ammonium Compounds - chemistry sandy soils Soil Soil - chemistry soil amendments soil nutrients Soil Pollutants Soil Pollutants - analysis Soil Pollutants - chemistry Soil-plant relationships. Soil fertility. Fertilization. Amendments Soils sorption |
Title | Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil |
URI | https://dx.doi.org/10.1016/j.chemosphere.2012.06.002 https://www.ncbi.nlm.nih.gov/pubmed/22763330 https://www.proquest.com/docview/1081434746 https://www.proquest.com/docview/1663549229 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa6Dntchq17NHsEKrBjvdqSrDjALkXQItuwXrYAvQmSLbUeEjuok0Mv_e0lZTtZgW0osKNtyrZImvwk8wHwMUMQqqTjUZx7GclcpJFJTBKFjiiJcNKHrYHvZ2o6k1_P0_MdmPS5MBRW2dn-1qYHa92dOeq4ebQsS8rxJTQi0GNRTZqQxCfliLT80802zCNRaQuBZRoR9WM42MZ4IV8WdUP5-1Qxk7YF1WaH5Q8-6oE3NQVPmgb559vGF39HpsFDnT6HZx20ZMft27-AHVftwZNJ39FtDx6dhBLV1y_hsi1azGrPbFlT5hUzC1cVtFXI6oo19VUwJcxUBZt3AZdEjQaAakscIjnqb7leHAaS5SXNDy-wEsewBs9d403K-SuYnZ78nEyjrudClKciXkUFLt_Sworce6uy2BTGFLiIQdjofSpc7NTYGk4wRxrPvRqJhP4SK4-wyI4RG7yG3aqu3D6wLM-Up-I4jrSh8DYRMldeGmtxkVTIAWQ9l3XeFSSnvhhz3Uee_dK_CUiTgHSIwuMD4Juhy7Yqx30Gfe5Fqe-omEbvcZ_h-yh-bS7Q-OrZD048oQxUGeNMhnd0YvNOiDY54s94AAe9kmiUOf2TMZWr1w3VZ0XEKkdS_YOGUKEccz4ewJtWw7ZP4OgghIjf_t_k3sFTOmqTLN_D7upq7T4g2lrZYfichvDw-Mu36dktuqkngQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RdBeEJRHl0dxJbg1bWI7biLBAZVWW_q40JV6M05i06DdZNXsqtoLf4o_yEweu1QCVAn1mthJ7BnPfHZmvgF4GyEIVdJyz0-d9GQqQs8EJvDqiiiBsNLVRwOnZ6o_kJ8vwosl-NnlwlBYZWv7G5teW-v2ym47m7vjPKccX0IjAj0WcdL4cRtZeWxn17hvqz4cfUIhv-P88OB8v--1pQW8NBT-xMtwlxJmiUidS1Tkm8yYDLE6oiPnQmF9q-LEcPLm0jju1J4I6Geocuj9kxhdID53Ge5JNBdUNmHnxyKuJFBhg7ll6NHnPYCtRVAZCmJUVkQYQBSddA6p5kc6f3CKy86UFK1pKhSYaypt_B0K1y7x8BE8bLEs-9hM12NYssU6rO53JeTW4f5BzYk9ewKXDUsyKx1L8pJSvZgZ2SKjs0lWFqwqr2rbxUyRsWEb4Umt0eIQmcU2NscFk09H23WT8SWND2-wHPuwCq_N8CH58CkM7kQSz2ClKAu7ASxKI-WIjceS-mUuCYRMlZMmSXBXlskeRN0s67RlQKdCHEPdhbp9178JSJOAdB32x3vA513HDQ3IbTq970Spb-i0Rnd1m-4bKH5tvqG114MvnOaEUl6ljyPZvKET829CeMsR8Po92OqURKPM6SeQKWw5rYgQFiGy3JPqH20IhsqY87gHzxsNW7yBo0cSwn_xf4N7A6v989MTfXJ0dvwS1uhOk-H5ClYmV1P7GqHeJNmslxaDr3e9ln8BxrZifw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+biochar+amendment+on+sorption+and+leaching+of+nitrate%2C+ammonium%2C+and+phosphate+in+a+sandy+soil&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Yao%2C+Ying&rft.au=Gao%2C+Bin&rft.au=Zhang%2C+Ming&rft.au=Inyang%2C+Mandu&rft.date=2012-11-01&rft.eissn=1879-1298&rft.volume=89&rft.issue=11&rft.spage=1467&rft_id=info:doi/10.1016%2Fj.chemosphere.2012.06.002&rft_id=info%3Apmid%2F22763330&rft.externalDocID=22763330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |