High linear energy transfer carbon-ion irradiation upregulates PD-L1 expression more significantly than X-rays in human osteosarcoma U2OS cells

Programmed death ligand 1 (PD-L1) expression on the surface of cancer cells affects the efficacy of anti-PD-1/PD-L1 immune checkpoint therapy. However, the mechanism underlying PD-L1 expression in cancer cells is not fully understood, particularly after ionizing radiation (IR). Here, we examined the...

Full description

Saved in:
Bibliographic Details
Published inJournal of radiation research Vol. 62; no. 5; pp. 773 - 781
Main Authors Permata, Tiara Bunga Mayang, Sato, Hiro, Gu, Wenchao, Kakoti, Sangeeta, Uchihara, Yuki, Yoshimatsu, Yukihiko, Sato, Itaru, Kato, Reona, Yamauchi, Motohiro, Suzuki, Keiji, Oike, Takahiro, Tsushima, Yoshito, Gondhowiardjo, Soehartati, Ohno, Tatsuya, Yasuhara, Takaaki, Shibata, Atsushi
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.09.2021
Subjects
Online AccessGet full text
ISSN0449-3060
1349-9157
1349-9157
DOI10.1093/jrr/rrab050

Cover

Abstract Programmed death ligand 1 (PD-L1) expression on the surface of cancer cells affects the efficacy of anti-PD-1/PD-L1 immune checkpoint therapy. However, the mechanism underlying PD-L1 expression in cancer cells is not fully understood, particularly after ionizing radiation (IR). Here, we examined the impact of high linear energy transfer (LET) carbon-ion irradiation on the expression of PD-L1 in human osteosarcoma U2OS cells. We found that the upregulation of PD-L1 expression after high LET carbon-ion irradiation was greater than that induced by X-rays at the same physical and relative biological effectiveness (RBE) dose, and that the upregulation of PD-L1 induced by high LET carbon-ion irradiation was predominantly dependent on ataxia telangiectasia and Rad3-related (ATR) kinase activity. Moreover, we showed that the downstream signaling, e.g. STAT1 phosphorylation and IRF1 expression, was upregulated to a greater extent after high LET carbon-ion irradiation than X-rays, and that IRF1 upregulation was also ATR dependent. Finally, to visualize PD-L1 molecules on the cell surface in 3D, we applied immunofluorescence-based super-resolution imaging. The three-dimensional structured illumination microscopy (3D-SIM) analyses revealed substantial increases in the number of presented PD-L1 molecules on the cell surface after high LET carbon-ion irradiation compared with X-ray irradiation.
AbstractList Programmed death ligand 1 (PD-L1) expression on the surface of cancer cells affects the efficacy of anti-PD-1/PD-L1 immune checkpoint therapy. However, the mechanism underlying PD-L1 expression in cancer cells is not fully understood, particularly after ionizing radiation (IR). Here, we examined the impact of high linear energy transfer (LET) carbon-ion irradiation on the expression of PD-L1 in human osteosarcoma U2OS cells. We found that the upregulation of PD-L1 expression after high LET carbon-ion irradiation was greater than that induced by X-rays at the same physical and relative biological effectiveness (RBE) dose, and that the upregulation of PD-L1 induced by high LET carbon-ion irradiation was predominantly dependent on ataxia telangiectasia and Rad3-related (ATR) kinase activity. Moreover, we showed that the downstream signaling, e.g. STAT1 phosphorylation and IRF1 expression, was upregulated to a greater extent after high LET carbon-ion irradiation than X-rays, and that IRF1 upregulation was also ATR dependent. Finally, to visualize PD-L1 molecules on the cell surface in 3D, we applied immunofluorescence-based super-resolution imaging. The three-dimensional structured illumination microscopy (3D-SIM) analyses revealed substantial increases in the number of presented PD-L1 molecules on the cell surface after high LET carbon-ion irradiation compared with X-ray irradiation.
Programmed death ligand 1 (PD-L1) expression on the surface of cancer cells affects the efficacy of anti-PD-1/PD-L1 immune checkpoint therapy. However, the mechanism underlying PD-L1 expression in cancer cells is not fully understood, particularly after ionizing radiation (IR). Here, we examined the impact of high linear energy transfer (LET) carbon-ion irradiation on the expression of PD-L1 in human osteosarcoma U2OS cells. We found that the upregulation of PD-L1 expression after high LET carbon-ion irradiation was greater than that induced by X-rays at the same physical and relative biological effectiveness (RBE) dose, and that the upregulation of PD-L1 induced by high LET carbon-ion irradiation was predominantly dependent on ataxia telangiectasia and Rad3-related (ATR) kinase activity. Moreover, we showed that the downstream signaling, e.g. STAT1 phosphorylation and IRF1 expression, was upregulated to a greater extent after high LET carbon-ion irradiation than X-rays, and that IRF1 upregulation was also ATR dependent. Finally, to visualize PD-L1 molecules on the cell surface in 3D, we applied immunofluorescence-based super-resolution imaging. The three-dimensional structured illumination microscopy (3D-SIM) analyses revealed substantial increases in the number of presented PD-L1 molecules on the cell surface after high LET carbon-ion irradiation compared with X-ray irradiation.Programmed death ligand 1 (PD-L1) expression on the surface of cancer cells affects the efficacy of anti-PD-1/PD-L1 immune checkpoint therapy. However, the mechanism underlying PD-L1 expression in cancer cells is not fully understood, particularly after ionizing radiation (IR). Here, we examined the impact of high linear energy transfer (LET) carbon-ion irradiation on the expression of PD-L1 in human osteosarcoma U2OS cells. We found that the upregulation of PD-L1 expression after high LET carbon-ion irradiation was greater than that induced by X-rays at the same physical and relative biological effectiveness (RBE) dose, and that the upregulation of PD-L1 induced by high LET carbon-ion irradiation was predominantly dependent on ataxia telangiectasia and Rad3-related (ATR) kinase activity. Moreover, we showed that the downstream signaling, e.g. STAT1 phosphorylation and IRF1 expression, was upregulated to a greater extent after high LET carbon-ion irradiation than X-rays, and that IRF1 upregulation was also ATR dependent. Finally, to visualize PD-L1 molecules on the cell surface in 3D, we applied immunofluorescence-based super-resolution imaging. The three-dimensional structured illumination microscopy (3D-SIM) analyses revealed substantial increases in the number of presented PD-L1 molecules on the cell surface after high LET carbon-ion irradiation compared with X-ray irradiation.
Author Shibata, Atsushi
Gondhowiardjo, Soehartati
Tsushima, Yoshito
Gu, Wenchao
Ohno, Tatsuya
Permata, Tiara Bunga Mayang
Sato, Hiro
Suzuki, Keiji
Kato, Reona
Yasuhara, Takaaki
Uchihara, Yuki
Yamauchi, Motohiro
Sato, Itaru
Oike, Takahiro
Kakoti, Sangeeta
Yoshimatsu, Yukihiko
Author_xml – sequence: 1
  givenname: Tiara Bunga Mayang
  surname: Permata
  fullname: Permata, Tiara Bunga Mayang
– sequence: 2
  givenname: Hiro
  surname: Sato
  fullname: Sato, Hiro
– sequence: 3
  givenname: Wenchao
  surname: Gu
  fullname: Gu, Wenchao
  email: shibata.at@gunma-u.ac.jp
– sequence: 4
  givenname: Sangeeta
  surname: Kakoti
  fullname: Kakoti, Sangeeta
– sequence: 5
  givenname: Yuki
  surname: Uchihara
  fullname: Uchihara, Yuki
– sequence: 6
  givenname: Yukihiko
  surname: Yoshimatsu
  fullname: Yoshimatsu, Yukihiko
– sequence: 7
  givenname: Itaru
  surname: Sato
  fullname: Sato, Itaru
– sequence: 8
  givenname: Reona
  surname: Kato
  fullname: Kato, Reona
– sequence: 9
  givenname: Motohiro
  surname: Yamauchi
  fullname: Yamauchi, Motohiro
– sequence: 10
  givenname: Keiji
  surname: Suzuki
  fullname: Suzuki, Keiji
– sequence: 11
  givenname: Takahiro
  surname: Oike
  fullname: Oike, Takahiro
– sequence: 12
  givenname: Yoshito
  surname: Tsushima
  fullname: Tsushima, Yoshito
– sequence: 13
  givenname: Soehartati
  surname: Gondhowiardjo
  fullname: Gondhowiardjo, Soehartati
– sequence: 14
  givenname: Tatsuya
  surname: Ohno
  fullname: Ohno, Tatsuya
– sequence: 15
  givenname: Takaaki
  surname: Yasuhara
  fullname: Yasuhara, Takaaki
– sequence: 16
  givenname: Atsushi
  surname: Shibata
  fullname: Shibata, Atsushi
  email: shibata.at@gunma-u.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34196706$$D View this record in MEDLINE/PubMed
BookMark eNp9kt-L1DAQx4OceHunT75LQBBB6iVN0zQvgpw_Tlg4QQ98C9N0upulTdakFfev8F826-6JHuJTJpnPfPMdZs7IiQ8eCXnM2UvOtLjYxHgRI7RMsntkwUWlC82lOiELVuVYsJqdkrOUNoyVKkMPyKmouK4Vqxfkx5VbrengPEKk6DGudnSK4FOPkVqIbfCFC566_EPnYNrH8zbiah5gwkQ_vimWnOL3_JTSPjmGiDS5lXe9s-CnIeutwdMvRYRdos7T9Tzme0gThgTRhhHoTXn9iVochvSQ3O9hSPjoeJ6Tm3dvP19eFcvr9x8uXy8LKwWbik6WNQcGumkrXWnBsVE1aK5Ri5LXosUeK16hkNKyFiRTfYe8U4x1NajGinPy6qC7ndsRO4s-dz2YbXQjxJ0J4MzfGe_WZhW-maYSTSmbLPD8KBDD1xnTZEaX9i2AxzAnU8pKSaFFLTL69A66CXP0uT0juOJc6aYqM_XkT0e_rdzOKgP8ANgYUorYG-umXxPJBt1gODP7fTB5H8xxH3LNizs1t7L_pp8d6DBv_wv-BEvhyDY
CitedBy_id crossref_primary_10_1016_j_ecoenv_2025_117689
crossref_primary_10_31083_j_fbl2709277
crossref_primary_10_3390_cancers13194893
crossref_primary_10_1007_s11307_023_01857_y
crossref_primary_10_3389_fonc_2024_1371752
crossref_primary_10_3892_ol_2021_13147
crossref_primary_10_1016_j_canlet_2023_216268
crossref_primary_10_1002_cam4_6742
crossref_primary_10_3389_fpls_2023_1056662
crossref_primary_10_1016_j_canlet_2022_215887
crossref_primary_10_1186_s13046_022_02469_0
crossref_primary_10_1016_j_dnarep_2024_103626
crossref_primary_10_1016_j_dnarep_2023_103590
crossref_primary_10_1016_j_jare_2024_12_023
crossref_primary_10_3389_fphar_2022_1031527
crossref_primary_10_1002_cnr2_1825
crossref_primary_10_3389_fcell_2024_1422520
crossref_primary_10_1093_jrr_rrad107
crossref_primary_10_15212_AMM_2022_0024
crossref_primary_10_32604_phyton_2023_042919
crossref_primary_10_3390_cells13121058
crossref_primary_10_1038_s41416_022_02117_6
Cites_doi 10.1016/j.mrfmmm.2017.07.011
10.3389/fonc.2019.00156
10.1038/nature14292
10.3389/fonc.2016.00139
10.1038/s41586-018-0629-6
10.1259/bjr.20130626
10.1186/s40425-018-0361-7
10.1158/2159-8290.CD-18-1020
10.1016/j.clon.2014.02.004
10.1186/s12929-017-0329-9
10.1038/s41388-019-0733-6
10.1016/j.celrep.2017.04.031
10.18632/oncotarget.22679
10.1038/nature23470
10.1016/S1470-2045(16)30498-3
10.1172/JCI123319
10.1016/j.dnarep.2013.08.009
10.18632/oncotarget.26551
10.1016/S1470-2045(15)00007-8
10.1016/j.celrep.2020.108080
10.1016/S1470-2045(14)70412-7
10.1128/JVI.00006-17
10.1038/nrclinonc.2013.79
10.1038/nrclinonc.2017.30
10.1016/j.canlet.2017.08.006
10.1038/s41467-017-01883-9
10.1038/nrc.2016.36
10.1038/emboj.2011.27
10.1016/j.molcel.2009.03.004
10.1038/nature23449
10.3802/jgo.2020.31.e19
10.1038/nature21349
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of The Japanese Radiation Research Society and Japanese Society for Radiation Oncology. 2021
The Author(s) 2021. Published by Oxford University Press on behalf of The Japanese Radiation Research Society and Japanese Society for Radiation Oncology.
The Author(s) 2021. Published by Oxford University Press on behalf of The Japanese Radiation Research Society and Japanese Society for Radiation Oncology. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of The Japanese Radiation Research Society and Japanese Society for Radiation Oncology. 2021
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of The Japanese Radiation Research Society and Japanese Society for Radiation Oncology.
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of The Japanese Radiation Research Society and Japanese Society for Radiation Oncology. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
HCIFZ
K9.
M0S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1093/jrr/rrab050
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1349-9157
EndPage 781
ExternalDocumentID PMC8438258
34196706
10_1093_jrr_rrab050
10.1093/jrr/rrab050
Genre Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: JP19K08195
– fundername: ;
  grantid: JP19K08195; JP17H04713
GroupedDBID ---
-~X
.I3
0R~
29L
2WC
4.4
53G
5GY
5VS
7.U
8WZ
A6W
AAFWJ
AAMVS
AAOGV
AAPPN
AAPXW
AAVAP
AAWTL
ABAZT
ABEFU
ABEJV
ABGNP
ABPTD
ABQLI
ABWST
ABXVV
ACFRR
ACGFS
ACUTJ
ADBBV
ADHZD
ADMLS
ADRAZ
AENEX
AENZO
AFFNX
AFPKN
AFULF
AGQXC
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
BTTYL
CIDKT
CS3
DIK
DU5
D~K
E3Z
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
IAO
IHR
INH
ITC
JAVBF
JMI
JSF
JSH
KSI
M48
ML0
MOJWN
M~E
O9-
OAWHX
OCL
OJQWA
OK1
O~Y
P2P
PEELM
RHF
RJT
RNS
ROL
ROX
RPM
RXO
RYR
RZJ
TKC
TOX
TR2
UDS
W2D
XSB
~D7
7X7
8AO
8FI
8FJ
AAYXX
ABUWG
ABVLG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
FYUFA
HCIFZ
HMCUK
OVT
PHGZM
PHGZT
PIMPY
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FE
8FG
8FK
AZQEC
DWQXO
K9.
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c530t-d5261a0a98b494931e876a919e932163befe414e355c0ba507fde1d700d6a78c3
IEDL.DBID M48
ISSN 0449-3060
1349-9157
IngestDate Thu Aug 21 14:09:20 EDT 2025
Fri Sep 05 00:52:44 EDT 2025
Sat Aug 23 14:30:16 EDT 2025
Wed Feb 19 02:27:26 EST 2025
Thu Apr 24 23:05:09 EDT 2025
Tue Jul 01 00:41:46 EDT 2025
Fri Feb 07 10:35:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords high linear energy transfer (LET) carbon-ion therapy
PD-L1 expression
DNA damage response
anti-PD-1/PD-L1 therapy
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2021. Published by Oxford University Press on behalf of The Japanese Radiation Research Society and Japanese Society for Radiation Oncology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-d5261a0a98b494931e876a919e932163befe414e355c0ba507fde1d700d6a78c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Tiara Bunga Mayang Permata, Hiro Sato, Wenchao Gu, Sangeeta Kakoti contributed equally to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/jrr/rrab050
PMID 34196706
PQID 3171179842
PQPubID 1976363
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8438258
proquest_miscellaneous_2547539363
proquest_journals_3171179842
pubmed_primary_34196706
crossref_citationtrail_10_1093_jrr_rrab050
crossref_primary_10_1093_jrr_rrab050
oup_primary_10_1093_jrr_rrab050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Journal of radiation research
PublicationTitleAlternate J Radiat Res
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Feng (2021091406020809000_ref7) 2017; 407
Rhind (2021091406020809000_ref25) 2009; 33
Sen (2021091406020809000_ref26) 2019; 9
Chen (2021091406020809000_ref31) 2020; 32
Sato (2021091406020809000_ref15) 2017; 8
Takahashi (2021091406020809000_ref13) 2019; 10
Deschamps (2021091406020809000_ref18) 2017; 91
Harding (2021091406020809000_ref28) 2017; 548
Shibata (2021091406020809000_ref23) 2014; 26
Garcia-Diaz (2021091406020809000_ref21) 2017; 19
Chabanon (2021091406020809000_ref27) 2019; 129
Iijima (2021091406020809000_ref14) 2020; 31
Liu (2021091406020809000_ref30) 2018; 563
Oike (2021091406020809000_ref22) 2016; 6
Shibata (2021091406020809000_ref24) 2017; 803-805
Shibata (2021091406020809000_ref20) 2011; 30
Permata (2021091406020809000_ref16) 2019; 38
Mackenzie (2021091406020809000_ref29) 2017; 548
Sharabi (2021091406020809000_ref11) 2015; 16
Durante (2021091406020809000_ref2) 2014; 87
Hagiwara (2021091406020809000_ref17) 2017; 8
Twyman-Saint Victor (2021091406020809000_ref9) 2015; 520
Topalian (2021091406020809000_ref6) 2016; 16
Yajima (2021091406020809000_ref19) 2013; 12
Loeffler (2021091406020809000_ref1) 2013; 10
Kamada (2021091406020809000_ref32) 2015; 16
Langer (2021091406020809000_ref10) 2016; 17
Shevtsov (2021091406020809000_ref8) 2019; 9
Gong (2021091406020809000_ref12) 2018; 6
Durante (2021091406020809000_ref3) 2017; 14
Iwai (2021091406020809000_ref4) 2017; 24
Chen (2021091406020809000_ref5) 2017; 541
References_xml – volume: 803-805
  start-page: 51
  year: 2017
  ident: 2021091406020809000_ref24
  article-title: Regulation of repair pathway choice at two-ended DNA double-strand breaks
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2017.07.011
– volume: 9
  start-page: 156
  year: 2019
  ident: 2021091406020809000_ref8
  article-title: Novel approaches to improve the Eeficacy of immuno-radiotherapy
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.00156
– volume: 520
  start-page: 373
  year: 2015
  ident: 2021091406020809000_ref9
  article-title: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer
  publication-title: Nature
  doi: 10.1038/nature14292
– volume: 6
  start-page: 139
  year: 2016
  ident: 2021091406020809000_ref22
  article-title: Translational research to improve the efficacy of carbon ion radiotherapy: experience of Gunma University
  publication-title: Front Oncol
  doi: 10.3389/fonc.2016.00139
– volume: 563
  start-page: 131
  year: 2018
  ident: 2021091406020809000_ref30
  article-title: Nuclear cGAS suppresses DNA repair and promotes tumorigenesis
  publication-title: Nature
  doi: 10.1038/s41586-018-0629-6
– volume: 87
  start-page: 20130626
  year: 2014
  ident: 2021091406020809000_ref2
  article-title: New challenges in high-energy particle radiobiology
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20130626
– volume: 6
  start-page: 46
  year: 2018
  ident: 2021091406020809000_ref12
  article-title: Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination
  publication-title: J Immunother Cancer
  doi: 10.1186/s40425-018-0361-7
– volume: 9
  start-page: 646
  year: 2019
  ident: 2021091406020809000_ref26
  article-title: Targeting DNA damage response promotes antitumor immunity through STING-mediated t-cell activation in small cell lung cancer
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-18-1020
– volume: 26
  start-page: 243
  year: 2014
  ident: 2021091406020809000_ref23
  article-title: DNA double-strand break repair in a cellular context
  publication-title: Clin Oncol
  doi: 10.1016/j.clon.2014.02.004
– volume: 24
  start-page: 26
  year: 2017
  ident: 2021091406020809000_ref4
  article-title: Cancer immunotherapies targeting the PD-1 signaling pathway
  publication-title: J Biomed Sci
  doi: 10.1186/s12929-017-0329-9
– volume: 38
  start-page: 4452
  year: 2019
  ident: 2021091406020809000_ref16
  article-title: Base excision repair regulates PD-L1 expression in cancer cells
  publication-title: Oncogene
  doi: 10.1038/s41388-019-0733-6
– volume: 19
  start-page: 1189
  year: 2017
  ident: 2021091406020809000_ref21
  article-title: Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.04.031
– volume: 8
  start-page: 109370
  year: 2017
  ident: 2021091406020809000_ref17
  article-title: 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread gammaH2AX foci after high LET heavy-ion particle radiation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.22679
– volume: 548
  start-page: 466
  year: 2017
  ident: 2021091406020809000_ref28
  article-title: Mitotic progression following DNA damage enables pattern recognition within micronuclei
  publication-title: Nature
  doi: 10.1038/nature23470
– volume: 17
  start-page: 1497
  year: 2016
  ident: 2021091406020809000_ref10
  article-title: Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(16)30498-3
– volume: 129
  start-page: 1211
  year: 2019
  ident: 2021091406020809000_ref27
  article-title: PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer
  publication-title: J Clin Invest
  doi: 10.1172/JCI123319
– volume: 12
  start-page: 936
  year: 2013
  ident: 2021091406020809000_ref19
  article-title: The complexity of DNA double strand breaks is a critical factor enhancing end-resection
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2013.08.009
– volume: 10
  start-page: 633
  year: 2019
  ident: 2021091406020809000_ref13
  article-title: Carbon ion irradiation enhances the antitumor efficacy of dual immune checkpoint blockade therapy both for local and distant sites in murine osteosarcoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.26551
– volume: 16
  start-page: e498
  year: 2015
  ident: 2021091406020809000_ref11
  article-title: Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(15)00007-8
– volume: 32
  start-page: 108080
  year: 2020
  ident: 2021091406020809000_ref31
  article-title: Cell cycle checkpoints cooperate to suppress DNA- and RNA-associated molecular pattern recognition and anti-tumor immune responses
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2020.108080
– volume: 16
  start-page: e93
  year: 2015
  ident: 2021091406020809000_ref32
  article-title: Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(14)70412-7
– volume: 91
  year: 2017
  ident: 2021091406020809000_ref18
  article-title: Impaired STING pathway in human osteosarcoma U2OS cells contributes to the growth of ICP0-null mutant herpes simplex virus
  publication-title: J Virol
  doi: 10.1128/JVI.00006-17
– volume: 10
  start-page: 411
  year: 2013
  ident: 2021091406020809000_ref1
  article-title: Charged particle therapy—optimization, challenges and future directions
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2013.79
– volume: 14
  start-page: 483
  year: 2017
  ident: 2021091406020809000_ref3
  article-title: Charged-particle therapy in cancer: clinical uses and future perspectives
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.30
– volume: 407
  start-page: 57
  year: 2017
  ident: 2021091406020809000_ref7
  article-title: PD-1/PD-L1 and immunotherapy for pancreatic cancer
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2017.08.006
– volume: 8
  start-page: 1751
  year: 2017
  ident: 2021091406020809000_ref15
  article-title: DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01883-9
– volume: 16
  start-page: 275
  year: 2016
  ident: 2021091406020809000_ref6
  article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc.2016.36
– volume: 30
  start-page: 1079
  year: 2011
  ident: 2021091406020809000_ref20
  article-title: Factors determining DNA double-strand break repair pathway choice in G2 phase
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.27
– volume: 33
  start-page: 672
  year: 2009
  ident: 2021091406020809000_ref25
  article-title: Changing of the guard: how ATM hands off DNA double-strand break signaling to ATR
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.03.004
– volume: 548
  start-page: 461
  year: 2017
  ident: 2021091406020809000_ref29
  article-title: cGAS surveillance of micronuclei links genome instability to innate immunity
  publication-title: Nature
  doi: 10.1038/nature23449
– volume: 31
  start-page: e19
  year: 2020
  ident: 2021091406020809000_ref14
  article-title: Significance of PD-L1 expression in carbon-ion radiotherapy for uterine cervical adeno/adenosquamous carcinoma
  publication-title: J Gynecol Oncol
  doi: 10.3802/jgo.2020.31.e19
– volume: 541
  start-page: 321
  year: 2017
  ident: 2021091406020809000_ref5
  article-title: Elements of cancer immunity and the cancer-immune set point
  publication-title: Nature
  doi: 10.1038/nature21349
SSID ssj0027050
Score 2.4061363
Snippet Programmed death ligand 1 (PD-L1) expression on the surface of cancer cells affects the efficacy of anti-PD-1/PD-L1 immune checkpoint therapy. However, the...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 773
SubjectTerms Ataxia
Ataxia Telangiectasia Mutated Proteins - antagonists & inhibitors
Ataxia Telangiectasia Mutated Proteins - physiology
B7-H1 Antigen - biosynthesis
B7-H1 Antigen - genetics
Biological effects
Bone cancer
Bone Neoplasms - pathology
Cancer
Carbon
Cell Line, Tumor
Effectiveness
Energy transfer
Fundamental Radiation Science
Gene Expression Regulation, Neoplastic - radiation effects
Heavy Ion Radiotherapy
Humans
Image resolution
Imaging, Three-Dimensional
Immunofluorescence
Interferon Regulatory Factor-1 - biosynthesis
Interferon Regulatory Factor-1 - genetics
Ion irradiation
Ionizing radiation
Kinases
Linear Energy Transfer
Linear energy transfer (LET)
Morpholines - pharmacology
Neoplasm Proteins - antagonists & inhibitors
Neoplasm Proteins - biosynthesis
Neoplasm Proteins - genetics
Osteosarcoma - pathology
Phosphorylation
Phosphorylation - radiation effects
Protein Processing, Post-Translational - radiation effects
Pyrazines - pharmacology
Pyrones - pharmacology
Relative biological effectiveness (RBE)
RNA, Messenger - biosynthesis
RNA, Messenger - genetics
RNA, Neoplasm - biosynthesis
RNA, Neoplasm - genetics
Sarcoma
STAT1 Transcription Factor - metabolism
Sulfones - pharmacology
Up-Regulation - radiation effects
X ray irradiation
X-Rays
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgCMQLGuPHAgMOaU9IVp0fTeInhAZlQgyQoFLfIjt2tKLNKU4rsb-Cf5m7xO1ahPZsK7Hyne3vct_dMXZMVb0TUWgurUw5BYZ4KYXhFIVChiq1KClR-OxLfjrNPs3Gs_DDrQuyyvWZ2B_Upq3pH_kI7zmqXlZmydvFL05doyi6Glpo3GZ3YrxpyM7Lycdrh0v0HVpFllF8PxchPw-d-NFP70feKy0o4X7rRtrJctsim_9qJrcuock-exDYI7wb4H7Ibll3wO4O_SSvDti9sxApf8T-kIADiEMqD7ZP8INlT1Kth1p53TqOkMAcl2cGeGC18ENnetvBt_f8cwz2d9DJOiBBLpDag7RFCMcFPu9cOZhxr646mDvo2_0BJY20HW6f9lLBNPn6HSg20D1m08mHHyenPDRf4PU4FUtuxuhbKaFkqamATRpbPDeVjAnTBEmcto3N4swiX6mFVkgrG2NjUwhhclWUdfqE7bnW2UMGddaIpJZFqgySCdtIZRGRRiOkeL6YJGJv1gBUdahMTg0yLqohQp5WiFYV0IrY8WbyYijI8f9prxDJm2ccrVGuwr7tqmsri9jrzTDuOPpUytl21VXoUqOPJ9M8jdjTwSg276HqeHkh8ogVO-aymUDVvHdH3Py8r-pdUkh2XD67eVnP2f2EVDW9yu2I7S39yr5AWrTUL3vb_wtaIg8v
  priority: 102
  providerName: ProQuest
Title High linear energy transfer carbon-ion irradiation upregulates PD-L1 expression more significantly than X-rays in human osteosarcoma U2OS cells
URI https://www.ncbi.nlm.nih.gov/pubmed/34196706
https://www.proquest.com/docview/3171179842
https://www.proquest.com/docview/2547539363
https://pubmed.ncbi.nlm.nih.gov/PMC8438258
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVlS9oFJegTYsUk9IS9eP2N4DQi00VIi0FTSSb9auvVaDgl3WidT8Cv4yM36EpKo4cPHFa3vlb9b7jWfmG4BDUvV2Rai5NNLjFBjikRQZpygUMlSpRUSFwqPz4Gzsf4kH8QZ0zTjbF1jd69pRP6mxnb67_bX4gAv-fSuGdPTD2iNrlRbku2_hlhSQFzbyo7-el6hbtQrfp0B_INpCvTsX78A2qZsFIbU_Wtml1irfVgjo3TzKlY1puAuPWkbJjhsTeAwbptiDh02PycUebI_a6PkT-E1JHYx4pbLM1EV_bFYTV2NZqqwuC44wsQnONGsgY_Mb23SrNxW7_MS_OszctrmzBaMkXUYZIJRvhBBN8X7XqmAxt2pRsUnB6haAjApJygqXVPlTsbF78Z1RvKB6CuPh6dXHM942ZODpwBMzng3Q31JCyUiTqI3nGPyWKukQzi4SO21y4zu-QQ6TCq2QauaZcbJQiCxQYZR6z2CzKAvzAljq58JNZeipDAmGyaUyCE6ukc7gNydze_C2AyBJW7VyapoxTZqouZcgcEkLXA8Ol4NvGpGO-4e9RiT_PWK_QznpTDHBKZFuXuTjpN4sT-MqpFelClPOqwTdbPT7pBd4PXjeGMXyOZ1N9SBcM5flAFL4Xj9TTK5rpe-IwrSD6OV_X_kKdlxKwqmT4vZhc2bn5gBZ1Ez34UEYh3iMhp_7sHVyen75rV__kejXawePVxfxH1BLJR0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VIi4vCMrNUOgilRekVdaX2N4HhBClSmlSkGikvLm79poGFTusE0G-gj_hG5nxJSQI9a3PXjmrnNnZM54zMwD71NXbE5Hm0kifU2KIx1JknLJQyFClFjEVCo9OwsE4-DDpT7bgd1cLQ7LKzifWjjorU_pG3sN7jrqXxYH3Zvad09Qoyq52IzQaszg2yx8YslWvjw4Q35eed_j-9N2At1MFeNr3xZxnfQwalFAy1tSZxXcNOgQlXdqsh-xEm9wEbmDwIk6FVsiX8sy4WSREFqooTn187zW4HtCXcTw_0WQtwBP1RFgRBKQnCEVbDyik3_tqbc9apQUV-K_dgBtVdWvk9l-N5tqld3gX7rRslb1tzOsebJliB2408yuXO3Bz1Gbm78MvEoww4qzKMlMXFLJ5TYqNZamyuiw4mgCb4vayxhzYYmbNFxofZir26YAPXWZ-trrcgpEAmJG6hLRMCP8Fvu9cFWzCrVpWbFqwerwgoyKVskJcym-Kjb2PnxnlIqoHML4SWB7CdlEW5jGwNMiFl8rIVxmSF5NLZRCRXKMJoT_LPAdedQAkadsJnQZyXCRNRt5PEK2kRcuB_dXiWdMA5P_L9hDJy1fsdignrZ-okr9W7cCL1WM84fRXqcKUiyrBEB5jSumHvgOPGqNY_Q514wsjEToQbZjLagF1D998UkzP6y7iMaWA-_GTy7e1B7cGp6NhMjw6OX4Ktz1S9NQKu13YntuFeYaUbK6f1-eAwdlVH7w_tydLDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+linear+energy+transfer+carbon-ion+irradiation+upregulates+PD-L1+expression+more+significantly+than+X-rays+in+human+osteosarcoma+U2OS+cells&rft.jtitle=Journal+of+radiation+research&rft.au=Permata%2C+Tiara+Bunga+Mayang&rft.au=Sato%2C+Hiro&rft.au=Gu%2C+Wenchao&rft.au=Kakoti%2C+Sangeeta&rft.date=2021-09-01&rft.pub=Oxford+University+Press&rft.issn=0449-3060&rft.eissn=1349-9157&rft.volume=62&rft.issue=5&rft.spage=773&rft.epage=781&rft_id=info:doi/10.1093%2Fjrr%2Frrab050&rft_id=info%3Apmid%2F34196706&rft.externalDocID=PMC8438258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0449-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0449-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0449-3060&client=summon